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ABSTRACT

Retrosynthesis is the process of identifying a set of reactants to synthesize a target
molecule. It is of vital importance to material design and drug discovery. Ex-
isting machine learning approaches based on language models and graph neural
networks have achieved encouraging results. However, the inner connections of
these models are rarely discussed, and rigorous evaluations of these models are
largely in need. In this paper, we propose a framework that unifies sequence-
and graph-based methods as energy-based models (EBMs) with different energy
functions. This unified view establishes connections and reveals the differences
between models, thereby enhancing our understanding of model design. We also
provide a comprehensive assessment of performance to the community. More-
over, we present a novel dual variant within the framework that performs consis-
tent training to induce the agreement between forward- and backward-prediction.
This model improves the state-of-the-art of template-free methods with or without
reaction types.

1 INTRODUCTION
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Figure 1: Retrosynthesis and SMILES.

Retrosynthesis is a critical problem in organic chem-
istry and drug discovery (Corey, 1988; 1991; Segler
et al., 2018b; Szymkuć et al., 2016; Strieth-Kalthoff
et al., 2020). As the reverse process of chemical syn-
thesis (Coley et al., 2017a; 2019), retrosynthesis aims
to find the set of reactants that can synthesize the pro-
vided target via chemical reactions (Fig 1). Since the
search space of theoretically feasible reactant candi-
dates is enormous, models should be designed carefully
to have the expression power to learn complex chemical
rules and maintain computational efficiency.

Recent machine learning applications on retrosynthesis, including sequence- and graph-based
models, have made significant progress (Segler & Waller, 2017a; Segler et al., 2018b; Johans-
son et al., 2020). Sequence-based models treat molecules as one-dimensional token sequences
(SMILES (Weininger, 1988), bottom of Fig 1) and formulate retrosynthesis as a sequence-to-
sequence problem, where recent advances in neural machine translation (Vaswani et al., 2017;
Schwaller et al., 2019) can be applied. In this principle, the LSTM-based encoder-decoder frame-
works and, more recently, transformer-based approaches have achieved promising results (Liu et al.,
2017; Schwaller et al., 2019; Zheng et al., 2019). On the other hand, graph-based models have
a natural representation of human-interpretable molecular graphs, where chemical rules are easily
applied. Graph-based approaches that perform graph matching with chemical rules (“templates”;
definition in Sec 3.2) or reaction centers have reached encouraging results (Dai et al., 2019; Shi
et al., 2020). In this paper, we focus on one-step retrosynthesis, which is also the foundation of
multi-step retrosynthesis (Segler et al., 2018b).

Our goal here is to provide a unified view of both sequence- and graph-based retrosynthesis models
using an energy-based model (EBM) framework. It is beneficial because: First, the model design
with EBM is very flexible. Within this framework, both types of models can be formulated as
different EBM variants by instantiating the energy score functions into specific forms. Second, EBM
provides principled ways for training models, including maximum likelihood estimator, pseudo-
likelihood, etc. Third, a unified view is critical to provide insights into different EBM variants,
as it is easy to extract commonalities and differences between EBM variants, understand strengths
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and limitations in model design, compare the complexity of learning or inference, and inspire novel
EBM variants. To summarize our contributions:

• We propose a unified energy-based model (EBM) framework that integrates sequence- and
graph-based models for retrosynthesis. To our best knowledge, this is the first effort to
unify and exploit inner connectivity between different models.

• We perform rigorous evaluations by running tens of experiments on different model de-
signs. We believe revealing the performance to the community contributes to the develop-
ment of retrosynthesis models.

• Inspired by such a unified framework, we propose a novel dual EBM variant that per-
forms consistent training over forward and backward prediction directions. dual model
improves the state-of-the-art accuracy by 9.9% for full automate template-free and 2.7%
for template-based.

The goal of this paper is to investigate the performance of different models under the setup without
any hand-crafted chemistry features, e.g. reaction center, during training. Incorporating these hand-
crafted chemistry features usually can boost accuracy significantly regardless of the model design.
So adding features is not the focus of our paper. See discussion in Appendix A.2, A.3, A.4.

2 ENERGY-BASED MODEL FOR RETROSYNTHESIS

Retrosynthesis is to predict a set of reactant molecules from a product molecule. We denote the
product as y, and the set of reactants predicted for one-step retrosynthesis as X . The key for ret-
rosynthesis is to model the conditional probability p(X|y) (Dai et al., 2019; Shi et al., 2020; Liu
et al., 2017; Schwaller et al., 2019). EBM provides a common theoretical framework that can unify
many retrosynthesis models, including but not limited to existing models.

Algorithm 1 EBM framework
[Train Phase]: Learning
Input: Reactants X and products y.
1. Parameterize X and y in Sequence or
Graph format.
2. Design Eθ {e.g. dual, perturbed, bidi-
rectional, graph-based, etc} // Sec 3
3. Select training loss to learn Eθ and ob-
tain θ∗ // Sec 4
Return θ∗

[Test Phase]: Inference // Sec 5
Input: θ∗, ytest, Proposal P . // Sec 5
4. Obtain a list of X candidates by P .
Ltest ← P (ytest)
5. X∗ = argminX∈Ltest Eθ∗(X, y

test)
Return: X∗

An EBM (LeCun et al., 2006; Hinton, 2012) de-
fines the distribution using an energy function.
Without loss of generality, we define the joint
distribution of product and reactants as follows:

pθ(X, y) =
exp(−Eθ(X, y))

Z(θ)
(1)

where the partition function Z(θ) =∑
y

∑
X exp(−Eθ(X, y)) is a normaliza-

tion constant to ensure a valid probability
distribution. Since the design of Eθ is free
of choice, EBMs can be used to unify many
retrosynthesis models by instantiating the en-
ergy function E(θ) with different designs and
approximation of the partition function. Note
there is a trade-off between model expression
capacity and learning tractability. EBM is
also easy to obtain arbitrary conditioning with
different partition functions. For example,
the forward prediction probability for reaction outcome prediction pθ(y|X) can be written as

exp(−Eθ(X,y))∑
y′ exp(−Eθ(X,y′))

with the same form of energy function. Overall, the proposed framework works
as follows: (1) design and train an energy function Eθ (Sec 3 and Sec 4), and (2) use Eθ for
inference in retrosynthesis (Sec 5). See Fig 2 and Algorithm 1. Based on how to parameterize
reactant and product molecule X and y, the model designs can be divided into two categories:
sequence-based and graph-based models.

3 MODEL DESIGN

3.1 SEQUENCE-BASED MODELS

Here we describe several sequence-based parametriztion to instantiate our EBM framework, which
use SMILES string as representations of molecules. We first define the sequence-based notations.
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Given a reactant molecule x, we denote its SMILES representation as s(x). Superscript s(x)(i) de-
notes the character at i-th position of the SMILES string. For simplicity, we use x(i) when possible.
Reactants of a chemical reaction are usually a collection of molecules: X = {x1, x2, .., xj , .., x|X|},
where xj is the j-th reactant molecule. The SMILES representation of a molecule set X , denoted as
s(X), is a concatenation of s(x) for every x in X with “.” in between: “s(x1).s(x2)...s(x|X|)”. For
simplicity, we use X(i) as the short form of s(X)(i) to denote the i-th position of this concatenated
SMILES.

3.1.1 FULL ENERGY-BASED MODEL

We start by proposing a most flexible EBM that imposes the minimum restrictions on design of
Eθ. All the variants proposed in Sec 3.1 are special instantiations of this model (e.g. by specifying
different Eθ). The EBM is defined as follows:

p(X|y) = exp (−Eθ(X, y))∑
X′∈P(M) exp (−Eθ(X ′, y))

∝ exp(−Eθ(X, y)) (2)

Here the energy function Eθ : P(M) ×M 7→ R takes a molecule set and a molecule as input,
and outputs a scalar value. M defines the set of all possible molecules. P(·) represents the power
set. P(M) denotes domain of reactant sets X . Due to the intractability of the partition function,
training involves additional information e.g., template or approximation of the partition (See Sec 4).

3.1.2 ORDERED MODEL

One design of energy function is factoring the input sequence in an autoregressive manner
(Sutskever et al., 2014; Schwaller et al., 2019; Segler et al., 2018a).

pθ(X|y) = exp

( |s(X)|∑
i=1

log pθ(X
(i)|X(1:i−1), y

)
) = exp

( |s(X)|∑
i=1

log
exp

(
hθ(X

(1:i−1), y)>e(X(i))
)∑

c∈S exp
(
hθ(X(1:i−1), y)>e(c)

))
(3)

where pθ(X(i)|X(1:i−1), y) is parameterized by a transformer hθ(p, q) : S|p| × S|q| 7→ R|S| where
|S| is vocabulary size. e(c) is a one-hot vector with dimension c set to 1. This choice of hθ(p, q)
enables efficient computing of the partition function, as it outputs a vector with length equal to |S| to
represent logits (unnormalized log probability) for each value in vocabulary. maximum likelihood
estimator (MLE) is feasible for training, as this factorization allows tractable partition function.

3.1.3 DUAL MODEL

Algorithm 2 Dual Model
[Train Phase]: Learning:
Input: Reactants X and product y.
Let θ = {γ, α, η}
Define Eθ as Eq (4)
Eθ = log pγ(X) + log pα(y|X) + log pη(X|y)
1. Train backward:
η∗ = argminη Ldual = argmaxη Ê[log pη(X|y)]
2. Train prior and forward: Plug in η∗

pmix(X, y) = 1
1+β p̂(X, y) +

β
1+β p̂(y)pη∗(X|y)

γ∗, α∗ = argminγ,α Ldual
= Êpmix

(X,y)
[log pγ(X) + log pα(y|X)]

[Test Phase]: Inference:
Input: θ∗ = {γ∗, α∗, η∗}, ytest, Proposal P.
L← P (ytest)
X∗ = argminX∈LEθ∗(X, y

test)
Return X∗

A different design is to leverage on duality
of retrosynthesis and reaction prediction.
They are a pair of mutual reversible pro-
cesses that factorize the joint distribution
in different orders, where reaction predic-
tion is “forward direction” – p(y|X)) and
retrosynthesis is the “backward direction”
– p(X|y). With additional prior modeling,
the joint probability p(X, y) factorizes to
either p(X|y)p(y) or p(y|X)p(X). We
propose a training framework that lever-
ages on the duality of the forward and
backward directions and performs consis-
tent training between the two to bridge
the divergence. The advantage of incorpo-
rating forward direction p(y|X) has been
showed (Guo et al., 2020), where the au-
thors use a sequential Monte Carlo tree al-
gorithm to search for reactants that agree
with forward prediction score.
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The advantage of the duality of reversible processes has been demonstrated in other applications as
well. He et al. (2016) trained a reinforcement learning (policy gradient) model to achieve duality in
natural language processing and improved performances. Wei et al. (2019) treated code summary
and code generation as a pair of dual tasks, and improved efficacy by imposing symmetry between
attention weights of LSTM encoder-decoder in forward and backward directions. Despite of their
encouraging results, these models are not ideal for stable and efficient training for retrosynthesis, for
example, policy gradient methods suffer from high variance. Therefore we propose a novel training
method that is simple yet efficient for retrosynthesis task. We impose duality constraints by training
forward direction on a mixture of samples drawn from the backward and original dataset. To our
best knowledge, we are the first to apply duality to retrosynthesis and to impose duality constraints
by samples drawn from one direction. The EBM is defined as:

p(X|y) ∝ exp
(
log pγ(X) + log pα(y|X) + log pη(X|y)

)
= exp(−Eθ(X, y)) (4)

where prior p(X), forward likelihood p(y|X), and backward posterior P (X|y) are modeled as
autoregressive models (Sec 3.1.2), parameterized by transformers with parameters γ, α, and η. Note
energy function can be designed free of choice.

Our consistent training is achieved by minimizing the “dual loss”, where the duality con-
straints in the equation below are imposed to penalize KL divergence of the two directions, i.e.,
KL(backward|forward). For simplicity, we fix the backward probability in the dual loss, and there-
fore entropy H(backward) is dropped.

γ∗, α∗, η∗ = arg min
γ,α,η

`dual (5)

`dual = −
(
Ê[log pγ(X) + log pα(y|X)]︸ ︷︷ ︸

forward direction

+βÊyÊX|y[log pγ(X) + log pα(y|X)]︸ ︷︷ ︸
duality constraints

+ Ê[log pη(X|y)]︸ ︷︷ ︸
backward direction

)
(6)

= −Êpmix
(X,y)

[log pγ(X) + log pα(y|X)]− Ê[log pη(X|y)] (7)

where Ê indicates expectation over empirical data distribution p̂(X, y). The duality constraints
βÊyÊX|y[log pγ(X) + log pα(y|X)] is the expectation of the forward direction log pγ(X) +

log pα(y|X) with respect to empirical backward data distribution ÊyÊX|y , where ÊyÊX|y are ap-
proximated by samples drawn from pη(X|y), as y is given so p(y) = 1 and β is scaled parameter. In
our implementation we use size k-beam search to draw samples. Combining “forward” and “duality
constraints” terms (Eq 7), we can see that the first term of the dual loss is to train the forward di-
rection on the mixture distribution of the original data and samples drawn from backward directions
pmix(X, y) = 1

1+β p̂(X, y) +
β

1+β p̂(y)pη(X|y). Put every piece together (Algorithm 2 and Fig 3 in
Appendix). Here is our training procedure. Since we parameterize the three probabilities separately,
the optimization of dual loss breaks into two steps:

• Step 1: Train backward. η does not depend on forward direction under empirical data distribu-
tion. η∗ = argminη Ldual = argmaxη Ê[log pη(X|y)]. η can be learned by MLE.

• Step 2: Train prior and forward. We plug η∗ into pmix
η∗ (X, y). γ∗, α∗ = argminγ,α Ldual =

argmaxγ,α Êpmix
η∗(X,y)

[log pγ(X) + log pα(y|X)]. γ, α can be learned by MLE.
Please also see ablation study of each components of dual loss in Appendix Sec A.6.

3.1.4 PERTURBED MODEL

In contrast to the ordered model that factorizes the sequence in one direction, we use a perturbed
sequential model to achieve stochastic bidirectional factorization adapted from XLNet (Yang et al.,
2019). In particular, this model permutes the factorization order (while maintaining position encod-
ing of the original order) that is used in the forward autoregressive model.

p(X|y, z) = p(X(z1), X(z2), . . . , X(z|s(X)|)|y) =
∏|s(X)|
i=1 pθ(X

(zi)|X(z1:zi−1), y) (8)
where the permutation order z is a permutation of the original order sequence zo = [1, 2, . . . , |X|]
and zi denotes the i-th element of permutation z. Here z is treated as hidden variable.
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Representation

N

S

N
N

O

Cc1ccc(-n2c(SCc
3ccncc3)nc3cccc

c3c2=O)cc1

SMILES Ordered

Perturbed

Bidirectional

Dual

GLN

G2G

Graph

46.19

50.85

174.92

196.30

130.45

Product Reactants

Figure 2: EBM framework for retrosynthesis. Given the product as input, the EBM framework
(1) represents it as SMILES or a graph, (2) designs and trains the energy function Eθ, (3) ranks re-
actant candidates with the trained energy score Eθ∗ , and (4) identifies the topK reactant candidates.
The best candidate has the lowest energy score (denoted by a star). The list of reactant candidates is
obtained via templates or directly from the trained model.

During training, permutation order z is randomly sampled and uses the following training objective:

p(X|y) ≈ exp
(
Ez∼Z|s(x)|

[∑|X|
i=1 log pθ(X

(zi)|zi, X(z1:zi−1), y)
])

(9)

and the corresponding parameterization:

pθ(X
(zi)|zi, X(z1:zi−1), y) = log

exp
(
h(X(z1:zi−1), zi, y)

>e(Xzi)
)∑

c∈S exp
(
h(X(z1:zi−1), zi, y)>e(c)

) (10)

where zi encodes which position index in the permutation order to predict next, implemented by a
second position attention (in addition to the primary context attention). Note that Eq (9) is actually
a lower bound of the latent variable model, due to Jensen’s inequality. However, we focus on this
model design for simplicity of permuting order in training. The lower-bound approximation is
tractable for training.

3.1.5 BIDIRECTIONAL MODEL

An alternative way to achieve bidirectional context conditioning is the denoising auto-encoding
model. We adapt bidirectional model from BERT (Devlin et al., 2018) to our application. The
conditional probability p(X|y) is factorized into product of conditional distributions of one single
random variable conditioning on the others,

p(X|y) ≈ exp(

|s(X)|∑
i=1

log pθ(X
(i)|X¬i, y)) (11)

As presented in Wang & Cho (2019), although the model is similar to MRF (Kindermann, 1980), the
marginal of each dimension in Eq (11) does not have a simple form as in BERT training objective. It
may result in a mismatch between the model and the learning objective. This model can be trained
by pseudo-likelihood (Sec 4.2)

3.2 GRAPH-BASED MODEL

Compared with the sequence-based model, the graph-based methods present chemical molecules,
with vertices as atoms and edges as chemical bonds. This natural parameterization allows straight-
forward application of chemistry knowledge by sub-graph matching with templates or reaction cen-
ters. We instantiated three representative gragh-based approaches, namely NeuralSym (Segler &
Waller, 2017b), GLN (Dai et al., 2019) and G2G (Shi et al., 2020), from the framework. Firstly, we
introduce an important concept template, which can assist modeling, learning, and inference.

Templates are reaction rules extracted from existing reactions. They are formed by reaction centers
(a set of atoms changed, e.g. to form or break bonds). A template T consists of a product-subgraph
pattern (ty) and reactants-subgraph pattern(s) (tX ), denoted as T := ty → tX , where X is a molec-
ular set. We overload the notation to define a template operator T (·) : M 7→ P(M) which takes
a product as input, and returns a set of candidate reactant sets. T (·) works as follows: enumerate
all the templates with product-subgraph ty matching with the given product y and define S(y) =
{T : ty ∈ y, ∀T ∈ T }, where T are available templates; then reconstruct the reactant candidates
by instantiating reactant-subgraphs of the matched templates R = {X : tX ∈ X, ∀T ∈ S(y)}. The
output of T (·) is R. T (·) can be implemented by chemistry toolbox RDKit (Landrum, 2016).
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3.2.1 TEMPLATE PREDICTION: NEURALSYM

NeuralSym is a template-based method, which treats the template prediction as multi-class classifi-
cation. The corresponding probability model under the EBM framework can be written as:

p(X|y) ∝
∑
T∈T exp(e>T f(y))I [X ∈ T (y)] (12)

where f(·) is a neural network that embeds molecule graph y, and eT is the embedding of template
T . Learning such model requires only optimizing the cross entropy, despite that the number of
potential templates could be very large.

3.2.2 GRAPH-MATCHING WITH TEMPLATE: GLN
Dai et al. (2019) proposed a method of graph matching the reactants and products with their corre-
sponding components in the template to model the reactants and template jointly, with the model:

p(X,T |y) ∝ exp(w1(T, y) + w2(X,T, y))·φy(T )φy,T (X) (13)
where w1 and w2 are graph matching score functions, and the φ(·) operators defines the hard tem-
plate matching results. This model assigns zero probability to the reactions that do not match with
the template. p(X|y) can be obtained by marginalizing over all templates.

3.2.3 GRAPH MATCHING WITH REACTION CENTERS, G2G
In contrast with GLN, Shi et al. (2020) proposed a method to predict reaction center directly. This
method closely imitates chemistry experts when performing retrosynthesis: first identify reaction
centers (i.e. where the bond breaks, denoted as c), then reconstruct X .

p(X|y) ∝ exp
(
log
(∑

c∈y p(X|c, y)p(c|y)
))

(14)

All three methods mentioned above require the additional atom-mapping as supervision during train-
ing, while NeuralSym and GLN require template information during inference. So NeuralSym and
GLN are template-based methods. Since atom mapping plus reaction centers have almost same
information as templates, we denote G2G method as semi-template-based approach.

4 LEARNING

Training EBMs is to learn parameters θ. In particular, we introduce three ways to learn exact (if
applicable) or approximate maximum likelihood estimation (MLE) for full energy-based model
(Sec 3.1.1), as this model includes other sequence-based EBM variants (ordered, perturbed, bidi-
rectional, etc) by instantiating Eθ accordingly. Training EBMs with MLE is non-trivial because the
partition function Z(θ) in Eq (1) is generally intractable. Computing Z(θ) involves approximation
or additional information.

4.1 APPROXIMATE MLE: INTEGRATION USING TEMPLATE.

We use additional chemistry information: Templates. Direct MLE is not feasible because the par-
tition function of Eq (2) involves enumerating full molecular set M , which is intractable. Here we
use templates to get a finite support of the partition function. Specifically, we use template operator
to extract a set of reactant candidates associated with y, denoted as T (y) As the size of T (y) is
about tens to hundreds (not computationally prohibitive), we can perform exact inference of Eq (2)
to obtain the MLE. We denote this training scheme as template learning.

4.2 APPROXIMATE MLE: PSEUDO-LIKELIHOOD.

Alternatively, we can provide an approximation of Eq (2) via pseudo-likelihood (Besag, 1975) to
enable training. Pseudo-likelihood factorizes the joint distribution into the product of conditional
probabilities of each variable given the rest. Theoretically, the pseudo-likelihood estimator yields an
exact solution if the data is generated by a model p(X|y) and number of data points n→∞ (i.e., it
is consistent) (Besag, 1975). For the full model, training is performed as:

p(X|y) ≈ exp(

|s(X)|∑
i=1

log pθ(X
(i)|X¬i, y)) = exp(

|s(X)|∑
i

log
exp (gθ(X, y))∑

c∈S exp
(
gθ(X ′, y;X ′¬i = X¬i, X ′(i) = c)

) )
(15)

where the superscript ¬ indicates sequence except the i-th token and gθ(p, q) : S|p| × S|q| 7→ R
is a transformer architecture that maps two sequences to a scalar. As bidirectional model Sec 3.1.5
and training approaches Sec 4.2 (approximate joint probability) factorizes in the same way, pseudo-
likelihood is a convenient way to train this model.
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4.3 EXACT MLE: TRACTABLE FACTORIZATION.

This training procedure only works for a special case of the full model, which has a tractable fac-
torization of the joint probability, e.g., autoregressive models in ordered model (Sec 3.1.2) and
perturbed models (Sec 3.1.4).

5 INFERENCE

With the trained Eθ∗ , inference identifies the best X that minimizes the energy function for given
ytest, i.e. X test = argminX∈X Eθ∗(X, y

test). Directly solving the above minimization is again
intractable, but the energy function can generally be used for ranking. Let R denote the rank of
candidate Xi for the given ytest (lower is better).

{R(X1) < R(X2) ⇐⇒ Eθ∗(X1, y
test) < Eθ∗(X2, y

test)} (16)
Practically, as illustrated in Fig 2, one can use either template-based or template-free method to
come up with initial proposals for ranking, as follows.

Template-based Ranking (TB). Templates can be used to extract a list of proposed reactant can-
didates by using templates. We use template operator T (·) (defined in Sec 3.2) to propose a list
of candidate reactant sets from the input product y. Template-free Ranking (TF). In this pa-
per, template-free ranking makes proposals using the learned structure prediction model. We use
a simple autoregressive form for p(X|y), which can draw the top K most likely samples from this
distribution using beam search, which is computational efficient.

6 EXPERIMENTS

Experiment setup: Dataset and evaluation used follow existing work (Coley et al., 2017b; Dai
et al., 2019; Liu et al., 2017; Shi et al., 2020). We mainly evaluate our method on a benchmark
dataset named USPTO-50k, which includes 50k reactions falling into ten reaction types from the US
patent literature. we split the datasets into train/validation/test with percentage of 80%/10%/10%.
Our evaluation metric is the top-k exact match accuracy, referring to the percentage of examples
where the ground truth reactant set was found within the top k predictions made by the model.
Following the common practice, we use RDKit (Landrum, 2016) to canonicalize the SMILES string
from different representations in different methods. We augment USPTO with random SMILES as
follows: (1) Replace each molecule in reactant set or product using random SMILES; (2) Random
permute the order of reactant molecules.

We first present the evaluation of our best EBM variant (dual model) against existing methods (Ap-
pendix A.2) for both template-based and template-free approaches in Sec 6.1. Table 1 are our main
results. Dual model statistics are extracted from Table 2 and 3. Then we provide comprehensive
study on different variants of sequence-based EBMs in Sec 6.2. Table 2 serves as an ablation study
to understand performance of different models. Then we provide template-free results in Table 3,
which are our second main results. We provide time and complexity analysis in Appendix A.7.

6.1 COMPARISON AGAINST THE STATE-OF-THE-ART

Table 1 presents the main results. All the baseline results are copied from existing works as we
share the same experiment protocol. The dual model is trained with randomized SMILES to inject
order invariance information of molecule graph traversal. Note that other methods like graph-based
variants do not require such randomization as the graph representation is already order invariant. We
can see that, regarding top 1 accuracy when reaction type is unknown or known, our proposed dual
model outperforms the current state-of-the-art methods by 9.9% and 6.7% for template-free setting,
and 2.7% and 3.5% for template-based setting. Note that Dual-TF has quite close top-1 accuracy as
Dual-TB, which demonstrates the discriminative ability of the designed energy function. The Dual-
TB has higher top 10 accuracy due to the higher coverage from templates compared to the proposal
obtained by p(X|y) model. This suggest that with better proposal during inference, we can further
boost the current performance.

6.2 SEQUENCE-BASED VARIANT EVALUATION

In this section, we mainly compare different energy based sequence models described in Sec 3.1,
with both template-based and template-free evaluation criteria.
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Table 1: Top K exact match accuracy of existing methods

Category Model Reaction type unknown Reaction type known

top1 top3 top5 top10 top1 top3 top5 top10

TB

retrosim (Coley et al., 2017b) 37.3 54.7 63.3 74.1 52.9 73.8 81.2 88.1
NeuralSym (Segler & Waller, 2017b) 44.4 65.3 72.4 78.9 55.3 76.0 81.4 85.1
GLN (Dai et al., 2019) 52.5 69.0 75.6 83.7 64.2 79.1 85.2 90.0
Dual-TB (Ours) 55.2 74.6 80.5 86.9 67.7 84.8 88.9 92.0

G2Gs (Shi et al., 2020) 48.9 67.6 72.5 75.5 61.0 81.3 86.0 88.7
Semi-TB RetroXpert(Yan et al., 2020) 65.6 78.7 80.8 83.3 70.4 83.4 85.3 86.8

GraphRETRO (Somnath et al., 2020) 64.2 80.5 84.1 85.9 67.8 82.7 85.3 87.0

TF
LSTM (Liu et al., 2017) - - - - 37.4 52.4 57.0 61.7
Transformer (Zheng et al., 2019) 43.7 60.0 65.2 68.7 59.0 74.8 78.1 81.1
Dual-TF (Ours) 53.6 70.7 74.6 77.0 65.7 81.9 84.7 85.9

*Dual-TB/TF: Dual model with template-based or -free ranking.
Description of existing methods see Appendix A.2

Table 2: Template-Based Proposal: Top K accuracy of sequence variants

Reaction type unknown Reaction type known

Dataset Models Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

USPTO 50k

Full model 39.5 63.5 73.0 83.8 55.0 79.9 86.3 92.0
Ordered 47.0 67.4 75.4 83.1 60.9 80.9 85.8 90.2
Perturbed 42.9 58.7 63.9 69.6 56.6 73.6 77.2 81.6
Bidirectional 16.9 34.4 45.6 61.1 31.4 57.0 69.8 81.3
Dual 48.4 69.1 77.0 84.4 61.7 81.5 86.9 91.1

Ordered 54.2 72.0 77.7 84.2 66.4 82.9 87.4 91.0
Augmented Perturbed 47.3 64.6 70.4 75.8 64.2 79.8 83.3 86.4
USPTO 50k Bidirectional 23.5 43.7 54.3 69.5 41.9 66.3 75.6 84.6

Dual 55.2 74.6 80.5 86.9 67.7 84.8 88.9 92.0

6.2.1 TEMPLATE-BASED RANKING

Table 2 provides the results of template-based ranking (Sec 5 TB) for each sequence model vari-
ant described in Sec 3.1. Random SMILES has been shown useful for RNN and LSTM models
Arús-Pous et al. (2019). We want to convey the message to the community that augmentation using
random SMILES is critical for ensuring best performance for transformer by preventing overfit-
ting. Without reiterating good performance for the dual variant, we focus on discussion of variants
with undesired performance. The perturbed sequential model (Sec 3.1.4) and bidirectional model
(Sec 3.1.5) are inferior to dual or ordered models, where the main reason possibly comes from the
fact that the learning objective approximates the actual model in Eq (9) and Eq (11) poorly, and thus
leads to discrepancy between training and inference (See more discussion in Appendix). The full
model (Sec 3.1.1) despite being most flexible and achieving best top 10 performance when type is
given, would suffer from high computation cost due to the explicit integration even with the tem-
plates. In addition to the understanding of individual models throughout the comprehensive study,
we find it is important to balance the trade-off between model capacity and learning tractability. A
powerful model without effective training would be even inferior to some well trained simple mod-
els. Our dual model makes a good balance between capacity and learning tractability. Please see
discussion about semi-template based methods in Appendix A.2, A.3, A.4.

6.2.2 TEMPLATE-FREE RANKING

Table 3 presents the results for template-free evaluation (Sec 5 TF). Template-free evaluation ap-
proach proposed in this paper requires a proposal model with good coverage and a ranking model
with good accuracy. We explored various combinations of proposal-ranking pairs. The proposal
model evaluated is the ordered model trained on USPTO50K and augmented USPTO50K, respec-
tively. The ranking model is the dual model trained on augmented data, as it performs the best in
Table 2. Our best performer is ordered-proposal (USPTO 50K)-dual-ranking (aug USPTO 50K)
model. We reached top 1 accuracy as 53.6% and top 10 accuracy as 77.0% when type is unknown.
Note this accuracy are already close to template-based state-of-the-art. A case study showing how
dual model improves accuracy upon proposal is given Fig 4 in Appendix, where it shows how the
energy based re-ranking refines the initial proposal. One interesting observation is that, the proposal
ordered model trained on augmented data has higher top 1 accuracy but much lower top 10 accu-
racy. This indicates that such proposal has quite low coverage in the prediction space. We observed
that the model learned on augmented dataset learns various representations of the same molecule
(due to usage of random SMILES). A certain percentage of proposed candidates are the same after
canonicalization, which is good for top 1 prediction but undesired for proposal.
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Table 3: Template-free: Translation Proposal and Dual Ranking
Type Proposal Re-rank

Proposal model Top 1 Top 5 Top 10 Top 50 Top 100 Rank model Top 1 Top 3 Top 5 Top 10

No
Ordered on UPSPTO 44.4 64.9 69.9 77.2 78.0 Dual trained on

Aug USPTO
53.6 70.7 74.6 77.0

Ordered on Aug USPTO 53.2 54.7 55.6 60.5 60.5 54.5 60.0 60.4 60.5

- - - - - - SOTA (SCROP (Zheng et al., 2019)) 43.7 60.0 65.2 68.7

Yes
Ordered on USPTO 56.0 76.1 79.7 85.2 86.4 Dual trained on

Aug USPTO
65.7 81.9 84.7 85.9

Ordered on Aug USPTO 64.7 66.5 67.3 69.7 75.7 66.2 75.1 75.6 75.7

- - - - - - SOTA (SCROP (Zheng et al., 2019)) 59.0 74.8 78.1 81.1

7 CONCLUSION

In this paper we proposed an unified EBM framework that integrates multiple sequence- and graph-
based variants for retrosynthesis. Assisted by a comprehensive assessment, we provide a critical
understanding of different designs. Based on this, we proposed a novel variant—dual model, which
outperforms state-of-the-art in both template-based and template-free setting.
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Sara Szymkuć, Ewa P Gajewska, Tomasz Klucznik, Karol Molga, Piotr Dittwald, Michał Startek,
Michał Bajczyk, and Bartosz A Grzybowski. Computer-assisted synthetic planning: The end of
the beginning. Angewandte Chemie International Edition, 55(20):5904–5937, 2016.

10



Under review as a conference paper at ICLR 2021

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random
field language model. arXiv preprint arXiv:1902.04094, 2019.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code summa-
rization. In Advances in Neural Information Processing Systems, pp. 6559–6569, 2019.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, Jinyu Yang, Yang Yu, and Junzhou
Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural
information processing systems, pp. 5754–5764, 2019.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun Xu, and Yuedong Yang. Predicting ret-
rosynthetic reactions using self-corrected transformer neural networks. Journal of Chemical
Information and Modeling, 2019.

11



Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 TERMINOLOGY: REACTION CENTER AND SYNTHONS

Reaction center of a chemical reaction are the bonds that are broken or formed during a chemical
reaction. For retrosynthesis, reaction centers are bonds exist in product, but do not exist in reactants.
One chemical reaction may have multiple reaction centers. Synthons are the sub-parts extracted
from the products by breaking the bonds in the reaction center. Synthons are usually not valid
molecules with ∗ to indicate the broken ends in the reaction centers.

A.2 EXISTING METHODS

We evaluate of our approach against several existing methods, including both template-based and
template-free approaches. Specifically, for Template-free ones: Transformer (Zheng et al.,
2019) is a transformer based approach that trains a second transformer to identify the wrong transla-
tions and remove them. LSTM (Liu et al., 2017) is a sequence to sequence approach that use LSTM
as encoder and decoder. For Template-based ones: retrosim. (Coley et al., 2017b) selects
template for target molecules using fingerprint based similarity measure between targets and tem-
plates; neuralsym (Segler & Waller, 2017b) performs selection of templates as a multiple-class
problem using MLP; GLN builds a template induced graphical model and makes prediction with
approximated MAP.

For Semi-Template based ones: The three methods: G2Gs (Shi et al., 2020), GRetroXpert (Yan
et al., 2020), and GraphRETRO (Somnath et al., 2020), share the same idea: infer reaction cen-
ter to generate synthons, and then complete the missing pieces (aka “leaving groups”) in synthons
to generate reactants. The three methods share the same first step – phrasing identification of re-
action center bond as a classification problem. They have different second steps: from synthons
to reactants. G2G uses graph generation via variational inference. RetroXpert use transformer.
GraphRETRO predefine s list of possible leaving groups and phrase the problem as a classification
problem. Please note G2G and RetroXpert are generative model that can be applied to unseen
molecules, whereas GraphRETRO requires the pre-defined list, which simplies the problem signif-
icantly and may not apply to molecules with unseen leaving groups.

A.3 TEMPLATE-FREE METHODS AND SEMI-TEMPLATE BASED METHODS

In this paper, we refer template-free methods as the approaches that do not require any chem-
istry hand-crafted features, including templates, sub-parts of templates, reaction centers, and atom
mapping. More precisely, our experiment setup is full automatic template-free methods. We are
interested in this set up because

• These handcrafted features are often not accessible for real world application. Get-
ting these features ether requires intensive human efforts or non-trivial computational chal-
lenges. For example, the ground truth “reaction center” used in semi-template based meth-
ods, have to be manually labeled by human experts when atom-mapping is not available.
So it is prohibitive for large datasets. Alternatively, reaction centers can be computationally
extracted using atom-mapping. However, obtaining good quality atom mapping for large
datasets itself is an equally challenging problem.

• Think beyond existing rule (e.g. handcrafted features). The future retrosynthesis mod-
els should be able to think beyond existing chemical rules, and achieve full automation
without handcrafted features. We refer existing rules as templates, reaction center, atom
mapping, reaction type, etc. Thinking beyond exiting rules denotes generating unknown
chemical rules. Similar to the computer vision field (e.g. imagenet classification), people
used handcrafted features at the beginning and all move to full automation without any
handcrafted features because full automation achieves much better results. Unfortunately,
we are not there yet. Including hand-crafted features often lead to a dramatic improvement
(10%+) regardless of model design. For example, well-known examples are reaction type
and templates. Please also so next section.
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In this paper, we refer methods that use additional chemistry features during training as semi-
template-based methods. For example, G2Gs (Shi et al., 2020), GRetroXpert (Yan et al., 2020),
and GraphRETRO (Somnath et al., 2020). See description of the methods in Appendix A.2. These
methods do not apply template-matching explicitly, so they are not template-based methods. How-
ever, they use “reaction centers” as additional information to supervise their algorithm during train-
ing. The reaction centers preserve almost equivalent information as templates – once reaction cen-
ters are given, the product can be broken into two parts (denoted as synthons). The templates can be
recovered by removing nonessential atoms from synthons and product. In addition to reaction cen-
ters, RetroXpert also add additional features “the product side of template” to its atom features.
GraphRETRO has a pre-defined list of leaving groups. Therefore, we denote G2G, RetroXpert and
GraphRETRO as semi-template based methods.

A.4 DUAL MODEL PERFORMANCE WITH REACTION CENTER GIVEN

Semi-template based methods RetroXpert (Yan et al., 2020), and GraphRETRO (Somnath et al.,
2020) achieved impressive results. Their performance even outperforms template-based approach.

The models presented in this paper have a different experiment setup from RetroXpert and
GraphRETRO. Our setup does not use additional chemical information: reaction center, during
training, which makes a head-to-head comparison not meaningful. To further investigate the effect
of this additional chemistry features, we asked what will happen if our models also have the infor-
mation of ”reaction center”? Can we have the same or better performance when reaction center is
given? As a proof of concept, we incorporated the reaction center to the dual model as follows: we
first generate synthons from product using the given reaction centers, and the then concatenate the
generated synthons to the input of our dual model.

Table 4: Template-free with reaction center: Translation Proposal and Dual Ranking
Type Proposal Re-rank

Proposal model Top 1 Top 5 Top 10 Top 50 Top 100 Rank model Top 1 Top 3 Top 5 Top 10

No
Ordered on UPSPTO 65.8 83.8 86.2 90.3 90.7 Dual trained on

Aug USPTO
70.1 86.3 89.0 90.3

Ordered on Aug USPTO 68.7 70.0 70.5 72.1 74.7 69.9 74.4 74.6 74.7

- - - - - - RetroXpert (Yan et al., 2020) 65.6 78.7 80.8 86.8

Yes
Ordered on USPTO 67.7 85.7 88.0 91.6 91.9 Dual trained on

Aug USPTO
73.2 88.4 90.8 91.6

Ordered on Aug USPTO 71.4 73.3 73.8 75.3 77.7 73.1 77.4 77.7 77.7

- - - - - - RetroXpert (Yan et al., 2020) 70.4 83.4 85.3 86.8

Compared with Table 3 (when no synthons information is available), Table 4 shows adding reaction
centers can boost accuracy significantly: When reaction type is unknown, the accuracy of final
retrosynthesis improves from 54.5% to 70.1%. When reaction type is known, the accuracy improves
from 66.2% to 73.2%. An interesting observation is that when reaction centers are presented, the
effect of reaction type and augmentation on positively increasing the accuracy is reduced. One
explanation is reaction center is so important that it dominates all the other useful features or tricks.

Although in the above experiments, we are given the reaction center, that is we do not infer them, Ta-
ble 4 still serves well as a proof of concept that incorporating useful handcrafted chemistry features
can significantly boost accuracy regardless of model design. To be more precise, Table 4 is an upper
bond of Dual model when we use inferred reaction center as input if we are given reaction center
as additional information during training. Dual with reaction center given is NOT template-free
methods. It is semi-template based methods as RetroXpert, GraphRETRO, G2G.

In addition to reaction centers, RetroXpert also add additional features “the product side of
template” to its atom features. GraphRETRO has a pre-defined list of leaving groups. Incorporating
those information (i.e. product side if template) in our setup may boost accuracy significantly again.

We want to avoid pursuing the path of chasing the state of the art by incorporating many useful hand-
crafted features, as it is contradictory to full automatic template-free methods. We want to deliver
the message to the community that the performance of models should be compared under the same
setup. The performance gain may be a result of using extra information, instead of modeling.
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A.5 DUAL MODEL FIGURE
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Figure 3: Dual model. (a) Learning consists of training three transformers: prior p(X) (green),
likelihood p(y|X) (blue), and backward p(X|y) (orange). Dual model penalizes the divergence
between forward p(X)p(y|X) and backward direction p(y|X) with Dual constraint (highlighted).
(b) Inference Given reactant candidates list, we rank them using Eq (4).

A.6 ABLATION STUDY OF THE DUAL LOSS

We perform ablation study to investigate whether training with the dual loss, in particular the dual
constraint, is the reason for the performance improvement. Recall the dual loss is given in Eq (6)
and the dual constraint is the middle term in Eq (6). See Table 5. The ”dual” row indicates training
with dual loss and the results are taken from Table 1. Ê[log pγ(X) + log pα(y|X) + log pη(X|y)]
is dual loss without the dual constraint. Ê[log pα(y|X) + log pη(X|y)] is without prior log pγ(X).
log pη(X|y)] is only including backward direction. Table 5 shows each component of the dual loss
contribute to the performance positively.

Table 5: Ablation Study of dual loss when reaction type is known

Aug USPTO Top 1 Top 3 Top 5 Top 10
Dual 67.7 84.8 88.9 92.0
Ê[log pγ(X) + log pα(y|X) + log pη(X|y)] 67.0 84.7 88.9 91.95
Ê[log pα(y|X) + log pη(X|y)] 66.1 82.8 87.6 91.3
Ê[log pη(X|y)] 60.9 80.9 85.8 90.2

A.7 TIME AND SPACE COMPLEXITY ANALYSIS

In this section, we provide time and space complexity regarding model design choices. As the main
bottleneck is the computation of transformer model, we measure the complexity in the unit of trans-
former model calls. For all the models, the inference only requires the evaluation of (un-normalized)
score function, thus the complexity is O(1); For training, the methods that factored have an easy
form of likelihood computation, where a diagonal mask is applied to input sequence so that au-
toregressive is done in parallel (not |s(x)| times), so it requires O(1) model calls. This include
ordered/perturbed/bidirectional/dual models. For the full model trained with pseudo-likelihood,
it requires O(|X| · |S|) calls due to the evaluation per each dimension and character in vocabu-
lary. Things would be a bit better when trained with template-based method, in which it requires
O(|T (y)|) calls, which is proportional to the number of candidates after applying template operator.

As the memory bottleneck is also the transformer model, it has the same order of growth as time
complexity with respect to sequence length and vocabulary size. In summary we can see the Full
model has much higher cost for training, which might lead to inferior performance. Our dual model
with a consistency training objective has the same order of complexity than other autoregressive
ones, while yields higher capacity and thus better performance.

A.8 TRANSFORMER ARCHITECTURE

The implementation of variants in framework is based on OpenNMT-py (Klein et al., 2017). Fol-
lowing (Vaswani et al., 2017), transformer is implemented as encoder and decoder, each has a 4
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self-attention layers with 8 heads and a feed-forward layer of size 2048. We use model size and
word embedding size as 256. Batch size contains 4096 tokens, which approximately contains 20-
200 sequences depending on the length of sequence. We trained for 500K steps, where each update
uses accumulative gradients of four batches. The optimization uses Adam (Kingma & Ba, 2014)
optimizer with β1 = 0.9 and β2 = 0.998 with learning rate described in (Vaswani et al., 2017)
using 8000 warm up steps. The training takes about 48 hours on a single NVIDIA Tesla V100. The
setup is true for training transformer-based models, including ordered sequential model (Sec 3.1.2),
perturbed sequential model (Sec 3.1.4), bidirectional model (Sec 3.1.5), dual model (Sec 3.1.3). As
for full model (Sec 3.1.1), each sample contains 20-500 candidates. We implemented as follows:
each batch only contains one sample. Its tens or hundreds of candidates are computed in parallel
within the batch. The model parameters are updated when accumulating 100 batches to perform one
step of update.

A.9 EXAMPLE OF CASE STUDY

Here we provide another case study showing with dual model ranking (Sec 3.1.3), the accuracy
improves upon translation proposal. Please see Fig 4 and Fig 5.
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Figure 4: Dual ranking improves upon translation proposal. Left and right column are the top
three candidates from translation proposal and dual re-ranking of the proposal. Ground truth (GT) is
given at the top and is labeled orange in the middle. By dual re-ranking, the GT ranks the first place,
whereas the 3rd place in the proposal. Note that the first place in the proposal is only one atom
different from GT (Br vs I), indicating the dual model is able to identify small changes in structure.

A.10 DISCUSSION

V.1 Full model (Sec 3.1.1) Full model (Sec 3.1.1) with template learning reaches accuracy of 39.5%
and 53.7% on USPTO50k data-sets. Full model is partially limited by expensive computation due
to the number of candidates per product.
V.2 Perturbed sequential model (Sec 3.1.4) Perturbed sequential model has about∼ 4% accuracy
loss in top 1 accuracy compared with ordered model (Sec 3.1.2). We argue the reason are as follows:
firstly, we designed Eθ as the middle term of Eq. Eq (9) to facilitate perturbing the order during
training, following (Yang et al., 2019). However, due to Jensen’s inequality, this design is not equal
to P (X|y), which causes discrepancy in ranking (inference).
V.3 Bidirectional model (Sec 3.1.5) Bidirectional model, however, does not perform well in our
experiments. The bidirectional-awareness makes the prediction of one position given all the rest
of the sequence p(X(i)|X¬i, y) almost perfect (99.9% accuracy in token-level). However, due to
the gap between pseudo-likelihood and maximum likelihood, i.e., logP (X|y), the performance for
predicting the whole sequence will be inferior, as we observed in the experiments.
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Figure 5: Dual ranking improves upon translation proposal. Another example. Descriptions see
Fig 4

A.11 ALTERNATIVE OF SMILES: DEEPSMILES AND SELFIES

In this section, we explore the effect of prepossessing procedure of sequence-based model, e.g. inline
representation of molecular graph, in effecting performance of sequence-based model. In particular,
deepSMILES (Dalke, 2018) and SELFIES (Krenn et al., 2019) are alternatives to SMILES. Without
loss of fairness, we evaluated these representations using Ordered sequential model (Sec 3.1.2)The
results indicate SMILES work the best. We speculate the reason are deepSMILES and SELFIES are
on average longer than SMILES, leading to higher probability of making mistakes on token level
and therefore low sequence-level accuracy.

Table 6: deepSMILES and SELFIES

SMILES
Models Top 1 Top 3 Top 5 Top 10
Ordered 47.0 67.4 75.4 83.1

deepSMILES
Ordered 46.08 65.87 73.54 81.51

Selfies
Ordered 43.00 62.51 70.16 79.07

A.12 TRANSFORMER IMPLEMENTATION OF PERMUTATION INVARIANT OF REACTANT SET

Transformer has a position encoding to mark the different locations on an input sequence. We
modified the position encoding such that each molecule starts with 0 encoding, instead of the con-
catenated position in the reactants sequence. The results are Table 7. We can see that this position
encoding is beneficial for non-augment data, but not augment data, as the latter has already consid-
ered the permutation invariance order of reactants by data augmentation. In this paper, we use data
augmentation to maintain order-invariant for reactants.
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Table 7: Transformer model with permutation invariant position encoding

Reaction type is unknown USPTO 50k
Models Top 1 Top 2 Top 3 Top 5 Top 10
Ordered 46.97 60.71 67.39 75.35 83.14
Ordered + Permutation invariant 47.29 61.29 68.08 75.37 83.36

Augmented data
Ordered 54.24 66.33 72.02 77.67 84.22
Ordered + Permutation invariant 53.45 66.61 72.58 78.33 85.42
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