
XC-CACHE: Cross-Attending to Cached Context for Efficient LLM
Inference

Anonymous ACL submission

Abstract

In-context learning (ICL) approaches typically001
leverage prompting to condition decoder-only002
language model generation on reference in-003
formation. Just-in-time processing of a con-004
text is inefficient due to the quadratic cost of005
self-attention operations, and caching is de-006
sirable. However, caching transformer states007
can easily require almost as much space as008
the model parameters. When the right con-009
text isn’t known in advance, caching ICL can010
be challenging. This work addresses these lim-011
itations by introducing models that, inspired012
by the encoder-decoder architecture, use cross-013
attention to condition generation on reference014
text without the prompt. More precisely, we015
leverage pre-trained decoder-only models and016
only train a small number of added layers. We017
use Question-Answering (QA) as a testbed to018
evaluate the ability of our models to perform019
conditional generation and observe that they020
outperform ICL, are comparable to fine-tuned021
prompted LLMs, and drastically reduce the022
space footprint relative to standard KV caching023
by two orders of magnitude.024

1 Introduction025

Large Language Models (LLMs) have propelled026

advances in language modeling and enabled auto-027

matic production of almost human-like text. De-028

spite impressive progress, challenges persist in ap-029

plying LLMs in practical settings such as the risk of030

hallucinations (or rather confabulatations (Bottou031

and Schölkopf, 2023; Millidge, 2023)) and of non-032

factual (Li et al., 2023a; Xu et al., 2024) or toxic033

content (Zou et al., 2023; Xhonneux et al., 2024) in034

their generated text. Moreover, without fine-tuning,035

it is surprisingly difficult to adapt these models036

to incorporate new information not included in037

their training data (Luo et al., 2023; Kalajdzievski,038

2024). Indeed, while LLMs can answer queries039

about their training data somewhat accurately in040

a zero-shot fashion (Petroni et al., 2019), queries041

86
88
90
92
94

BE
RT

Sc
or

e

ICL (Chat)
ICL-JIT_KV

ICL-LoRA
ICL-LoRA-JIT_KV

XC (Ours)
XC-Enc (Ours)

0128256384512
Context cache memory footprint per token (kB)

30
40
50
60
70

F1
Qu

es
tio

n-
An

sw
er

 p
er

fo
rm

an
ce

Figure 1: Average QA performance vs. caching memory
footprint per context token. The closer to the top-right
corner, the better. XC-LLAMA variants drastically
reduce cache size at a small cost in accuracy.

regarding information not available at training time 042

often lead to inaccuracies (Maynez et al., 2020; Ji 043

et al., 2023) as one would expect. 044

This work focuses on grounding LLM genera- 045

tion on contextual information provided at infer- 046

ence time (Figure 2(a)). The most common ap- 047

proach for conditioning model generation is ar- 048

guably In-Context Learning (ICL) (Radford et al., 049

2019; Brown et al., 2020): one prepends the rele- 050

vant context to the prompt to generate an answer 051

conditioned on the combined query and context. 052

This technique is a core component of popular 053

frameworks, such as Retrieval-Augmented Genera- 054

tion (RAG) (Lewis et al., 2020), with the specificity 055

that the relevant context is not known a priori, but 056

has to be retrieved from a corpus (Ram et al., 2023). 057

While somewhat effective and straightforward, 058

ICL, as typically performed with decoder-only ar- 059

chitectures, has flaws. On the one hand, ICL-based 060

generation is known to present high variance with 061

respect to the prompt template so that equivalent 062

valid-looking prompt formats produce drastically 063

different results (Chen et al., 2023). On the other 064

1

Chapter 2: The Vanishing
Easter Egg...Compose a short poem on the

given theme. All rhymes...

(b)

(a)

(c)

(d)

context

context

query
answer

answer

answer

answer

query

context

query

query

cache

cache

What dream was Harry having
when the Bunny ate him?The rise and fall of the

Example Empire.

(this work)

Figure 2: Faster inference in context-conditional lan-
guage modeling. (a) A use case where the user’s query
must be interpreted within some context to generate an
answer. This work focuses on cases where the query
and the answer are both small (light), but the context
is large (heavy). The resulting LLM time complexity
is thus O

(
|context|2

)
(slow). (b) In-context learn-

ing (ICL) and retrieval augmented generation (RAG)
are two examples where the query is used to look up
the context from a finite corpus. (c) In many cases,
the context can be processed in advance to a cache en-
abling O

(
|context|(|query|+ |answer|)

)
(fast) infer-

ence on a given query. (d) Finite context corpus may be
processed offline, enabling fast execution at inference.
Since cache size affects storage and communication
costs, we search for models requiring smaller cache.

hand, ICL is costly in terms of time and space.065

Just-in-time processing of the context suffers from066

quadratic complexity on the length due to self-067

attention operations (Vaswani et al., 2017). The068

alternative is pre-processing and caching the con-069

text internal states (the so-called key-value or KV070

states) to speed up inference (Figure 2(c)). How-071

ever, this can require the same order of space072

as the model parameters themselves (we give de-073

tails in Section 2). Recent work has reduced the074

space requirements of KV caching by sub-sampling075

states (Xiao et al., 2023; Adnan et al., 2024), al-076

though at the cost of ignoring relevant content.077

To overcome these limitations, we propose al-078

ternatives to ICL that perform conditional genera-079

tion without injecting the relevant information in080

the prompt (Figure 2(a)), and seek to implement081

lightweight cache methods as illustrated in Fig-082

ure 2(d). Our approach is reminiscent of the, now083

arguably legacy, encoder-decoder architectures, as084

it relies on cross-attention layers to condition gen-085

eration on pre-computed context encodings. More086

precisely, we propose cross-context-cache (XC-087

CACHE), which stores only the outputs of the en-088

coder hidden states and relies on cross-attention 089

to ingest the cache at inference time. We instan- 090

tiate XC-CACHE via two parameter-efficient ap- 091

proaches that leverage pre-trained decoder-only 092

models and extend them with a separate encoder to 093

process the context: one approach uses the frozen 094

decoder as an encoder (called XC-LLAMA), and 095

the other uses a small bi-directional encoder (called 096

XC-LLAMAENC). Crucially, our encoder-decoder 097

architectures are more amenable to caching the con- 098

text states, requiring orders of magnitude less space 099

than their ICL counterparts. When context caching 100

is enabled, fine-tuned models result in higher ac- 101

curacy performance, but demand a large memory 102

footprint (and consequently, higher latency and 103

cost). In contrast, our XC-CACHE approach sub- 104

stantially reduces cache memory requirements by 105

nearly 98%; and as other efficiency-improving tech- 106

niques like quantization (Frantar et al., 2023), this 107

reduction comes at a minor cost in accuracy, as 108

illustrated in Figure 1. Nevertheless, our method 109

consistently outperforms ICL alternatives based on 110

LLAMA 2 or GPT-3.5, as detailed in Section 5. 111

Overall, we advocate for a conceptual shift in ar- 112

chitecture design for conditional generation, which 113

should recenter on caching and make it integral to a 114

model’s operation rather than an afterthought. Our 115

contributions are summarized as follows: 116

1. Cacheability: We provide evidence that 117

encoder-decoder architectures are good can- 118

didates for conditional generation since our 119

cache-friendly models enhance model per- 120

formance compared to ICL, while reducing 121

cache memory footprint by more than 98%. 122

2. Parameter efficiency: We show that training 123

a few cross-attention layers (and optionally, 124

a small encoder) suffices to convert decoders 125

into encoder-decoder pairs. We contribute 126

a mix of training tasks that enable context- 127

conditional generation without costly ICL. 128

3. Decoder-as-encoder: We show that represen- 129

tations extracted from pre-trained causal de- 130

coders can be used as-is to replace an encoder. 131

2 Caching Representations 132

Let context, query and answer denote sequences of 133

tokens from a shared vocabulary V. We write 134

|context|, |query| and |answer| the respective length 135

of these sequences. Figure 2(a) illustrates an LLM 136

2

which, conditioned on context, produces an answer137

to a user-specified query.138

Assumptions. In what follows, we make three139

main assumptions: (A1) the context is not unique140

and depends on the query; (A2) there exists a man-141

ageable amount of contexts to condition on; and142

(A3) the context is large, i.e., |query|+ |answer| ≪143

|context|. In doing so, we restrict ourselves to the144

regimes where processing contexts offline is both145

compelling (A1 and A3) and viable (A2).146

Many ICL use cases satisfy these assumptions.147

For example, when facing a number of different148

tasks, we may craft task-specific instructions, each149

detailing how to obtain the answer to the query150

(Figure 2(b)). The same applies to RAG-based151

question-answering when retrieved documents are152

encoded independently: the retriever selects from153

a corpus the most relevant documents (context) to154

answer the user question (query).155

2.1 Inference Time Complexity156

In general, the time complexity of LLM inference is157

dominated by its attention mechanism, which in the158

ICL setting is O
(
(|context|+ |query|+ |answer|)2

)
.159

In the large context regime (A3), this simplifies to160

O
(
|context|2

)
: we can thus expect tangible infer-161

ence speedups by improving how we handle the162

context. One way to achieve such speedups is to163

pre-process the contexts offline to some interme-164

diate states (cache) and provide it to the model at165

inference (Figure 2(c)). This way, the quadratic166

cost of processing the context is paid once, al-167

lowing inference to simply look up a ready-made168

cache (Fig. 2(d)). Note that the incurred stor-169

age and communication overheads are linear in170

the size of the cache, which is linear in context171

length. In this setup, inference time complexity172

becomes O
(
|context|(|query|+ |answer|)

)
, i.e. lin-173

ear in context length (Fig. 3), a significant speedup.174

2.2 Practical costs of caching175

Practical considerations might negatively affect176

a cached-enabled setup. Loading and commu-177

nication overheads are both linear in cache size,178

motivating smaller cache. Any extra operations179

required at inference mitigates caching benefits.180

Caching methods may incur an (implicit or explicit)181

cost in the quality of the generated answer. See Ap-182

pendix A for details.183

an
sw
er

qu
er
y

co
nt
ex
t

(a) Without cache.

an
sw
er

qu
er
y

co
nt
ex
t

(b) KV caching.

Figure 3: Stylized representation of attention execu-
tion time (area) for context-conditional language mod-
eling. Dashed lines in (b) shows the savings when the
context’s (past) keys and values cache are provided. For
causal models, the area below the diagonal represents
execution time that could be saved by other means.

2.3 Approaches to Caching 184

KV Caching. The default approach is to store 185

the (past) keys and value states generated while 186

processing context, hereafter called KV caching. 187

KV caching is commonly associated with a con- 188

versational setting, in which case the cache often 189

remains on the GPU device between conversational 190

rounds (Figure 2(d)). Other setups, such as serving 191

multiple conversations, demand, however that we 192

move cache from storage (and/or CPU RAM) to 193

the GPU, incurring further latency overhead. As an 194

example, for LLAMA 2-7B (Touvron et al., 2023) 195

using 16 bits precision, we must move around a 196

whopping 512 kB per token.1 Smaller per-token 197

cache sizes are thus desirable. 198

JIT-KV Caching. An alternative approach is to 199

store the (past) hidden states of the model in the 200

cache (in the case of LLAMA 2-7B, this would 201

be half as big, i.e., 256 kB per token). At in- 202

ference time, once these hidden states are loaded 203

on GPU, we can recover the full keys and values 204

in O
(
|context|

)
well-parallelized operations (recall 205

that a transformer’s keys and values are obtained 206

by a linear operation on the hidden states).We call 207

this approach “just-in-time” or JIT-KV caching. 208

XC Caching (Ours). Both KV and JIT-KV 209

caching perform the exact same computations as 210

the original model without a cache. They both suf- 211

fer from two types of costs while producing the 212

same answer: the size of the cache and the oper- 213

132 layers, 32 heads per layer, 128 floating points per key
and value (thus a factor 2), 2 bytes per 16 bit floating point

3

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Cross-attn

Cross-attn

Context

Context Embedding

Prompt

Predictions
Sm

a
ll

tra
in

a
b

le

en
co

d
er

Trainable

Encoder

(a) Trainable small bi-directional encoder.

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Self-Attn

Cross-attn

Cross-attn

Context

Context Embedding

Prompt

Predictions

Ba
se

 d
ec

od
er

 a
s

en
co

d
er

Only train
cross-attn

layers

(b) Decoder as the (causal) encoder.

Figure 4: XC-LLAMA’s architectures. A decoder-only model implements encoder-decoder architectures. Fine-
tuning out in a parameter-efficient fashion via training only a small number of cross-attention layers.

ations to be performed at inference (e.g., convert214

hidden states to keys and values). In this work, we215

propose XC caching (read cross-context caching),216

which considers the quality loss of the generated217

answer as a third such cost and present two models218

balancing these three costs. Both models employ219

cross-attention layers integrated into the decoder220

architecture, enabling the model to attend on con-221

text cached with a compact memory footprint at222

inference time. Models are described in Section 3.223

3 XC: Cross Attending to Efficiently224

Cached Context225

To reduce the memory footprint of caching, our ap-226

proach draws inspiration from the encoder-decoder227

architecture, which until recently was the go-to de-228

sign for conditional generation. Recently, decoder-229

only models have become more popular in part due230

to their data efficiency: the entire parameter budget231

is allocated to the decoder and not “wasted” on232

an encoder, with the additional advantage that all233

parameters are trained against all data tokens. Even234

though maintaining an external encoder may seem235

wasteful, we favor an encoder-decoder architecture:236

it better lends itself to pre-computing and caching237

context representations. Indeed, only the encoder238

output vectors need to be stored, as opposed to239

intermediate states across all of the decoder’s self-240

attention layers (KV and JIT-KV cache).241

In what follows, we refer to a model as com-242

posed of an encoder E : V|context| 7→ Rd|context|,243

which takes in a context and outputs token-level244

representations of size d, and of a decoder D :245

Vm × Rd|context| 7→ ∆|V|, which takes as input the246

query and the context encodings and outputs an an-247

swer in the simplex of size |V|. More precisely, the 248

decoder D autoregressively outputs the parameters 249

of a categorical distribution over the vocabulary. 250

For the sake of parameter efficiency and to lever- 251

age state-of-the-art pre-trained LLMs, we start 252

from an existing decoder-only model and augment 253

it with new cross-attention layers interleaved be- 254

tween existing self-attention layers, as illustrated in 255

Figure 4. We consider two strategies to implement 256

the encoder E . The first one trains a small encoder, 257

i.e., E is orders of magnitude smaller than D. The 258

second one uses a decoder as encoder, i.e., the 259

frozen decoder-only model is used out-of-the-box 260

as the encoder (E := D). More precisely, we use 261

as encodings the representations extracted from the 262

pre-trained D at its last layer before the language 263

modeling head. 264

Choosing one approach over the other depends 265

on practical considerations. If caching is possible 266

and context representations can be computed of- 267

fline, then using the decoder as an encoder is prefer- 268

able for overall simplicity and parameter efficiency. 269

Otherwise, a small encoder would make just-in- 270

time processing of contexts significantly less costly. 271

Both approaches inherit the advantages of trained 272

decoder-only models while benefiting from using 273

an encoder during inference. In particular, con- 274

textual information can be efficiently cached since 275

only the output at E’s top layer must be stored in- 276

stead of the entire set of D’s intermediate states. 277

Finally, to enable context conditioning, we train 278

exclusively the newly added modules: the cross- 279

attention layers in one setting and the small encoder 280

in the other. The base decoder is kept frozen in both 281

settings (even when it acts as an encoder). Con- 282

4

sequently, our training procedure does not affect283

the original parameters of D, which can still be284

used as a general-purpose language model when285

the additional layers are removed.286

4 Experimental Setup287

We focus on the question-answering task and train288

on a combination of datasets where context, query,289

and answer triplets are available. QA is an ideal290

testbed for our approaches as it requires efficiently291

looking up external information and accounting for292

it at generation time.293

4.1 Training Dataset294

We build a training dataset by standardizing and295

pooling together the training partitions of five pub-296

licly available and diverse (open-domain, multi-297

hop, conversational) datasets: NATURAL QUES-298

TIONS (NQ) (Kwiatkowski et al., 2019), HOT-299

POTQA (Yang et al., 2018), TOPIOCQA (Adlakha300

et al., 2022), MS MARCO (Bajaj et al., 2016),301

and SQUAD-V2 (Rajpurkar et al., 2018). Examples302

from the resulting training dataset contain a query303

(natural-language question), an answer (expected304

output), and one or more contexts (e.g., knowledge305

base articles), where at least one of them contains306

the answer to the query. We refer to this context307

as reference context. We make use of a validation308

set for model selection and hyperparameter tuning.309

For datasets with a validation set but not a test parti-310

tion, we use the validation set for testing and create311

a validation set by holding out 10% of randomly se-312

lected training samples. We apply a further filtering313

step in our training data and remove examples with314

contexts longer than 6,000 tokens, corresponding315

to less than 5% of the samples.316

Evaluation is performed on the resulting test317

partitions of NATURAL QUESTIONS, HOTPOTQA,318

and TOPIOCQA. Further details and statistics of319

the datasets we considered can be found in Ap-320

pendix B.321

4.2 Auxiliary Tasks322

In addition to training on the primary QA tasks, we323

optimize our models on context repetition tasks, as324

described below. The advantage of defining such325

auxiliary tasks is two-fold. On the one hand, they326

allow us to optimize the likelihood of all available327

tokens, even those used as input to the encoder.328

On the other hand, they help avoid sub-optimal329

solutions where the cross-attention layers behave330

Figure 5: Multitask training strategy. Within an
epoch, each example is presented to the model twice. In
the first round, the model predicts the answer condition-
ally based on the context and the query. In the second
appearance of an example within the epoch, we train
the model to repeat or infill the context.

as simple identity operators. Indeed, our models 331

could learn to ignore the context but cannot do so 332

when tasked to repeat the context. 333

In practice, we use reserved tokens to instruct 334

the model to repeat the context, either as-is or by 335

infilling (Bavarian et al., 2022), i.e. returning it in 336

the prefix-suffix-middle or the suffix-prefix-middle 337

order, as done by Li et al. (2023b); Lozhkov et al. 338

(2024). Such tasks introduce new variability, as 339

the model learns to copy-paste the context and to 340

find and replace its missing chunks, resulting in 341

improved performance in the multi-epoch training 342

setting. Note that we train our models on question- 343

answering and context repetition on every training 344

sample. We set one training epoch to correspond 345

to two passes over the training dataset, where we 346

perform the primary or the secondary tasks in each 347

pass, as illustrated in Figure 5. 348

4.3 Implementation Details 349

We rely on the openly available pre-trained 350

LLAMA 2 (Touvron et al., 2023) to define vari- 351

ations of XC-LLAMA. Specifically, all our empiri- 352

cal assessments use the 7 billion parameter version 353

of LLAMA 2. For the variation of XC-LLAMA 354

where a dedicated encoder is trained (referred to 355

as XC-LLAMAENC from now on), we fine-tune 356

as encoder a LONGFORMER (Beltagy et al., 2020), 357

which is a BERT (Devlin et al., 2018) of approxi- 358

mately 125M parameters, pre-trained on relatively 359

long documents using efficient self-attention. We 360

note, however, that the longest publicly available 361

LONGFORMER accepts inputs of at most 4,096 to- 362

kens, which is shorter than our maximum length 363

of 6,000. We then increase the model’s maximum 364

input length by repeating the starting position em- 365

beddings. Upon fine-tuning, the model does handle 366

5

contexts longer than 4,096 tokens without notice-367

able problems.368

As per adding cross-attention layers to XC-369

LLAMA, we introduce one cross-attention layer370

every few self-attention layers of the transformer.371

In particular, we found the 5-6 configuration (i.e.,372

inserting five cross-attention layers while skip-373

ping six self-attention ones) to work consistently374

well. We thus use this configuration throughout375

our evaluations. We remark that we strive to be376

parameter efficient and keep the parameter count377

of added modules below 10% of D’s parameter378

count. Training is carried out with the ADAMW379

optimizer (Loshchilov and Hutter, 2017) with a380

batch size of 256 and for 40,000 steps (amount-381

ing to 4 training epochs). We use a linear learning382

rate scheduler with a warm-up phase and such that383

the learning rate reaches 0 at the last training step.384

A comprehensive list of hyperparameter values is385

shown in Table 8 in Appendix C.386

4.4 Metrics and Evaluation387

We compare our models against ICL methods388

for generating answers conditioned on context and389

query. We note that contexts in the cases we consid-390

ered present a relatively low signal-to-noise ratio,391

as most of the tokens are related to the answer but392

are not at all relevant. In some more extreme situa-393

tions, the posed question cannot be answered from394

the context, and models are expected (and trained395

or prompted to) indicate that it is not possible to396

answer based on the provided context.397

We use the same metrics and evaluation setup398

described by Adlakha et al. (2023) – such as F1399

SCORE, RECALL, METEOR, and ROUGEL – but400

keep F1 as our metric of focus. In addition, we eval-401

uate BERTSCORE (Zhang et al., 2019) measured402

between predictions and ground-truth answers.403

5 Results404

5.1 Comparison with existing methods405

We first compare our method to existing approaches406

for conditional generation. Our main baseline407

is ICL, i.e., providing the context as part of the408

prompt. More specifically, we report baseline re-409

sults for LLAMA 2-CHAT, which we found to per-410

form better than the base pre-trained LLAMA 2. We411

further report results for GPT-3.5-TURBO, Ope-412

nAI’s black-box model, presumably conditioned413

by prompting. For these ICL baselines, we se-414

lected the prompt templates based on generated415

answer quality on sample validation data (refer to 416

Appendix C for details). Finally, we report the 417

results of FUSION-IN-DECODER (FiD) (Izacard 418

and Grave, 2021), a T5-based (Raffel et al., 2020) 419

conditional generative model, which consistently 420

proved to be state-of-the-art on QA tasks (Borgeaud 421

et al., 2022; Wang et al., 2023a; Adlakha et al., 422

2023). Unlike the decoder-only backbone of our 423

models, FiD is arguably no longer a general- 424

purpose model, as all of its parameters are fine- 425

tuned to perform QA. More importantly, as dis- 426

cussed in more depth in Section 5.2, pre-processing 427

and caching context representations is not an option 428

for FiD since it requires knowing the question at 429

encoding time. Nevertheless, we introduce the FiD 430

baseline to check where our models stand relative 431

to established QA-specialized models. 432

Results are presented in Table 1. On the con- 433

sidered datasets, cross-attending to the contexts 434

(XC-LLAMA or XC-LLAMAENC) considerably 435

improves performance w.r.t prompting (LLAMA 2- 436

CHAT). The gap varies depending on the dataset. 437

We conjecture that this is due to the high variance 438

induced by prompting, although it might exist an 439

optimal prompt for each dataset to help close this 440

gap. Thus, approaches that do not rely on the 441

prompt offer the advantage of being more broadly 442

applicable and, hence, more practical. We also note 443

that even in the setting where the decoder is used as 444

an encoder, cross-attending to contexts still yields 445

better performance than ICL, no matter the base 446

decoder we compare against. This suggests that the 447

trained cross-attention layers compensate for the 448

potential sub-optimality because the encoder repre- 449

sentations are not explicitly trained for the task we 450

evaluate. A broader set of results comprising more 451

metrics and models can be found in Table 5. 452

5.2 Broader Analysis 453

The results in the previous section show that 454

adding and fine-tuning dedicated parameters for 455

context-conditioning improves performance rela- 456

tive to prompting. Based on this observation, in 457

this section, we expand our evaluation to consider 458

alternative approaches that leverage a small num- 459

ber of additional parameters that enable models 460

to condition generation on reference contexts. In 461

addition to prediction performance, we now also 462

focus on computational efficiency; namely, we as- 463

sess how amenable to pre-processing and caching 464

representations of contexts different models are. 465

We thus fine-tune LORA adapters (Hu et al., 466

6

Dataset Model F1 BERTSCORE

GPT-3.5 TURBO 57.80 90.87
FID 59.05 91.75

NQ LLAMA 2-CHAT 41.26 87.43
XC-LLAMA (Ours) 59.95 92.87
XC-LLAMAENC (Ours) 63.12 93.30

GPT-3.5 TURBO 39.37 87.83
FID 45.60 90.56

HOTPOTQA LLAMA 2-CHAT 29.63 86.02
XC-LLAMA (Ours) 43.94 90.55
XC-LLAMAENC (Ours) 54.57 92.08

GPT-3.5 TURBO 40.18 87.52
FID 31.22 85.95

TOPIOCQA LLAMA 2-CHAT 33.45 86.33
XC-LLAMA (Ours) 45.47 89.16
XC-LLAMAENC (Ours) 47.73 89.40

Table 1: Question-Answer performance on three di-
verse information-seeking tasks. GPT-3.5 TURBO and
LLAMA2-CHAT are given reference context through
ICL (prompting), while our approach uses cross-
attention layers to ingest reference embeddings.

2021) applied to the same LLAMA 2 decoder we467

use for XC-LLAMA. In other words, we fine-tune468

our ICL baseline from Section 5 to control for the469

effect of prompting in the performances we ob-470

serve, which, as observed in Table 3, drastically471

improves QA accuracy relative to the ICL base-472

lines reported in Table 1. However, despite en-473

abling improvements in prediction performance,474

relying on LORA-style model adaptation still ne-475

cessitates storing all KV states throughout every476

layer to cache contextual information, incurring477

significant costs. On the other hand, models with478

an encoder require caching the hidden states of479

only their last layer. This is more clearly depicted480

in Table 2, where we further consider a compro-481

mise scenario for ICL that caches hidden states at482

each layer rather than KV states. We refer to this483

variant of ICL as LLAMA 2-ICL-JIT-KV, since484

it performs just-in-time KV projection of cached485

hidden states, trading time for space.486

Note that XC-LLAMA variations greatly reduce487

the caching footprint simply because they require488

storing only the last hidden states of the encoder.489

XC-LLAMAENC reduces space requirements even490

further, as the representation of LONGFORMER are491

lower dimensional relative to that of LLAMA 2.492

Reducing cache size carries substantial practi-493

cal implications, notably in reducing the memory494

footprint of a pre-processed knowledge base. For495

example, moving from an ICL approach to intro-496

ducing an encoder could reduce cache size by or-497

ders of magnitude. This is particularly significant498

Model Cache size (kB/token)

LLAMA 2-ICL-KV 512
LLAMA 2-ICL-JIT-KV 256
LLAMA 2-ICL-LoRA 512
XC-LLAMA (Ours) 8
XC-LLAMAENC (Ours) 1.5

Table 2: Cache memory footprint per context token for
different models. The encoder-decoder approach of XC-
LLAMA allows for huge savings due to the need to store
only the last hidden states instead of KV states through-
out layers. Cache sizes here assume 16-bit precision.

when storing pre-processed representations of vast 499

datasets like the entire Wikipedia. Additionally, 500

reducing the cache size leads to runtime savings 501

by mitigating communication costs, as the volume 502

of information transferred from disk to device is 503

markedly reduced. Finally, scaling down the cache 504

size frees up device memory at inference time, en- 505

abling longer generation or larger batch sizes for 506

batched inference. See appendix A for details. 507

We provide a joint view of those two perfor- 508

mance components – prediction and computational 509

– in Figure 1, where we plot aggregate F1 and 510

BERTSCORE across datasets versus the amount 511

of cache per context token required by models. 512

Note that models closer to the top-right corner 513

are preferred since they are highly accurate at a 514

low caching cost. While no optimal methods are 515

identified in the Pareto sense, the Pareto optimal 516

set consists of ICL models fine-tuned with LORA 517

on one end, offering slightly higher aggregate 518

BERTSCORE but requiring substantial caching 519

space. On the other hand, models with an encoder 520

make small sacrifices in prediction accuracy while 521

significantly reducing the memory footprint. We 522

also note that there is a gap between XC-LLAMA 523

and XC-LLAMAENC, and the additional parame- 524

ters introduced by XC-LLAMAENC yield a boost 525

in accuracy and improve space efficiency. 526

Detailed QA results are reported in Table 3, 527

which includes the GPT-3.5 TURBO ICL baseline 528

and FiD, which is now fine-tuned on our training 529

dataset. Again, we highlight that FiD, while in- 530

cluded for performance reference, is not directly 531

comparable to the other models and does not sup- 532

port caching in pre-processed contexts. Our report- 533

ing of FiD aims to provide insight into where our 534

models stand relative to a specialized baseline. As 535

previously mentioned, our models incur a slight 536

reduction in prediction accuracy but achieve signif- 537

icant space savings, which proves advantageous in 538

7

Dataset Model F1 BERTSCORE

GPT-3.5 TURBO 57.80 90.87
FID (fine-tuned) 72.67 94.76

NQ LLAMA 2 (LoRA) 67.38 93.27
XC-LLAMA (Ours) 59.95 92.87
XC-LLAMAENC (Ours) 63.12 93.30

GPT-3.5 TURBO 39.37 87.83
FID (fine-tuned) 53.54 89.64

HOTPOTQA LLAMA 2 (LoRA) 71.97 94.62
XC-LLAMA (Ours) 43.94 90.55
XC-LLAMAENC (Ours) 54.57 92.08

GPT-3.5 TURBO 40.18 87.52
FID (fine-tuned) 41.52 86.54

TOPIOCQA LLAMA 2 (LoRA) 55.41 90.80
XC-LLAMA (Ours) 45.47 89.16
XC-LLAMAENC (Ours) 47.73 89.40

Table 3: Question-Answer performance with ICL, car-
ried out with a model specialized to a prompt template
via LORA. Note that the FiD model was pre-trained on
NQ, hence its high performance on that dataset.

various practical scenarios. For a comprehensive539

overview, please refer to the full results in Table 5.540

6 Related Work541

Decoders as encoders. Repurposing pre-trained542

decoders is becoming a popular approach to lever-543

age powerful language models for applications544

other than generative modeling. For example,545

GRIT (Muennighoff et al., 2024) converts a pre-546

trained causal decoder into a bi-directional encoder,547

yielding sentence-level embeddings while main-548

taining its ability to perform autoregressive gener-549

ation of text. However, unlike the models we con-550

sider, this conversion requires fine-tuning all model551

parameters instead of additional ones. Parameter-552

efficient approaches to turn decoders into encoders553

were also proposed, such as in (Meng et al., 2024)554

and (BehnamGhader et al., 2024), where a pre-555

trained MISTRAL decoder (Jiang et al., 2023) is556

fine-tuned in a contrastive setting using LORA557

adapters to yield sentence level representations for558

retrieval. Closer to our method is CODET5+ (Wang559

et al., 2023d), which also defines encoder-decoder560

architectures rather than turning decoders into sen-561

tence encoders. Similar to one of our variants (XC-562

LLAMA), it is assembled from two pre-trained de-563

coders, one used as an encoder and the other as a564

decoder and linked with a few cross-attention op-565

erations. However, CODET5+ requires fine-tuning566

the entire and relatively large encoder. We show567

that a good pre-trained decoder has good enough568

representations, but one can improve upon it effi-569

ciently using just a very small trainable encoder. 570

Conditioning without prompts. One recent line 571

of work has focused on controlling a model’s 572

generation by intervening in its parameters di- 573

rectly (Wang et al., 2023c; Zhang et al., 2023; Wang 574

et al., 2023b), in particular, to either introduce or 575

erase knowledge post-training. Such approaches 576

would typically require accessing and rewriting 577

the internal parameters of a pre-trained language 578

model and are not amenable to frequently changing 579

contexts such as in a Question-Answer setting. 580

Efficient inference. There exist several methods 581

for improving inference speed and memory foot- 582

print. One approach is to lower the numerical pre- 583

cision or quantize the model weights and/or data, 584

which has been shown to preserve the model accu- 585

racy with only 8 bits per weight (Dettmers et al., 586

2022), or even lower precision with 4, 3, or even 2 587

bits per weight (Frantar et al., 2023). Alternatively, 588

the key-query cache can be compressed (Ainslie 589

et al., 2023; Nawrot et al., 2024), although doing 590

so requires fine-tuning. Finally, using Flash Atten- 591

tion (Dao et al., 2022) leads to significant savings 592

for just-in-time processing of contexts. These meth- 593

ods orthogonally complement what we present in 594

this paper and can be combined with XC-LLAMA. 595

7 Conclusion 596

We introduced XC-LLAMA as an approach to trans- 597

form a pre-trained decoder-only language model 598

into an encoder-decoder architecture that can con- 599

dition generation on both the encoder inputs and 600

the decoder query. This is achieved by integrating 601

cross-attention layers interleaved in between exist- 602

ing self-attention layers of the pre-trained decoder. 603

We describe two approaches for defining the en- 604

coder: using a copy of the decoder or introducing 605

a trainable but small bi-directional encoder. 606

The proposed architecture allows for a reduc- 607

tion in caching space by a factor exceeding 300. 608

When evaluated in the QA setting, we observe 609

a higher prediction accuracy than standard ICL 610

approaches achieved through both LLAMA 2 and 611

GPT-3.5 TURBO. Additionally, we observe accu- 612

racy levels nearly on par with caching-intensive 613

fine-tuned prompted models, providing a more 614

caching-friendly alternative to prompted language 615

models that proves highly practical. Identified lim- 616

itations are discussed in Section 8. 617

8

8 Limitations618

Most of the models discussed in this paper have619

impressive results in the QA setting. However,620

our experience working with these models reveals621

limitations primarily stemming from their reliance622

on an underlying language model. As such, these623

methods inherit potential flaws of the language624

model they build upon.625

For instance, typical large language models are626

trained on vast amounts of text, likely including in-627

formation related to questions in publicly available628

QA benchmarks. While such training on related629

data may offer a shortcut to models for correctly630

answering questions in the context that they have631

“memorized” during training, it can also introduce632

errors: the model may “remember” related but in-633

accurate information relative to a specific query. In634

simpler terms, prompting-based ICL approaches635

and potentially our models can bypass context and636

rely solely on memory to generate a continuation.637

This is undesirable as we aim to ensure that models638

accurately account for the reference context rather639

than pre-training’s. Fine-tuning models address the640

abovementioned issue by encouraging reliance on641

the provided context, as we explicitly do with con-642

text repetition and filling auxiliary tasks. However,643

it also specializes in fine-tuning data to such an644

extent that it may hurt the generalization ability of645

datasets that deviate from what was observed dur-646

ing fine-tuning. We estimate to what extent models647

know the answer after pre-training in Table 6.648

Unseen Datasets. To test the generalization649

ability of the models we evaluate to data non-650

identically distributed concerning fine-tuning, we651

curated a test dataset containing 16,290 reference652

documents, with roughly 5 question-answer pairs653

per document. The documents were written by hu-654

man annotators, who wrote about imaginary scenar-655

ios, each featuring several subsections with titles656

and subtitles. Importantly, given that the reference657

documents in this dataset contain fictional or untrue658

information, we can reasonably assume that none659

of the models can rely on or be misled by their660

memory of the training data. Additionally, docu-661

ments in this dataset and accompanying questions662

and answers exhibit unique styles that may differ663

from the fine-tuning data.664

When evaluated in this more challenging out-665

of-distribution scenario, the accuracy of all models666

experiences a significant decline, as depicted in Fig-667

ure 6, where we compare QA scores for all models668

82
84
86
88
90
92
94
96

BE
RT

Sc
or

e

NQ HotpotQA TopiOCQA Unseen

FiD

FiD (fin
etuned)

Llama 2-Chat

Llama 2 (Lo
RA)

XC-LlamaEnc
XC-Llama

10
20
30
40
50
60
70

F1
Qu

es
tio

n-
An

sw
er

 p
er

fo
rm

an
ce

Figure 6: QA performance of various models on
our three test datasets against our curated unseen
dataset. All models struggle to generalize in this out-of-
distribution scenario where the test dataset significantly
differs from that used for training.

across all datasets, including the curated one la- 669

beled as Unseen. We hypothesize that, apart from 670

the inability of models to rely on memory to answer 671

queries, the main factor driving the accuracy de- 672

cline is the divergence between the test dataset and 673

the fine-tuning data. This discrepancy may arise 674

from variations in writing style, document lengths, 675

signal-to-noise ratio, and the presence of distract- 676

ing content related to the question but not useful for 677

its answer, among other potential variations. Identi- 678

fying the exact sources of errors and enhancing the 679

robustness of context-conditional models present 680

promising avenues for future research. 681

Ethics Statement 682

We acknowledge the environmental impact of com- 683

putational resources, including the carbon footprint 684

associated with data storage and processing. By fo- 685

cusing on conditional generation through caching 686

with a small memory footprint, we aim to minimize 687

energy consumption and promote sustainability in 688

computational practices. 689

While cache reduction can lead to speed im- 690

provements, we recognize the importance of ad- 691

ditionally implementing safeguards to ensure re- 692

sponsible usage of computational models. This 693

entails mitigating bias, fairness, and privacy issues, 694

thus fostering ethical deployment of technology. 695

9

References696

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han697
Lu, Nicholas Meade, and Siva Reddy. 2023. Eval-698
uating correctness and faithfulness of instruction-699
following models for question answering. arXiv700
preprint arXiv:2307.16877.701

Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Sule-702
man, Harm de Vries, and Siva Reddy. 2022. Topi-703
ocqa: Open-domain conversational question answer-704
ing with topic switching. Transactions of the Associ-705
ation for Computational Linguistics, 10:468–483.706

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,707
Prashant J Nair, Ilya Soloveychik, and Purushotham708
Kamath. 2024. Keyformer: Kv cache reduction709
through key tokens selection for efficient generative710
inference. arXiv preprint arXiv:2403.09054.711

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury712
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.713
2023. GQA: Training generalized multi-query trans-714
former models from multi-head checkpoints. In The715
2023 Conference on Empirical Methods in Natural716
Language Processing.717

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,718
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,719
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,720
et al. 2016. Ms marco: A human generated ma-721
chine reading comprehension dataset. arXiv preprint722
arXiv:1611.09268.723

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,724
John Schulman, Christine McLeavey, Jerry Tworek,725
and Mark Chen. 2022. Efficient training of lan-726
guage models to fill in the middle. arXiv preprint727
arXiv:2207.14255.728

Parishad BehnamGhader, Vaibhav Adlakha, Marius729
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and730
Siva Reddy. 2024. Llm2vec: Large language models731
are secretly powerful text encoders. arXiv preprint732
arXiv:2404.05961.733

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.734
Longformer: The long-document transformer. arXiv735
preprint arXiv:2004.05150.736

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-737
mann, Trevor Cai, Eliza Rutherford, Katie Milli-738
can, George Bm Van Den Driessche, Jean-Baptiste739
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.740
Improving language models by retrieving from tril-741
lions of tokens. In International conference on ma-742
chine learning, pages 2206–2240. PMLR.743

Léon Bottou and Bernhardt Schölkopf. 2023. Borges744
and ai. arXiv preprint arXiv:2310.01425.745

Tom Brown, Benjamin Mann, Nick Ryder, Melanie746
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind747
Neelakantan, Pranav Shyam, Girish Sastry, Amanda748
Askell, et al. 2020. Language models are few-shot749
learners. Advances in neural information processing750
systems, 33:1877–1901.751

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, 752
and He He. 2023. On the relation between sensi- 753
tivity and accuracy in in-context learning. Preprint, 754
arXiv:2209.07661. 755

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 756
Christopher Ré. 2022. FlashAttention: Fast and 757
memory-efficient exact attention with IO-awareness. 758
Advances in Neural Information Processing Systems, 759
35:16344–16359. 760

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 761
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul- 762
tiplication for transformers at scale. Advances in 763
Neural Information Processing Systems, 35:30318– 764
30332. 765

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 766
Kristina Toutanova. 2018. Bert: Pre-training of deep 767
bidirectional transformers for language understand- 768
ing. arXiv preprint arXiv:1810.04805. 769

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan 770
Alistarh. 2023. GPTQ: Accurate post-training quan- 771
tization for generative pre-trained transformers. In 772
The Eleventh International Conference on Learning 773
Representations. 774

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 775
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 776
et al. 2021. Lora: Low-rank adaptation of large lan- 777
guage models. In International Conference on Learn- 778
ing Representations. 779

Gautier Izacard and Edouard Grave. 2021. Leveraging 780
passage retrieval with generative models for open do- 781
main question answering. In Proceedings of the 16th 782
Conference of the European Chapter of the Associ- 783
ation for Computational Linguistics: Main Volume, 784
pages 874–880, Online. Association for Computa- 785
tional Linguistics. 786

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 787
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 788
Madotto, and Pascale Fung. 2023. Survey of halluci- 789
nation in natural language generation. ACM Comput- 790
ing Surveys, 55(12):1–38. 791

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 792
sch, Chris Bamford, Devendra Singh Chaplot, Diego 793
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 794
laume Lample, Lucile Saulnier, et al. 2023. Mistral 795
7b. arXiv preprint arXiv:2310.06825. 796

Damjan Kalajdzievski. 2024. Scaling laws for forget- 797
ting when fine-tuning large language models. arXiv 798
preprint arXiv:2401.05605. 799

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 800
field, Michael Collins, Ankur Parikh, Chris Alberti, 801
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 802
ton Lee, et al. 2019. Natural questions: a benchmark 803
for question answering research. Transactions of the 804
Association for Computational Linguistics, 7:453– 805
466. 806

10

https://arxiv.org/abs/2209.07661
https://arxiv.org/abs/2209.07661
https://arxiv.org/abs/2209.07661
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.807
2019. Latent retrieval for weakly supervised open do-808
main question answering. In Proceedings of the 57th809
Annual Meeting of the Association for Computational810
Linguistics, pages 6086–6096.811

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio812
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-813
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-814
täschel, et al. 2020. Retrieval-augmented generation815
for knowledge-intensive NLP tasks. Advances in816
Neural Information Processing Systems, 33:9459–817
9474.818

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and819
Ji-Rong Wen. 2023a. Halueval: A large-scale hal-820
lucination evaluation benchmark for large language821
models. In The 2023 Conference on Empirical Meth-822
ods in Natural Language Processing.823

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas824
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc825
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.826
2023b. Starcoder: may the source be with you!827
arXiv preprint arXiv:2305.06161.828

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-829
jape, Michele Bevilacqua, Fabio Petroni, and Percy830
Liang. 2024. Lost in the middle: How language mod-831
els use long contexts. Transactions of the Association832
for Computational Linguistics, 12:157–173.833

Ilya Loshchilov and Frank Hutter. 2017. Decou-834
pled weight decay regularization. arXiv preprint835
arXiv:1711.05101.836

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-837
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,838
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,839
et al. 2024. Starcoder 2 and the stack v2: The next840
generation. arXiv preprint arXiv:2402.19173.841

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie842
Zhou, and Yue Zhang. 2023. An empirical study843
of catastrophic forgetting in large language mod-844
els during continual fine-tuning. arXiv preprint845
arXiv:2308.08747.846

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and847
Ryan McDonald. 2020. On faithfulness and factu-848
ality in abstractive summarization. In Proceedings849
of the 58th Annual Meeting of the Association for850
Computational Linguistics, pages 1906–1919.851

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming852
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. Sfr-853
embedding-mistral:enhance text retrieval with trans-854
fer learning. Salesforce AI Research Blog.855

Beren Millidge. 2023. Llms confabulate not hallucinate.856
Accessed on April 3, 2024.857

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan858
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and859
Douwe Kiela. 2024. Generative representational in-860
struction tuning. arXiv preprint arXiv:2402.09906.861

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, 862
David Tarjan, and Edoardo M Ponti. 2024. Dynamic 863
memory compression: Retrofitting LLMs for acceler- 864
ated inference. arXiv preprint arXiv:2403.09636. 865

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, 866
Saurabh Tiwary, Rangan Majumder, and Li Deng. 867
2016. Ms marco: A human generated machine read- 868
ing comprehension dataset. choice, 2640:660. 869

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 870
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and 871
Alexander Miller. 2019. Language models as knowl- 872
edge bases? In Proceedings of the 2019 Confer- 873
ence on Empirical Methods in Natural Language Pro- 874
cessing and the 9th International Joint Conference 875
on Natural Language Processing (EMNLP-IJCNLP), 876
pages 2463–2473. 877

Alexander Peysakhovich and Adam Lerer. 2023. At- 878
tention sorting combats recency bias in long context 879
language models. arXiv preprint arXiv:2310.01427. 880

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 881
Dario Amodei, Ilya Sutskever, et al. 2019. Language 882
models are unsupervised multitask learners. OpenAI 883
blog, 1(8):9. 884

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 885
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 886
Wei Li, and Peter J Liu. 2020. Exploring the lim- 887
its of transfer learning with a unified text-to-text 888
transformer. Journal of machine learning research, 889
21(140):1–67. 890

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 891
Know what you don’t know: Unanswerable questions 892
for squad. In roceedings of the 56th Annual Meeting 893
of the Association for Computational Linguistics (Vol 894
2: Short Papers), pages 784—-789. 895

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, 896
Amnon Shashua, Kevin Leyton-Brown, and Yoav 897
Shoham. 2023. In-context retrieval-augmented lan- 898
guage models. Transactions of the Association for 899
Computational Linguistics, 11:1316–1331. 900

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 901
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 902
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 903
Bhosale, et al. 2023. Llama 2: Open founda- 904
tion and fine-tuned chat models. arXiv preprint 905
arXiv:2307.09288. 906

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 907
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 908
Kaiser, and Illia Polosukhin. 2017. Attention is all 909
you need. Advances in neural information processing 910
systems, 30. 911

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, 912
Zihan Liu, Mohammad Shoeybi, Yi Dong, Oleksii 913
Kuchaiev, Bo Li, Chaowei Xiao, et al. 2023a. Shall 914
we pretrain autoregressive language models with 915
retrieval? a comprehensive study. arXiv preprint 916
arXiv:2304.06762. 917

11

https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://www.beren.io/2023-03-19-LLMs-confabulate-not-hallucinate/
https://aclanthology.org/P18-2124.
https://aclanthology.org/P18-2124.
https://aclanthology.org/P18-2124.

Weixuan Wang, Barry Haddow, and Alexandra Birch.918
2023b. Retrieval-augmented multilingual knowledge919
editing. Preprint, arXiv:2312.13040.920

Xiaoxing Wang, Xiangxiang Chu, Yuda Fan, Zhexi921
Zhang, Bo Zhang, Xiaokang Yang, and Junchi Yan.922
2023c. Rome: Robustifying memory-efficient nas923
via topology disentanglement and gradient accumu-924
lation. Preprint, arXiv:2011.11233.925

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-926
nan Li, and Steven Hoi. 2023d. CodeT5+: Open code927
large language models for code understanding and928
generation. In Proceedings of the 2023 Conference929
on Empirical Methods in Natural Language Process-930
ing, pages 1069–1088, Singapore. Association for931
Computational Linguistics.932

Sophie Xhonneux, David Dobre, Jian Tang, Gauthier933
Gidel, and Dhanya Sridhar. 2024. In-context learn-934
ing can re-learn forbidden tasks. arXiv preprint935
arXiv:2402.05723.936

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song937
Han, and Mike Lewis. 2023. Efficient streaming938
language models with attention sinks. arXiv preprint939
arXiv:2309.17453.940

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.941
2024. Hallucination is inevitable: An innate lim-942
itation of large language models. arXiv preprint943
arXiv:2401.11817.944

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,945
William Cohen, Ruslan Salakhutdinov, and Christo-946
pher D Manning. 2018. Hotpotqa: A dataset for947
diverse, explainable multi-hop question answering.948
In Proceedings of the 2018 Conference on Empiri-949
cal Methods in Natural Language Processing, pages950
2369–2380.951

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,952
Matthew Jagielski, Florian Tramèr, and Nicholas Car-953
lini. 2023. Counterfactual memorization in neural954
language models. Preprint, arXiv:2112.12938.955

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q956
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-957
uating text generation with bert. arXiv preprint958
arXiv:1904.09675.959

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik-960
son. 2023. Universal and transferable adversarial961
attacks on aligned language models. arXiv preprint962
arXiv:2307.15043.963

12

https://arxiv.org/abs/2312.13040
https://arxiv.org/abs/2312.13040
https://arxiv.org/abs/2312.13040
https://arxiv.org/abs/2011.11233
https://arxiv.org/abs/2011.11233
https://arxiv.org/abs/2011.11233
https://arxiv.org/abs/2011.11233
https://arxiv.org/abs/2011.11233
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://arxiv.org/abs/2112.12938
https://arxiv.org/abs/2112.12938
https://arxiv.org/abs/2112.12938

A Practical costs of caching 964

Although a complexity linear in the context length is achievable while maintaining context quality, practical 965

considerations might negatively affect a cached-enabled setup. 966

Loading and communication overheads. Even though long-term storage costs are relatively low, 967

loading and communication latencies are directly proportional to the space footprint of the cached content. 968

The two main bottlenecks here are loading cache from disk (if disk storage is used), and moving cache to 969

the GPU’s memory. If the total amount of information to cache fits in CPU RAM, there may be no need 970

to store them on disk during inference, enabling better-than-linear returns on smaller caching sizes. 971

Extra operations. In the case of LLAMA 2, JIT-KV caching requires a cache that is half as big as the 972

one of KV – 254 kB instead of 512 kB per token – and is thus clearly more advantageous on the loading 973

and communication fronts. However, extra operations are required at inference time to convert the hidden 974

states into the keys and values required by the model. Here these extra operations turn out to be cheap 975

linear operations. Similarly, our XC caching approaches require very little storage (i.e., 8 kB and 1.5 kB 976

per token), which is a clear win on loading and communication fronts. However, extra layers are added 977

to the original model in Sec. 3), which induces time costs that have to be accounted for in the overall 978

speedup. Again, these extra operations turn out to be negligible compared to the benefit of caching. 979

Explicit quality cost. KV and JIT-KV caching both return exactly the same answer as the corresponding 980

un-cached model: these caching strategies incur no (explicit) cost in answer quality compared to that 981

un-cached model. In contrast, our XC caching strategy does not confer this guarantee: compromises 982

between costs and benefits must be considered. 983

Implicit quality cost. All caching methods considered in this work share the same implicit “opportunity 984

cost”: processing context offline implies that the resulting cache is independent of the specifics of the query 985

Depending on the use case, this might result in a loss of answer quality. For instance, in the QA setting, 986

knowing the question when processing the context allows the model to focus on the information that is 987

useful to generate an answer. Arguably, this results in better context representations as it reduces the risk 988

of confusing the LLM with irrelevant information. 989

B Datasets 990

Dataset # Train # Valid # Test

Natural Questions 83,118 2,240 5,067
HotpotQA 83,038 7,405 7,405
TopiOCQA 42,702 2,656 2,512
MS Marco 808,298 101,035 0
Squad V2 130,293 11,872 0

Totals 1,147,449 125,208 14,084

Table 4: Statistics for datasets used to train and
test our models. For the first three datasets, we
use the validation split of each to test our model
and split the provided train set into train and
valid.

In this section we give some details about our training 991

datasets and how we used them for training. Statistics 992

about the datasets are in Table 4. 993

Natural Questions (NQ). Aimed at evaluating 994

open-domain question-answering tasks, Natural Ques- 995

tions (Kwiatkowski et al., 2019) presents a collection of 996

real user questions from Google queries. Answers are 997

written by human annotators and are based on Wikipedia 998

articles (that may or may not contain the exact information 999

needed for the question). For each sample in the dataset, 1000

the context we use as input is a paragraph containing 1001

the answer. We use the open version of NQ (Lee et al., 1002

2019), which is the subset of the original dataset where the 1003

contexts have at most 100 tokens from English Wikipedia 1004

(indexed Dec 2018). This open variant of NQ does not provide the contexts relevant to each question. We 1005

thus use the questions in OPEN NQ to query the original NQ dataset and fetch the contexts associated 1006

with each question. Given that NQ provides multiple correct answers to a given query-context pair, we 1007

split each sample into multiple rows at train time, so that each question-context pair is paired with each 1008

one of the provided answers. For the test set, however, we evaluate a test sample once and compare model 1009

outputs to all the reference answers and consider the answer that maximizes the given metric. 1010

13

Hotpot QA. The dataset contains open-domain questions that require at least two or more documents1011

to be answered (Yang et al., 2018). Each sample in the dataset includes a list of contexts (paragraphs1012

from English Wikipedia indexed Dec 2017), two of which contain useful information for answering the1013

question, while the remainder are distractors. Thus, the answers in this dataset typically depend on more1014

than one component of the context, so a model is expected to look up different parts of the context to1015

compose an accurate answer.1016

TopiOCQA. A conversational dataset where samples represent information-seeking open-domain1017

dialogue, the answer to each question in TopiOCQA (Adlakha et al., 2022) is based on 200-token passages1018

from English Wikipedia (indexed Oct 2020). Human annotators generate these reference answers.1019

MS MARCO. Intended to evaluate reading comprehension and question answering, the questions from1020

the MS MARCO dataset (Nguyen et al., 2016) are sampled from real user questions from Bing or Cortana.1021

The reference passages are collected from the web (not necessarily Wikipedia) through the Bing search1022

engine, and they may or may not be enough to answer the question. Answers are human-generated.1023

Squad V2. Squad v2 (Rajpurkar et al., 2018) consists of a small set of question/answer pairs generated1024

by annotators and based on Wikipedia articles. The answers in Squad are spans from the original context1025

or yes-no replies and hence are less abstractive.1026

We train our baselines and models with the train split of all five datasets mentioned above, concatenated1027

and shuffled. We evaluate models on the validation split of the first three datasets – Natural Questions,1028

Hotpot QA, and TopioCQA – as well as an unseen dataset we created.1029

C Complete set of results1030

Table 5 contains results for all methods, metrics, and for all datasets we accounted for in our empirical1031

assessment.1032

D Inference results with no context1033

We evaluate our pretrained LLMs on the test split of our datasets without passing a context to base the1034

answer on. We do this to have a better sense of how many of the answers they already know without ICL.1035

E Further details on baselines1036

1037

GPT Details. We set temperature and presence and frequency penalty to 0, TOP-P to 1.0 and n to 1.1038

Please refer to OpenAI documentation2 to learn more about these parameters. To generate GPT answers,1039

we prompt GPT with the following.1040

GPT Prompt
You are a helpful assistant who is able to generate brief and correct answers to questions, grounded
on a given text.
You are now given a "question" and a "context" possibly containing the answer to the question.
Answer the question based only on the context given.
If the answer to the question is not in the context, then say UNANSWERABLE. Your answer must
be concise and to the point.

Question: {question}
Context: {context}
Answer:

1041
2https://www.openai.com/docs/

14

https://www.openai.com/docs/

Dataset Model EM Precision Recall F1 Rouge-L METEOR BERTSCORE

Natural Questions

GPT-3.5 TURBO 43.08 55.10 74.87 57.80 57.67 53.22 90.87
FID 50.64 63.18 58.63 59.05 59.02 47.06 91.75
FID (fine-tuned) 67.00 75.20 72.59 72.67 72.52 58.30 94.76
LLAMA 2-CHAT 24.96 40.41 58.20 41.26 41.28 38.04 87.43
LLAMA 2 (LoRA) 59.64 70.55 67.39 67.38 67.08 53.88 93.27

XC-LLAMAENC (Ours) 56.77 65.93 62.89 63.12 62.99 49.99 93.30
XC-LLAMA (Ours) 51.41 62.62 60.01 59.95 60.21 47.47 92.87

HotpotQA

GPT-3.5 TURBO 27.62 39.08 46.43 39.37 39.35 34.01 87.83
FID 33.81 48.95 45.54 45.60 45.63 35.24 90.56
FID (fine-tuned) 44.04 54.49 55.38 53.54 53.42 41.78 89.64
LLAMA 2-CHAT 14.22 27.07 51.48 29.63 29.56 30.82 86.02
LLAMA 2 (LoRA) 58.33 74.91 72.72 71.97 71.91 55.27 94.62

XC-LLAMAENC (Ours) 43.29 56.88 54.90 54.57 54.63 41.13 92.08
XC-LLAMA (Ours) 31.90 46.27 44.02 43.94 44.35 32.17 90.55

TopiOCQA

GPT-3.5 TURBO 17.18 44.29 45.77 40.18 39.23 35.50 87.52
FID 16.43 53.56 27.17 31.22 31.02 20.56 85.95
FID (fine-tuned) 24.94 49.80 41.69 41.52 41.31 32.31 86.54
LLAMA 2-CHAT 13.76 42.56 36.87 33.45 32.88 26.95 86.33
LLAMA 2 (LoRA) 25.89 61.29 57.43 55.41 54.92 47.19 90.80

XC-LLAMAENC (Ours) 24.82 55.44 47.83 47.73 47.49 39.22 89.40
XC-LLAMA (Ours) 19.17 52.49 46.64 45.47 44.94 38.37 89.16

Table 5: Question-Answer performance on three diverse information-seeking tasks. All models in this table that are
trained/fine-tuned, did so on the same five datasets; the table reports the metrics of testing these models on different
test splits.

Dataset Model EM Precision Recall F1 Rouge-L METEOR BERTSCORE

Natural Questions
GPT-3.5 TURBO (No ICL) 4.42 15.33 51.58 20.45 19.88 27.53 84.01
LLAMA 2-CHAT (No ICL) 8.62 15.66 26.34 16.06 16.30 14.44 83.39

HotpotQA
GPT-3.5 TURBO (No ICL) 6.01 16.52 49.51 20.83 20.41 26.05 84.12
LLAMA 2-CHAT (No ICL) 5.27 10.19 15.39 10.42 10.58 9.50 81.29

TopiOCQA
GPT-3.5 Turbo (No ICL) 0.48 11.51 15.09 10.81 11.07 13.30 83.69
LLAMA 2-CHAT (No ICL) 4.53 11.05 10.45 8.98 9.12 6.93 80.65

Table 6: Question-Answer performance when no context is given to the model (only a question).

LoRA Fine-tuning Details. We fine-tune the LLAMA 2 model using LoRA adaptation (Hu et al., 2021). 1042

To get a comparable number of trainable parameters as for XC-LLAMA, we allow LORA to modify all 1043

three attention projection matrices (for the queries, keys, and values), and set r to 360, α to 360, and 1044

dropout ratio to 0.5. Note that all models, unless otherwise specified, are trained on the same training data 1045

that is a pooling of all five datasets discussed in Section 4.1. The prompt for this fine-tuned model follows. 1046

15

LLAMA 2-7B (LoRA) Prompt
<|system|>
{context}
<|user|>
{question}
<|assistant|>

1047

LLAMA 2-Chat Details. We initially fine-tuned both LLAMA 2 and LLAMA 2-CHAT (a version of1048

LLAMA 2 fine-tuned for chat) to our dataset, but report results on LLAMA 2-CHAT as it was the model1049

with superior performance. The prompt varies slightly between the version that includes the context1050

(LLAMA 2-CHAT Prompt) and the version that excludes it (LLAMA 2-CHAT(No ICL) Prompt). Both1051

prompt versions follow.1052

LLAMA 2-CHAT Prompt
[INST] <<SYS>>
Please answer the following question given the following passages. Please be brief. If you cannot
answer the question, please reply with ’UNANSWERABLE’.

<</SYS>>

{context}
Question: {question}
[/INST]
Answer:

1053

LLAMA 2-CHAT (No ICL) Prompt
[INST] <<SYS>>
Please answer the following question. Please be brief. If you cannot answer the question, please
reply with ’UNANSWERABLE’.

<</SYS>>

Question: {question}
[/INST]
Answer:

1054

F Sensitivity analysis: position of the reference context1055

We explore the sensitivity of the models to the positioning of the reference context (useful for answering1056

the query) within the full the context given to the model. Past work has shown that standard architectures1057

based self-attention and used for language modeling tend to focus on specific parts of the past content1058

when generating a token, and suffer from primacy and recency bias (Liu et al., 2024; Peysakhovich and1059

Lerer, 2023; Xiao et al., 2023). To explore the performance of our models against such position shifts, we1060

turn our focus to the HOTPOTQA dataset, whose contexts are given by lists of (roughly) 10 sentences,1061

out of which two are marked as useful to answering the posed question. We generate four variants of the1062

dataset that differ by the positions of the useful contexts at the beginning of these context paragraphs, in1063

the middle, at the end, and a variant in which the two useful contexts are far away from each other and1064

placed at the first and last positions. We test both our models and LLAMA 2-CHAT (LoRA) on each of the1065

datasets and see that all models are somewhat sensitive to the position of the useful contexts, but ranges1066

are relatively small (i.e. less than 5%)as compared to more drastic scenarios such as what is reported in1067

16

the literature for ICL (cf. Figure 1 in (Liu et al., 2024) with ranges greater than 20%), suggesting that 1068

fine-tuned context-conditional language models are less biased to certain parts of the context. 1069

Positionis of the useful contexts

Shuffled Beginning Middle End Far apart
Model 0,1 4,5 8,9 0,9

LLAMA 2-CHAT 29.63 33.88 30.45 32.80 32.05
LLAMA 2 (LoRA) 71.97 72.28 71.83 74.35 73.14
XC-LLAMA (Ours) 43.94 43.52 44.30 42.30 43.70
XC-LLAMAENC (Ours) 54.57 57.65 56.79 54.61 52.98

Table 7: Results on HotpotQA when we vary the position of the two useful contexts (out of a total of roughly 10
contexts per sample). We test beginning (positions 0, 1), middle (positions 4, 5), end (positions 8, 9) positions, and
the case where the two contexts are far apart (positions 0, 9).

G Training hyperparameters 1070

1071

The main training hyperparameters used for XC-LLAMA are reported in Table 8. 1072

Optimizer ADAMW
Base learning rate 0.0002
Learning rate warmup steps 2,500
Maximum gradient norm 1
Batch size 256
Adam β1 0.9
Adam β2 0.95
Adam ϵ 0.000001
Weight decay 0.001
Cross-attention bias False
Cross-attention dropout probability 0.2
Cross-attention final layer True
Cross-attention hidden size 2,048
Number of Cross-attention layers 5
Cross-attention layer skips 6
Cross-attention number of attention heads 32
Cross-attention number of key value heads 32
Numerical precision 16-bit (BF16)
Number of training steps 40,000

Table 8: Training hyperparameters for XC-LLAMA.

17

	Introduction
	Caching Representations
	Inference Time Complexity
	Practical costs of caching
	Approaches to Caching

	XC: Cross Attending to Efficiently Cached Context
	Experimental Setup
	Training Dataset
	Auxiliary Tasks
	Implementation Details
	Metrics and Evaluation

	Results
	Comparison with existing methods
	Broader Analysis

	Related Work
	Conclusion
	Limitations
	Practical costs of caching
	Datasets
	Complete set of results
	Inference results with no context
	Further details on baselines
	Sensitivity analysis: position of the reference context
	Training hyperparameters

