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ABSTRACT

Since training a model from scratch always requires massive computational re-
sources recently, it has become popular to download pre-trained backbones from
third-party platforms and deploy them in various downstream tasks. While pro-
viding some convenience, it also introduces potential security risks like backdoor
attacks, which lead to target misclassification for any input image with a specifi-
cally defined trigger (i.e., backdoored examples). Current backdoor defense meth-
ods always rely on clean labeled data, which indicates that safely deploying the
pre-trained model in downstream tasks still demands these costly or hard-to-obtain
labels. In this paper, we focus on how to purify a backdoored backbone with only
unlabeled data. To evoke the backdoor patterns without labels, we propose to
leverage the unsupervised contrastive loss to search for backdoors in the feature
space. Surprisingly, we find that we can mimic backdoored examples with ad-
versarial examples crafted by contrastive loss, and erase them with adversarial
finetuning. Thus, we name our method as Contrastive Backdoor Defense (CBD).
Against several backdoored backbones from both supervised and self-supervised
learning, extensive experiments demonstrate our unsupervised method achieves
comparable or even better defense compared to these supervised backdoor de-
fense methods. Thus, our method allows practitioners to safely deploy pre-trained
backbones on downstream tasks without extra labeling costs.

1 INTRODUCTION

While deep neural networks (DNNs) have achieved promising performance on various tasks, includ-
ing computer vision (He et al., 2016) and natural language processing (Floridi & Chiriatti, 2020),
their success heavily relies on a huge amount of data, massive computational resources, and care-
fully tuning of hyper-parameters. Thus, it becomes popular to download a pre-trained backbone
and deploy it on several downstream tasks in recent years (Newell & Deng, 2020; Tan et al., 2018;
He et al., 2019). These backbones can be trained in any training paradigms, including supervised
learning and self-supervised learning (Chen et al., 2020; He et al., 2022; Gidaris et al., 2018), and
then be open-sourced on third-party platforms.

While providing convenience, they also bring potential risks such as backdoor attacks. Numerous
works (Gu et al., 2017; Nguyen & Tran, 2021; Turner et al., 2019) pointed out this threat easily
occurs in supervised learning, and recent studies (Saha et al., 2022; Jia et al., 2022) started to pay
attention to backdoor attacks in self-supervised learning. Specifically, a backdoored DNN always
predicts a predefined label for any input image with a specific trigger. For example, a traffic sign
recognition system based on a backdoored backbone may always predict the “STOP” sign as “GO
STRAIGHT” in the presence of a specific pattern, which causes severe security problems.

To address this security issue, many defense methods (Zeng et al., 2022; Wang et al., 2019; Wu
& Wang, 2021) are proposed. Unfortunately, almost all methods focus on backdoor attacks inside
supervised learning DNNs by building a classification-based loss to defend. In the popular deploy-
ment scheme from the pre-trained backbone to downstream tasks, the practitioners might have few
costly labeled data, fail to obtain a classifier head (e.g., a self-supervised backbone) to compare
with the true label, or feel difficult to design a classification-based loss (e.g., tasks for detection or
segmentation). To break through these restrictions, we first consider the following question:

Do we really need labels for backdoor defense?
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In this paper, we focus on how to purify a backdoored backbone with only unlabeled data. Regard-
ing the backdoor trigger as a “shortcut” (Wang et al., 2019) in decision boundary (a small trigger
is enough to change outputs for many backdoored models), the traditional methods (Wang et al.,
2019; Zeng et al., 2022) attempt to make the prediction deviate from the ground-truth label as far as
possible using a small perturbation in inputs, so as to evoke the backdoor behavior and then erase
it. Unfortunately, we have no access to any labels, and even the prediction results if the backbone
lacks a classifier head. To evoke the backdoor behavior without labels, we propose to leverage the
unsupervised contrastive loss to search for the backdoor in the feature space, i.e., we try to make
the output feature as different from its original feature as possible using a small perturbation. Sur-
prisingly, we find that we can easily mimic backdoored examples with adversarial examples crafted
by contrastive loss. Based on this finding, we propose to erase the backdoor behaviors by letting
these contrastive loss-based adversarial have similar features as their clean counterpart using fine-
tuning. Thus, we term our method as Contrastive Backdoor Defense (CBD), which successfully
defends against backdoor attacks without any labeled data. Our main contributions are summarized
as follows,

• We explore a more practical backdoor defense that requires no access to labeled data or
the classifier head. It is quite suitable in the recently popular case in which the practitioner
downloads a pre-trained backbone and then deploys it in the downstream tasks.

• We find that adversarial samples generated by the contrastive loss approach the cluster of
backdoor samples in the hidden feature space. Inspired by it, we introduce a fine-tuning
based method that can purify the backdoored backbone without any labeled data.

• We conduct comprehensive experiments to verify the effectiveness of our method across
different datasets and backdoor attacks. Empirically, our unsupervised method achieves
comparable or even better defense compared to previous supervised defense.

2 RELATED WORK

Backdoor Attack. Backdoor Attack is a newly risen security concern on DNNs (Gu et al., 2017),
in which the adversary can manipulate the model to predict a target class as long as a predefined
trigger pattern appears in the image. This backdoor behavior can be easily injected inside DNNs
by poisoning some data pairs. Specifically, (1) poison-label attack: the attacker randomly adds the
trigger pattern into samples from all classes and changes their label to the target class (Gu et al.,
2017; Chen et al., 2017; Nguyen & Tran, 2021; Zbontar et al., 2021; Doan et al., 2021)). (2) clean-
label attack: the adversary only adds the trigger pattern into the samples from the target class,
which is more stealthy since their annotation is correct (Turner et al., 2019). Recent studies start to
pay attention to backdoor attacks on self-supervised learning frameworks, especially on contrastive
learning methods (Saha et al., 2022; Jia et al., 2022). This emerging threat is challenging for DNN
models and attracts researchers’ attention.

Backdoor Defense. Meanwhile, numerous defense methods are proposed, which can be mainly
grouped into two categories, including (1) training-time defense (Li et al., 2021a; Huang et al.,
2022; Gao et al., 2021): the defender can access training data and train a model based on various
defense strategies. For instance, Gao et al. (2021) utilized adversarial training to train a robust model
against backdoor triggers; (2) post-processing defense (Liu et al., 2018; Wang et al., 2019; Wu &
Wang, 2021; Zeng et al., 2022; Li et al., 2021b): the defender sanitize the models with tiny amounts
of data with no access to the training process and training data. Thus, post-processing defense can be
applied in a wider range of scenarios, e.g., purifying backbones from the Internet before deploying
them in downstream tasks. However, almost all these methods rely on enough amount of labeled
clean data and classification loss, while labeled data may be hard to obtain, the backbone may have
no classifier head, or it is hard to design classification-based loss for defense (e.g., defense for object
detection or segmentation). In this work, we focus on how to purify backdoored backbone without
the help of any labels.

3 CONTRASTIVE BACKDOOR DEFENSE WITHOUT ANY LABELED DATA

In this section, we first define a practical problem setup on pre-trained backbones. We then analyze
the existing backdoor behaviors in the feature space and propose a new way to mimic these behaviors
even without trigger patterns and ground-truth labels.
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Figure 1: The t-SNE visualization of samples in feature space on CIFAR-10. All backbones are
backdoored by the Blend Attack with class 6 as the target label. (a)-(b): supervised backbone. (c)-
(d): self-supervised backbone. (a)&(c): backboored backbone. (b)&(d): backbone after proposed
CBD. Bd: backdoor examples; Adv: contrastive adversarial examples.

3.1 PRELIMINARIES

Backbone Training. For the backbone f(·, θ) from supervised learning, its parameters are usu-
ally trained based on a K-class classification problem. Given a labeled training dataset Dl =
{(x1, y1), · · · , (xN , yN )}, which contains N inputs xi ∈ Rd, i = 1, · · · , N , and the corresponding
ground-truth label yi ∈ {1, · · · ,K}, the cross-entropy loss for a single data pair (xi, yi) can be
calculated as follows,

ℓce(xi) = − log gyi
(f(xi, θ)), (1)

where the g(·) is the classifier head for this classification task and gyi(·) indicates the outputted
probability that xi belongs to class yi from the classifier. The training process attempts to find an
optimal model parameter θ to minimize the average loss on the whole training data.

By contrast, the backbone f(·, θ) from self-supervised learning is trained without any classifier head.
The training process optimized the model parameters, so as to let the similar sample pairs stay close
to each other while dissimilar ones are far apart in the embedding space. For example, given an
unlabeled dataset Du = {x1, · · · , xN}, the normalized temperature-scaled contrastive loss for the
sample xi is

ℓcl(x̃i, x̂i) = −log
exp(sim(z̃i, ẑi)/τ)∑2N

k=1 I[k ̸=i]exp(sim(z̃i, z̃k)/τ)
, (2)

where z̃i = f(x̃i, θ), ẑi = f(x̂i, θ), z̃k = f(x̃k, θ), sim(·, ·) is the cosine similarity and τ is the
temperature hyper-parameter. x̃i and x̂i (positive samples) are two augmented samples from the
same sample xi, while z̃k (negative samples) is the projection of any other augmented samples.
The self-supervised training process attempts to find an optimal model parameter θ to minimize the
average loss over all possible positive pairs on the unlabeled dataset.

Defense Setting. Here, we consider a typical setting that one practitioner downloads a pre-trained
backbone from an untrustworthy source, and defends against potential backdoor attacks before de-
ploying it. Note that the pre-trained backbone can be trained by supervised or self-supervised meth-
ods. However, there are not any labels or label-related information at hand for defense. This is very
different from existing backdoor defense methods that rely on clean labeled data.

3.2 BACKDOOR BEHAVIORS IN THE PRE-TRAINED BACKBONE

In this section, we first present our observation of the backdoor “shortcut” in the pre-trained back-
bone. Then, we provide an analysis that instance-wise adversarial examples can potentially find
such “shortcut” feature, which inspires the methodology of designing backdoor defense.

Visualization of Backdoor Attacks. Starting from supervised learning, a successful backdoor at-
tack misclassifies triggered samples into the target class. As shown in the 1st plot of Figure 1, the
clean samples from the target class (blue circles) and the backdoor samples (black circles) are lo-
cated in two separate clusters, though they are classified into the same class. For self-supervised
learning, without knowing the downstream task, a successful backdoor attack can only be verified
by a disparity between benign features and backdoor features (Carlini & Terzis, 2022). As shown
in the 3rd plot of Figure 1, the backdoor cluster (black circles) is also obviously separated from
clean clusters. This consistent phenomenon inspires a potential defense via identifying the backdoor
cluster and removing it. This type of approach is easy to realize when labels are available (Wang
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et al., 2019). However, when there are not any labels, we need to design new methods to identify
the separated backdoor cluster.

Covering Backdoor Cluster via Adversarial Examples. We first bring a possible solution in a
supervised manner. Previously, Wang et al. (2019) regard the backdoor trigger as a kind of “shortcut”
in decision boundary, because a small trigger is enough to change outputs for the backdoored model.
This provides a possible approach, i.e., making the prediction of the backdoor sample deviate from
its ground-truth label as far as possible using a small perturbation in inputs, so as to reconstruct
this “shortcut”. It is natural to connect the “shortcut” recovery process to generating adversarial
perturbations, which maximize the loss of ground-truth labels in the inference phase. Other works
(Shan et al., 2020; Mu et al., 2022; Weng et al., 2020; Gao et al., 2021) also explore the connection
between adversarial examples and backdoored models. Unfortunately, these methods require labeled
data, which might be hard to obtain or costly1. For a more general defense on the pre-trained
backbone, situations where the classifier head or labeled data is inapplicable (e.g., self-supervision
backbone) should involve into consideration.

Motivated by this connection, we are speculating if we can maximize the disparity of features, so
that we can generate perturbation to discover “shortcut” without labels. Recent progress of unsu-
pervised contrastive loss become a promising tool to express this difference. Inspired by contrastive
adversarial examples that only depends on unlabeled instances (Fan et al., 2021; Kim et al., 2020;
Jiang et al., 2020), we attempt to make the contrastive loss between two views of a benign instance
as far as possible in the hidden feature space. We try to discover a small perturbation to come across
the feature gap between the clean clusters and the backdoor cluster. Specifically, our approach uses
single image perturbation method to generate the adversarial perturbations. We only add perturba-
tion on one of two augmentations in contrastive loss (ℓcl). Suppose we have an image x and a pair
of augmentations (x̃i, x̃j). To discover an potential backdoored perturbation of image x, we want to
maximize the contrastive loss between features of augmentation x̃j and augmentation x̃i + δi from
backbone f(·, θ) using PGD attack (Madry et al., 2018), where δi is the perturbation. Formally,
perturbation δi can be gotten by iteratively optimizing:

max
∥δk∥p≤ϵ

ℓcl(x̃i + δi, x̃j)

where ∥.∥p is Lp norm and ϵ is perturbation budget.

As shown in the 1st plot and the 3rd plot of Figure 1 marked by the red rectangle, generated adver-
sarial features (grey circle) in either supervised backbone (1st plot) or self-supervised backbone (3rd
plot) attempt to cover the region of backdoor examples (black circles). This indicates the separated
backdoor cluster in feature space can be approached by instance-wise contrastive examples.

3.3 THE PROPOSED METHOD

After approaching the backdoor cluster, our goal is to eliminate the “shortcut” and preserve the
clean performance. Similar to our approach of instance-wise contrastive loss on adversarial exam-
ples which measure the gap of features, we will introduce a contrastive alignment defense method
based on this idea. Specifically, we propose a Backdoor-to-Standard Pulling to overlap the back-
door clusters, and an Embedding Distillation loss to perform feature-wise knowledge distillation to
preserve the utility of backbones. Finally, a Standard Fine-tuning loss to fine-tune and align the
different clean variants.

Backdoor-to-Standard Pulling. We first illustrate how to mitigate the trigger-sensitive “shortcut”.
In supervised learning, the backdoor attack mainly builds a strong connection between the trigger
and its target class (Huang et al., 2022). Thus, connecting the trigger to all the classes can effectively
break the backdoor attack. However, this approach is infeasible in our setting since we do not use
labeled data. Instead, we need to cover the gap between backdoored features and clean features.
Based on our backdoored feature generation in the last section, we suspect those generated instances
which approach the backdoor cluster can act as a substitution of backdoored images. Thus, pulling
adversarial images toward their benign parts can mitigate backdoor effects as we align the potential
backdoor features and clean features. Specifically, for each image x, in addition with (x̃i, x̃j), we
want to generate another view x̃k, and find its perturbation δk by using augmentation pair (x̃i, x̃k).
After obtaining x̃k + δk, we treat it as a trigger recovered image, and our Backdoor-to-Standard
Pulling will be:

ℓpull(x) = ℓcl(freeze(x̃i), x̃k + δk).

1This is also the reason why the practitioners prefer to deploy a pre-trained model in downstream tasks.
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It is worth noting that we freeze the feature of x̃i. Since we do not want to pull features of x̃i close
to those of triggered images, we treat it as an anchor.

Embedding Distillation. We then address how to preserve the utility of a backbone. Although
Backdoor-to-Standard Pulling can effectively break the backdoor “shortcut”, only forcing to overlap
the backdoor cluster will hurt the clean performance as it inevitably breaks the original distribution
and limits the expressiveness of backbones. Thus, merely aligning the backdoor clusters is insuffi-
cient. It is crucial to transfer clean feature distribution from our original backbone to our purified
backbone. Inspired by the idea of knowledge distillation, we want to distill the embedding space
across two backbones. Specifically, we are using the poisoned model as a teacher, and our current
model as a student. Tian et al. (2020) proved that the idea of contrastive loss can be well applied to
knowledge distillation in embedding space. Based on this idea, we propose an Embedding Distilla-
tion loss to align the clean features from the current model to our original model:

ℓkd(x) = ℓcl(x̃i, (x̃i, θ
∗)).

θ∗ here is the parameter of the poisoned model, we get the feature of (x̃i, θ
∗) from f(x̃i, θ

∗). It is
important to note that this distillation will not preserve the backdoored feature distribution since our
given data is clean.

Standard Fine-tuning. Finally, to retain the benign representations close, aligning the variants of
different clean augmentation would be helpful. This is similar to standard contrastive fine-tuning
between benign augmentations on trained backbones. We follow the same manner as normal fine-
tuning does in supervised learning. However, instead of fine-tuning with cross-entropy loss and
a linear classifier, we directly utilize the contrastive loss on a backbone. Therefore, our Standard
Fine-tuning will be:

ℓsft(x) = ℓcl(x̃i, x̃j).

Overall. The final loss on sample x of our fine-tuning method is a combination of three items:

ℓtotal = λ1ℓpull(x) + λ2ℓkd(x) + λ3ℓsft(x),

where λ1, λ2, and λ3 are positive hyper-parameters and λ1 + λ2 + λ3 = 1.

4 EXPERIMENTS

Datasets and DNNs. We evaluate the performance of our method on Cifar-10 (Krizhevsky et al.,
2009) and ImageNet-100 (Tian et al., 2020; Deng et al., 2009). We use Resnet-18 (He et al., 2016)
as the backbone for both supervised and CL models and select SimCLR (Chen et al., 2020) as our CL
method. On Cifar-10, we train 200 epochs for supervised backbones and 1000 epochs for SimCLR.
For ImageNet-100, we train 90 epochs and 400 epochs for supervised backbones and self-supervised
backbones, respectively.

Backdoor Attack Configuration. We use BadNets (Gu et al., 2017), Blend (Chen et al., 2017),
SIG (Barni et al., 2019), WaNet (Nguyen & Tran, 2021), and CLA (Turner et al., 2019) as our
attack baselines. BadNets is a patch-based attack; we apply a 3× 3 checkerboard as our trigger for
Cifar-10 and a 32 × 32 patch (Saha et al., 2022) for ImageNet-100. For the supervised setting, we
put it on the top left. For the self-supervised setting, we put it in the center of the image. Blend
is a global attack; we generate a 32 × 32 and a 224 × 224 Gaussian noise image to fit the size of
Cifar-10 and ImageNet-100. We set the blend ratio α = 0.2 for Blend. For SIG, we adopt the
poison-label setting. We use the official code and configurations except for the poisoning ratio of
WaNet. However, we only show the results of WaNet under supervised learning since it can not
effectively create backdoor during our experiments on contrastive learning. For Clean Label Attack
(CLA), we are using the same trigger as BadNets does. We set the target label to 6. The poisoning
ratio across all supervised settings is 6% of the dataset (60% of target label 6 for CLA). To create
backdoor on self-supervised models, we poison 60% of target label 62, which is 6% of all data for
Cifar-10 and 0.6% for ImageNet-100. More details of the configurations are in Appendix A.1.

Backdoor Defense Configuration. For the supervised setting, we select fine-tuning and state-of-
the-art model post-processing defenses, including ANP (Wu & Wang, 2021), NAD (Li et al., 2021b),
and Fine-pruning (Liu et al., 2018) as our baseline methods. ANP is a pruning-based method;
we use the default configuration for ANP. When evaluating ANP, we make a trade-off between

2Without any labels, this is the same as injecting backdoor to frog images for Cifar-10 and lorikeet images
for ImageNet-100 on the self-supervised setup
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Table 1: Results on supervised Cifar-10. Accuracy (Acc) of the clean test data, Attack Sucess Rate
(ASR) on poisoned test data with target labels, and Patched Accuracy(PA) on poisoned test data
with original labels. The best results of fine-tuning-based methods are in bold.

Attacks Metrics No Defense ANP FP FT NAD CBD

BadNets
ACC 93.25 91.34 91.11 91.52 90.76 89.74
ASR 99.95 0.10 1.72 7.59 1.58 1.07
PA 0.06 89.77 88.89 85.59 89.19 89.34

Blend
ACC 94.23 88.94 91.54 92.38 89.32 91.81
ASR 100 37.41 54.02 98.89 72.97 4.98
PA 0 38.83 32.31 1.07 20.26 81.33

SIG
ACC 94.45 89.43 91.09 92.26 89.28 90.89
ASR 99.29 2.08 4.38 5.24 2.97 4.98
PA 0.67 82.57 80.59 81.11 78.62 78.88

WaNet
ACC 93.67 93.41 93.37 91.99 88.88 88.81
ASR 94.88 0.99 0.28 7.67 1.01 3.82
PA 4.94 92.56 91.49 83.64 87.08 85.98

CLA
ACC 87.86 84.13 81.70 77.60 73.79 81.72
ASR 99.96 10.62 4.92 45.58 4.40 2.22
PA 0.04 77.21 77.68 48.40 71.48 81.40

clean accuracy and attack success rate. Fine-tuning, NAD, and Fine-pruning are fine-tuning-based
methods. We adopt the settings for these defenses from BackdoorBenchmark (Wu et al., 2022).
Specifically, we fine-tune the backdoored models for 10 epochs. We also use this fine-tuned model
as the teacher model for NAD and run the NAD defense for 20 epochs. In addition, we prune the
Fine-pruning defense until the clean accuracy reaches a 90% tolerance ratio. We then fine-tune the
pruned model with 50 epochs.

For the self-supervised setting, we only consider standard contrastive fine-tuning as our baseline.
Standard contrastive fine-tuning is the special case of our method when the hyper-parameter is λ1 =
0, λ2 = 0, and λ3 = 1.

For our CBD on Cifar-10, we set the default hyper-parameters to λ1 = 0.3, λ2 = 0.5, and λ3 = 0.2
for both training settings. We generate adversarial examples with ϵ = 8, step sizes = 0.1, and
step = 20 for supervised learning and step = 100 for self-supervised learning. For ImageNet-100,
we set the λ1 = 0.3, λ2 = 0.7 and use adversarial examples with ϵ = 16 and step = 20 . We run
CBD for 15 epochs. More details of defense configurations can be found in Appendix A.2.

Evaluation metric. To evaluate the performance of clean examples, we use the clean accuracy
(ACC). For the evaluation of poisoned samples, we use two different methods. The first method
is the standard attack success rate (ASR) which measures the false positive samples of the targeted
class. In addition, we consider the patched accuracy (PA) which denotes the original accuracy of
triggered samples as a more comprehensive demonstration of the attack. The intuition behind this
measurement is some triggered samples are not classified as the targeted class despite the fact that
they get poor ASR. This phenomenon occurs in self-supervised learning. We believe this is because
some triggers, especially global triggers, can only ensure misleading features (Carlini & Terzis,
2022). Thus, only measuring ASR for this type of attack is insufficient. When evaluating self-
supervised experiments and our CBD defense, we train a linear classifier on top of the pre-trained
features with 1% of clean train data.

4.1 EFFECTIVENESS OF CBD DEFENSE

The effectiveness of the proposed CBD method is shown in this section. We use 5% of unlabeled
data for CBD across different experiments.

Analysis of CBD defense. To demonstrate the effectiveness of CBD, we also present a visualization
of our defense method in Figure 1. The result of our proposed CBD is in the 2nd and 4th plots. By
using our method, we break the clustering of generated adversarial examples (gray circle) as well as
the backdoor cluster (black circle). While aligning the backdoor examples with their benign version,
we retain the discriminative feature space on both supervised and unsupervised methods with our
Embedding Distillation.

Comparing supervised backbone. We first compare CBD with four post-processing methods under
the supervised setting. We assume all the baseline methods can access the classifier head for better
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Table 2: Results for pseudo-label data. We leverage the prediction of the poisoned model on clean
unlabeled data to generate pseudo-labels and performance baselines on them.

Attacks Metrics No Defense ANP FP FT NAD CBD

BadNets
ACC 93.25 91.54 92.54 92.71 92.94 89.74
ASR 99.95 0.08 4.12 11.33 6.20 1.07
PA 0.06 87.49 89.51 83.98 88.26 89.34

Blend
ACC 94.23 87.92 93.11 93.47 93.43 91.81
ASR 100 48.69 75.30 60.73 66.72 4.98
PA 0 31.07 20.84 27.92 24.01 81.33

SIG
ACC 94.45 90.66 93.13 92.55 92.73 90.89
ASR 99.29 2.10 10.46 72.44 57.53 4.98
PA 0.67 84.98 77.31 25.78 39.91 78.88

WaNet
ACC 93.67 92.03 93.59 89.94 91.57 88.81
ASR 94.88 0.69 0.19 0.96 0.69 3.82
PA 4.94 90.67 92.49 88.18 89.86 85.98

CLA
ACC 87.86 84.16 82.90 80.88 79.7 81.72
ASR 99.96 2.18 0.64 2.49 0.28 2.22
PA 0.04 82.61 82.99 81.65 81.91 81.40

Table 3: Results for SimCLR, FT here is contrastive fine-tuning.

Defenses BadNets Blend SIG
Acc ASR PA Acc ASR PA Acc ASR PA

No Defense 85.68 28.73 61.10 85.36 43.01 23.12 85.43 33.34 56.97
FT 64.94 5.20 53.32 63.83 3.79 20.93 66.59 7.97 47.93
Our method 81.77 6.70 76.20 80.07 3.67 70.69 80.51 6.64 66.34

Table 4: Results on supervised ImageNet-100.
Attacks Metrics No Defense ANP FP FT NAD CBD

BadNets
ACC 78.15 65.14 50.00 61.40 55.08 66.43
ASR 99.90 49.45 19.88 97.35 80.08 13.39
PA 0.10 41.23 28.97 85.59 13.21 59.84

Blend
ACC 80.06 69.42 50.08 61.48 56.62 75.39
ASR 99.48 18.16 18.38 40.10 26.61 0.12
PA 0.40 27.66 14.81 21.15 16.97 70.77

Table 5: Results on SimCLR ImageNet-100.

Defenses BadNets Blend
Acc ASR PA Acc ASR PA

No Defense 61.52 38.56 35.45 59.86 0.02 40.06
FT 38.22 5.24 32.63 34.72 0.58 21.82
Our method 57.42 9.57 49.84 56.39 0.44 54.36

comparison. For the trade-off of getting costly labeled data, we compare these methods on 1% clean
labeled data. We demonstrate the results in Table 1. Our method successfully purified different
attacks even without labeled data and classifier head. The attack success rate in all cases is less
than 5%. Also, the gap between the original clean performance and our purified clean performance
is less than 5%. More specifically, on Blend, we are the only method that effectively defends the
backdoor. Besides that, we have the best performance on CLA. On SIG and BadNets, we reach
comparable results with other baselines. We achieved the lowest ASR across all fine-tuning-based
methods against BadNets and even higher clean accuracy than state-of-the-art ANP and NAD on
SIG. CBD still generates acceptable performance in the worst case of WaNet. However, we can
adjust the weight of losses or adversarial strategies to improve its performance.

Comparing supervised backbone with pseudo-label data Although being attacked, a modern
supervised DNN can still retain high clean accuracy. Thus, if a user wants to get a clean supervised
model, instead of collecting costly labeled data, they can also leverage the classification results
of the backdoored model as pseudo-labels. Under this scenario, the user can use other baseline
methods on unlabeled data. We conduct experiments of other baselines on 5% unlabeled data with
generated pseudo labels in Table 2. Note that this practice is only applicable when the classifier
head is retained and clean accuracy is high (e.g., Cifar-10). Even though the generated pseudo
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Table 6: Case study for object detection on PascalVOC-2007. Clean Model is a pre-trained backbone
without backdoor. Average Precision (AP) is the evaluation metric for object detection. Patched
Average Precision (PAP) is the patched AP for our backdoor evaluation.

Defenses VOC2007
Clean Model No Defense Our Method

AP 65.86 65.00 64.65
PAP 37.06 30.64 43.82

labels are mostly accurate, the existing noise of these labels deteriorates other defense baselines. In
particular, Fine-tuning and NAD lost their ability to defend SIG, and the ASR of fine-tuning-based
methods in most cases is increased. Moreover, despite comparable results on SIG for ANP, the
patched accuracy on other attacks is decreased. These results demonstrate the weakness of using
pseudo-labels to defend against backdoor attacks.

Comparing self-supervised learning Table 3 shows the results on self-supervised backbone. We
pick SimCLR as our self-supervised learning method. It is worth noting that self-supervised methods
in the real-world only leverage unlabeled data. Thus, we only demonstrate the effectiveness of
our method and use contrastive fine-tuning as a comparison. All the performances of backbones
are tested under a linear classifier with 1% training data. While maintaining high clean accuracy,
CBD successfully defends all attacks and recovers the patched accuracy. Compared with standard
contrastive fine-tuning that greatly downgrades the clean performance and achieves low patched
accuracy, we verify the effectiveness of CBD under contrastive learning. More results for self-
supervised backbones can be found in Appendix C.

ImageNet-100 Experiments To examine the effectiveness of our method in real-world datasets,
we compare our method using ImageNet-100 (Tian et al., 2020; Deng et al., 2009) in Tables 4
and 5. We are comparing BadNets and Blend Attack on both supervised and self-supervised back-
bones using the same baselines. Since ImageNet-100 is much more complex, our proposed CBD
set the λ1 = 0.3, λ2 = 0.7 and not using Standard Fine-tuning. In addition, we are leveraging
the same unlabeled data to train a projection head from scratch for the stability of self-supervised
backbones. The detailed configurations of the ImageNet-100 dataset are in Appendix A. For all
the supervised backbones, our method achieves superior performance. By using 5% of unlabeled
data, we successfully achieve the best clean accuracy, attack success rate, and patched accuracy in
the real-world dataset. Also, our method purifies the self-supervised a backbones with huge im-
provement of Patched Accuracy while only losing less than 5% of clean accuracy. Overall, these
experiments can demonstrate the capability of our proposed method when other methods failed in
the real-world dataset.

Also, we provide a case study for object detection in Table 6. The evaluation metric for object
detection is average precision (AP) and patched average precision (PAP). In this case study, we
demonstrate the effects of backdoor attack on the backbone and improve the Patched AP with our
CBD. We use the pre-trained SimCLR backbone with Blend Attack on ImageNet-100. Then, we
train and test the Fast-RCNN with this backbone on PascalVOC-2007 (Everingham et al., 2009)
dataset. Note that even without poisoning, Blend Attack can disturb the results of object detection.
Thus, for better comparison, we also add a clean pre-trained SimCLR backbone and test it on Blend
Attack. Even in the downstream object detection setting, while reaching a similar AP, we mitigate
the backdoor effects and bring the Patched AP even higher to that of the clean backbone. These
results point out the emergent threat of backdoored pre-trained backbone and verify the effectiveness
of our method. More implementation details are in Appendix B.

4.2 ABLATION STUDIES

In this section, we present ablation studies on Cifar-10 supervised backbones. More results on self-
supervised backbones can be found in Appendix C.

Effects on different adversarial examples The quality of adversarial examples that mimic back-
doored features plays an important role in our method. Among different adversarial settings, PGD20
attack with L∞ norm, 0.1 step size, and ϵ = 8 is the default in our supervised setting. Please note
that our default settings are not the best; we have made some trade-offs. As shown in Table 7,
we present the results with different budgets (ϵ = 2, 4, 16), steps (PGD100), and norm (L2 norm
with ϵ = 1024). The carefully selected results can reach state-of-the-art without any labeled data.
Based on the results of these adversarial examples, they successfully reach backdoored features with
instance-wise contrastive loss.
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Table 7: Ablation studies with different adversarial settings on Cifar-10 supervised backbones.
Attacks Metrics Before ϵ = 2 ϵ = 4 ϵ = 16 L21024 PGD100 CBD (ours)

BadNets
ACC 93.25 89.86 89.72 89.82 92.16 88.62 89.74
ASR 99.95 1.14 1.24 1.06 4.65 1.22 1.07
PA 0.06 89.38 89.12 89.48 88.73 88.19 89.34

Blend
ACC 94.23 91.22 91.16 92.21 93.03 90.99 91.81
ASR 100 10.76 8.50 3.35 3.12 4.91 4.98
PA 0 73.93 76.13 84.29 82.43 81.90 81.33

SIG
ACC 94.45 91.09 90.79 90.98 92.96 89.51 90.89
ASR 99.29 5.01 4.49 5.58 43.54 4.95 4.98
PA 0.67 78.29 78.90 78.46 51.83 77.73 78.88

WaNet
ACC 93.67 89.20 88.33 88.25 90.51 86.57 88.81
ASR 94.88 1.17 1.22 1.65 1.15 2.02 3.82
PA 4.94 88.93 87.99 87.66 89.90 85.60 85.98

CLA
ACC 87.86 81.92 81.68 81.72 84.91 80.77 81.72
ASR 99.96 2.14 2.54 2.07 38.54 3.61 2.22
PA 0.04 81.54 80.96 81.56 56.98 78.11 81.40

Table 8: Ablation studies of different losses on Cifar-10 supervised backbones. SFT is Standard
Fine-tuning, KD is Embedding Distillation, and Pull is Backdoor-to-Standard pulling.
Attacks Metrics Before SFT Pull & KD Pull & SFT Pull CBD (ours)

BadNets
ACC 93.25 88.55 88.84 80.65 71.76 89.74
ASR 99.95 12.01 1.18 3.23 4.18 1.07
PA 0.06 77.83 88.59 80.08 71.28 89.34

Blend
ACC 94.23 89.21 91.03 85.68 75.70 91.81
ASR 100 91.89 5.18 5.59 6.77 4.98
PA 0 6.99 81.10 76.34 67.34 81.33

SIG
ACC 94.45 89.38 89.78 84.12 74.39 90.89
ASR 99.29 14.00 5.22 5.50 7.32 4.98
PA 0.67 69.54 78.40 70.61 59.13 78.88

WaNet
ACC 93.67 69.80 86.42 59.81 54.90 88.81
ASR 94.88 3.91 1.66 6.20 5.78 3.82
PA 4.94 69.76 86.37 58.72 51.70 85.98

CLA
ACC 87.86 40.39 80.05 35.79 27.80 81.72
ASR 99.96 12.49 1.87 12.77 10.18 2.22
PA 0.04 38.11 80.03 34.00 26.56 81.40

Effects on different losses. Our proposed CBD is composed of three losses. To verify the ef-
fectiveness of these losses, we test our methods on four different variants. Specifically, we adjust
the hyper-parameters of these losses accordingly. These variants include (1) Standard Fine-tuning
(λ3 = 1), (2) Backdoor-to-Standard pulling & Embedding Distillation (λ1 = 0.5, λ2 = 0.5), (3)
Backdoor-to-Standard pulling & Standard Fine-tuning (λ1 = 0.5, λ3 = 0.5), and (4) Backdoor-to-
Standard pulling (λ1 = 1). We can verify their contributions to our method on Table 8. In most
cases, our default setting reaches the best performance. However, the ablation studies indicate that
Standard Fine-tuning is less important for our method and is optional compared with Backdoor-to-
Standard pulling and Embedding Distillation.

5 CONCLUSION

In this paper, we proposed a fine-tuning-based method to erase the backdoor behaviors inside pre-
trained backbones. We analyzed the behaviors of backdoored examples and proposed a contrastive
loss-based way to approach them, based on which, we propose the Contrastive Backdoor Defense
(CBD) to remove the backdoors without needing any labeled data. Extensive experiments on dif-
ferent datasets with various attacks demonstrate the superiority of our proposed method on different
experimental settings with only unlabeled data.
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(a) Clean image (b) BadNet supervised (c) BadNet self-supervised

(d) Blend (e) SIG (f) WaNet

Figure 2: Examples of Cifar-10 backdoored images.

A MORE IMPLEMENTATION DETAILS FOR BACKDOOR ATTACKS AND
DEFENSES

A.1 BACKDOOR ATTACKS IMPLEMENTATIONS

In this part, we present the detailed configurations of our attacks. The backdoor triggers are pre-
sented in 2. We select label 6 as the target label (frog in Cifar-10 and lorikeet in ImageNet-100). We
perform poison-label attack with 6% training data for supervised backbone and clean-label attack
with 60% of the target category (6% of all data) for self-supervised backbone.

• BadNets (Gu et al., 2017): We implant a 3× 3 black-white patch for Cifar-10 and 32× 32
patch introduced in (Saha et al., 2022) for ImageNet-100 as our triggers. For supervised
backbones, we put the trigger on the top-left. We inject it into the center of the image to
achieve a better attack success rate on self-supervised backbones.

• Blend (Chen et al., 2017): We mix the data with a 32 × 32 and a 224 × 224 Gaussian
noise image for Cifar-10 and ImageNet-100, respectively. We achieve good attack results
in supervised and self-supervised settings with blend ratio α = 0.2. In addition, Blend
Attack can result in bad patched accuracy in self-supervised backbones even with a low
attack success rate. Note that general Gaussian blur augmentation is not presented when
training Blend with SimCLR.

• SIG (Barni et al., 2019): We generate SIG trigger with f = 6 and ∆ = 20. We blend it
to the target image with a blend ratio α = 0.3. Note that we use poison-label attack setting
for SIG in supervised learning.

• WaNet (Nguyen & Tran, 2021): We use the default configurations and code of WaNet
except for the poisoning ratio in supervised backbones. In particular, we poison 6% of
training data and set the noise rate pn = 2, s = 0.5, and k = 4. We implement WaNet
based on the original code for self-supervised learning. However, we did not show the
results of WaNet on self-supervised backbones as it can not build an effective backdoor
with or without noise mode.

• CLA (Turner et al., 2019): We are using the same 3×3 black-white patch in BadNets. To
generate perturbations, we have untargeted PGD with L∞, ϵ = 16, step = 7. Since CLA
is sensitive to data augmentation, we did not use any of them in our training. This is the
reason for low clean accuracy of the backdoored backbone

12



Under review as a conference paper at ICLR 2023

Attacks Metrics Before ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 L21024 CBD (ours)

BadNets
ACC 85.68 81.69 81.91 81.99 81.90 81.93 81.77
ASR 28.73 14.38 12.42 10.63 4.01 8.46 6.70
PA 61.10 69.32 71.30 72.84 78.16 75.21 76.20

Blend
ACC 85.36 79.45 79.69 80.25 80.10 79.97 80.7
ASR 43.01 17.27 12.58 5.26 2.74 2.23 3.67
PA 23.12 49.67 57.82 68.28 72.53 72.67 70.69

SIG
ACC 85.43 80.42 80.54 80.66 80.77 80.68 80.51
ASR 33.34 14.59 13.92 14.09 11.52 26.59 6.64
PA 56.97 62.47 62.39 61.81 62.81 55.52 66.34

Table 9: Ablation studies of our methods on self-supervised backbones. The default defense for
self-supervised backbone is PGD100 and PGD20 for others.

A.2 BACKDOOR DEFENSE IMPLEMENTATIONS

To compare our results with state-of-the-art defense methods, we modify the code from open-source
BackdoorBenchmark (Wu et al., 2022). To ensure the fairness of the comparison, we use 1% of
labeled data and 5% of pseudo-labeled data respectively. Specifically, for pruning-based ANP (Wu
& Wang, 2021), we maintain the default setting reported in the paper. We finetune a teacher model
with 10 epochs and run NAD (Li et al., 2021b) defense for 20 epochs. It is worth noting that we
only count the last block of ResNet-18 as the attention layer with β = 1000 as suggested in the
BackdoorBenchmark. For fine-pruning (Liu et al., 2018), we also implement it with the suggested
setting from the BackdoorBenchmark, where we stop pruning and finetune it with 50 epochs when
the clean accuracy is dropped lower than 90% of total clean accuracy. We keep the same setting for
the baselines on ImageNet-100.

For our proposed CBD on Cifar-10, we finetune the backbone with 15 epochs by using SGD opti-
mizer with 0.02 learning rate, 0.9 momentum, and 5× 10−4 weight decay. Then, we attach a linear
classifier to the frozen purified feature extractor and use another 1% clean data to do linear probing
as suggested in other self-supervised works (Saha et al., 2022; Chen et al., 2020). We set the batch
size of our defense loss to 128 and temperature to 0.5. On ImageNet-100, we use 0.05 learning rate,
larger untargeted PGD with L∞, ϵ = 16, step = 20, and keep the other parts same.

B IMPLEMENTATION DETAILS FOR IMAGENET-100 AND OBJECT DETECTION

We describe the settings of ImageNet-100 and our object detection case study in this part. ImageNet-
100 is an ImageNet subset to compare the performance of self-supervised models proposed in Tian
et al. (2020). We poison 60% of the lorikeet images in ImageNet-100 (0.6% of all data) to create the
backdoor. As shown in Table 6, we mitigate the backdoor effects with 5% of clean unlabeled data.
Then, we test our purified backbone on object detection as a downstream task. We freeze the first
two layers of our backbone and deploy it as the initial parameter of Faster-RCNN (Ren et al., 2015).

C ABLATION STUDIES OF SELF-SUPERVISED BACKBONE

In this part, we provide ablation studies for self-supervised backbone. Similar to the supervised
backbones, we conduct Cifar-10 experiments on different adversarial strategies in Table 9 and losses
in Table 10. We adopt the same setting as the supervised backbone except we are using PGD100
attack to find backdoored features.
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Attacks Metrics Before SFT Pull & KD Pull & SFT Pull CBD (ours)

BadNets
ACC 85.68 64.94 80.74 65.78 42.73 81.77
ASR 28.73 5.20 6.73 2.27 0.82 6.70
PA 61.10 53.32 74.83 59.78 39.56 76.20

Blend
ACC 85.36 63.83 78.63 59.57 38.22 80.7
ASR 43.01 3.79 2.88 0.81 2.25 3.67
PA 23.12 20.93 70.97 51.84 32.46 70.69

SIG
ACC 85.43 66.59 79.13 66.48 45.14 80.51
ASR 33.34 7.97 5.42 1.35 1.99 6.64
PA 56.97 47.93 65.88 54.42 40.61 66.34

Table 10: Ablation studies of different losses on self-supervised backbones.
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