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ABSTRACT

Imitation learning addresses the challenge of learning by observing an expert’s
demonstrations without access to reward signals from environments. Most existing
imitation learning methods that do not require interacting with environments either
model the expert distribution as the conditional probability p(a|s) (e.g., behavioral
cloning, BC) or the joint probability p(s, a) Despite its simplicity, modeling the
conditional probability with BC usually struggles with generalization. While
modeling the joint probability can lead to improved generalization performance,
the inference procedure is often time-consuming and the model can suffer from
manifold overfitting. This work proposes an imitation learning framework that
benefits from modeling both the conditional and joint probability of the expert
distribution. Our proposed diffusion model-augmented behavioral cloning (DBC)
employs a diffusion model trained to model expert behaviors and learns a policy
to optimize both the BC loss (conditional) and our proposed diffusion model
loss (joint). DBC outperforms baselines in various continuous control tasks in
navigation, robot arm manipulation, dexterous manipulation, and locomotion. We
design additional experiments to verify the limitations of modeling either the
conditional probability or the joint probability of the expert distribution as well as
compare different generative models. Ablation studies justify the effectiveness of
our design choices.

1 INTRODUCTION

Recently, the success of deep reinforcement learning (DRL) (Mnih et al., 2015; Lillicrap et al., 2016;
Arulkumaran et al., 2017) has inspired the research community to develop DRL frameworks to
control robots, aiming to automate the process of designing sensing, planning, and control algorithms
by letting the robot learn in an end-to-end fashion. Yet, acquiring complex skills through trial and
error can still lead to undesired behaviors even with sophisticated reward design (Christiano et al.,
2017; Leike et al., 2018; Lee et al., 2019). Moreover, the exploring process could damage expensive
robotic platforms or even be dangerous to humans (Garcıa and Fernández, 2015; Levine et al., 2020).

To overcome this issue, imitation learning (i.e., learning from demonstration) (Schaal, 1997; Osa et al.,
2018) has received growing attention, whose aim is to learn a policy from expert demonstrations,
which are often more accessible than appropriate reward functions for reinforcement learning. Among
various imitation learning directions, adversarial imitation learning (Ho and Ermon, 2016; Zolna
et al., 2021; Kostrikov et al., 2019) and inverse reinforcement learning (Ng and Russell, 2000; Abbeel
and Ng, 2004) have achieved encouraging results in a variety of domains. Yet, these methods require
interacting with environments, which can still be expensive or even dangerous.

On the other hand, behavioral cloning (BC) (Pomerleau, 1989; Bain and Sammut, 1995) does not
require interacting with environments. BC formulates imitation learning as a supervised learning
problem — given an expert demonstration dataset, an agent policy takes states sampled from the
dataset as input and learns to replicate the corresponding expert actions. One can view a BC policy
as a discriminative model p(a|s) that models the conditional probability of actions a given a state
s. Due to its simplicity and training stability, BC has been widely adopted for various applications.
However, BC struggles at generalizing to states unobserved during training (Nguyen et al., 2023).

To alleviate the generalization issue, we propose to augment BC by modeling the joint probability
p(s, a) of expert state-action pairs with a generative model (e.g., diffusion models). This is motivated
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by Bishop and Nasrabadi (2006) and Fisch et al. (2013), who illustrate that modeling joint probability
allows for better generalizing to data points unobserved during training. However, with a learned joint
probability model p(s, a), retrieving a desired action a requires actions sampling and optimization
(i.e., argmax

a∈A
p(s, a)), which can be extremely inefficient with a large action space. Moreover,

modeling joint probabilities can suffer from manifold overfitting (Wu et al., 2021; Loaiza-Ganem
et al., 2022) when observed high-dimensional data lies on a low-dimensional manifold (e.g., state-
action pairs collected from a script expert policies).

This work proposes an imitation learning framework that combines both the efficiency and stability of
modeling the conditional probability and the generalization ability of modeling the joint probability.
Specifically, we propose to model the expert state-action pairs using a state-of-the-art generative
model, a diffusion model, which learns to estimate how likely a state-action pair is sampled from the
expert dataset. Then, we train a policy to optimize both the BC objective and the estimate produced
by the learned diffusion model. Therefore, our proposed framework not only can efficiently predict
actions given states via capturing the conditional probability p(a|s) but also enjoys the generalization
ability induced by modeling the joint probability p(s, a) and utilizing it to guide policy learning.

We evaluate our proposed framework and baselines in various continuous control domains, including
navigation, robot arm manipulation, and locomotion. The experimental results show that the proposed
framework outperforms all the baselines or achieves competitive performance on all tasks. Extensive
ablation studies compare our proposed method to its variants, justifying our design choices, such as
different generative models, and investigating the effect of hyperparameters.

2 RELATED WORK

Imitation learning addresses the challenge of learning by observing expert demonstrations without
access to reward signals from environments. It has various applications such as robotics (Schaal,
1997; Zhao et al., 2023), autonomous driving (Ly and Akhloufi, 2020), and game AI (Harmer et al.,
2018).

Behavioral Cloning (BC). BC (Pomerleau, 1989; Torabi et al., 2018) formulates imitating an expert
as a supervised learning problem. Due to its simplicity and effectiveness, it has been widely adopted
in various domains. Yet, it often struggles at generalizing to states unobserved from the expert
demonstrations (Ross et al., 2011; Florence et al., 2022). In this work, we augment BC by employing
a diffusion model that learns to capture the joint probability of expert state-action pairs.

Adversarial Imitation Learning (AIL). AIL methods aim to match the state-action distributions of
an agent and an expert via adversarial training. Generative adversarial imitation learning (GAIL) (Ho
and Ermon, 2016) and its extensions (Torabi et al., 2019; Kostrikov et al., 2019; Zolna et al., 2021)
resemble the idea of generative adversarial networks (Goodfellow et al., 2014), which trains a
generator policy to imitate expert behaviors and a discriminator to distinguish between the expert
and the learner’s state-action pair distributions. While modeling state-action distributions often leads
to satisfactory performance, adversarial learning can be unstable and inefficient (Chen et al., 2020).
Moreover, AIL methods require online interaction with environments, which can be costly or even
dangerous. In contrast, our work does not require interacting with environments.

Inverse Reinforcement Learning (IRL). IRL methods (Ng and Russell, 2000; Abbeel and Ng,
2004; Fu et al., 2018; Lee et al., 2021) are designed to infer the reward function that underlies the
expert demonstrations and then learn a policy using the inferred reward function. This allows for
learning tasks whose reward functions are difficult to specify manually. However, due to its double-
loop learning procedure, IRL methods are typically computationally expensive and time-consuming.
Additionally, obtaining accurate estimates of the expert’s reward function can be difficult, especially
when the expert’s behavior is non-deterministic or when the expert’s demonstrations are sub-optimal.

Diffusion Policies. Recently, Pearce et al. (2023); Chi et al. (2023); Reuss et al. (2023) propose to
represent and learn an imitation learning policy using a conditional diffusion model, which produces
a predicted action conditioning on a state and a sampled noise vector. These methods achieve
encouraging results in modeling stochastic and multimodal behaviors from human experts or play
data. In contrast, instead of representing a policy using a diffusion model, our work employs a
diffusion model trained on expert demonstrations to guide a policy as a learning objective.
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3 PRELIMINARIES

3.1 IMITATION LEARNING

In contrast to reinforcement learning, whose goal is to learn a policy π based on rewards received
while interacting with the environment, imitation learning methods aim to learn the policy from an
expert demonstration dataset containing M trajectories, D = {τ1, ..., τM}, where τi represents a
sequence of ni state-action pairs {si1, ai1, ..., sini

, aini
}.

3.1.1 MODELING CONDITIONAL PROBABILITY p(a|s)

To learn a policy π, behavioral cloning (BC) directly estimates the expert policy πE with maximum
likelihood estimation (MLE). Given a state-action pair (s, a) sampled from the dataset D, BC
optimizes max

θ

∑
(s,a)∈D

log(πθ(a|s)), where θ denotes the parameters of the policy π. One can view a

BC policy as a discriminative model p(a|s), capturing the conditional probability of an action a given
a state s. Despite its success in various applications, BC tends to overfit and struggle at generalizing
to states unseen during training (Ross et al., 2011; Codevilla et al., 2019; Wang et al., 2022).

3.1.2 MODELING JOINT PROBABILITY p(s, a)

On the other hand, modeling the joint probability can yield improved generalization performance, as
illustrated in Bishop and Nasrabadi (2006); Fisch et al. (2013). For instance, Florence et al. (2022);
Ganapathi et al. (2022) propose to model the joint probability p(s, a) of expert state-action pairs
using an energy-based model. Then, during inference, a gradient-free optimizer is used to retrieve a
desired action a by sampling and optimizing actions (i.e., argmaxa∈A p(s, a)). Despite its success
in various domains, it can be extremely inefficient to retrieve actions with a large action space.

Moreover, explicit generative models such as energy-based models (Du and Mordatch, 2019; Song
and Kingma, 2021), variational autoencoder (Kingma and Welling, 2014), and flow-based mod-
els (Rezende and Mohamed, 2015; Dinh et al., 2017) are known to struggle with modeling observed
high-dimensional data that lies on a low-dimensional manifold (i.e., manifold overfitting) (Wu et al.,
2021; Loaiza-Ganem et al., 2022). As a result, these methods often perform poorly when learning
from demonstrations produced by script policies or PID controllers, as discussed in Section 5.4.

We aim to develop an imitation learning framework that enjoys the advantages of modeling the
conditional probability p(a|s) and the joint probability p(s, a). Specifically, we propose to model the
joint probability of expert state-action pairs using an explicit generative model ϕ, which learns to
produce an estimate indicating how likely a state-action pair is sampled from the expert dataset. Then,
we train a policy to model the conditional probability p(a|s) by optimizing the BC objective and
the estimate produced by the learned generative model ϕ. Hence, our method can efficiently predict
actions given states, generalize better to unseen states, and suffer less from manifold overfitting.

3.2 DIFFUSION MODELS

As described in the previous sections, this work aims to combine the advantages of modeling the
conditional probability p(a|s) and the joint probability p(s, a). To this end, we leverage diffusion
models to model the joint probability of expert state-action pairs. The diffusion model is a recently
developed class of generative models and has achieved state-of-the-art performance on various
tasks (Sohl-Dickstein et al., 2015; Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021).

In this work, we utilize Denoising Diffusion Probabilistic Models (DDPMs) (J Ho, 2020) to model
expert state-action pairs. Specifically, DDPM models gradually add noise to data samples (i.e.,
concatenated state-action pairs) until they become isotropic Gaussian (forward diffusion process),
and then learn to denoise each step and restore the original data samples (reverse diffusion process),
as illustrated in Figure 1. In other words, DDPM learns to recognize a data distribution by learning to
denoise noisy sampled data. More discussion on diffusion models can be found in the Section J.

4 APPROACH
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q(xn |xn−1)

ϕ(xn−1 |xn)
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Figure 1: Denoising Diffusion Probabilistic
Model (DDPM). Latent variables x1, ..., xN are
produced from the data point x0 via the forward
diffusion process, i.e., gradually adding noises to
the latent variables. The diffusion model ϕ learns
to reverse the diffusion process by denoising the
noisy data to reconstruct the original data point x0.

Our goal is to design an imitation learning frame-
work that enjoys both the advantages of mod-
eling the conditional probability and the joint
probability of expert behaviors. To this end, we
first adopt behavioral cloning (BC) for model-
ing the conditional probability from expert state-
action pairs, as described in Section 4.1. To cap-
ture the joint probability of expert state-action
pairs, we employ a diffusion model which learns
to produce an estimate indicating how likely a
state-action pair is sampled from the expert state-
action pair distribution, as presented in Section
4.2.1. Then, we propose to guide the policy
learning by optimizing this estimate provided by
a learned diffusion model, encouraging the policy to produce actions similar to expert actions, as
discussed in Section 4.2.2. Finally, in Section 4.3, we introduce the framework that combines the
BC loss and our proposed diffusion model loss, allowing for learning a policy that benefits from
modeling both the conditional probability and the joint probability of expert behaviors. An overview
of our proposed framework is illustrated in Figure 2, and the algorithm is detailed in Section A.

4.1 BEHAVIORAL CLONING LOSS

The behavioral cloning (BC) model aims to imitate expert behaviors with supervision learning. BC
learns to capture the conditional probability p(a|s) of expert state-action pairs. A BC policy π(a|s)
learns by optimizing

LBC = E(s,a)∼D,â∼π(s)[d(a, â)], (1)

where d(·, ·) denotes a distance measure between a pair of actions. For example, we can adapt the
mean-square error (MSE) loss ||a− â||2 for most continuous control tasks.

4.2 LEARNING A DIFFUSION MODEL AND GUIDING POLICY LEARNING

Instead of directly learning the conditional probability p(a|s), this section discusses how to model
the joint probability p(s, a) of expert behaviors with a diffusion model in Section 4.2.1 and presents
how to leverage the learned diffusion model to guide policy learning in Section 4.2.2.

4.2.1 LEARNING A DIFFUSION MODEL

We propose to model the joint probability of expert state-action pairs with a diffusion model ϕ.
Specifically, we create a joint distribution by simply concatenating a state vector s and an action
vector a from a state-action pair (s, a). To model such distribution by learning a denoising diffusion
probabilistic model (DDPM) (J Ho, 2020), we inject noise ϵ(n) into sampled state-action pairs, where
n indicates the number of steps of the Markov procedure, which can be viewed as a variable of the
level of noise, and the total number of steps is notated as N . Then, we train the diffusion model ϕ to
predict the injected noises by optimizing

Ldiff(s, a, ϕ) = En∼N,(s,a)∼D[||ϵ̂(s, a, n)− ϵ(n)||2] = En∼N,(s,a)∼D[||ϕ(s, a, ϵ(n))− ϵ(n)||2],
(2)

where ϵ̂ is the noise predicted by the diffusion model ϕ. Once optimized, the diffusion model can
recognize the expert distribution by perfectly predicting the noise injected into state-action pairs
sampled from the expert distribution. On the other hand, predicting the noise injected into state-
action pairs sampled from any other distribution should yield a higher loss value. Therefore, we
propose to view Ldiff(s, a, ϕ) as an estimate of how well the state-action pair (s, a) fits the state-action
distribution that ϕ learns from.

4.2.2 LEARNING A POLICY WITH DIFFUSION MODEL LOSS

A diffusion model ϕ trained on an expert dataset can produce an estimate Ldiff(s, a, ϕ) indicating how
well a state-action pair (s, a) fits the expert distribution. We propose to leverage this signal to guide a
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(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Figure 2: Diffusion Model-Augmented Behavioral Cloning. Our proposed method DBC augments behavioral
cloning (BC) by employing a diffusion model. (a) Learning a Diffusion Model: the diffusion model ϕ learns to
model the distribution of concatenated state-action pairs sampled from the demonstration dataset D. It learns
to reverse the diffusion process (i.e., denoise) by optimizing Ldiff in Eq. 2. (b) Learning a Policy with the
Learned Diffusion Model: we propose a diffusion model objective LDM for policy learning and jointly optimize
it with the BC objective LBC. Specifically, LDM is computed based on processing a sampled state-action pair
(s, a) and a state-action pair (s, â) with the action â predicted by the policy π with Ldiff.

policy π predicting actions â to imitate the expert. Specifically, the policy π learns by optimizing

Lagent
diff = Ldiff(s, â, ϕ) = Es∼D,â∼π(s)[||ϵ̂(s, â, n)− ϵ||2]. (3)

Intuitively, the policy π learns to predict actions â that are indistinguishable from the expert actions a
for the diffusion model conditioning on the same set of states.

We hypothesize that learning a policy to optimize Eq. 3 can be unstable, especially for state-action
pairs that are not well-modeled by the diffusion model, which yield a high value of Ldiff even with
expert state-action pairs. Therefore, we propose to normalize the agent diffusion loss Lagent

diff with an
expert diffusion loss Lexpert

diff , which can be computed with expert state-action pairs (s, a) as follows:

Lexpert
diff = Ldiff(s, a, ϕ) = E(s,a)∼D[||ϵ̂(s, a, n)− ϵ||2]. (4)

We propose to optimize the diffusion model loss LDM based on calculating the difference between
the above agent and expert diffusion losses:

LDM = E(s,a)∼D,â∼π(s)[max(Lagent
diff − Lexpert

diff , 0)]. (5)

4.3 COMBINING THE TWO OBJECTIVES

Our goal is to learn a policy that benefits from both modeling the conditional probability and the joint
probability of expert behaviors. To this end, we propose to augment a BC policy that optimizes the
BC loss LBC in Eq. 1 by jointly optimizing the proposed diffusion model loss LDM in Eq. 5, which
encourages the policy to predict actions that fit the expert joint probability captured by a diffusion
model. To learn from both the BC loss and the diffusion model loss, we train the policy to optimize

Ltotal = LBC + λLDM, (6)

where λ is a coefficient that determines the importance of the diffusion model loss relative to the BC
loss. Our experimental results empirically show that optimizing a combination of the BC loss LBC
and the diffusion model loss LDM leads to the best performance compared to solely optimizing each
of them, highlighting the effectiveness of the proposed combined loss Ltotal. Further discussions on
combing these two losses can be found in Section B.
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(a) MAZE (b) FETCHPICK (c) HANDROTATE (d) CHEETAH (e) WALKER (f) ANTREACH

Figure 3: Environments & Tasks. (a) MAZE: A point-mass agent (green) in a 2D maze learns to
navigate from its start location to a goal location (red). (b) FETCHPICK: The robot arm manipulation
tasks employ a 7-DoF Fetch robotics arm to pick up an object (yellow cube) from the table and move
it to a target location (red). (c) HANDROTATE: This dexterous manipulation task requires a Shadow
Dexterous Hand to in-hand rotate a block to a target orientation. (d)-(e) CHEETAH and WALKER:
These locomotion tasks require learning a 2d-dimensional agent to walk as fast as possible while
maintaining its balance. (f) ANTREACH: This task combines locomotion and navigation, instructing
an ant to reach the goal while maintaining its balance.

5 EXPERIMENTS

We design experiments in various continuous control domains, including navigation, robot arm
manipulation, dexterous manipulation, and locomotion, to compare our proposed framework (DBC)
to its variants and baselines.

5.1 EXPERIMENTAL SETUP

This section describes the environments, tasks, and expert demonstrations used for learning and
evaluation. More details can be found in Section E.

Navigation. To evaluate our method on a navigation task, we choose MAZE, a maze environment
proposed in (Fu et al., 2020) (maze2d-medium-v2), as illustrated in Figure 3a. This task features
a point-mass agent in a 2D maze learning to navigate from its start location to a goal location by
iteratively predicting its x and y acceleration. The agent’s beginning and final locations are chosen
randomly. We collect 100 demonstrations with 18,525 transitions using a controller.

Robot Arm Manipulation. We evaluate our method in FETCHPICK, a robot arm manipulation
domain with a 7-DoF Fetch task, as illustrated in Figure 3b. FETCHPICK requires picking up an
object from the table and lifting it to a target location. We use the demonstrations, consisting of 10k
transitions (303 trajectories), provided by Lee et al. (2021) for these tasks.

Dexterous Manipulation. In HANDROTATE, we further evaluate our method on a challenging
environment proposed in Plappert et al. (2018), where a 24-DoF Shadow Dexterous Hand learns to
in-hand rotate a block to a target orientation, as illustrated in Figure 3c. This environment has a state
space (68D) and action space (20D), which is high dimensional compared to the commonly-used
environments in IL. We collected 10k transitions (515 trajectories) from a SAC (Haarnoja et al., 2018)
expert policy trained for 10M environment steps.

Locomotion. For locomotion, we leverage the CHEETAH and WALKER (Brockman et al., 2016)
environments. Both CHEETAH and WALKER require a bipedal agent (with different structures) to
travel as fast as possible while maintaining its balance, as illustrated in Figure 3d and Figure 3e,
respectively. We use the demonstrations provided by Kostrikov (2018), which contains 5 trajectories
with 5k state-action pairs for both the CHEETAH and WALKER environments.

Locomotion + Navigation. We further explore our method on the challenging ANTREACH envi-
ronment. In the environment, the quadruped ant aims to reach a randomly generated target located
along the boundary of a semicircle centered around the ant, as illustrated in Figure 3f. ANTREACH
environment combines the properties of locomotion and goal-directed navigation tasks, which require
robot controlling and path planning to reach the goal. We use the demonstrations provided by Lee
et al. (2021), which contains 500 trajectories with 25k state-action pairs in ANTREACH.
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Table 1: Experimental Result. We report the mean and the standard deviation of success rate (MAZE,
FETCHPICK, HANDROTATE, ANTREACH) and return (CHEETAH, WALKER), evaluated over three
random seeds. Our proposed method (DBC) outperforms or performs competitively against the best
baseline over all environments.

Method MAZE FETCHPICK HANDROTATE CHEETAH WALKER ANTREACH

BC 92.1% ± 3.6% 91.6% ± 5.8% 57.5% ± 4.7% 4873.3 ± 69.7 6954.4 ± 73.5 73.6% ± 2.9%
Implicit BC 78.3% ± 6.0% 69.4% ± 7.3% 13.8% ± 3.7% 1563.6 ± 486.8 839.8 ± 104.2 34.5% ± 5.4%

Diffusion Policy 95.5% ± 1.9% 93.9% ± 3.4% 61.7% ± 4.3% 4650.3 ± 59.9 6479.1 ± 238.6 64.5% ± 3.4%
DBC (Ours) 95.4% ± 1.7% 96.9% ± 1.7% 60.1% ± 4.4% 4909.5 ± 73.0 7034.6 ± 33.7 75.5% ± 3.5%

5.2 BASELINES

This work focuses on imitation learning problem without environment interactions. Therefore,
approaches that require environmental interactions, such as GAIL-based methods, are not applicable.
Instead, we extensively compared our proposed method to state-of-the-art imitation learning methods
that do not require interaction with the environment, including Implicit BC (Florence et al., 2022)
and Diffusion Policy (Chi et al., 2023; Reuss et al., 2023).

• BC learns to imitate an expert by modeling the conditional probability p(a|s) of the expert
behaviors via optimizing the BC loss LBC in Eq. 1.

• Implicit BC (IBC) Florence et al. (2022) models expert state-action pairs with an energy-based
model. For inference, we implement the derivative-free optimization algorithm proposed in IBC,
which samples actions iteratively and select the desired action according to the predicted energies.

• Diffusion policy refers to the methods that learn a conditional diffusion model as a policy (Chi
et al., 2023; Reuss et al., 2023). Specifically, we implement this baseline based on Pearce et al.
(2023). We include this baseline to analyze the effectiveness of using diffusion models as a policy
or as a learning objective (ours).

5.3 EXPERIMENTAL RESULTS

We report the experimental results in terms of success rate (MAZE, FETCHPICK, HANDROTATE, and
ANTREACH), and return (CHEETAH and WALKER) in Table 1. The details of model architecture can
be found in Section F. Training and evaluation details can be found in Section G. Additional analysis
and experimental results can be found in Section H and Section I.

Overall Task Performance. In navigation (MAZE) and manipulation (FETCHPICK and HANDRO-
TATE) tasks, our DBC performs competitively against the Diffusion Policy and outperforms the
other baselines. We hypothesize that these tasks require the agent to learn from demonstrations with
various behaviors. Diffusion policy has shown promising performance for capturing multi-modality
distribution, while our DBC can also generalize well with the guidance of the diffusion models, so
both methods achieve satisfactory results.

On the other hand, in tasks that locomotion is involved, i.e., CHEETAH, WALKER, and ANTREACH,
our DBC outperforms Diffusion Policy and performs competitively against the simple BC baseline.
We hypothesize that this is because locomotion tasks with sufficient expert demonstrations and little
randomness do not require generalization during inference. The agent can simply follow the closed-
loop progress of the expert demonstrations, resulting in both BC and DBC performing similarly to
the expert demonstrations. On the other hand, the Diffusion Policy performs slightly worse due to
its design for modeling multimodal behaviors, which is contradictory to learning from single-mode
simulated locomotion tasks.

Action Space Dimension. The Implicit BC baseline requires time-consuming action sampling and
optimization during inference, and such a procedure may not scale well to high-dimensional action
spaces. Our Implicit BC baseline with a derivative-free optimizer struggles in HANDROTATE and
WALKER environments, whose action dimensions are 20 and 6, respectively. This is consistent
with Florence et al. (2022), which reports that the optimizer failed to solve tasks with an action
dimension larger than 5. In contrast, our proposed DBC can handle high-dimensional action spaces.
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Figure 4: Comparing Modeling Conditional Probability and Joint Probability. (a) Generaliza-
tion. We collect expert trajectories from a PPO policy learning to navigate to goals sampled from the
green regions. Then, we learn a policy πBC to optimize LBC, and another policy πDM to optimize
LDM with a diffusion model trained on the expert distribution. We evaluate the two policies by
sampling goals from the red regions, which requires the ability to generalize. πBC (orange) struggles
at generalizing to unseen goals, whereas πDM (blue) can generalize (i.e., extrapolate) to some extent.
(b)-(c) Manifold overfitting. We collect the green spiral trajectories from a script policy, whose
actions are visualized as red crosses. We then train and evaluate πBC and πDM . The trajectories
of πBC (orange) can closely follow the expert trajectories (green), while the trajectories of πDM

(blue) deviates from expert’s. This is because the diffusion model struggles at modeling such expert
action distribution with a lower intrinsic dimension, which can be observed from incorrectly predicted
actions (blue dots) produced by the diffusion model.

Inference Efficiency. To evaluate the inference efficiency, we measure and report the number of
evaluation episodes per second (↑) for Implicit BC (9.92), Diffusion Policy (1.38), and DBC (30.79)
on an NVIDIA RTX 3080 Ti GPU in MAZE. As a results of modeling the conditional probability
p(a|s), DBC and BC can directly map states to actions during inference. In contrast, Implicit BC
samples and optimizes actions, while Diffusion Policy iteratively denoises sampled noises, which are
both time-consuming. This verifies the efficiency of modeling the conditional probability.

5.4 COMPARING MODELING CONDITIONAL PROBABILITY AND JOINT PROBABILITY

This section aims to empirically identify the limitations of modeling either the conditional or the
joint probability in an open maze environment implemented with Fu et al. (2020).

Generalization. We aim to investigate if learning from the BC loss alone struggles at generalization
(conditional) and examine if guiding the policy using the diffusion model loss yields improved
generalization ability (joint). We collect trajectories of a PPO policy learning to navigate from
(5, 3) to goals sampled around (1, 2) and (1, 4) (green), as shown in Figure 4a. Given these expert
trajectories, we learn a policy πBC to optimize Eq. 1 and another policy πDM to optimize Eq. 5. Then,
we evaluate the two policies by sampling goals around (1, 1), (1, 3), and (1, 5) (red), which requires
the ability to generalize. Visualized trajectories of the two policies in Figure 4a show that πBC

(orange) fails to generalize to unseen goals, whereas πDM (blue) can generalize (i.e., extrapolate) to
some extent. This verifies our motivation to augment BC with the diffusion model loss.

Manifold overfitting. We aim to examine if modeling the joint probability is difficult when observed
high-dimensional data lies on a low-dimensional manifold (i.e., manifold overfitting). We collect
trajectories from a script policy that executes actions (0.5, 0), (0, 0.5), (−0.7, 0), and (0,−0.7) (red
crosses in Figure 4b), each for 40 consecutive time steps, resulting the green spiral trajectories
visualized in Figure 4c.

Given these expert demonstrations, we learn a policy πBC to optimize Eq. 1, and another policy
πDM to optimize Eq. 5 with a diffusion model trained on the expert distribution. Figure 4b shows
that the diffusion model struggles at modeling such expert action distribution with a lower intrinsic
dimension. As a result, Figure 4c show that the trajectories of πDM (blue) deviates from the expert
trajectories (green) as the diffusion model cannot provide effective loss. On the other hand, the
trajectories of πBC (orange) are able to closely follow the expert’s and result in a superior success
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Table 2: Generative Models. We compare using different
generative models to model the expert distribution and
guide policy learning in MAZE.

Method without BC with BC

BC N/A 92.1% ± 3.6%
EBM 39.6% ± 9.6% 83.3% ± 3.2%
VAE 53.1% ± 8.7% 90.9% ± 3.4%
GAN 54.4% ± 4.5% 89.6% ± 3.4%
DM 79.6% ± 9.6% 95.4% ± 1.7%

Table 3: Effect of λ. We experiment
with different values of λ in MAZE, each
evaluated over three random seeds.

λ Success Rate

1 94.03% ± 2.25%
3 95.00% ± 2.21%
10 95.05% ± 2.49%
30 95.41% ± 1.74%

100 94.04% ± 2.59%
300 95.24% ± 1.75%

rate. This verifies our motivation to complement modeling the joint probability with modeling the
conditional probability (i.e., BC).

5.5 COMPARING DIFFERENT GENERATIVE MODELS

Our proposed framework employs a diffusion model (DM) to model the joint probability of expert
state-action pairs and utilizes it to guide policy learning. To justify our choice, we explore using other
popular generative models to replace the diffusion model in MAZE. We consider energy-based models
(EBMs) (Du and Mordatch, 2019; Song and Kingma, 2021), variational autoencoder (VAEs) (Kingma
and Welling, 2014), and generative adversarial networks (GANs) (Goodfellow et al., 2014). Each
generative model learns to model expert state-action pairs. To guide policy learning, given a predicted
state-action pair (s, â) we use the estimated energy of an EBM, the reconstruction error of a VAE,
and the discriminator output of a GAN to optimize a policy with or without the BC loss.

Table 2 compares using different generative models to model the expert distribution and guide
policy learning. All the generative model-guide policies can be improved by adding the BC loss,
justifying our motivation to complement modeling the joint probability with modeling the conditional
probability. With or without the BC loss, the diffusion model-guided policy achieves the best
performance compared to other generative models, verifying our choice of the generative model.
Training details of learning generative models and utilizing them to guide policy learning can be
found in Section G.4.

5.6 EFFECT OF THE DIFFUSION MODEL LOSS COEFFICIENT λ

We examine the impact of varying the coefficient of the diffusion model loss λ in Eq. 6 in MAZE.
The result presented in Table 3 shows that λ = 30 yields the best performance. A higher or lower λ
leads to worse performance, demonstrating how modeling the conditional probability (LBC) and the
joint probability (LDM) can complement each other.

6 CONCLUSION

We propose an imitation learning framework that benefits from modeling both the conditional
probability p(a|s) and the joint probability p(s, a) of the expert distribution. Our proposed diffusion
model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert
behaviors and learns a policy to optimize both the BC loss and our proposed diffusion model loss.
Specifically, the BC loss captures the conditional probability p(a|s) from expert state-action pairs,
which directly guides the policy to replicate the expert’s action. On the other hand, the diffusion model
loss models the joint distribution of expert state-action pairs p(s, a), which provides an evaluation
of how well the predicted action aligned with the expert distribution. DBC outperforms baselines
or achieves competitive performance in various continuous control tasks in navigation, robot arm
manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify
the limitations of modeling either the conditional probability or the joint probability of the expert
distribution as well as compare different generative models. Ablation studies investigate the effect of
hyperparameters and justify the effectiveness of our design choices. The limitations and the broader
impacts can be found in the Appendix.
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