
The Price of Freedom: Exploring Tradeoffs between Expressivity and
Computational Efficiency in Equivariant Tensor Products

YuQing Xie 1 Ameya Daigavane 1 Mit Kotak 1 Tess Smidt 1

Abstract
E(3)-equivariant neural networks have recently
demonstrated success across a wide range of
3D modelling tasks. A fundamental operation
in these networks is the tensor product that in-
teracts two geometric features in an equivariant
manner to create new features. Due to the high
computational complexity of the tensor product,
significant effort has been invested to optimize
the runtime of this operation. For example, Luo
et al. (2024) proposed the Gaunt tensor product,
promising a significant speedup over the naive
implementation of the tensor product. Here, we
perform a careful systematic analysis of the run-
times and expressivity of different tensor prod-
uct implementations. We applied this analysis to
Clebsch-Gordan tensor product (CGTP), Gaunt
tensor product (GTP), and fused tensor product
(FTP). We find that the naive implementation of
CGTP can be improved by leveraging sparsity
of the Clebsch-Gordan coefficients. Further, we
show that the original implementation proposed
in Luo et al. (2024) using 2D Fourier basis can be
improved by projecting to the sphere S2 instead
which we call grid GTP. In addition, we show
that the improvements of GTP and FTP come at
a cost of expressivity compared to CGTP. In fact,
in some settings they are asymptotically slower
than the sparse version of CGTP. Finally, we pro-
vide some experimental benchmarks for CGTP
and GTP. Our code is available here.

1. Introduction
Incorporating symmetries when modelling complex systems
enables efficient and robust learning. This phenomenon has

1Massachusetts Institute of Technology. Correspondence to:
YuQing Xie <xyuqing@mit.edu>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

Figure 1. (A) Spherical harmonics are basis functions that trans-
form as specific irreps of O(3). (B) Gaunt Tensor Products accel-
erate tensor products using projections on the sphere, however this
eliminates certain paths such as antisymmetric outputs.

been aptly demonstrated by E(3)-equivariant models(Park
et al., 2020; Thomas et al., 2018; Weiler et al., 2018; Kon-
dor, 2018; Kondor et al., 2018) which faithfully model the
symmetries of 3D systems. This has resulted in strong per-
formance across a wide range of scientific problems – for
example, in molecular force fields (Batzner et al., 2022;
Musaelian et al., 2023; Batatia et al., 2022), catalyst discov-
ery (Liao & Smidt, 2023), generative models (Hoogeboom
et al., 2022), charge density prediction (Fu et al., 2024), and
protein structure prediction (Lee et al., 2022; Jumper et al.,
2021).

The group E(3) consisting of all rotations, translations
and reflections in 3 dimensions; we say a model is E(3)-
equivariant if it satisfies:

f(g · x) = g · f(x) ∀g ∈ E(3), x ∈ X (1)

E(3)-equivariant neural networks work with features that
transform as irreducible representations of SO(3), termed
‘irreps’, as described in Section 2. These irreps can be de-
scribed by a number L, indicating how they transform under
E(3). To interact these irreps, a special ‘tensor product’

1

https://github.com/atomicarchitects/PriceOfFreedom.

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

operation is performed, similar to how features are added
and multiplied with each other in a neural network. As
described in Section 3, the well-studied Clebsch-Gordan
(Varshalovich et al., 1988) coefficients can be used to define
a tensor product. The Clebsch-Gordan Tensor Product has
a time complexity1 of O(L5) as we show in Appendix B,
which can quickly become expensive for larger L. This scal-
ing has limited the direct application of E(3)-equivariant
neural networks to larger systems; and there is now much
interest in optimizing several key operations within these
neural networks.

One such optimization was identified by (Passaro & Zitnick,
2023) for the special case of when one of the inputs is
derived from the spherical harmonics. Under a suitable
rotation, the Clebsch-Gordan coefficients become sparse,
allowing for a runtime of O(L3).

To optimize the general case, Luo et al. (2024) proposed
the Gaunt Tensor Product which claims to bring down the
complexity of the tensor product to O(L3). While this rep-
resents exciting progress, we have identified two limitations
of the Gaunt Tensor Product:

• We show that the output spaces of the Gaunt Tensor
Product and the Clebsch-Gordan Tensor Product are
not directly comparable. In particular, when normal-
izing for this difference, the Clebsch-Gordan Tensor
Product is asymptotically faster than the Gaunt Tensor
Product in some settings.

• The Gaunt Tensor Product is restricted to what it can
output. In particular, it cannot represent antisymmetric
interactions, which can be important in many physical
systems. Please see Section 4.1 for an example.

Furthermore, the implementation of the Gaunt Tensor Prod-
uct as originally proposed can be simplified without com-
promising on computational complexity. Instead of using a
2D Fourier basis as implemented in Luo et al. (2024), we
can directly project onto the sphere S2. In fact, using a
special recurrence relation for the spherical harmonics, this
idea enables an asymptotically faster implementation of the
Gaunt tensor product in O(L2 log2 L) time.

Next, we provide some background for understanding the
operations of E(3)-equivariant neural networks. In Sec-
tion 3, we discuss the asymptotics of various tensor products,
including the FusedTensorProduct operation introduced by
Unke & Maennel (2024). In Appendix B, we show the true
runtimes of these tensor products on actual CPU and GPU
hardware.

1Note that (Passaro & Zitnick, 2023) claims a runtime of O(L6)
for this tensor product. In Appendix B, we show that this runtime
is actually O(L4).

2. Irreducible Representations of E(3)

A representation ρ of a group G maps each group element g
to a bijective linear transformation ρ(g) ∈ GL(V), where
V is some vector space. Representations must preserve the
group multiplication property:

ρ(g · h) = ρ(g) ◦ ρ(h) ∀g, h ∈ G (2)

Thus, the representation ρ defines a group action on a vector
space V . The dimension of the representation ρ is simply
defined as the dimension of the vector space V .

There may be subspaces W ⊂ V which are left invari-
ant under actions of ρ(g) for all g ∈ G. If this is the
case, then restricting to W also gives a representation
ρ|W (g) ∈ GL(W). If there is no nontrivial W , then we say
the representation ρ is an irreducible representation (irrep).

To build E(3)-equivariant neural networks, the irreducible
representations of E(3) play a key role. Because E(3)
is not a compact group, the usual approach has been to
consider irreducible representations of the group SO(3) of
3D rotations, and compose them with the representation in
which translations act as the identity:

ρ(R, T) = ρ′(R) (3)

This is why translations are often handled in E(3)-
equivariant neural networks by centering the system or only
using relative vectors.

The ‘scalar’ representation ρscalar representation of SO(3)
is defined as:

ρscalar(R) = id ∀R ∈ SO(3) (4)

and is of dimension 1 over V = R. Elements of R are un-
changed by any rotation R. We call such elements ‘scalars’
to indicate that they transform under the ‘scalar’ representa-
tion of SO(3). An example of a ‘scalar’ element could be
mass of an object, which does not change under rotation of
coordinate frames.

Let T (R) ∈ R3×3 be the rotation matrix corresponding to
a rotation R ∈ SO(3). Then, the ‘vector’ representation of
SO(3) is defined as:

ρvector(R) = T (R) ∀R ∈ SO(3) (5)

and is of dimension 3 over V = R3. The name arises
from the way vectors in R3 transform under a rotation of
the coordinate frame. We call such elements ‘vectors’ to
indicate that they transform under the ‘vector’ representation
of SO(3). For example, the velocity and position of an
object in a certain coordinate frame are ‘vectors’.

Weyl’s theorem for the Lie group SO(3) states that all finite-
dimensional representations of SO(3) are equivalent to di-
rect sums of irreducible representations. The irreducible

2

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

representations of SO(3) are indexed by an integer ℓ ≥ 0,
with dimension 2ℓ + 1. ℓ = 0 corresponds to the ‘scalar’
representation, while ℓ = 1 corresponds to the ‘vector’ rep-
resentation above. We will often use m, where−ℓ ≤ m ≤ ℓ,
to index of each of the 2ℓ+ 1 components.

We say that a quantity x ∈ R2ℓ+1 is a ℓ irrep, if it transforms
as the irreducible representation (‘irrep’) of SO(3) indexed
by ℓ. If x1 is a ℓ1 irrep and x2 is an ℓ2 irrep, we say that
(x1,x2) is a direct sum of ℓ1 and ℓ2 irreps, which we call a
(ℓ1, ℓ2) ‘rep’. Weyl’s theorem states that all reps are a direct
sum of ℓi irreps, possibly with repeats over ℓi: x = ⊕ℓix

(ℓi).
The multiplicity of an irrep in a rep is exactly the number of
repeats.

3. Tensor Products
Given two reps x and y, how can we construct new reps
by interacting x and y? A very general interaction is the
tensor product, which is essentially an outer product. For
two rank 1 tensors x,y, the tensor product gives a rank 2
tensor (matrix) Zij = (x⊗y)ij = xiyj . We call the tensor
product of two irreps a tensor product rep.

3.1. Clebsch-Gordan Tensor Product

Suppose we have 2 reps both of which have been separated
into a sum of irreps. The tensor product of these reps can
be written as

x⊗ y = ⊕x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗ y(ℓ2)) (6)

a new rep which is the sum of tensor product reps.

We can reduce the tensor product reps back into a direct
sum of irreps using Clebsch-Gordan coefficients, giving us

x(ℓ1) ⊗ y(ℓ2) =
⊕
ℓ3

(x(ℓ1) ⊗CG y(ℓ2))(ℓ3) (7)

where

(x(ℓ1) ⊗CG y(ℓ2))(ℓ3)m3

=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

x(ℓ1)
m1

y(ℓ2)
m2

. (8)

Therefore the original tensor product can also be rewritten
as a direct sum of irreps. This defines the Clebsch-Gordan
tensor product (CGTP)

x⊗CG y = ⊕x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗CG y(ℓ2)). (9)

Note that because we simply change the basis in full CGTP
from a tensor product rep to a sum of irreps, we do not lose
any information.

The decomposition of tensor product reps into irreps is well
studied. There are selection rules, which tell us the only ℓ3
in Equation 8 that can be non-zero satisfy |ℓ1 − ℓ2| ≤ ℓ3 ≤
ℓ1 + ℓ2 (Varshalovich et al., 1988).

3.2. Gaunt Tensor Product

The Gaunt tensor product (GTP) as introduced by Luo et al.
(2024) uses the intimate connection between spherical har-
monics, irreps, and spherical signals. We define this more
precisely in Appendix A. Any rep of form (0, 1, . . . , L) can
be interpreted as coefficients for the spherical harmonics
and hence corresponds to a function on S2.

In particular, given two (0, 1, . . . , L) reps x and y, let fx =
ToSphere(x) and fy = ToSphere(y) be the associated
functions on S2. Taking the pointwise product of fx and fy
on S2 gives us a new function fx · fy, also on S2. Then,
converting back to irreps gives us the Gaunt tensor product:

x⊗GTP y = FromSphere(fx · fy) (10)

From the same selection rules as the CGTP, we will only
have irreps up to 2L. However, spherical signals only have
one copy of each irrep. So x⊗GTP y will be a (0, 1, . . . , 2L)
rep. This already highlights one key difference already
between the GTP and the CGTP: the multiplicities of each
irrep in the GTP can be at most one. However, Equation 8
shows that the multiplicities of some irreps in the CGTP can
be Θ(L2). What happens is that output irreps of the same ℓ
get weighted and summed. Hence, compared to the CGTP,
GTP loses information. Even adding additional per-irrep
learned weights does not help the expressivity of the GTP,
as we prove in Appendix C.

This distinction is exactly where the speedup from the Gaunt
tensor product arises: the outputs of both operations are
not directly comparable with each other. To address this
discrepancy, we consider 3 different settings to analyse
the theoretical and empirical runtimes of different tensor
products:

• Single Input, Single Output (SISO):

L⊗ L→ L

• Single Input, Multiple Output (SIMO):

L⊗ L→ (0, 1, . . . , 2L)

• Multiple Input, Multiple Output (MIMO):

(0, 1, . . . , L)⊗ (0, 1, . . . , L)→ (0, 1, . . . , 2L)

where we assume ℓ1 = O(L), ℓ2 = O(L). We show that
the choice of ‘most efficient’ tensor product depends on the

3

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

Table 1. Asymptotic runtimes of various tensor products for differ-
ent output settings. The best performing tensor products for each
output settings are highlighted in green. In the MIMO setting, the
Clebsch-Gordan tensor products are highlighted in red to indicate
that they can output irreps with multiplicity > 1 , unlike the Gaunt
tensor products.

Tensor Product SISO SIMO MIMO

Clebsch-Gordan (Naive) O(L3) O(L4) O(L6)
Clebsch-Gordan (Sparse) O(L2) O(L3) O(L5)

Gaunt (Original) O(L2 logL) O(L3) O(L3)
Gaunt (Naive Grid) O(L2 logL) O(L3) O(L3)

Gaunt (S2FFT Grid) O(L2 logL) O(L2 log2 L) O(L2 log2 L)
Fused Tensor Product O(L3) O(L3) O(L3)

setting. Table 1 summarizes the first of our contributions: a
tight analysis of the runtimes of different tensor products.
We defer details to Appendix B.

In addition, note that GTP is a symmetric operation. Hence,
antisymmetric outputs cannot appear. For example, GTP
cannot be used to compute cross products, because u×v =
−v × u. In Section 4.1, we show that this implies that the
Gaunt tensor product is incapable of solving a simple task
of classifying chiral 3D structures.

3.3. Fused Tensor Product

The new e3x framework introduces another interaction
which they called FusedTensor (Unke & Maennel,
2024). The main motivation for this interaction is that a
tensor product rep is a matrix and we can interact 2 tensor
product reps through matrix multiplication.

Hence, FTP first takes each input and embeds the irreps
in a single large enough tensor product rep using Clebsch-
Gordan coefficients. After doing so, we can matrix multiply
the tensor product reps. Finally, we can decompose the
resulting tensor product rep back into irreps. Details are
provided in Section B.3.

Similar to GTP, FTP only outputs one copy of each possible
output irrep. Hence, the output irreps of the same irreps get
weighted and summed together and FTP loses information
in the same way as GTP. However in contrast to GTP, FTP
is not a symmetric operation so we can have antisymmetric
tensor product terms.

4. Experiments
4.1. An Example with Antisymmetry: Classifying 3D

Tetris Pieces

We consider a simple task of classifying 8 different 3D
Tetris-like pieces, shown in Figure 2.

Note that the first two pieces are non-superimposable mirror
reflections of each other; they are chiral.

Figure 2. The 8 different 3D Tetris pieces, with the first two pieces
being mirror images of each other.

We use a simple message-passing neural network, described
in Appendix D, using either the Gaunt and Clebsch-Gordan
tensor products. Our network architecture is almost identical
to that of NequIP (Batzner et al., 2022).

Given a randomly oriented 3D structure, the network needs
to predict which of the 8 tetris pieces it corresponds to.

The pieces are normalized such that the side length of each
cube is 1. When represented as a graph, the center of each
cube is a node. We instantiate the network with dmax = 1.1
so that the centers are connected only to its immediately
adjacent centers. The networks finally outputs x = 7 ×
0e + 1 × 0o irreps. (As a reminder, 0e are scalars and 0o
are pseudoscalars). The logits and predicted probabilities
are then computed by:

l0 = x(0o) × x(0e)0

l1 = −x(0o) × x(0e)0

li = x(0e)i for i ≥ 2

pi = softmax(li) (11)

It is clear that defining the logits in this manner preserves
the rotational and reflection symmetries. The predictions are
clearly invariant under rotations (as they are ℓ = 0 irreps),
and under reflections: x(0o) → −x(0o) but x(0e)i → x(0e)i .

We set the number of message-passing steps T to be 3, to
allow the interactions 1o⊗1o→ 1e and then 1e⊗1o→ 0o,
so that the pseudoscalar can be created. The degree of
spherical harmonics is kept as ℓ = 4. The irreps of the
hidden layers are restricted to some cutoff L, which is varied
from 1 to 4 to vary the expressivity of the network. The
network is trained with the Adam optimizer with learning
rate 0.01 to minimize the standard cross-entropy loss to
one-hot encoded labels for each of the 8 pieces.

As shown in Figure 3, the network is very easily able to
solve this task with the Clebsch-Gordan tensor product, but
the same network parametrized with the Gaunt tensor prod-
uct is unable to distinguish between the two chiral pieces.
Adding more channels or incorporating the pseudo-spherical
harmonics (which have the opposite parity of the spherical
harmonics under reflection) did not help. The fundamental

4

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

0 100 200 300 400
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Gaunt

Clebsch-Gordan

Accuracy on 3D Tetris

Lmax = 1
Lmax = 2
Lmax = 3
Lmax = 4

Lmax = 1
Lmax = 2
Lmax = 3
Lmax = 4

Figure 3. Training curves of networks trained with different tensor
products on the 3D Tetris task. The maximum L is varied from 1
to 4. All of the Clebsch-Gordan networks attain 100% accuracy
while none of the Gaunt networks do.

failure is the inability to create the 1e term via 1o⊗1o→ 1e
because this is the cross product, ie an antisymmetric opera-
tion. Indeed, there is no way to create a pseudoscalar using
the Gaunt tensor product in this setting.

4.2. Benchmarking Different Tensor Products

We report wall clock times, average throughput (GFLOP/s),
and average bandwidth (GB/s) for Clebsch-Gordan (Naive),
Clebsch-Gordan (Sparse), Gaunt (Original) and Gaunt
(Naive Grid) Table 1.

We analyze results for the MIMO setting on a NVIDIA RTX
A5500 GPU in Figure 4. Results on the CPU and for other
tensor products can be found in Appendix E.

• The faster wall-times for GTP (Naive Grid, Original
Grid) can be attributed to high throughput and band-
width. On the other hand, CGTP (Sparse) is bottle-
necked by low throughput and bandwidth utilization.

• CGTP (Sparse) is slower than CGTP (Naive) despite
having lower computational complexity. This is due
to irregular memory access patterns leading to poor
spatial and temporal locality.

• Unlike matrix multiplication, the throughput efficiency
(NVIDIA, 2024) for the CGTP (Sparse, Original) prod-
uct operations doesn’t improve with increasing Lmax.
Our current benchmarks do not do any batching, possi-
bly leading to low GPU utilization. In the future, we
plan to extend the benchmarks to account for batch
dimensions.

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (GPU) for MIMO

1 2 3 4 5 6
Lmax

10−3
10−2
10−1
100
101
102
103
104
105
106

GF
LO

P/
s

Tensor Core: 136.4 TFLOP/s

FP32: 17.05 TFLOP/s

Average Throughput for MIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

103

GB
/s

DRAM: 768 GB/s
Average Bandwidth for MIMO

Figure 4. Analysis of MIMO performance for different tensor prod-
ucts on RTX A5500: Walltime (top), Average GFLOP/s (middle),
Average GB/s (bottom)

5. Conclusion
We analyzed the asymptotic runtimes of various tensor prod-
uct operations and show most of the improved performance
comes at the price of expressivity. We further benchmarked
different implementations of the Clebsch-Gordan and Gaunt
tensor products to see their performance in practice. Despite
better asymptotics, we find our sparse implementation of
the Clebsch-Gordan tenosr product to perform worse due
to low throughput and bandwidth utilization, caused by ir-
regular memory access patterns. Our results highlight the
importance of careful implementations that map well to ex-
isting CPU/GPU primitives. In the future, we plan to work
on improving our implementations to maximize CPU/GPU
utilization.

References
Batatia, I., Kovacs, D. P., Simm, G. N. C., Ortner, C., and

Csanyi, G. MACE: Higher Order Equivariant Message
Passing Neural Networks for Fast and Accurate Force
Fields. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=YPpSngE-ZU.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E(3)-equivariant graph neural networks
for data-efficient and accurate interatomic potentials. 13,
May 2022. URL https://doi.org/10.1038/
s41467-022-29939-5.

Beentjes, C. H. Quadrature on a spherical surface. Working

5

https://openreview.net/forum?id=YPpSngE-ZU
https://openreview.net/forum?id=YPpSngE-ZU
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

note available on the website http://people. maths. ox. ac.
uk/beentjes/Essays, 2015.

Cobb, O., Wallis, C. G., Mavor-Parker, A. N., Marignier,
A., Price, M. A., d’Avezac, M., and McEwen, J. Efficient
generalized spherical cnns. In International Conference
on Learning Representations.

Fu, X., Rosen, A., Bystrom, K., Wang, R., Musaelian, A.,
Kozinsky, B., Smidt, T., and Jaakkola, T. A recipe for
charge density prediction, 2024.

Healy, D. M., Rockmore, D. N., Kostelec, P. J., and Moore,
S. FFTs for the 2-sphere-improvements and variations.
Journal of Fourier analysis and applications, 9:341–385,
2003.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d,
2022.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kondor, R. N-body networks: a covariant hierarchical
neural network architecture for learning atomic poten-
tials, 2018. URL https://arxiv.org/abs/1803.
01588.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch-gordan
nets: a fully fourier space spherical convolutional neural
network, 2018. URL https://arxiv.org/abs/
1806.09231.

Lebedev, V. I. Quadratures on a sphere. USSR Compu-
tational Mathematics and Mathematical Physics, 16(2):
10–24, 1976.

Lee, J. H., Yadollahpour, P., Watkins, A., Frey, N. C.,
Leaver-Fay, A., Ra, S., Cho, K., Gligorijevic, V.,
Regev, A., and Bonneau, R. Equifold: Protein structure
prediction with a novel coarse-grained structure represen-
tation. bioRxiv, 2022. doi: 10.1101/2022.10.07.511322.
URL https://www.biorxiv.org/content/
early/2022/10/08/2022.10.07.511322.

Liao, Y.-L. and Smidt, T. Equiformer: Equivariant graph
attention transformer for 3d atomistic graphs. In The

Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=KwmPfARgOTD.

Luo, S., Chen, T., and Krishnapriyan, A. S. Enabling effi-
cient equivariant operations in the fourier basis via gaunt
tensor products. arXiv preprint arXiv:2401.10216, 2024.

McLaren, A. D. Optimal numerical integration on a sphere.
Mathematics of Computation, 17(84):361–383, 1963.

Musaelian, A., Batzner, S., Johansson, A., Sun, L., Owen,
C. J., Kornbluth, M., and Kozinsky, B. Learning local
equivariant representations for large-scale atomistic dy-
namics. Nature Communications, 14(1):579, 2023.

NVIDIA. Matrix multiplication background
user’s guide. Technical report, NVIDIA,
2024. URL https://docs.nvidia.
com/deeplearning/performance/
dl-performance-matrix-multiplication/
index.html. Accessed on July 13, 2024.

Park, C. W., Kornbluth, M., Vandermause, J., Wolverton,
C., Kozinsky, B., and Mailoa, J. P. Accurate and scal-
able multi-element graph neural network force field and
molecular dynamics with direct force architecture, 2020.
URL https://arxiv.org/abs/2007.14444.

Passaro, S. and Zitnick, C. L. Reducing so (3) convolu-
tions to so (2) for efficient equivariant gnns. In Inter-
national Conference on Machine Learning, pp. 27420–
27438. PMLR, 2023.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3d point clouds, 2018. URL https://arxiv.org/
abs/1802.08219.

Unke, O. T. and Maennel, H. E3x: E(3)-equivariant deep
learning made easy. arXiv preprint arXiv:2401.07595,
2024.

Varshalovich, D. A., Moskalev, A. N., and Khersonskii,
V. K. Quantum theory of angular momentum. World
Scientific, 1988.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. 3d steerable cnns: Learning rotationally
equivariant features in volumetric data, 2018. URL
https://arxiv.org/abs/1807.02547.

Xin, H., Zhou, Z., An, D., Yan, L.-Q., Xu, K., Hu, S.-M.,
and Yau, S.-T. Fast and accurate spherical harmonics
products. ACM Trans. Graph., 40(6):280–1, 2021.

6

https://arxiv.org/abs/1803.01588
https://arxiv.org/abs/1803.01588
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/1806.09231
https://www.biorxiv.org/content/early/2022/10/08/2022.10.07.511322
https://www.biorxiv.org/content/early/2022/10/08/2022.10.07.511322
https://openreview.net/forum?id=KwmPfARgOTD
https://openreview.net/forum?id=KwmPfARgOTD
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://arxiv.org/abs/2007.14444
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1807.02547

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

Yang, C. Hierarchical roofline analysis: How to col-
lect data using performance tools on intel cpus and
nvidia gpus, 2020. URL https://arxiv.org/
abs/2009.02449.

7

https://arxiv.org/abs/2009.02449
https://arxiv.org/abs/2009.02449

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

A. Spherical Harmonics
The spherical harmonics are intimately connected to the representations of SO(3) and play a key role in the Gaunt tensor
product.

We define the spherical coordinates (r, θ, φ) as: xy
z

 =

r sin θ cosφr sin θ sinφ
r cos θ

 (12)

for θ ∈ [0, π), φ ∈ [0, 2π).

The spherical harmonics Yℓ,m are a set of functions S2 → R indexed by (ℓ,m), where again ℓ ≥ 0,−ℓ ≤ m ≤ ℓ. Here,
S2 = {(r, θ, ϕ) | r = 1} denotes the unit sphere.

Indeed, as suggested by the notation, the spherical harmonics are closely related to the irreducible representations of SO(3).
Let Yℓ be the concatenation of all Yℓ,m over all m for a given ℓ:

Yℓ(θ, ϕ) =

Yℓ,−ℓ(θ, ϕ)

Yℓ,−ℓ+1(θ, ϕ)
. . .

Yℓ,ℓ(θ, ϕ)

 (13)

When we transform the inputs to Yℓ(θ, ϕ), the output transforms as a ℓ irrep.

The spherical harmonics satisfy orthogonality conditions:∫
S2

Yℓ1,m1 · Yℓ2,m2 dS2 = δℓ1ℓ2δm1m2 (14)

where: ∫
S2

f · g dS2 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ)g(θ, φ) sin θdθdφ (15)

The orthogonality property allows us to treat the spherical harmonics as a basis for functions on S2. We can linearly
combine the spherical harmonics using irreps to approximate arbitrary functions on the sphere. Given a (0, 1, . . . , L) rep
x = (x(0),x(1), . . . ,x(L)), we can associate the function fx : S2 → R as:

fx(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θ, φ) (16)

The function fx is uniquely determined by x. In particular, by the orthogonality of the spherical harmonics (Equation 14),
we can recover the x

(ℓ)
m component:

x(ℓ)
m =

∫
S2

fx · Yℓ,m dS2 (17)

Thus, we can define the operations ToSphere and FromSphere:

x
ToSphere−−−−−−→ fx

FromSphere−−−−−−−→ x (18)

B. Runtime Analysis
Here, we provide further details about the asymptotic analysis of runtimes for different tensor products.

8

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

B.1. Clebsch-Gordan Tensor Product

The tensor product operation is defined as:

⊗CGx
(ℓ2))(ℓ3)m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

x(ℓ1)
m1

x(ℓ2)
m2

(19)

where C denotes the Clebsch-Gordan (CG) coefficients which can be precomputed.

B.1.1. NAIVE RUNTIME

Let L = max(ℓ1, ℓ2, ℓ3). From Equation 19, for each m3, we would need to sum over m1,m2 which range from −ℓ1 to ℓ1
and −ℓ2 to ℓ2 respectively. Hence, we expect O(L2) operations. To compute the values for all m which range from −ℓ3 to
ℓ3, we see that computing a single ℓ1 ⊗ ℓ2 → ℓ3 tensor product requires O(L3) operations.

B.1.2. OPTIMIZED RUNTIME WITH SPARSITY

However, the CG coefficients are sparse. In the complex basis for the irreps, C(ℓ3,m)
ℓ1,m1,ℓ2,m2

is nonzero only if m1+m2 = m3.
Transforming to the real basis for the irreps, this condition becomes ±m1 ±m2 = m3. In either case for a fixed m1 and
m, we only ever need to sum over a constant number of m2’s rather than O(L) of them as naively expected. Therefore an
implementation taking this sparsity into account gives us a runtime of O(L2). This optimization was noted in Cobb et al..

B.2. Gaunt Tensor Product

The Gaunt Tensor Product (GTP) is based on the decomposition of a product of spherical harmonic functions back into
spherical harmonics (Luo et al., 2024). In particular, suppose one of our inputs x(ℓ1) transforms as a direct sum of irreps up
to some cutoff L (ie. ℓ1 ranges from 0, . . . , L). We can view these irreps as coefficients of spherical harmonics which gives
a spherical signal F1(θ, φ) =

∑
ℓ1,m1

x
(ℓ1)
m1 Yℓ1,m1

(θ, φ). We similarly construct F2(θ, φ) =
∑

ℓ2,m2
x
(ℓ2)
m2 Yℓ2,m2

(θ, φ).

Taking the product of these spherical signals gives a new signal F3(θ, φ) = F1(θ, φ)F2(θ, φ). This new signal can be
decomposed into spherical harmonics which we use to define the GTP. This results in

F3(θ, φ) =
∑
ℓ3,m3

(x(ℓ1) ⊗GTP x
(ℓ2))(ℓ3)m3

Yℓ3,m3
(θ, φ). (20)

B.2.1. 2D FOURIER BASIS

Luo et al. (2024) describe an implementation which decomposes spherical harmonics into a 2D Fourier basis in their original
paper introducing GTP. This also turns out to be the same implementation in Xin et al. (2021). We describe their procedure
here.

Note that for any ℓ ≤ L we can always write the spherical harmonics in the 2D Fourier basis:

Yℓ,m(θ, φ) =
∑

−L≤u,v≤L

yℓ,mu,v e
i(uθ+vφ) (21)

for some coefficients yℓ,mu,v .

Hence, any signal x(ℓ)
m can be encoded as

F1(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

∑
−L≤u,v≤L

x(ℓ)
m yℓ,mu,v e

i(uθ+vφ) =
∑

−L≤u,v≤L

(
L∑

ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v

)
ei(uθ+vφ). (22)

We identify the encoding

xu,v =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v . (23)

9

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

One can observe that the yℓ,mu,v are sparse and only nonzero when m = ±v. Therefore, finding xu,v if we have a set of irreps
is O(L) and it is O(1) if we only want one irrep. Because there are O(L2) possible values for u, v, encoding into the 2D
Fourier is O(L3) if we encode all irreps up to L or O(L2) if encoding a single irrep.

For 2 functions of θ, φ encoded using a 2D Fourier basis x1
u,v,x

2
u,v, we can compute their product using a standard 2D

FFT in O(L2 logL) time. This gives some output encoded as yu,v where now u, v range from −2L, . . . , 2L to capture all
information.

Finally, we decode the resulting function in the 2D Fourier basis back into a spherical harmonic basis to extract the output
irreps. Suppose −L ≤ u, v ≤ L. We can always write

ei(uθ+vφ) = F⊥
u,v(θ, φ) +

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (24)

where F⊥
u,v(θ, φ) is some function in the space orthogonal to that spanned by the spherical harmonics. By construction, our

output signal is always in the space spanned by the spherical harmonics so the orthogonal parts cancel. Hence we can write

∑
−2L≤u,v≤2L

yu,ve
i(uθ+vφ) =

∑
−2L≤u,v≤2L

yu,v

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (25)

=

L∑
ℓ=0

ℓ∑
m=−ℓ

 ∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v

Yℓ,m(θ, φ) (26)

Hence we identify:

yℓ
m =

∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v . (27)

Once again, we can note that zℓ,mu,v must be sparse and is only nonzero when v = ±m. Hence, evaluating the above takes
O(L) time since we sum over O(L) values of u paired with constant number of v’s. If we only extract one irrep, then we
range over O(L) values of m giving O(L2) runtime. If we extract all irreps up to 2L this becomes O(L3).

B.2.2. GRID TENSOR PRODUCT

Rather than use a 2D Fourier basis, we can instead represent the signal by directly giving its value for a set of points on the
sphere. Quadrature on the sphere is a well-studied topic (Beentjes, 2015; Lebedev, 1976); in general, O(L2) points are
needed to exactly integrate spherical harmonics upto degree L (McLaren, 1963). For this section, consider a product grid on
the sphere formed by the Cartesian product of two 1D grids for θ and φ with O(L) points each, for a total of O(L2) points.

We can write:

F1(θj , φk) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θj , φk) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj))csm(φk) (28)

where Nℓ,m is some normalization factor, Pm
ℓ are the associated Legendre polynomials, and

csm(φ) =

sin(|m|φ) m < 0

1 m = 0

cos(mφ) m > 0

. (29)

We note that we can first evaluate

gm(θj) =

L∑
ℓ=0

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj)) (30)

10

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

where we set Pm
ℓ = 0 if m > ℓ. If we have a set of irreps up to L then we do the summation and this takes O(L) time.

If we only have one irrep to encode then this takes O(1) time. But we also have O(L) values of θj on the grid and O(L)
values of m to evaluate. This gives O(L3) runtime to encode onto the grid for irreps up to L and O(L2) for a single irrep.
Finally evaluating

F1(θj , φk) =

ℓ∑
m=−ℓ

gm(θj)csm(φk) (31)

for a set of φk can be done through a FFT in O(L logL) time for each θj giving O(L2 logL) total. Hence we see encoding
onto the sphere takes O(L3) time for irreps up to L and O(L2 logL) time for a single irrep.

For the multiplication of signals, we just have elementwise multiplication F3(θk, φk) = F1(θk, φk) · F2(θk, φk). Since
there are O(L2) grid points this takes O(L2) time.

Finally, we decode the signal back into irreps. To do so we use the fact that

f (ℓ)m =
∑
j,k

ajF (θj , φk)Yℓ,m(θj , φk) (32)

for some coefficients aj . This is essentially performing numerical integration of our signal against a spherical harmonic.
Once again using the factorization of the spherical harmonics we get

f (ℓ)m =
∑
j

(∑
k

F (θj , φk)csm(φk)

)
ajNℓ,mPm

ℓ (cos(θj)). (33)

The inner sum in parentheses can be computed in O(L) time and we need to compute it for O(L2) values of θj ,m pairs
giving a runtime of O(L3). Of course, we note that cs really is just sines and cosines so alternatively we can use FFT which
takes O(L2 logL) total. Computing the outer sum takes O(L) since we sum over O(L) values of j. For a single irrep there
areO(L) values of j givingO(L2) for the outer sum. For irreps up to ℓ there areO(L2) pairs of ℓ,m givingO(L3) runtime
for the outer sum. In total, we see going from the grid to the coefficients takes O(L2 logL) for a single irrep and O(L3) for
all irreps.

However, it turns out that the associated Legendre polynomials have recurrence properties which can be exploited to make
transforming a set of irreps up to L to the grid and a set of irreps up to L back from the grid asymptotically more efficient
(Healy et al., 2003). The runtime for this algorithm which we will call S2FFT is O(L2 log2 L).

B.3. Fused Tensor Product

Here we describe and analyze the time complexity of fused tensor product. Let L1, L2 be the max ℓ’s of the inputs and
L3 be the max ℓ of the outputs. We pick some ℓ̃ = ⌈max(L1, L2, L3)/2⌉ so that ℓ̃⊗ ℓ̃ when decomposed into irreps can
contain all irreps of the inputs and outputs. Note in principle we could always choose larger ℓ̃.

In the following runtime analysis, we assume L1 = L2 = L, l̃ = L, and L3 = 2L.

B.3.1. NAIVE RUNTIME

The first step of FTP is to convert our input irreps into a tensor product rep using Clebsch-Gordan coefficients as

X(ℓ)
m1,m2

=

ℓ∑
m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
x(ℓ)
m3

(34)

Y(ℓ)
m1,m2

=

ℓ∑
m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
y(ℓ)
m3

. (35)

Naively we sum over O(L) values of m3 and need to do the computation for O(L2) possible pairs of m1,m2. This gives
O(L3) naive runtime for converting a single irrep into a tensor product rep. To do so for all irreps up to L the takes O(L4)
time.

11

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

We can then sum over tensor product reps to create

X =
∑
ℓ

X(ℓ) Y =
∑
ℓ

Y(ℓ). (36)

There are O(L) matrices to sum over if we have irreps up to L. Summing matrices takes O(L2) time since our matrices are
size O(L)×O(L). Hence, this takes O(L3) time if we have irreps up to L. If we have a single irrep then we do not need to
do anything.

We then multiply the matrices giving Z = XY. Using the naive matrix multiplication algorithm requires O(L3) runtime.

Finally we can use Clebsch-Gordan to extract individual irreps giving

(x⊗FTP y)
(ℓ3)
m3

=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

Zm1,m2
. (37)

Again, naively we sum over O(L2) pairs of m1,m2 and need to evaluate O(L) values of m3 for O(L3) conversion for
single irrep. If we want all irreps up to 2L then we need O(L4).

B.3.2. OPTIMIZED RUNTIME WITH SPARSITY

Similar to the CGTP, we can take sparsity of the Clebsch-Gordan coefficients into account. We have nonzero values only if
±m1 ±m2 = m3. Hence in the encoding step, for fixed m1,m2 we only need to sum over constant number of m3 instead
of O(L). This gives a reduction of L in encoding to tensor product rep. Similarly in the decoding step, we see for fixed m3

we only need to sum over O(L) pairs of m1,m2. This gives a reduction of L as well in decoding back into irreps.

C. Simulating the Fully-Connected Clebsch-Gordan Tensor Product with Gaunt Tensor Products
One way to increase the expressivity of GTP is to first reweight the inputs x,y. That is, we first create

x′(ℓ) = aℓx
(ℓ) (38)

y′(ℓ) = bℓy
(ℓ). (39)

where aℓ and bℓ are learnable weights. We then perform GTP after this reweighting and extract some output irrep(s) ℓ3.
That is we get

(x′ ⊗GTP y
′)(ℓ3). (40)

The analogous operation is fully connected CGTP. There may be multiple pairs of irreps which give a ℓ3 output. We can
always weight and sum these to get ∑

ℓ,ℓ′

wℓ,ℓ′(x
(ℓ) ⊗CG y(ℓ′))(ℓ3) (41)

where wℓ,ℓ′ are learnable weights.

However, even if we only care about symmetric tensor products, the weighted GTP operation is strictly less expressive than
fully connected CGTP.

More concretely, suppose we have nontrivial ℓ = 2 and ℓ = 4 data in our inputs. From CGTP and the selection rules we see
that

(x(2) ⊗CG y(2))(2) (x(2) ⊗CG y(4))(2) (42)

(x(4) ⊗CG y(2))(2) (x(4) ⊗CG y(4))(2) (43)

are all nonzero. In particular, it is possible to create a ℓ = 2 output of

(x(2) ⊗CG y(2))(2) + (x(4) ⊗CG y(4))(2)

12

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

with a fully connected CGTP. However, GTP instead gives a single ℓ = 2 output of form

c22,2(x
′(2) ⊗CG y′(2))(2) + c22,4(x

′(2) ⊗CG y′(4))(2) + c24,2(x
′(4) ⊗CG y′(2))(2) + c24,4(x

′(4) ⊗CG y′(4))(2) (44)

where the c’s are nonzero coefficients. Note that in order to have nonzero (x(2) ⊗CG y(2))(2) and (x(4) ⊗CG y(4))(2)

contributions, a2, b2, a4, b4 must all be nonzero. However, that means we must have nonzero (x(2) ⊗CG y(4))(2) and
(x(4)⊗CGy(2))(2) contributions. Therefore weighted GTP is not expressive enough to output (x(2)⊗CGy(2))(2)+(x(4)⊗CG
y(4))(2), as it will necessarily mix additional terms.

D. Details of Message-Passing Network

Algorithm 1 LEARNABLETENSORPRODUCT

Input: Tensor Product ⊗, Number of Channels C (for Gaunt tensor product).
procedure LEARNABLETP(x1,x2)

if ⊗ = ⊗CG then
return LINEAR(x1 ⊗CG x2)

if ⊗ = ⊗GTP then
for i = 1, 2, . . . , C do

x
(i)
1 ← LINEAR

(i)
1 (x1)

x
(i)
2 ← LINEAR

(i)
2 (x2)

x
(i)
o ← LINEAR(i)

o (x
(i)
1 ⊗GTP x

(i)
2)

return CONCATENATE({x(i)
o | i ∈ {1, 2, . . . , C}})

return LearnableTP

Algorithm 2 Operation of our Message Passing Neural Network
Input: Graph G, Message Passing Iterations T , Cutoff dmax, Spherical Harmonic Degree ℓ, Tensor Product ⊗

Compute neighbor lists for each node in G:

(u, v) ∈ E ⇐⇒ ∥ru − rv∥ ≤ dmax

Create LEARNABLETENSORPRODUCT from ⊗.
for v ∈ V do:

h
(0)
v ← [1]

for t = 1, 2, . . . , T do:
for v ∈ V do:

h
(t)
v ← 1

|N (v)|
∑

u∈N (v) MLP(∥ru − rv∥)× LEARNABLETENSORPRODUCT(h
(t−1)
u , Yℓ(ru − rv))

h
(t)
v ← GATE(h

(t)
v)

h
(t)
v ← CONCATENATE([h

(t−1)
v , h

(t)
v])

h
(t)
v ← LINEAR(h

(t)
v)

return {h(T)
v }v∈V

In 1, we create learnable (ie, parametrized) variants of the purely functional tensor products. For the Clebsch-Gordan tensor
product ⊗CG, we simply add a linear layer to its output. For the Gaunt tensor product ⊗GTP, we create multiple channels,
perform the tensor product channel-wise and then concatenate all irreps. This allows the output to have irreps of multiplicity
> 1, even with the Gaunt tensor product. We set the number of channels C as 4 in all experiments with the Gaunt tensor
product.

In 2, we use these learnable tensor products in a simple message-passing network, very similar to NequIP (Batzner et al.,
2022).

13

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

E. Additional Benchmarks
Wall-Clock Time: The elapsed time after compiling using jax.jit. To enable accurate measurements we calculate the
mean wall-clock time for 100 rounds while performing 10 warmup rounds.

Bandwidth and Throughput: We used Nsight Compute 2024.2.0.0 build 34181891 for profiling and
reported Average GB/s and GFLOP/s from the individual kernel measurments using Roofline Hierarchical Analysis (Yang,
2020).

GPU: We gathered the GPU plots on an NVIDIA RTX A5500, running the CUDA driver version 550.90.07 and CUDA
toolkit version 12.5. We use version 0.4.30 for jax and jaxlib.

CPU: The CPU plots were gathered were on an AMD EPYC 7313.

14

The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (GPU) for SISO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (GPU) for SIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (GPU) for MIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (CPU) for SISO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (CPU) for SIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

W
al

lti
m

e
(m

s)

Walltime (CPU) for MIMO

1 2 3 4 5 6
Lmax

10−3
10−2
10−1
100
101
102
103
104
105
106

GF
LO

P/
s

Tensor Core: 136.4 TFLOP/s

FP32: 17.05 TFLOP/s

Average Throughput for SISO

1 2 3 4 5 6
Lmax

10−3
10−2
10−1
100
101
102
103
104
105
106

GF
LO

P/
s

Tensor Core: 136.4 TFLOP/s

FP32: 17.05 TFLOP/s

Average Throughput for SIMO

1 2 3 4 5 6
Lmax

10−3
10−2
10−1
100
101
102
103
104
105
106

GF
LO

P/
s

Tensor Core: 136.4 TFLOP/s

FP32: 17.05 TFLOP/s

Average Throughput for MIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

103

GB
/s

DRAM: 768 GB/s
Average Bandwidth for SISO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

103

GB
/s

DRAM: 768 GB/s
Average Bandwidth for SIMO

1 2 3 4 5 6
Lmax

10−3

10−2

10−1

100

101

102

103

GB
/s

DRAM: 768 GB/s
Average Bandwidth for MIMO

Figure 5. Analysis of SISO, SIMO and MIMO performance for different tensor products: RTX A5500 Walltime (top row), AMD EPYC
7313 Walltime (second row), Average Throughput (third row) and Average Bandwidth (bottom row). We had to skip some SISO Lmax

values due to profiling errors.

15

