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ABSTRACT

Personalized item recommendation typically suffers from data sparsity, which is
most often addressed by learning vector representations of users and items via
low-rank matrix factorization. While this effectively densifies the matrix by assum-
ing users and movies can be represented by linearly dependent latent features, it
does not capture more complicated interactions. For example, vector representa-
tions struggle with set-theoretic relationships, such as negation and intersection,
e.g. recommending a movie that is “comedy and action, but not romance”. In
this work, we formulate the problem of personalized item recommendation as
matrix completion where rows are set-theoretically dependent. To capture this
set-theoretic dependence we represent each user and attribute by a hyper-rectangle
or box (i.e. a Cartesian product of intervals). Box embeddings can intuitively be
understood as trainable Venn diagrams, and thus not only inherently represent
similarity (via the Jaccard index), but also naturally and faithfully support arbi-
trary set-theoretic relationships. Queries involving set-theoretic constraints can be
efficiently computed directly on the embedding space by performing geometric
operations on the representations. We empirically demonstrate the superiority of
box embeddings over vector-based neural methods on both simple and complex
item recommendation queries by up to 30% overall.

1 INTRODUCTION

Recommendation systems are a standard component of most online platforms, providing personalized
suggestions for products, movies, articles, and more. In addition to generic recommendation, these
platforms often present the option for the user to search for items, either via natural language or
structured queries. While collaborative filtering methods like matrix factorization have proven
successful in addressing data sparsity for unconditional generation, they often fall short when
attempting to combine them with more complicated queries. This is not unexpected, as vector
embeddings, while effectively capturing linear relationships, are ill-equipped to handle the complex
set-theoretic relationships. Even advanced neural network-based approaches, which are designed to
capture intricate relationships, have been shown to struggle with set-theoretic compositionally that
underlie many real-world preferences.

Let us consider an example where a user named Bob wants to watch a comedy which is not a romantic
comedy. Assuming we have a prior watch history for users, standard collaborative filtering techniques
(e.g. low-rank matrix factorization) would yield a learned score function score(m,Bob) for each
movie m. If we also have movie-attribute annotations, we could form the set of comedies C and
set of romance movies R and simply filter to those movies in C \R, however this assumes that the
movie-attribute annotations are complete, which is rarely the case.

A standard approach in a setting with sparse data is to learn a low-rank approximation for the attribute
× movie matrix A, yielding a dense matrix Â. We can then form sets of movies based on this
dense matrix using an (attribute-specific) threshold, e.g. Ĉ := {m | Âcomedy,m > τcomedy} and
R̂ := {m | Âromance,m > τromance}, and then rank movies m ∈ Ĉ \ R̂ according to score(m,Bob).
While this approach does allow for performing the sort of queries we are after, it suffers from three
fundamental issues:
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(a) Standard matrix completion assumes you are
given partial information about the user × movie
matrix U, and potentially incomplete information

about the attribute × movie matrix A, and asks you
to recover any unobserved entries. The task of

set-theoretic matrix completion extends this to being
able to predict the entries of arbitrary set-theoretic

combinations of these rows.

(b) Box embeddings represent the movies, users, and
attributes as “boxes” (Cartesian products of

intervals) in Rn. The score for a specific movie in
relation to a given query is determined by the

proportion of the movie box’s volume that falls
within the corresponding region. During training,

this membership score for a movie, w.r.t the U and
A are optimized, creating a set-geometric

representation of the matrix.

Figure 1: Set-theoretic matrix completion for movies, users, and attributes, illustrating how box
embeddings, trained in a set-theoretic manner, address this task.

1. Limited user-attribute interaction: Since the attribute classification is done independently
from the user, any latent relationships between the user and attribute cannot be taken into
account.

2. Error compounding: Errors in the completion of attribute sets accumulate as the number of
sets involved in the query increase.

3. Mismatched inductive-bias: Our queries can be viewed as set-theoretic combinations of the
rows, not linear combinations. As such, using a low-rank approximation of the matrix may
be misaligned with the eventual use.

In this paper, we formulate the problem of attribute-specific recommendation as matrix completion
where rows are not necessarily linear combinations of each other but, rather, are set-theoretic
combinations of each other. More precisely, given some user × movie interaction matrix U and
attribute × movie matrix A, the queries we are considering are set-theoretic combinations of these
rows (see Figure 1a). For example, the ground-truth data for comedies which are not romance movies
which Bob likes would be the vector x ∈ {0, 1}|M |, where xm = 1 if and only if UBob,m = 1 and
Acomedy,m = 1 and Aromance,m = 0. Note that this is not a linear combination of the previous
rows, and so while the inductive bias of low-rank factorization has proven immensely effective for
collaborative filtering we should not expect it to be directly applicable in this setting.

Instead, we propose to learn representations for the users and attributes that are consistent with
specific set-theoretic axioms. These representations must also be compactly parameterizable in a
lower-dimensional space, differentiable with respect to some appropriate score function, and allow for
efficient computation of various set operations. Box Embeddings (Vilnis et al., 2018; Dasgupta et al.,
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2020), which are axis-parallel n-dimensional hyperrectangles, meet these criteria (see Figure 1b). The
volume of a box is easily calculated as the product of its side-lengths. Furthermore, box embeddings
are closed under intersection (i.e. the intersection of two boxes is another box). Inclusion-exclusion
thus allows us to calculate the volume of arbitrary set-theoretic combinations of boxes.

The contributions of our paper are as follows -

1. We model the problem of attribute-specific query recommendation as “set-theoretic matrix
completion”, where attributes and users are treated as sets of items. We discuss the challenges
faced by existing machine-learning approaches for this problem setup.

2. We demonstrate the inconsistency of existing vector embedding models for this task. Addi-
tionally, we establish box embeddings as a suitable embedding method for addressing such
set-theoretic problems.

3. We conduct an extensive empirical study comparing various vector and box embedding
models for the task of set-theoretic query recommendation.

Box embeddings, with their geometric set operations, significantly outperform all vector-based
methods. We also evaluate score multiplication and threshold-based prediction for both vector and
box embedding models, and find that performing set operations directly on the box embeddings
performs best, solidifying our claim that the inductive bias of box embeddings provides the necessary
generalization capabilities to address set-theoretic queries.

2 TASK FORMULATION

2.1 BACKGROUND

Matrix completion is a fundamental problem in machine learning, and arises in a wide array of tasks,
from recommender systems to image reconstruction. Formally, this problem is typically modeled
as follows: Given a matrix X ∈ Rm×n where only a subset of the entries are observed, find a
complete matrix X̂ ∈ Rm×n which closely approximates X on the observed entries. For the task
of recommendation, this involves predicting user interactions with items they have not previously
interacted with, and a common assumption is that the preferences of users and characteristics of the
items can be expressed by a small number of latent factors, with the alignment of these latent factors
captured via dot-product. This justifies the search for a low-rank approximation X̂ = BC, where
B ∈ Rm×D and C ∈ RD×n. In the case where the original matrix is binary, X ∈ {0, 1}m×n, it is
common to perform logistic matrix factorization, where an elementwise sigmoid is applied after the
dot-product of latent factors, which we denote (with slight abuse of notation) as X̂ = σ(BC).
Many recent advanced methods for this matrix completion task utilize sophisticated neural networks
(He et al., 2017; 2020; Liang et al., 2018), that capture more expressive interactions among users
and items. However, they are not particularly recognized for their set-theoretic compositionality, as
previously described.

2.2 SET-THEORETIC MATRIX COMPLETION

We will describe the task of set-theoretic matrix completion on the setting of movies, users, and
attributes, though the formulation and our proposed model can be generalized to arbitrary domains.
We are given a setDU ⊆ U×M of user-movie interactions, and a setDA ⊆ A×M of attribute-movie
pairs. We assume both of these sets are incomplete.

Our goal is to eventually be able to recommend movies based on some query, for example “comedy
and not romance”. Such a query for a particular user can be represented as u ∧ a1 ∧ ¬a2, where u is
the user, a1 = comedy and a2 = romance. We let Q be the set of all queries of interest, which
depends on which queries we anticipate evaluating at inference time. In this work, we will take Q to
be queries of the form u, a1, u ∧ a1, u ∧ a1 ∧ a2, and u ∧ a1 ∧ ¬a2, where u ∈ U and a1, a2 ∈ A.

With this formulation, we can view our task as matrix completion for a matrix X ∈ {0, 1}|Q|×|M |,
where the rows are derived by applying bitwise operators on the rows of user and attribute data. While
we could, in theory, proceed directly with logistic matrix factorization on this matrix, there are both
practical and theoretical reasons to search for an alternative. First, the number of rows of this matrix
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is very large relative to the original data - in our case we have |Q| = O(|U ||A|2), but in general
|Q| = O(3|U ||A|). This poses practical issues, both at training time (as there are an exponential
number of elements of X to traverse) and inference time (storing the low-rank approximations
requiresO(|Q|) memory, which is much larger than |U |+ |A|). There are also theoretical issues with
the underlying assumption, as it is no longer reasonable to assume the rows of σ−1(X) are linear
combinations of some latent factors.

3 METHOD

Our proposed solution to address these issues starts by defining the sets of movies which comprise
the queries of interest. Let, P(M) be the power set of movies M . Specifically, for each user u
we can define the set Mu = {m | (u,m) ∈ DU}, and for each attribute a we can define the set
Ma = {m | (a,m) ∈ DA}. If we letM⊆ P(M) be the collection of all such sets, then the set of
movies corresponding to a given query q are direct set-theoretic combinations of elements inM.
Hence, the reasonable underlying assumption, in this case, is to model the elements ofM as sets
via a map f :M→ R where R is also a set of sets, and the map f respects set-theoretic operations,
i.e. f(S ∩ T ) = f(S) ∩ f(T ) and f(S \ T ) = f(S) \ f(T ), etc. Such a map is referred to as a
homomorphism of Boolean algebras, and the problem of learning such a function was explored in
general in Boratko et al. (2022), wherein the authors proposed the use of box embeddings as the
function f which is then trained to obey the homomorphism constraints.

3.1 SET-THEORETIC REPRESENTATION BOX EMBEDDINGS

As introduced in Vilnis et al. (2018), box embeddings represent entities by a hyperrectangle in RD,
i.e. a Cartesian product of intervals. Let the box embedding for user u be:

Box(u) =

D∏
d=1

[u⌞
d, u

⌝
d] = [u⌞

1, u
⌝
1]× . . .× [u⌞

D, u⌝
D] ⊆ RD,

where [u⌞
d, u

⌝
d] is the interval for d-th dimension, u⌞

d < u⌝
d for d ∈ {1, . . . , D}.

The volume of an interval is defined as the length of the interval Vol((u⌞
d, u

⌝
d)) = max(u⌝

d − u⌞
d, 0).

Let, Box(m) =
∏D

d=1[m
⌞
d,m

⌝
d] be the box embeddings for a movie m. At dimension d, the volume

of intersection between user u and movie m is defined as -

VolInt((u⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d)) = max(min(u⌝

d,m
⌝
d)−max(u⌞

d,m
⌞
d), 0)

. When the movie interval [m⌞
d,m

⌝
d] is completely contained by user interval [u⌞

d, u
⌝
d], then

VolInt((u⌞
d,u

⌝
d),(m

⌞
d,m

⌝
d))

Vol((u⌞
d,u

⌝
d))

= 1. This objective creates a set-theoretic interpretation with box embeddings,
where user Box(u) contains all the movie boxes related to u (fig. 1b). The score for containment for
a single dimension d is formulated as:

FBox((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d)) :=

VolInt((u⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d))

Vol((u⌞
d, u

⌝
d))

:=
max(min(u⌝

d,m
⌝
d)−max(u⌞

d,m
⌞
d), 0)

max(u⌝
d −m⌞

d, 0)
.

The overall containment score is the multiplication of FBox for each dimension. The log of this score
is referred to as the energy function as given:

EBox(u,m) := − log

D∏
d=1

FBox((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d)). (1)

This energy function is minimized when the user Box(u) contains the movie Box(m). Previous
works have highlighted the difficulty of optimizing an objective including these hard min and max
functions (Li et al., 2019; Dasgupta et al., 2020). In our work, we use the latter solution, termed
GUMBELBOX, which treats the endpoints x⌞ and x⌝ as mean of GumbelMax and GumbelMin
random variables, respectively. Given 1-dimensional box parameters {[x⌞

n, x
⌝
n]}Nn=1, we define the

associated GumbelMax random variables X⌞
n with mean x⌞

n and scale β, as well as the GumbelMin
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random variables X⌝
n with mean x⌝

n and scale β. Dasgupta et al. (2020) calculates that the expected
volume of intersection of intervals {[X⌞

n, X
⌝
n]} can be approximated by

E
[
max

(
min
n

X⌝
n −max

n
X⌞

n, 0
)]
≈ LSEβ(LSE−β(x

⌝
1, . . . , x

⌝
N )− LSEβ(x

⌞
1, . . . , x

⌞
N ), 0),

essentially replacing the hard min and max operators with a smooth approximation, LSEt(x) :=
t log(

∑
i e

xi/t). Expected intersection volume in higher dimensions is just a product of the pre-
ceding equation, as the random variables are independent. We use this GUMBELBOX (abbrev GB)
formulation in our work changing the notations FBox,Vol,VolInt to FGB ,VolGB ,VolIntGB . We
modify the per-dimension score function FBox in equation 1 by replacing the ratio of hard volume
calculations with the approximation to the expected volume,

FGB((u
⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d); (τ, ν)) :=

LSEν(LSE−τ (u
⌝
d,m

⌝
d)− LSEτ (u

⌞
d,m

⌞
d), 0)

LSEν(m⌝
d −m⌞

d, 0)
(2)

=:
VolIntGB((u

⌞
d, u

⌝
d), (m

⌞
d,m

⌝
d); (τ, ν))

VolGB((m⌝
d −m⌞

d); ν)
. (3)

For more details and alternative approaches see the related work in Appendix A.

3.2 TRAINING

We model each user, attribute, and movie as a box in RD, and denote the map from these entities to
their associated box parameters as θ, i.e., the trainable box embedding for user u is θ(u) := Box(u).
Our goal is to train these box representations to represent certain sets of movies which allow us to
perform the sort of queries we are interested in. As motivated above, for a given user u, we train
Box(u) to approximate the set Mu via a noise-contrastive estimation objective. Namely, for each
(u,m) ∈ DU , we have a loss term

ℓ(u,m)(θ) := EGB(u,m; θ)− Em̃∼M

[
log(1− exp(−EGB(u, m̃; θ))

]
.

The first term is minimized when Box(u) contains Box(m). We approximate the second term via
sampling, which encourages Box(u) to be disjoint from Box(m̃) for a uniformly randomly sampled
movie m̃. We define an analogous loss function ℓ(a,m)(θ) for attribute-movie interactions, which
trains Box(a) to contain the box Box(m) for each m such that (u,m) ∈ DU .

The overall loss function is a convex combination of these loss terms:

L(θ;DU ,DA) := w
∑

(u,m)∈DU

ℓ(u,m)(θ) + (1− w)
∑

(a,m)∈DA

ℓ(a,m)(θ)

for a hyperparameter w ∈ [0, 1]. This optimization ensures that the movie boxes are contained within
the corresponding user and attribute boxes, thereby establishing a set-theoretic inductive bias. Both
numbers of negative samples and w are hyperparameters for training (Please Refer to section 4,
appendix B.2) for further details.

3.3 INFERENCE

During inference, given the trained embedding model θ and a user u we determine the user’s
preference for the movie m by negating and exponentiating the energy function,

score(m,u; θ) := exp (−EGB(u,m; θ)) =

D∏
d=1

FGB(θ(u)d, θ(m)d; (τ, ν)) ∈ R≥0,

where θ(x)d = (x⌞
d, x

⌝
d). Since the calculation is simply a product over dimensions, for notational

clarity we will restrict our discussion for more complex queries to the one-dimensional case, and
omit the explicit dependence on temperature hyperparameters, so

score(m,u; θ) :=
VolIntGB (θ(m), θ(u))

VolGB (θ(m)))

5
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which is the proportion of θ(m) which is contained within θ(u) (see Figure 1b). It achieves it’s
maximum at 1 if θ(u) contains θ(m), and is minimized at 0 when they are disjoint, corresponding to
the motivation that θ(u) represents the set of movies that user u has interacted with.

Given a query with a conjunction between attributes (e.g. “comedy and action”) we denote the
attributes involved a1 and a2. Similarly to the score for a single user query, we define the score
for these attributes as the proportion of the movie box θ(m) which is contained inside of the (soft)
intersection of boxes θ(u), θ(a1), and θ(a2), i.e.

score(m,u ∧ a1 ∧ a2; θ) :=
VolIntGB (θ(m), θ(u), θ(a1), θ(a2))

VolGB (θ(m)))

Again, this score is maximized if θ(m) is contained inside θ(u), θ(a1), and θ(a2), and minimized
when it is disjoint.

In order to address queries with set differences, recall that, given two measurable sets S and T , we
can compute the volume of S \T as Vol(S \T ) = Vol(S)−Vol(S ∩T ). Thus, if the query involves
a negated attribute (e.g. “comedy and not action”), we define

score(m,u∧a1∧¬a2; θ) :=
VolIntGB (θ(m), θ(u), θ(a1))−VolIntGB (θ(m), θ(u), θ(a1), θ(a2))

VolGB (θ(m)))

This score is maximized when θ(m) is contained inside θ(u) and θ(a1) while being disjoint from
θ(a2), and decreases when these conditions are not met.

4 EXPERIMENTS

In our experiments, we evaluate all the models on item recommendation across three domains: movies,
songs, and restaurants. (4.1). We systematically generate queries of varying complexity from these
datasets to evaluate performance on set-theoretic tasks (4.2.1, 4.2.2). We train and select models based
on the performance of the traditional personalized item prediction (4.3). Finally, we demonstrate
that our set-based representation method is better suited for handling set-theoretic constraints in
recommendation tasks (5.1, 5.2).

4.1 DATASET

The datasets used in our study must contain two primary components: Item-User interactions DU

and Item-Attribute interactions DA . We select datasets that offer rich ground truth annotations
for both components. We utilize the MovieLens 1M and 20M datasets for personalized movie
recommendations (Harper & Konstan, 2015). For the song domain, we employ a subset of the
Last-FM dataset, which is the official song tag dataset of the Million Song Dataset (Bertin-Mahieux
et al., 2011). In the restaurant domain, we use the NYC-R dataset introduced by Wang et al. (2018).

We utilize the data curated by Dasgupta et al. (2023) to construct DA for the Movielens data. This
dataset employs Wikidata (Vrandečić & Krötzsch, 2014) to generate ground truth attribute labels for
movies1. For the Last-FM dataset, the authors use the Last.fm API (’getTopTags’)2 to create attribute
tags. Likewise, the authors in Wang et al. (2018) crawl restaurant review data from TripAdvisor3

to curate tags and ratings for restaurants in NYC. The sparsity of DA and DU is comparable in the
Movielens datasets. In contrast, the Last.fm and NYC-R datasets, designed with tag annotations in
mind, exhibit much denser attribute-movie interaction. Thus, the selection of these three datasets
not only encompasses diverse domains but also offers varying ground-truth distributions for our
experiments.

We use the binarized implicit feedback data Hu et al. (2008), indicating whether the user or the
attribute has been associated with the specific item. To ensure the quality of the data, we retain
users/items with 5 or more interactions and attributes with frequency 20 or more in all the datasets.
Refer to Table 1 for a detailed description of the dataset statistics.

1https://github.com/google-research-datasets/genre2movies
2https://www.last.fm/
3https://www.tripadvisor.com
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Table 1: Dataset Statistics, the Item-User interaction DU & the Item-Attribute interaction DA.
The Train/Test split is created using algorithm 1 to test set-theoretic generalization.

Dataset #Users #Items #Attributes #Train
DU

#Eval
DU

#Train
DA

#Eval
DA

Last-FM 1,872 2417 490 60,497 8,857 34,374 4,240
NYC-R 9,597 3764 579 82,734 8,502 34,908 4,376
MovieLens 1M 6,040 3,705 57 963,554 36,655 10,273 1,545
MovieLens-20M 138,493 26,744 95 19,722,646 277,617 80,178 1,734

4.2 DATASET SPLITS & QUERY GENERATION

To select models for each method, we train on a dataset split Dtrain
U & Dtrain

A while evaluating on a
held-out set Deval

U & Deval
A . However, we use these eval set pairs to construct compositional queries.

Simple random sampling or leave-one-out data splits do not ensure a substantial number of these
queries. Therefore, we devise a data splitting technique closely linked to query generation, which we
discuss next.

4.2.1 PERSONALIZED SIMPLE QUERY

This type of query corresponds to a single attribute for a particular user, e.g. Bob wants to watch a
comedy movie. More formally, given a user u and an attribute a, the query type would be - u ∩ a.
Note that, these simple queries are set-theoretic combinations between the item sets corresponding to
the users and the attributes. Let us denote the data corresponding to these queries as QU∩A.

While constructing the QU∩A pairs we need to ensure that - if an item is held out for evaluation
for a simple query, the individual user-item and attribute-item pair should belong to the evaluation
set as well. More formally, (u, a, i) ∈ QU∩A ⇐⇒ (u, i) ∈ Deval

U ∧ (a, i) ∈ Deval
A . To ensure this

train/test isolation, we use the sampling algorithm 1 that takes in DU and DA and outputs QU∩A,
Dtrain

U ,Dtrain
A ,Deval

U ,Deval
A (Refer to Appendix B.1 for more details). The detailed statistics for the splits

are provided in Table 1. Also, the statistics for the QU∩A are present in Table 2

4.2.2 PERSONALIZED COMPLEX QUERY

The set-theoretic compositions that we consider here are the intersection and negation of attributes for
a particular user. Given a user u and attributes a1 and a2, we consider the query types- u ∩ a1 ∩ a2
and u ∩ a1 ∩ ¬a2, e.g, Bob want to watch an Action Comedy movie, Alice want to watch a Children
but not Monster movie. Creating meaningful attribute compositions requires careful consideration, as
not all combinations make sense. For instance, ’Sci-Fi’ & ’Documentary’ might not be a meaningful
combination, whereas ’Sci-Fi’ & ’Time-Travel’ is. Similarly, ’Sci-Fi’ ¬’ Fiction’ doesn’t make sense,
but ’Fiction’ ¬ ’Sci-Fi’ does. Sometimes, even if the intersection is valid, it could be trivial and
non-interesting, e.g., ’Fiction’ & ’Sci-Fi’.
Intuitively, for two attributes a1 & a2, their intersection is interesting if |a1 ∩ a2| is greater than
combining any two random items set. Also, for their intersection to be non-trivial the size of the
intersection |a1 ∩ a2| must be less than the individual sizes of the attributes i.e., α|a1| and α|a2|.
Here,|.| denotes the size of the item set corresponding to the attributes. α ∈ [0, 1] is a design parame-
ter, dedicated after manual inspection of the quality of the item sets for the combinations . In case of
difference queries such as a1 ∩ ¬a2, we consider ¬a2 to be the second attribute and carry out the
same filtering strategy as done for the intersection queries.
We denote the set of non-trivial and viable attribute pairs for the intersection to be A∩ =
{(a1, a2)||a1 ∩ a2| > ϵ, |a1 ∩ a2| < α|a1|, |a1 ∩ a2| < α|a2|}, and for the difference to be
A\ = {(a1, a2)||a1 ∩¬a2| > ϵ, |a1 ∩¬a2| < α|a1|, |a1 ∩¬a2| < α|¬a2|}. Using the above formu-
lation, we generate the test set for the personalized complex queries QU∩A1∩A2 and QU∩A1∩¬A2

using algorithm 2. Please refer to Table 2 for the detailed statistics.

4.3 TRAINING DETAILS & EVALUATION CRITERIA

We train all the methods on users and attributes jointly using Dtrain = Dtrain
U ∪ Dtrain

A . We use
dimensions d = 128 for vector-based models, and d = 64 for box models so that the number of

7
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parameters per user, attribute, and movie is equal.4 We perform extensive hyperparameter tuning
for the learning rate, batch size, volume and intersection temperature of boxes, loss combination
constant, etc. Please refer to the Appendix B.2 for details. We follow the standard sampled evaluation
procedure described in Rendle et al. (2020), only for model selection purpose. For each user-item
tuple (u,m) inDeval

U , the model ranks m amongst a set of items consisting of the m together with 100
other true negative items w.r.t the user. Then we report on two different evaluation metrics namely
Hit Ratio@k (HR@k) and NDCG. (a) HitRatio@k: If the rank of m is less than or equals to k then
the value of HR@k is 1 or 0 otherwise. (2) NDCG: if r is the rank of m, then 1/ log(r + 1) is the
NDCG.

The model is selected based on the best-performing model on NDCG for the item prediction over the
user-item validation set Deval

U , with the best-performing checkpoint saved for further evaluation on
compositional queries. We follow the same evaluation protocol for the compositional queries as well,
except, we rank m amongst all items in the vocabulary rather than a sampled subset.

4.4 BASELINES

The recommendation systems literature offers a wide range of methods that represent users, and
items in Rd. These methods then propose a compatibility score function between the user and item,
ϕ : Rd × Rd → R. A common and effective choice for ϕ is the dot product, which underpins matrix
factorization (Rendle et al., 2020; Koren & Bell, 2015). To capture more complex interactions among
users, items, and attributes, He et al. (2017) extend matrix factorization by replacing the dot product
with a neural network-based similarity function. This method, called Neural Matrix Factorization
(NEUMF), combines the dot product with an MLP. Similarly, He et al. (2020) propose LightGCN
(LGCN) to captures the user, items, and attribute interaction using Graph Convolution Network Kipf
& Welling (2017) over a joint graph of user-item-attribute. We use MF, and, NEUMF LGCN as our
baselines.

For a personalized query, be it simple or complex, we need to devise a method to combine the
individual scores of the user and the attributes involved in the query. In this work, we compare three
approaches to obtain an aggregated score:

1. FILTER: In this approach, we retrieve a list of items corresponding to the attributes based on
the scores provided by the embedding models. The list is generated by thresholding the scores,
where the threshold is optimized by minimizing the F1 score between the training data and
predicted scores. We refer to the methods using this aggregation technique as BOX-FILTER for
box embeddings and MF-FILTER, NEUMF-FILTER, LGCN-FILTERfor vector-based methods.

2. PRODUCT: In this method, the compositional score is computed by multiplying the scores for the
individual queries. For vector-based embeddings, the scores for each movie related to a user or
attribute are normalized using the sigmoid function. For box embeddings, the energy function is
normalized by conditioning on the movie box volume (see Section 3.3). The score for negation is
calculated by subtracting the normalized score from 1. The three methods using this technique are
referred to as BOX-PRODUCT, MF-PRODUCT, NEUMF-PRODUCT, and LGCN-PRODUCT.

3. GEOMETRIC: This approach leverages the geometry of the embedding space. For vector-based
embeddings, learned through Matrix Factorization, addition, and subtraction are often used for
query composition (Mikolov et al., 2013). Box embeddings, on the other hand, naturally represent
intersection operations, allowing us to compute scores for any set-theoretic combination using box
intersection and inclusion-exclusion principles. We refer to these methods as BOX-GEOMETRIC
and MF-GEOMETRIC.

5 RESULTS

After conducting an extensive hyper-parameter search on Deval
U , we select the best-performing model

for each method based on NDCG scores. This ensures the chosen model is optimal for set-theoretic
query inference. The results for the best models for all the methods on all datasets are reported in 3.

4Recall that box embeddings are parameterized with two vectors, one for each min and max coordinate.
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Table 2: Compositional Query Statistics

Dataset
Personalized
Simple Query

Personalized
Complex Query

u ∩ a u ∩ a1 ∩ a2 u ∩ a1 ∩ ¬a2
Last-FM 9,867 45,142 10,814
NYC-R 9,482 7,460 2,369
ML-1M 21,392 51,299 37,769
ML-20M 35,368 42,355 47,374

Table 3: Test NDCG on Deval
U for selected models.

Dataset MF NEUMF LGCN BOX

Last-FM 0.51 0.52 0.56 0.65
NYC-R 0.31 0.33 0.37 0.39
ML-1M 0.51 0.53 0.55 0.58
ML-20M 0.71 0.70 - 0.73

5.1 SET-THEORETIC GENERALIZATION

We test the selected models for each method with the curated set-theoretic personalized queries
(Detailed stats for the queries in Table 2). We report the ranking performance in terms of Hit Rates at
10, 20, and 50. Please refer to 4 for the results.

Table 4: Hit Rate(%)↑ on Set-theoretic queries for datasets Last-FM, MovieLens 1M, NYC-R.

Methods U ∩A U ∩A1 ∩A2 U ∩A1 ∩ ¬A2

h@10 h@20 h@50 h@10 h@20 h@50 h@10 h@20 h@50

LAST-FM

MF-FILTER 14.8 25.1 37.4 26.8 46.8 62.8 15.2 24.4 35.5
MF-PRODUCT 9.0 21.7 48.0 14.3 36.8 73.2 4.8 14.8 43.4
MF-GEOMETRIC 6.1 12.2 29.7 3.4 7.6 27.5 1.7 4.8 15.9

NEUMF-FILTER 13.5 21.9 32.3 20.0 19.6 55.7 11.3 18.8 28.7
NEUMF-PRODUCT 13.6 25.6 47.6 19.5 35.7 63.3 9.0 16.8 40.5

LGCN-FILTER 20.4 28.5 39.1 42.4 54.2 67.4 15.8 21.5 27.6
LGCN-PRODUCT 20.5 31.0 48.6 43.8 58.0 80.7 0.8 1.3 3.5

BOX-FILTER 22.9 31.5 39.0 32.7 46.5 55.9 22.0 32.1 40.3
BOX-PRODUCT 27.9 44.5 68.0 38.2 57.7 82.7 17.8 32.4 60.3
BOX-GEOMETRIC 28.3 44.8 68.3 38.8 58.3 83.1 17.5 32.5 60.0

MOVIELENS-1M

MF-FILTER 5.0 10.2 22.3 11.4 17.9 27.5 4.7 9.8 22.5
MF-PRODUCT 4.3 8.5 20.4 5.1 10.6 26.1 3.4 7.3 19.3
MF-GEOMETRIC 0.4 0.9 3.0 0.1 0.2 0.8 0.5 1.0 2.7

NEUMF-FILTER 9.3 15.5 28.5 13.3 21.5 35.9 8.8 14.7 26.7
NEUMF-PRODUCT 10.3 16.8 31.4 15.3 24.5 43.5 5.7 9.7 20.2

LGCN-FILTER 8.2 12.3 20.9 11.4 15.6 24.0 9.9 13.8 21.9
LGCN-PRODUCT 5.9 9.0 14.9 7.6 11.7 20.1 5.5 8.6 14.1

BOX-FILTER 11.7 19.1 32.3 14.5 20.5 28.6 11.4 19.5 34.0
BOX-PRODUCT 9.95 16.7 31.5 10.6 17.8 34.2 8.9 15.1 29.4
BOX-GEOMETRIC 11.0 18.3 34.2 16.9 26.6 46.1 8.6 15.2 31.0

NYC-R

MF-FILTER 1.4 2.4 4.6 2.7 4.8 8.0 2.1 3.5 6.3
MF-PRODUCT 1.1 2.9 8.6 3.7 8.2 23.3 8.9 13.1 17.6
MF-GEOMETRIC 0.5 1.5 4.3 0.2 0.8 3.5 0.5 1.2 3.7

NEUMF-FILTER 3.8 5.6 9.2 2.5 3.2 4.5 4.2 6.3 10.8
NEUMF-PRODUCT 4.6 7.3 13.7 6.6 11.2 20.8 2.7 5.2 11.2

LGCN-FILTER 4.8 7.8 17.2 12.7 16.9 21.8 5.4 8.6 16.4
LGCN-PRODUCT 5.0 8.7 18.1 12.1 17.6 35.1 4.9 8.0 13.2

BOX-FILTER 4.9 7.8 13.4 9.9 13.5 20.4 4.4 7.1 12.5
BOX-PRODUCT 5.0 8.9 17.9 10.9 19.5 37.3 5.3 9.1 18.8
BOX-GEOMETRIC 4.9 8.7 17.6 12.2 21.5 39.2 5.5 9.2 19.2

The Box Embedding-based method outperforms vector-based methods by a significant margin,
showing on average 30% improvement when comparing the aggregated HR@50 performance of the

9
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best vector model (MF-PRODUCT/NEUMF-PRODUCT/LGCN-FILTER) to the box model (BOX-
GEOMETRIC) across all the three different domains.

The U ∩A1 ∩A2 query is the most challenging, as it requires accuracy in all three individual queries.
For this difficult query, BOX-GEOMETRIC shows the largest performance gap compared to other
methods. Additionally, using vector addition and subtraction as geometric proxies for intersection
and difference performs significantly worse than all other vector-based methods, while geometric
operations in the box embedding space outperform even other box embedding methods. This validates
the set-theoretic inductive bias of box embeddings and confirms that geometric operations in this
space provide valid set-theoretic operations, unlike vectors.

The FILTER aggregation technique performs similarly to or better than other methods only for
Hits@10. However, as k increases, its performance declines across all model types (Box, MF,
NeuMF) and datasets. This observation highlights the limitation of a fixed threshold filter and
advocates smoother aggregation techniques like PRODUCT and GEOMETRIC.

5.2 SPECTRUM OF GENERALIZATION

The query generation process (refer Section 4.2.1) ensures that for the target item m corresponding
to a query involving user u and attribute a, the pair (u,m) and (a,m) must not be in the training
set (u,m) /∈ Dtrain

U and (a,m) /∈ Dtrain
A . The set-theoretic evaluation weakens when such pairs are

added back to the training set. There are three different weakening settings applicable here, which
we refer to as a spectrum – WEAKEST GENERALIZATION ((u,m) ∈ Dtrain

U and (a,m) ∈ Dtrain
A ),

WEAK GENERALIZATION-USER ((u,m) ∈ Deval
U and (a,m) /∈ Dtrain

A ), WEAK GENERALIZATION-
ATTRIBUTE ((u,m) /∈ Dtrain

U and (a,m) ∈ Deval
A ). We report HitRate@50 performance on query type

U ∩A1 ∩A2 for the MovieLens-1M dataset in Table 5 (More query types in Appendix - Table 9, 8).
The weaker the generalization setting the easier it is for the models to achieve higher performance on
the test set. Indeed, we observe that this is true across all the methods w.r.t each of the aggregation
settings, validating the correctness of the trained models.
However, we are interested in observing the performance gap when we go from the weakest to the
strongest set-theoretic generalization. We refer to the percentage gap Generalization Spectrum Gap
(hr(Weakest) - hr(Set-theoretic) / hr(Weakest) %). From Table 5 we observe that the best-performing
box model BOX-GEOMETRIC achieves the best Generalization Spectrum Gap for HR@50.

Table 5: Generalization Spectrum Gap for PERSONALIZED COMPLEX QUERY U ∩A1 ∩A2

Methods Hit Rate @50 ↑ Spectrum Gap ↓

(W − S) / WWeakest
(W)

Weak-User
(W-U)

Weak-Attribute
(W-A)

Set-Theoretic
(S)

MF-FILTER 55.2 41.9 30.5 27.5 50.2%
MF-PRODUCT 67.4 38.5 39.3 26.1 61.2 %
MF-GEOMETRIC 18.5 12.9 1.8 0.8 95.6%

NEUMF-FILTER 48.4 33.1 40.4 35.9 38.5%
NEUMF-PRODUCT 67.8 48.7 40.6 43.5 35.9%

BOX-FILTER 52.7 44.5 30.3 28.5 45.9%
BOX-PRODUCT 64.6 52.8 39.0 34.2 47.1%
BOX-GEOMETRIC 62.6 53.3 50.1 46.1 26.4%

6 CONCLUSION

In this work we presented the task of personalized recommendation with set-theoretic queries. We
discussed how this problem can be viewed as set-theoretic matrix completion, and why the common
approach of logistic matrix factorization is not aligned with the set-theoretic operations we wish to
perform at inference time. We observed substantial improvements over the vector/neural baselines
when using box embeddings as the representation, validating our intuition regarding the necessary
set-theoretic bias. Our empirical results confirm that box embeddings are ideally suited to the task of
recommendation with set-theoretic queries.
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A RELATED WORK

A.1 BOX EMBEDDINGS

Vilnis et al. (2018) also proposed a probabilistic interpretation of box embeddings, where the volume
of a box could be trained to represent the probability of an associated binary random variable, and
intersections of boxes would be trained to capture the joint probabilities. Some of the recent works
have tried to incorporate box embeddings in a recommendation systems setup.Xu et al. (2024); Wu
et al. (2024); Zhang et al. (2021) use the side-length of the box embeddings as a preference range to
obtain diverse set recommendations for users, Mei et al. (2022a) utilizes the axis parallel nature of
the box embeddings for faster retrieval for recommendation systems. Sun et al. (2020a;b); Ren et al.
(2020) are some of the recent works that focus on logical query over knowledge bases (KB).Liang
et al. (2023) uses Ren et al. (2020) and add a volumetric contrastive loss as a regularizer. However, in
this work, we frame collaborative filtering as a set-theoretic matrix completion problem, which helps
us to achieve better generalization for the composition of personalized queries.

A.2 CONTEXT AWARE RECOMMENDATION

The concept of context-aware recommendation, as introduced in Adomavicius et al. (2011), provides
a general framework where “context” is broadly defined as any auxiliary information. This framework
emphasizes that user preferences for items can vary based on the context in which interactions occur,
reflecting a user-centric view of contextual information.
Building on this foundation, recent works have explored specific instances of context-aware recom-
mendation, such as “attribute-aware recommendation.” These approaches often leverage item or
user attributes as contextual information to address various goals, including improving user profiling
(Adomavicius et al., 2011), predicting missing item attributes (Wu et al., 2020; Chen et al., 2022), en-
hancing recommendations for cold-start scenarios(Deldjoo et al., 2019), or providing attribute-based
explanations for recommendations (Xian et al., 2021).

Our work differs significantly in its focus and objectives. we term “attribute-constrained recommen-
dation,” which involves generating recommendations explicitly constrained by logical combinations
of attributes. Unlike attribute-aware approaches, which aim to improve recommendation quality by
incorporating attribute information as auxiliary data, our work directly targets the task of satisfying
explicit attribute-based constraints posed by users.

A.3 COMPOSITIONAL QUERIES WITH VECTOR EMBEDDINGS

It is common in machine learning to represent discrete entities such as items or attributes by vec-
tors Bengio et al. (2013) and to learn them by fitting the training data. Besides semantic similarity,
some have claimed that learned vectors have compositional properties through vector arithmetic,
for example in the empirical analysis of word2vec Mikolov et al. (2013) and GLOVE Pennington
et al. (2014), and some theoretical analysis Levy & Goldberg (2014); Arora et al. (2018). However,
anecdotally, many have found that the compositional behavior of vectors is far from reliable Rogers
et al. (2017). Our paper provides a comprehensive evaluation of vector embeddings on compositional
queries and compares the results to a region-based alternative.

A.4 SET-BASED QUERIES IN SEARCH AND GROUP RECOMMENDATION SYSTEMS.

While set-theoretic queries are commonplace in search, popular question-answering (QA) benchmarks
often do not include them. We found QUEST (Malaviya et al., 2023) the most closely related study,
introducing a benchmark for entity-seeking queries with implicit set-based semantics. However,
QUEST does not focus on explicit constraints or personalization, which are central to our work.
Additionally, related studies in group recommendation systems (Amer-Yahia et al., 2009) touch on
explicit constraint-based personalization, where preferences of multiple users are explicitly aggregated
into a coherent recommendation.
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B EXPERIMENT DETAILS

B.1 DATA SPLITS & QUERY GENERATION

Algorithm 1 PERSONALISED SIMPLE QUERY (u ∩ a) generation algorithm u ∩ a

1: Let the set of users, attributes, and movies be U ,A,M
2: Marginal probability of an attribute a in A, P (a) =

∑
m Aa,m/

∑
a′
∑

m Aa′,m

3: Marginal probability of an user u in U , P (u) =
∑

m Uu,m/
∑

u′
∑

m Uu′,m

4: Marginal probability of an movie m in U , P (m) =
∑

u Uu,m/
∑

u

∑
m′ Uu,m′

5: Let U be the User × Item matrix and A be the Attribute × Item matrix.
6: UTrain ← U , ATrain ← A
7: UEval ← 0, AEval ← 0
8: Set of simple personalized queries, QU∩A ← ϕ
9: while |QU∩A| < MAX SAMPLE SIZE do

10: Sample an attribute a from A according to P (a).
11: Sample a movie m from for the attribute a, i.e., Sample from {m′|Aa,m′ = 1}, according to

P (m)
12: Sample a user u from who has rated movie m, i.e., Sample from {u′|Um,u′ = 1}, according

to P (u)
13: UTrain

u,m = 0, ATrain
a,m = 0, UEval

u,m = 1, AEval
a,m = 1

14: QU∩A.INSERT((u, a,m))
15: end while

Algorithm 2 PERSONALISED COMPLEX QUERY Generation Algorithm

1: Compositional Query sets QU∩A1∩A2 , QU∩A1∩¬A2

2: Non-Trivial attribute combination set A◦
3: for each user-movie tuple in Eval set, i.e., (u,m) ∈ {(u,m)|UEval

u,m = 1} do
4: for each pair of attributes (a1, a2) ∈ {(a1, a2)|AEval

a1,m = 1 and AEval
a2,m = 1} do

5: if the pair is viable and non-trivial, i.e., (a1, a2) ∈ A∩ then
6: QU∩A1∩A2

.INSERT((u, a1, a2,m))
7: end if
8: end for
9: for each pair of attributes (a1, a2) ∈ {(a1, a2)|AEval

a1,m = 1 and Aa2,m = 0} do
10: if the pair is viable and non-trivial, i.e., (a1, a2) ∈ A\ then
11: QU∩A1∩¬A2 .INSERT((u, a1, a2,m))
12: end if
13: end for
14: end for

B.2 TRAINING DETAILS

Table 6: Hyper Parameter range for all the dataset. We run 100 runs for both models and select the
best model on User-Movie validation set NDCG metric

Hyperparameters Range
Box

Best Value
Box

Range
Vector

Best Value
Vector

Embedding dim 64 64 128 128
Learning Rate 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 0.001 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 0.001

Batch Size 64, 128, 256, 512, 1024 128 64, 128, 256, 512, 1024 128
# Negatives 1, 5, 10, 20 20 1, 5, 10, 20 5

Intersection Temp 10, 2, 1, 1e-1, 1e-2, 1e-3, 1e-5 2.0 - -
Volume Temp 10, 5, 1, 0.1, 0.01, 0.001 0.01 - -
Attribute Loss const 0.1, 0.3, 0.5, 0.7, 0.9 0.7 0.1, 0.3, 0.5, 0.7, 0.9 0.5

Hyperparameters are reported in Table 6. Best parameter values are reported for Box Embeddings
and MF method.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 2: Parallel Co-ordinate plot for different hyperparameters vs model performance. Lighter the
color, better the model’s performance.

B.3 SET-THEORETIC GENERALIZATION

Table 7: Hit Rate(%)↑ for Set-theoretic queries for dataset ML-20M.

Methods U ∩A U ∩A1 ∩A2 U ∩A1 ∩ ¬A2

h@10 h@20 h@50 h@10 h@20 h@50 h@10 h@20 h@50

MF-FILTER 4.6 8.1 16.1 0.4 1.0 2.9 3.7 6.6 13.7
MF-PRODUCT 4.1 7.5 15.6 3.3 6.6 16.4 2.7 5.1 11.4
MF-GEOMETRIC 0.1 0.3 0.6 0.0 0.0 0.0 0.3 0.6 1.4

NEUMF-FILTER 4.6 8.2 16.1 1.1 5.6 6.4 4.9 7.3 13.9
NEUMF-PRODUCT 4.6 8.2 16.1 4.1 8.5 22.1 4.3 6.9 12.0

BOX-FILTER 4.6 8.1 16.1 11.0 21.8 42.3 4.6 7.7 16.3
BOX-PRODUCT 4.5 8.2 16.1 11.1 21.8 42.5 4.3 7.1 15.1
BOX-GEOMETRIC 4.5 8.1 16.2 11.0 21.8 42.4 6.4 12.8 25.9

B.4 SPECTRUM OF WEAK GENERALIZATION

Table 8: The spectrum of generalization for SIMPLE PERSONALIZED QUERY U ∩A. W: WEAKEST
GENERALIZATION, W-U: WEAK GENERALIZATION-USER, W-A: WEAK
GENERALIZATION-ATTRIBUTE, S: SET THEORETIC GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 24.7 | 6.7 | 13.0 | 5.0 36.3 | 13.3 | 20.7 | 10.2 54.2 | 30.1 | 33.3 | 22.3
MF-PRODUCT 23.3 | 5.7 | 13.1 | 4.3 35.0 | 10.8 | 21.4 | 8.5 54.7 | 24.2 | 38.8 | 20.4
MF-GEOMETRIC 4.9 | 0.9 | 1.8 | 0.4 7.9 | 1.7 | 3.3 | 0.9 15.1 | 4.5 | 7.4 | 3.0
BOX-FILTER 24.1 | 13.0 | 16.4 | 11.7 34.5 | 22.3 | 24.6 | 19.1 50.5 | 40.5 | 37.6 | 32.3
BOX-PRODUCT 25.2 | 13.6 | 13.9 | 10.0 35.2 | 21.5 | 21.9 | 16.7 52.2 | 38.4 | 38.3 | 31.5
BOX-GEOMETRIC 25.4 | 14.7 | 14.8 | 11.0 35.6 | 23.3 | 23.5 | 18.3 52.2 | 40.8 | 40.5 | 34.1
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Table 9: The spectrum of generalization for COMPLEX PERSONALIZED QUERY U ∩A1 ∩ ¬A2. W:
WEAKEST GENERALIZATION, W-U: WEAK GENERALIZATION-USER, W-A: WEAK

GENERALIZATION-ATTRIBUTE, S: SET THEORETIC GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 25.5 | 13.0 | 12.4 | 4.7 34.9 | 14.1 | 19.5 | 9.8 54.7 | 29.5 | 37.1 | 22.5
MF-PRODUCT 23.5 | 7.0 | 10.4 | 3.4 34.9 | 12.8 | 18.0 | 7.3 54.5 | 27.5 | 35.0 | 19.3
MF-GEOMETRIC 5.2 | 2.0 | 1.7 | 0.5 8.8 | 3.5 | 1.9 | 1.0 17.4 | 8.8 | 6.5 | 2.7
BOX-FILTER 24.1 | 15.3 | 15.0 | 11.4 35.5| 22.7 | 21.1 | 19.5 54.1 | 39.2 | 37.3 | 34.0
BOX-PRODUCT 21.1 | 13.7 | 12.0 | 8.9 30.5 | 21.7 | 19.3 | 15.2 47.4 | 38.0 | 35.0 | 29.4
BOX-GEOMETRIC 21.1 | 13.2 | 10.8 | 8.6 30.4 | 20.8 | 17.7 | 15.1 47.3 | 36.6 | 33.2 | 31.0

Table 10: The spectrum of generalization for COMPLEX PERSONALIZED QUERY U ∩A1 ∩A2. W:
WEAKEST GENERALIZATION, W-U: WEAK GENERALIZATION-USER, W-A: WEAK

GENERALIZATION-ATTRIBUTE, S: SET THEORETIC GENERALIZATION

Methods Hit Rate @10 Hit Rate @ 20 Hit Rate @ 50
W | W-U | W-A | S W | W-U | W-A | S W | W-U | W-A | S

MF-FILTER 35.3 | 17.6 | 16.9 | 11.4 45.0 | 27.3 | 23.3 | 17.9 55.2 | 41.9 | 30.5 | 27.5
MF-PRODUCT 34.0 | 11.0 | 11.6 | 5.1 47.3 | 19.6 | 20.1 | 10.6 67.4 | 38.5 | 39.3 | 26.1
MF-GEOMETRIC 6.13 | 3.1 | 0.3 | 0.1 9.90 | 5.8 | 0.6 | 0.2 18.5 | 12.9 | 1.8 | 0.8
BOX-FILTER 30.8 | 21.5 | 17.3 | 14.5 41.1 | 31.2 | 23.3 | 20.5 52.7 | 44.5 | 30.3 | 28.5
BOX-PRODUCT 35.4 | 23.8 | 13.4 | 10.6 47.0 | 34.5 | 21.7 | 17.8 64.6 | 52.8 | 39.0 | 34.2
BOX-GEOMETRIC 34.6 | 25.2 | 20.0 | 16.8 45.7 | 35.7 | 30.5 | 26.6 62.6 | 53.3 | 50.1 | 46.1

Figure 3: Spectrum of Set-theoretic Generalization.

The BOX-GEOMETRIC achieves the best Generalization Spectrum Gap for all types of queries.

C ERROR COMPOUNDING ANALYSIS

We further perform more granular analysis amongst the BOX based methods with complex query
type U ∩ A1 ∩ A2. As claimed in our initial hypothesis, the FILTER method suffers from error
compounding. If the target movie m is in the model’s prediction list for A1 but not for A2 or the
other way round, we denote this error as compounding error. In figure 4b, out of the compounding
errors, 34% is solved by the BOX-GEOMETRIC method and 26% by the BOX-PRODUCT method.
However, in figure 4c, for the error that is not due to compounding (where the model gets both A1
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(a) Relationships of correct
answers by the three box models

on u ∧ a1 ∧ a2 queries.

(b) The Geometric method
subsumes the benefit of the

product in compounding error.
(c) The effect is less for the

non-compounding error.

and A2 prediction wrong), only 18% are corrected by the BOX-GEOMETRIC method and a mere 10%
of them are corrected by BOX-PRODUCT. Refer to figure 4a 4b 4c for details. This demonstrates that
the BOX-GEOMETRIC significantly contributes to the correction of error compounding.

D TIME EFFICIENCY ANALYSIS

Table 11: Training time (mm:ss) for a single epoch are measured for different batch sizes with 5
negative samples on Movielens-1M dataset. Experiments are conducted on Nvidia GTX 1080Ti gpus

Batch Size MF NEUMF LIGHTGCN BOX
64 08:37 17:00 70:30 19:32
128 04:32 09:46 38:40 11:40
256 02:29 04:40 20:55 05:28
512 01:18 02:23 10:47 02:54
1024 00:40 01:20 05:24 01:12

In Table 11, we observe that the MF, being the simplest approach with minimal computational
requirements, is consistently the fastest across all batch sizes. At the largest batch size (1024), it
achieves the shortest training time of just 00:40. The BOX-based method exhibits training times
comparable to NEUMF. However, it is significantly faster than LIGHTGCN, which relies on graph
convolutional computations. The iterative message-passing operations required by LIGHTGCN result
in considerably higher training times, particularly at smaller batch sizes (e.g., 70:30 at a batch size of
64). As the batch size increases, the training time for BOX embeddings becomes almost as efficient
as MF. For instance, at a batch size of 1024, BOX achieves a training time of 01:12, compared to
00:40 for MF. This demonstrates that the computational complexity of box embeddings is of the
same order as MF, making it a scalable and efficient choice.

Box embeddings are generally quite fast because the computation of box intersection volumes can
be parallelized over dimensions. Note that the training times above use GumbleBox embeddings,
which involve log-sum-exp calculations. However, this could be improved even further at inference
time by replacing these soft min and max approximations with hard operators. If such an optimized
approach is desired, then training can accommodate this by regularizing temperature. For deployment
in industrial set-up, we could take additional steps with Box Embeddings as outlined in Mei et al.
(2022b).
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