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Abstract. Deep learning image classifiers often struggle with domain
shift, leading to significant performance degradation in real-world appli-
cations. In this paper, we introduce our CROCODILE framework, show-
ing how tools from causality can foster a model’s robustness to domain
shift via feature disentanglement, contrastive learning losses, and the in-
jection of prior knowledge. This way, the model relies less on spurious
correlations, learns the mechanism bringing from images to prediction
better, and outperforms baselines on out-of-distribution (OOD) data. We
apply our method to multi-label lung disease classification from chest X-
rays (CXRs), utilizing over 750000 images from four datasets. Our bias-
mitigation method improves domain generalization, broadening the ap-
plicability and reliability of deep learning models for a safer medical im-
age analysis. Find our code at: https://github.com/gianlucarloni/crocodile.
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1 Introduction

Domain shift bias is the problem of machine learning (ML) models performing
not consistently across in-distribution (ID) and out-of-distribution (OOD) data.
The former are independent and identically distributed (i.i.d) to the data on
which the model was trained. Conversely, data are OOD when their distribution
essentially differs from the source one, such as chest X-rays (CXR) coming from
a different hospital than the training one [18,7,28]. Traditional ML models still
tend to rely on spurious correlations seen during training for predicting the out-
come and spectacularly fail when those shortcut associations are not present in
OOD data, for instance, due to variations in scanner settings, image artifacts,
or patient demographics [6,20,1,8]. For this reason, the field of domain general-
ization (DG) has searched for ways to make deep learning (DL) models learn
robust features that could generalize better to unseen domains [11,13,25,29].

Conceptually, we could think of a set of features that causally determine
the outcome and are invariant to shifts in non-relevant attributes, as well as
a separate set of features that are spuriously correlated with the outcome but
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Fig. 1: A causal view on classifying medical images I coming from different do-
mains D for the presence of diseases Y. By applying the latent causal intervention
(hammer), the backdoor path through the spurious features is cut off.

do not have a causal effect. Some works have proposed using tools from causal
inference to achieve this disentanglement [26,21,12]. The common idea is that
using the causal instead of the spurious features would allow a model to learn
the underlying mechanism and be more robust on new data. However, these
efforts try to model domain shifts implicitly, with a scope limited to the disease
prediction task, disregarding the wealth of information on possible domain shifts
from different source data sets.

In this work, we advance this causal/spurious feature disentanglement on a
cross-domain level by leveraging information from different datasets in a con-
trastive learning setting. We conceive a domain-prediction branch along the
disease-prediction branch to instill domain awareness into the model’s represen-
tations. Moreover, we propose a new way to inject background medical knowl-
edge, effectively designing a task prior to guiding learning and fostering DG.

2 Methodology

We define a structural causal model (SCM) [15] for medical image classification
in Fig 1. Given the input images I, such as CXRs, and the disease classifica-
tion Y, we obtain two sets of features via feature extraction. We denote Fca

y

the causal features that truly determine the outcome (e.g., the patchy airspace
opacification typical in pneumonia). Similarly, we denote Fsp

y the spurious fea-
tures, determined by data bias’s confounding effect, which are unrelated to a
disease (e.g., metal tokens on the image corners). Ideally, Y should be caused
only by Fca

y , but is naturally confounded by Fsp
y , as both types of features usu-

ally coexist in medical data. Unfortunately, conventional models tend to learn
the correlation P (Y|Fca

y ) via the shortcut (backdoor) path Fca
y ← I → Fsp

y → Y
instead of the desired Fca

y → Y. As we detail next, we exploit the do-calculus
from causal theory [16] on the causal features to block the backdoor path, es-
timating P (Y|do(Fca

y )). Following the same idea, we conceive two other sets of
features extracted from I, this time concerning the trivial task of predicting
from which source domain come the data D: Fca

d would be the features that are
relevant to distinguish different domains, and Fsp

d the confounding features.
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2.1 Disease-branch and Domain-branch
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Fig. 2: CROCODILE involves two branches to learn robust, invariant features
for predicting the labels from medical images (e.g., multi-label findings from
CXRs) while disregarding confounding features. We disentangle causal features
determining the label from spurious features associated with the label due to
domain shift. We exploit images from multiple domains in a contrastive learning
scheme and propose a new way to inject prior knowledge. Best seen in color.

We present our overall framework in Fig 2. A disease prediction branch learns
to extract useful image features to predict the medical finding (e.g., pneumoth-
orax or atelectasis in a CXR), regardless of the different domains. On another
parallel branch for domain prediction, the image features that are useful for
the trivial task of predicting the domain the images come from are learned (re-
gardless of the different diseases). The architecture is trained end-to-end. Each
branch involves a feature extraction backbone followed by a block to enhance
features via channel- and spatial- attention [14]. Then, a Transformer network
[24] yields the set A of attention scores, typically in the range 0-1, that identifies
the portion of the input that is causally relevant to the task of interest (i.e., what
knowledge does the network use to make predictions). Given an arbitrary set A,
we modify the Transformer’s cross-attention mechanism to yield also the com-
plementary set 1−A (1 is the all-one matrix), representing the trivial/spurious
aspects of the input. This way, we encode disentangled causal and spurious fea-



4 G. Carloni et al.

ture embeddings, Qca and Qsp, by modulating the features by A and 1 − A,
respectively. Finally, three classifiers connect the features Q to the classification
logits z. In the following sections, we design specific contrastive learning losses
and introduce a novel way to inject prior knowledge about the medical task.

2.2 Feature Disentanglement and Causal Intervention

For each branch, we need to make Qca and Qsp capture the authentic and trivial
aspects from the input samples. To achieve the correctness of the predictions,
we impose two cross-entropy (CE) loss terms, LCE,y and LCE,d, over the clas-
sification logits zy and zd from the causal features Qca

y and Qca
d , supervised by

the disease labels y and domain labels d, respectively.
To make Qsp features encode the trivial patterns that are unnecessary for

classification, we push its predictions z̄y and z̄d evenly to all respective categories.
We define the uniform classification losses LKL,y and LKL,d as the KL-divergence
between the spurious features and the respective uniform distribution (yu or du).

To alleviate the confounding effect, we implement the backdoor adjustment
by performing a latent causal intervention [21,12]: we stratify the spurious fea-
tures appearing from training data and pair the causal set of features with those
stratified spurious features to compose the intervened graph. This way, we fit
the concept of borrowing from others (i.e., "if everyone has it, it is as if no one
has it"). We impose CE losses Lbd

CE,y and Lbd
CE,d between the logits ẑy and ẑd

obtained from the corresponding intervened features Qbd and the same ground-
truth label for the causal features. This way, we push the predictions of such
intervened images to be invariant and stable across different stratifications due
to shared causal features. Practically, we approximate this operation with an
intra-batch shuffling of Qsp followed by random sampling (with 0.3 drop proba-
bility) and addition to Qca. By combining the supervised CE loss, the KL loss,
and the backdoor CE loss for each branch, we obtain the two following equations:

Ly = −(λ1 y
⊤log(zy)︸ ︷︷ ︸
LCE,y

+λ2 KL(yu, z̄y)︸ ︷︷ ︸
LKL,y

+λ3 y
⊤log(ẑy)︸ ︷︷ ︸
Lbd

CE,y

) (1)

Ld = −(λ4 d
⊤ log(zd)︸ ︷︷ ︸
LCE,d

+λ5 KL(du, z̄d)︸ ︷︷ ︸
LKL,d

+λ6 d
⊤ log(ẑd)︸ ︷︷ ︸
Lbd

CE,d

) (2)

2.3 Contrastive Learning

To attain cross-domain robustness, we posit there should also exist an align-
ment between the causal features that determine the disease and the spurious
features for the domain prediction task. And the converse should also be true.
For instance, we want the regions of the image that determine the presence of
pneumonia to be unrelated to what contributes to discerning different domains
(e.g., spurious metal tokens). Conversely, the image aspects determining which
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Fig. 3: Our Relational Scorer stratifies and concatenates every combination of
causal and spurious features across both tasks. With a fully connected layer and
a consecutive sigmoid(·), it maps each pair to a relational score between 0 and
1. We use an MSE loss regressing the relational scores to the ground truth. The
model learns to compare the four sets of disentangled features. Best in color.

domain the image comes from should be unrelated to what determines disease
prediction.

However, we are interested in measuring the relational alignment rather than
the structural similarity of the representations. Matched (mismatched) pairs
should "inform" ("repel") each other. Therefore, inspired by the concept of learn-
ing to compare [22,3], we design a new module named Relational Scorer (RS)
to learn which image representations’ pairings are semantically related and which
are not (Fig 3). Our RS stratifies and combines each possible cross-branch pair-
ing p ∈ P = {Qca

y ×Qca
d ∪Qca

y ×Qsp
d ∪Qsp

y ×Qsp
d ∪Qsp

y ×Qca
d } and then maps

them to a relational score between 0 and 1. We use an MSE loss regressing the
relational scores r to the ground truths rGT : matched pairs have a similarity of
1, and the mismatched pair have a similarity of 0.

Although this problem may seem to be a classification problem with label
space {0, 1}, we are predicting relation scores, which can be considered a regres-
sion problem (with rGT ∈ {0, 1} generated by construction). We set the ground
truth to 1 for the Qca

y -Qsp
d and Qsp

y -Qca
d pairings, and 0 otherwise. The resulting

regression loss term is:

LRS = −λ7

|P |∑
i=1

(ri − rGT
i )2 (3)

Moreover, we conceive other loss terms to enforce consistency/separation of
medical image representations in a contrastive setting at a batch level:
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– L=
y : samples exhibiting a common radiological finding should lie close in

disease-causal feature space Qca
y , regardless of the source domain.

– L ̸=
y : samples exhibiting different radiological findings should lie close in

disease-spurious feature space Qsp
y , regardless of the source domain.

– L=
d : samples from the same dataset should lie close in domain-causal fea-

ture space Qca
d , regardless of the diseases.

– L ̸=
d : samples from different datasets should lie close in domain-spurious

feature space Qsp
d , regardless of the diseases.

We implement each of such terms via an MSE loss between the representation
Q of each sample in the batch and the corresponding average representation Q̃
of samples with the same/different label:

Lbatch
y = −(λ8

∑
y∈Y

(Qca
y − Q̃ca

y )2︸ ︷︷ ︸
L=

y

+λ9

∑
y∈Y

(Qsp
y − Q̃sp

not(y))
2

︸ ︷︷ ︸
L̸=

y

) (4)

Lbatch
d = −(λ10

∑
d∈D

(Qca
d − Q̃ca

d )2︸ ︷︷ ︸
L=

d

+λ11

∑
d∈D

(Qsp
d − Q̃sp

not(d))
2

︸ ︷︷ ︸
L̸=

d

) (5)

where Y and D are the possible disease and domain labels seen in the batch. To
compute those losses correctly, we design a custom sampler favoring consistent
batches where the class prevalence is respected.

2.4 Injecting Prior Knowledge

Motivated by the high interclass similarity and hierarchical structure of CXR
findings [19,27], we propose a new method to inject prior (medical) knowledge
into the model to guide its learning (Fig. 4). Differently from solutions as con-
ditional training [17], which rely on data, our proposal is desirable to capture
semantic priors without relying on data. We define a causal graph representing
the relationship between the CXR findings and propose a novel formulation of
the causality map concept [5,4] to model the co-occurrence of CXR findings in
the images. As we have seen, each Qca

y representation has shape nc×h, where nc

is the number of classes (e.g., nine CXR findings) and h is the hidden dimension
of the embeddings. After normalizing Qca

y by their global maximum batch-wise,
they lie in the range 0-1, and we interpret their values as probabilities of the
CXR findings to be present in the image. Indeed, given two embeddings Qi and
Qj , to compute the effect of the former on the presence of the latter, we estimate
the ratio between their joint and marginal probabilities as:

P (Qi|Qj) =
P (Qi, Qj)

P (Qj)
≈

(maxh Q
i
h) · (maxh Q

j
h)∑

h Q
j
h

,∀i, j ∈ 1 ≤ i, j ≤ nc (6)

thus obtaining the relationships between embeddings Qi and Qj , since, in gen-
eral, P (Qi|Qj) ̸= P (Qj |Qi). By computing these quantities for every pair i, j, we
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Fig. 4: Causal graphical model among the CXR findings of interest (blue) and
the ground-truth causality map defined from that graph. Gray boxes represent
additional findings or risk factors (not investigated in this study) that might be
associated with the desired ones.

obtain the nc×nc map Cy. We interpret asymmetries across estimates opposite
the main diagonal in Cy as causality signals between their activation. Accord-
ingly, the representation of a CXR finding causes the activation of another when
P (Qi|Qj) > P (Qj |Qi), that is Qi → Qj . We design our Task-Prior loss as an
MSE loss to push the causality map Cy obtained from the learned representa-
tions to the ground-truth causality map CGT

y , which we defined by estimating
frequencies based on medical knowledge about the possible co-occurrence of CXR
findings:

LPrior
y = −λ12(Cy − CGT

y )2 (7)

Overall, the training objective of our CROCODILE framework is defined as
the sum of the losses defined in Equations 1, 2, 3, 4, 5 and 7:

LTOT = Ly + Ld + LRS + Lbatch
y + Lbatch

d + Lprior
y . (8)

3 Experimental Setup

We classify eight radiological findings (plus the No finding class) from frontal
CXR images of four popular data sets in both ID and OOD settings. After clean-
ing, the number of images for each set is: 112110 for ChestX-ray14 [27], 183453
for CheXpert [9], 95452 for PadChest [2], and 365737 for MIMIC-CXR [10]. For
the first dataset, we create the Lung opacity class as OR logic across the consoli-
dation, effusion, edema, pneumonia, and atelectasis classes. We resize the images
to 320 × 320 and adjust their contrast in the range 0-255. For ID experiments,
we combine images of ChestX-ray14, CheXpert, and PadChest, split them into
80-20% train and validation sets, and assess the multi-label classification per-
formance via the area under the ROC curve (AUC) and the average precision
(AP) scores for each category and their average. We test the best-performing
ID model on the external, never-before-seen MIMIC-CXR dataset to evaluate
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OOD generalization abilities. In all the experiments, we adopted ResNet50 back-
bones, Adam optimizer, a learning rate of 1e-6, a batch size of 12, and trained
the model in early-stopping on a multi-node multi-gpu cluster with NVIDIA 64
GB cards. For the lambda hyperparameters, we tried out different values that
would counterbalance the average values of the losses with unit weights. We thus
conducted a random grid search and chose the following: set λ1, λ3, λ4, λ6 to 1;
λ2 to 10; λ9, λ11 to 15; λ8, λ10 to 25; λ5 to 80; and λ7, λ12 to 100. We com-
pare to a regular ResNet50 architecture, a ResNet50 version of Nie et al. [12]
corresponding to discarding domain-branch and task-prior information from our
method, our method without contrastive learning (CL) (LRS , Lbatch

y , Lbatch
d ),

and our method without the task prior (Lprior
y ).

4 Results and Discussion

The results of our ID and OOD investigations (Table 1) reveal our method
is behind its ablated versions and [12] on i.i.d. data (ID) while is the best-
performing model on the external never-before-seen data (OOD). Notably, our
method is the most effective in reducing the ID-to-OOD drop in performance.
This significant result points to a necessary trade-off between in-domain accuracy
and out-of-domain robustness on real-world data, supporting recent work [23].
As expected, models not contrasting the information from the two branches
([12] and ours without CL) find associations that make them perform better on
the ID data, where they remain faithful. Then, however, they fail to perform
as well on OOD data, where many spurious correlations due to the domain no
longer exist, suggesting those associations are still based mainly on shortcut
features. On the contrary, adopting our contrastive learning scheme first leads
to lower performance on ID data (as if the representation power on such data
were ‘spoiled’ compared to the above). Still, it leads to better results on OOD
data. This suggests that our method learns image-to-prediction mechanics that
are more transportable and generalizable, relying less on confounding factors
and breaking down barriers between domains.

Moreover, injecting prior task knowledge helped the model with specific find-
ings. For instance, we know effusion is likely an effect of pneumonia or consoli-
dation and one of five aspects defining lung opacity. We also know that patients
with heart failure typically feature both cardiomegaly and effusion, but there
is no causal effect of one aspect onto the other (Fig 4). Thus, when the model
was equipped with this knowledge during training, it learned to pay attention
to such co-occurrences more and ultimately could detect more effusion cases in
OOD data, possibly disregarding the confounding effect of heart failure.

Among the limitations of this work, we have utilized the same architecture
type for feature extraction on the two branches, and we implicitly optimized the
network on ID validation data. We will improve by trying different backbones
and allowing an ID test set.



Causality aids RObustness via COntrastive DIsentangled LEarning 9

Finding ResNet50 Nie et al. [12] Ours w/o CL Ours w/o TP Ours
In-distribution (ID) data

Atelectasis 65.74/24.98 76.81/30.04 77.13/30.26 77.07/30.37 77.04/30.37
Cardiomegaly 81.53/51.21 92.43/56.56 92.92/56.60 92.29/56.20 92.27/56.17
Consolidation 69.74/8.71 80.89/13.85 80.62/14.10 81.13/13.82 81.10/13.86
Edema 77.34/17.62 88.49/23.01 88.21/22.53 88.73/22.02 88.72/22.05
Effusion 77.69/51.26 88.68/56.31 89.08/56.46 88.92/56.65 88.93/56.65
Lung opacity 69.81/39.27 81.20/44.62 81.20/44.66 80.60/44.10 80.55/44.08
No finding 68.75/68.08 80.14/73.46 79.68/73.47 79.38/73.22 79.35/73.22
Pneumonia 67.76/20.74 78.05/26.13 79.15/25.73 77.65/24.86 77.63/24.85
Pneumothorax 78.86/32.78 89.87/38.17 90.25/37.69 88.79/37.02 89.86/37.03
Mean [↑] 73.02/34.96 84.06/40.24 84.25/40.17 83.95/39.81 83.94/39.81

Out-of-distribution (OOD) data
Atelectasis 62.79/31.56 74.02/36.69 74.11/36.63 74.15/36.89 74.18/36.83
Cardiomegaly 61.43/31.84 71.44/36.22 71.86/36.42 72.82/37.16 72.80/37.17
Consolidation 66.41/7.20 77.01/11.97 77.38/12.53 77.46/12.13 77.80/12.07
Edema 74.04/36.12 84.52/40.48 83.95/40.46 85.43/41.43 85.39/41.45
Effusion 75.10/59.66 86.16/64.60 86.04/64.87 86.01/64.85 86.49/64.99
Lung opacity 56.92/28.52 67.86/33.49 67.43/33.10 68.30/33.83 68.31/33.85
No finding 67.39/63.72 78.53/68.66 78.72/68.99 78.78/69.02 78.74/69.05
Pneumonia 53.64/7.47 63.96/12.29 64.62/12.52 65.01/12.76 65.03/12.80
Pneumothorax 64.72/12.39 74.89/16.76 75.41/17.65 75.48/17.70 76.11/17.72
Mean [↑] 64.71/30.94 75.38/35.68 75.50/35.91 75.94/36.20 76.09/36.21
ID-OOD drop 11.38/11.50 10.33/11.33 10.38/10.60 9.54/9.07 9.35/9.04
Table 1: AUC and AP scores obtained on each CXR finding on ID and OOD
data. CL: contrastive learning, TP: task prior. ID-OOD drop is the average
percent drop in scores from ID to OOD settings.

5 Conclusion

We have presented the CROCODILE framework, a new approach to enhance
a medical image classifier’s generalization and OOD robustness, addressing the
problem of removing confounders. Our solution learns what to focus on/suppress
by borrowing from multiple sub-disciplines: latent causal intervention, graphical
models, causality maps, feature disentanglement, the learning to compare idea
and enforcing representation consistency. Our bias-mitigation proposal is general
and can be applied to tackle domain shift bias in other computer-aided diagnosis
applications, fostering a safer and more generalizable medical AI.
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