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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) is making rapid progress
for solving tasks in a grid world and real-world scenarios, in which agents are
given different attributes and goals. For example, in Starcraft II battle tasks, agents
are initialized with the various move, defense, and attack abilities according to
their unit types. Current researchers tend to treat different agents equally and ex-
pect them to form a joint policy automatically. However, ignoring the differences
between agents in these scenarios may bring policy degradation. Accordingly, in
this study, we quantify the agent’s difference and study the relationship between
the agent’s role and the model performance via Role Diversity, a metric that can
describe MARL tasks. We define role diversity from three perspectives: policy-
based, trajectory-based, and contribution-based to fully describe the agents’ dif-
ferences. Through theoretical analysis, we find that the error bound in MARL can
be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on param-
eter sharing, communication mechanism, and credit assignment strategy. Role
diversity can therefore serve as a flag for selecting a suitable training strategy
and helping to avoid possible bottlenecks on current tasks. The main experimen-
tal platforms are based on Multiagent Particle Environment (MPE) and The
StarCraft Multi-Agent Challenge (SMAC), with extensions to ensure the re-
quirement of this study are met. Our experimental results clearly show that role
diversity can serve as a robust description for the characteristics of a multi-agent
cooperation task and help explain the question of why the performance of differ-
ent MARL training strategies is unstable according to this description. In addition,
role diversity can help to find a better training strategy and increase performance
in cooperative MARL.

1 INTRODUCTION

Recently, multi-agent reinforcement learning (MARL) has captured people’s attention due to its
impressive achievements in the field of super human-level intelligence in video games [3, 6, 52, 57],
card games [7, 25, 44, 59], and real-world applications [62–64]. These achievements have benefited
substantially from the success of single-agent reinforcement learning (RL) [14, 15, 30, 42, 43] and
rapid progress of MARL from both the competitive and the cooperative side.

On the competitive side, existing works focus on game theory among adversary agents with guaran-
teed policy convergence via theoretical analysis [5, 17, 27, 29, 56]. Whereas the achievements on the
cooperative MARL are more based on empirical results in cooperative multi-agent system (MAS)
[4, 21, 28, 39, 46, 51, 61]. One key problem of cooperative MARL is that whether one algorithm
is better than another depends on the MARL tasks as showed in Fig. 1a. Current researches focus
on developing algorithms on the tasks they are good at but lack the study of why the performance
declines on other tasks [16, 35, 55, 55, 58]. Even adopting the state-of-the-art algorithms does not
guarantee a strong performance [13, 35, 48, 55, 58]. This may due to the varying characteristic (e.g
agent’s attributes and goals) of MARL tasks and scenarios, one single algorithm is not able to cover
them all, which means we have to change the training strategy according to the current scenario.

From this perspective, we need to find a metric to describe different MARL tasks and use this
description to help determine the best strategy combination as showed in Fig. 1b. Considering that
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Figure 1: (a) Performance of MARL algorithm 1 & 2 combined with different parameter sharing,
communication, and credit assignment strategies varies from candidates 1 to n. (b) Using Role
Diversity to describe each task, we can ensure the best combination of different strategies.

the main component of MAS is the agents, we propose a new definition Role in MAS to quantify
the agents’ difference and use Role Diversity to describe MAS. We then analyze how the role
diversity impacts the MARL both theoretical and experimental. For theoretical analysis, we use the
decomposed estimation error of the joint action-value function Qtot in MARL to discuss how role
diversity impacts the policy optimization process. The experiment further verifies the theoretical
analysis that the role diversity is strongly related to the model performance and can serve as a good
description of a MAS. As shown in Fig. 1, with the role diversity description of each task, we can
now avoid possible bottleneck of a MARL algorithm with the combination of different parameter
sharing, communication, and credit assignment strategies. With the definition of role diversity and
the analysis of its impact on MARL, we can also explain the question of why the model performance
varies across different tasks.

Role diversity are defined from three aspects: policy-based, trajectory-based, and contribution-based
in Sec. 3 which are measured by action distribution, observation overlap, and Q/state value diversity.
Through theoretical analysis, we find each type of role diversity has different impact to different
terms of decomposed estimation error: algorithmic error, approximation error, and statistical error
(Sec. 4). We conduct comprehensive experiments covering three main topics in MARL: parameter
sharing , communication , and credit assignment in Sec. 5 and provide a set of guideline on choosing
MARL training strategy in Sec. 6. The main experiments are conducted on MPE [28] and SMAC
[39] benchmarks, covering a variety of scenarios with different role diversity. The impact of role
diversity is evaluated on representative MARL algorithms including IQL [49], IA2C [31], VDN [48],
QMIX [35], MADDPG [28], and MAPPO [58], covering independent learning methods, centralised
policy gradient methods, and value decomposition methods. The experiment results prove that the
model performance of different algorithms and training strategies is largely dependent on the role
diversity. Scenarios with large policy-based role diversity prefer no parameter sharing strategy.
Communication is not needed in scenarios with large trajectory-based role diversity. Learnable
credit assignment modules should be avoided when training on scenarios with large contribution-
based role diversity.

The key contributions of this study are as follows: First, the concepts of the role and role diversity
are defined to describe MARL tasks. Second, a theoretical analysis of how role diversity impacts
MARL policy optimization with estimation error decomposition is built. Third, role diversity is
proven to be strongly related to performance variance when choosing different training strategies,
including parameter sharing, communication, and credit assignment on the MARL benchmarks.
Finally, a set of guidelines for selecting a training strategy based on role diversity is provided.

2 RELATED WORK

Researches on the development of cooperative MARL algorithms are mainly in three aspects: pa-
rameter sharing, communication and credit assignment.

For parameter sharing, the common approach in cooperative MARL is to fully share the model pa-
rameters among the agents [16, 35, 48, 55]. In this way, the policy optimization can benefit from the
shared experience buffer with samples from all different agents, providing a higher data efficiency.
However, it has also been noted in recent works that parameter sharing is not always a good choice
[8, 34, 50]. In some scenarios, a selective parameter sharing strategy, or even no parameter sharing,

2



Under review as a conference paper at ICLR 2022

can significantly benefit agent performance and surpass the full parameter sharing. However, the
question of why different parameter sharing strategies have different impacts on different scenarios
remains open. In this study, we find that the role diversity can serve as a strong signal for selecting
the parameter sharing strategy.

The communication mechanism is an intrinsic part of the multi-agent system (MAS) framework
[18, 19, 23, 28, 47]. It provides the current agent with essential information of other agents to form a
better joint policy, which substantially impacts the final performance. In some cases, communication
restrictions exist, which hinder us from freely choosing communication methods [28, 39]; in most
cases, however, the communication is available and it is optional on when to communicate and how
to ingest the shared information [19, 45]. We present a comprehensive study on the relationship
between role diversity and information sharing via communication mechanisms and demonstrate
that role diversity determines the necessity of communication.

For the credit assignment, most cooperative MARL algorithms adopt Q-learning or policy gradient
as the basic policy optimization method, which is combined with an extra value decomposition
module [16, 35, 48, 55] or shared critic function [13, 28, 58] to optimize the individual policy. Some
other works find that leveraging the reward signal is unnecessary; however, optimizing the individual
policy independently (independent learning, IL) can still get a strong joint policy [34, 49]. It then
becomes slightly difficult to decide which credit assignment method (including IL) is better as there
is no single method in cooperative MARL that is robust and always outperforms others (compared
to PPO [43] or SAC [14] in single-agent RL) on different tasks. In this study, we contend that role
diversity is the key factor that impacts the performance of different credit assignment strategies.

In the next section, we present the role definition from three aspects including policy-based,
trajectory-based, and contribution-based, and propose the measurement of different role diversity
types to describe a MARL task.

3 ROLE DIVERSITY

Using role to describe the characteristic of the agents in the MARL context has been proven to be
effective in many recent works [8, 24, 54, 55]. However, the definition of the role concept remains
largely unclear. In work [55], the role is defined as the higher-level option in the hierarchical RL
framework [20]. In work [8], the role is defined as the environmental impact similarity of a random
policy. These definitions are intuitive and cannot accurately describe the role difference. In this
study, we attempt to define the role in a more comprehensively way from three different aspects:
policy-based, trajectory-based, and contribution-based. More specific scenario-based illustration can
be found in Fig. 7 and Fig. 8. With our refined role, a strong relationship between role diversity and
the MARL optimization process can be built and the performance variance can be further explained.

3.1 POLICY-BASED ROLE

In MARL, different agents output different actions based on its current status. As common sense
would indicate, actions taken at the same timestep can indicate different roles [55]. However, there
are many exceptions. For instance, if we have two soccer players passing a ball to each other
repeatedly [21], although the action is different at each time step, the roles of these two soccer
players can be very similar from the perspective of the whole soccer game. Therefore, it is not
sufficient to distinguish the role difference based on a single timestep. Instead, we contend that this
difference should be defined based on a period. As this role is purely based on policy distribution π,
we refer to it as a policy-based role.

Specifically, we define the policy-based role as the statistics of the actions’ frequency over a period,
which is n steps backward and forward from the current timestep. Here, n is the time interval that
is half the length of the total time. More details can be found in Fig. 8a, where we provide a real
scenario from SMAC. Policy-based role difference can be represented as follows:

raT =
1

2n+ 1

T+n∑
t=T−n

πat (1)

where T represents the current timestep, n is the time interval, a is the agent index, π is the policy
distribution. We adopt symmetrical KL divergence to measure the distance of different policy-based
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Figure 2: (a) An illustration of how policy-based role difference varies in one game(4m vs 3z). A
detailed explanation of how it varies can be found in Sec. 3.1. (b) Instance curve of the trajectory-
based role difference in different battle scenarios according to observation overlap. Trajectory-based
role difference is larger in 3s vs 5z but smaller in 4m vs 5m. (c) Contribution-based role diversity
in different battle scenarios represented by Q value. The contribution-based role diversity is larger
in 1s1m1h1M vs 5z but smaller in 4m vs 3z.

roles. The total role distance of A agents can be computed as follows:

dpT =
1∑A−1
0

A∑
a0=0

A∑
a1=a0

(KL(ra0T |r
a1
T ) +KL(ra1T |r

a0
T )) (2)

where dpT represents the policy-based role distance at timestep T , A represents the total agent num-
ber, and KL represents Kullback–Leibler divergence.

We also provide a case study of how policy-based role diversity varies in Fig. 2a. From a real battle
scenario (4m vs 3z) taken from SMAC, we find three stages including Find a good position, Focus
on enemy and Find each one’s best strategy. In stage 1, agents try to find their own best location;
the role diversity is large. In stage 2, agents focus on the same enemy target; the policies become
similar and the role diversity is decreased. In stage 3, the formation of the agents is broken up by the
enemies. Policy-based role diversity again increases as each agent is required to find its own best
strategy to deal with its current situation.

3.2 TRAJECTORY-BASED ROLE

A policy-based role only considers the role diversity from the action distribution perspective. A
slight action difference may not diversify policy-based role; however, this difference can be enlarged
by time, which eventually results in a de facto behavior difference. The most significant phenomenon
caused by this is the agent’s trajectory. Again, consider a soccer game where players repeatedly pass
a ball to each other; these players may have a similar policy-based role, but their trajectories are
different. This difference is enhanced by the partial observation setting that exists in many popular
cooperative MARL environments [39, 46, 61] as the partial observed input from different agents
shares a less common pattern when the vision scope is smaller. Therefore, trajectory-based role
diversity is an important supplement to policy-based role diversity.

Generally speaking, we can define the trajectory-based role as the record of the agent’s movement.
However, the determination of the extent to which two trajectories differ is not a straightforward
matter. To measure this difference, we use an indirect metric called observation overlap percentage.
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Using observation overlap to measure the trajectory-based role difference is: I. easy to compute,
II. able to utilize a constant scale from 0 to 1 and III. strongly related to observation scope, which
means that two trajectories can have varying role distances. For instance, in an A-agent multi-agent
system, the trajectory difference can be computed as follows:

dtrajT =
1∑A−1
0

A∑
a0=0

A∑
a1=a0

da0,a1T . (3)

Here, da0,a1T is the observation overlap percentage of the total area between agent a0 and agent a1
at timestep T . An example of calculating the observation overlap percentage in SMAC [39] can be
found in Appx. C. We provide the observation overlap percentage curves in Fig. 2b to demonstrate
how trajectory-based role diversity varies in different scenarios.

3.3 CONTRIBUTION-BASED ROLE

To help ensure the authenticity of the modern MAS, agents are initialized with different attributes in
recently proposed MARL environments [21, 28, 39, 46]. For instance, in [21], the roles of forward
and goalkeeper are quite different and characterized by different observation scopes, action spaces,
and reward functions. The type differences are easy to notice but hard to define, as is the role
distance between them.

Here, we use an indirect variable called contribution to measuring the type difference. In cooperative
MARL, the final target is to obtain an optimal joint policy consisting of A individual policies. To do
this, the credit assignment strategy is proposed in [13, 35, 48] to leverage the reward signals to each
agent to achieve individual policy optimization. A good credit assignment strategy should be able
to leverage the reward signal in a manner equal to each agent’s contribution to the global reward. In
this way, the Q value (Q function in off-policy RL) or state value (critic function in on-policy RL)
of each agent can be estimated based on the leveraged reward signal. From this perspective, the Q
value or the state value can be regarded as the agent’s contribution to the team. Generally speaking,
we use the Q value or state value to measure the contribution of a single agent. Contribution-based
role diversity can be computed as follows:

dcontT =
1∑A−1
0

A∑
a0=0

A∑
a1=a0

d
va0 ,va1
T

max(va0 , va1)
. (4)

Here, v is the Q value or state value of the policy output and dva0 ,va1T is the absolute value difference
between the agents’ output. In addition, we use max function to keep the range of contribution-based
role diversity from 0 to 1. We provide the Q value (mean & max) curves in Fig. 2c to demonstrate
that the contribution-based role diversity can vary a lot in different scenarios.

More detailed role definition, connection, and application discussion can be found in Appx. C, D
and E. In this paper, all the role diversity values and curves including dpT , dtrajT , and dcontT come
from VDN[28] and separated training with no communication for robust performance and training-
efficient.

4 THEORETICAL ANALYSIS

In this section, we use a simple scenario as an example to illustrate the role diversity. Suppose each
agent makes individual observations and the learning procedure of all agents is independent. We
provide finite-sample analysis for the estimation error of the joint action-value function and identify
the terms corresponding to the role diversity. We denote Q∗tot and Q∗i as the optimal joint and
individual Q-function respectively and write ‖ · ‖p,µ as the Lp norm with respect to a probability
measure µ. Motivated by [48] and [35], we consider a simple case:

Q∗tot ≈ F (Q∗) = w>Q∗ with w ∈ ∆n, Q
∗ = (Q∗1, . . . , Q

∗
n),

where n is the number of agents and ∆n is the (n − 1)-dimensional probability simplex. Here, the
credit assignment function F is a weighted sum of Q∗i , i ∈ [n] with non-negative weights. We then
study the excess risk that is the error gap between the estimated and optimal solution:

Err = ‖Q∗tot − ŵ>Qt‖1,µ − ‖Q∗tot − (w∗)>Q∗‖1,µ,
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where w∗ and ŵ are the optimal and estimated weights and Qt is the output of FQI algorithm
at the iteration t. We further denote Q as the space of individual Q-functions and write ω(Q) =
supQ∈Q infQ′∈Q ‖Q′ − TQ‖22,ν . In Sec. B.3, we prove that

Err ≤
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗
)∥∥∥∥

1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN0

N
) +

4γT+1

(1− γ)2
M, (5)

where N is the sample size and T is the number of iterations. In addition, φµ,ν is the concentration
coefficient andN0 represents the 1/N -covering number ofQ. Please refer to Sec. B.1 for the detailed
definitions.

The first term on the RHS of (5) reflects the benefit of credit assignment that is strong related to
the Contribution-Based Role (Sec. 3.3). When Varn(Q∗) is non-negligible, minimizing ‖w∗ −
ŵ‖ can significantly decrease the excess risk. The second term that involves ω(Q) stands for the
approximation error caused by functional approximation in Q. It depends on the concentration of
the sample and the scale of the hypothetical space. The remaining two tems are statistical error
and algorithmic error. If the sample size is sufficiently large and the learning time is long enough,
they can be arbitrarily small. In Sec. B.5, we assume Q is a sparse ReLU network and TQ is a
composition of Hölder smooth functions, and analyze the convergence rate as N,T →∞.
Next, we demonstrate that the variance term Varn(Q∗) is related to both the Policy-Based Role
(Sec. 3.1) and the Trajectory-Based Role (Sec. 3.2). We consider the case in which all agents share
one estimated Q-function and denote the optimal share Q-function as Q̄∗. Sec. B.4 proves that

Errshare ≤

∥∥∥∥∥
n∑
i=1

w∗i (Q
∗
i − Q̄∗)

∥∥∥∥∥
1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q̄∗(z,u)

)∥∥∥∥
1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN ′0
nN

) +
4γT+1

(1− γ)2
M, (6)

where N ′0 is the 1/(nN)-covering number of Q and

Q̄∗(z,u) =
(
Q̄∗(z1, u1), Q̄∗(z2, u2), . . . , Q̄∗(zn, un)

)
.

The first term on the RHS of (6) stands for the bias caused by parameter sharing. If all Q∗i are the
same, the bias will disappear. Therefore, the Policy-Based Role is related to this bias. Second, the
variance Varn(Q̄∗) here is caused by the trajectory diversity. To reduce this term, we should should
ensure that all agents have similar observations. In addition, the Trajectory-Based Role measures
the concentration of all agents’ support set. It is therefore natural to group the highly overlapped
agents into one sub-joint agent via communication mechanism. This can be compared to the separate
case in (5), where approximation error and the learning error are the same. In Sec. B.5, we show
that the parameter sharing improves the convergence rate of the statistical error via sample pooling,
while the communication decreases the convergence rate by activating more input variables.

5 EXPERIMENT

In this section, we mainly demonstrate how model performance varies with role diversity and how
to adjust the training strategy in the context of cooperative MARL. The experimental results show
the following: 1. that the performance of different parameter sharing strategies is strongly related
to the Policy-Based Role (Sec. 5.1). 2. that the benefit brought by different communication mech-
anisms can be easily affected by the Trajectory-Based Role (Sec. 5.2). 3. that the performance
of the credit assignment method, or the centralized training strategy, is largely dependent on the
Contribution-Based Role (Sec. 5.3). 4. that the choosing of training strategies should be deter-
mined by the scale of role-diversity for different scenarios. The main experimental platforms are
MPE [28] and SMAC [39]. Extensions are made to fulfill the requirements of parameter sharing and
the communication mechanism, these include separated training of policy in Sec. 5.1 and informa-
tion exchange among agents in Sec. 5.2. All results come from eight random seeds. More details
regarding the experimental settings can be found in the appendix.

6



Under review as a conference paper at ICLR 2022

Benchmark Scenario Role Diversity Warm-up No shared Partly shared Shared
SimpleSpread 14.1 -598.3 +137.0 / +142.9 +149.0 / +176.4 +154.1 / +198.0

Tag 17.8 3.8 +43.4 / +57.3 +47.0 / +60.9 +48.8 / +59.2
Adversary 18.3 10.7 +5.2 / +5.7 +6.2 / +6.6 +5.4 / +5.9

DoubleSpread-2 17.6 7.3 +47.8 / +53.2 +28.6 / +34.6 +3.6 / +15.9
MPE

DoubleSpread-4 19.5 22.0 +29.5 / +192.4 +12.0 / +91.3 +11.4 / +5.3
4m vs 5m 1.5 / 9.1 6.5 +3.6 / +4.4 +4.3 / +5.0 +5.4 / +6.1
3s vs 5z 2.7 / 18.7 5.4 +7.5 / +11.0 +6.6 / +9.6 +8.2 / +11.8

2m 3.1 / 12.2 6.0 +9.2 / +11.1 +15.5 / +15.6 +18.1 / +17.6
4m vs 4z 3.3 / 19.3 4.4 + 8.8 / +12.7 + 10.5 / +14.7 +5.4 / +8.4
4m vs 3z 3.8 / 12.1 7.2 +12.4 / +12.1 +12.5 / +12.5 +11.9 / +12.3
3s vs 4z 5.2 / 32.5 4.8 +2.2 / +4.5 +1.7 / +2.7 +0.9 / +1.2

1c1s1z vs 1c1s3z 8.7 / 22.0 11.8 +4.1 / +6.1 +3.7 / +5.9 +2.7 / +5.4
1s1m1h1M vs 3z 2.4 / 13.2 16.2 +3.4 / + 3.4 +3.6 / +3.6 +3.4 / +3.6
1s1m1h1M vs 4z 2.7 / 15.8 8.2 +7.8 / +11.6 +6.5 / +10.9 +5.3 / +10.0

SMAC

1s1m1h1M vs 5z 6.2 / 22.5 6.2 +6.4 / +9.1 +4.2 / +8.5 +3.7 / +6.1

Table 1: Performance of three parameter sharing strategies on different scenarios. Warm-up refers to
the reward value point where the strategies start to differentiate. + represents the additional reward
gained based on warm-up performance. The left side and right side of the / represent the reward
gained at the half training steps and the full training steps respectively. The best performance in
each scenario is marked in bold red. More detailed analysis can be found in Sec. 5.1.

5.1 PARAMETER SHARING

Policy-based role influences the convergence speed and final performance of different parameter
sharing strategies in cooperative MARL. The scenarios we choose from the MPE and SMAC bench-
marks are simple but diverse, covering policy-based role diversity that ranges from small to large. In
table. 1 and Fig. 3, we provide policy-based role diversity and the model performance curve on these
chosen scenarios. For the SMAC benchmark, we adopt two metrics to count ruT in Eq. 1. The first
metric is real policy diversity, which treats each action as an independent. The second way is se-
mantic policy diversity, which distributes the actions to different groups according to their semantic
type (e.g. move & attack). There is no semantic policy-based role in scenarios chosen from the MPE
benchmark as all the actions are of the same semantic type (move). The policy-based role diversity
is then calculated according to Eq. 2. The base MARL credit assignment strategy we choose in
table. 1 is VDN[48], combined with a fully/partly/no parameter sharing strategy. For details of how
the partial parameter sharing strategy works, please refer to the Appx. F. We also evaluate other pop-
ular credit assignment strategies including IQL[49], IA2C, MADDPG[28] MAPPO[58], MAA2C
and QMIX[35] combined with a fully/no parameter sharing strategy in Fig. 3. IA2C and MAA2C
are the extension of A2C[31] on multi-agent scenarios.

Table. 1 outlines the performance of three parameter training strategies including No shared, Partly
shared and Shared with the base credit assignment method VDN[48]. Detailed framework and
settings can be found in Appx. F. As the policy-based role diversity increases, the performance of
the Shared strategy is degraded in terms of both convergence speed (half training steps) and the final
reward (full training steps). One interesting phenomenon also emerges: the same agent type (e.g.
3s vs 5z, 4m vs 4z) does not always indicate small policy-based role diversity, and vice versa (e.g.
1s1m1h1M vs 3z), which means it is hard to define the role before identifying an adequate policy.
Fig. 3 shows the model performances of two parameter sharing strategies including No shared and
Shared with different credit assignment methods. For policy gradient-based methods, we extend the
training steps from the standard 2M to 20M (10 times) as the convergence speed of policy gradient-
based methods (e.g. MAPPO, MAA2C) is slower than Q value-based methods. From Fig. 3, we
find that different credit assignment methods have a slight impact on parameter sharing strategies
but the trend in which no parameter sharing strategy achieves performance improvement continues
to be present as the policy-based role diversity increases.

Here we conclude that, scenarios with large policy-based role diversity prefer no parameter sharing
strategy, and vice versa. Suitable parameter sharing strategy helps obtain faster convergence speed
and higher final performance.

5.2 COMMUNICATION
More information is better. This principle is common sense in many areas including computer vision
or natural language processing. With a bigger dataset and more detailed and accurate annotations,
the model can be better optimized. However, in reinforcement learning, the data is sampled us-
ing the current policy; in most cases, this policy learning starts with a randomly initialized neural
network. In this way, the provision of more information may introduce a burden for the policy op-
timization and can moreover further degrade the sampled data quality, which gives rise to a vicious
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Figure 3: Performance curves include Q value-based(first row) and policy gradient-based(second
row) credit assignment with Shared and No shared parameter sharing strategies.
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Figure 4: Histogram of (a) model performance when adopting communication mechanism compared
to baseline (w/o communication). (b) model performance with different vision scope (6-9-18), where
scope 9 is the standard setting in SMAC. Grey dots represent the observation overlap. Larger the
overlap, the smaller the trajectory-based role diversity. Detailed analysis can be found in Sec. 5.2

circle. Therefore, it is critical to determine when and how to accept the extra information provided
via communication mechanism in the context of cooperative MARL. As discussed in Sec. 4, the
pattern of different agents’ support sets for policy optimization can determine whether or not the
extra information is needed. Notably, the similarity of these support sets is largely dependent on
the trajectories of different agents, corresponding to the trajectory-based role diversity defined in
Sec. 3.2. Small trajectory-based role diversity corresponds to a similar support set pattern, which
means that forming a concentrated input is preferred for policy optimization. Experiment results in
table. 7 and Fig. 4 further prove that scenarios with larger observation overlap are more suitable for
communication. Detailed setting of communication mechanism on SMAC can be found in Appx. G

To prove that small trajectory-based role diversity prefers obtaining extra information via commu-
nication and vice versa, we conduct extra experiments to study the relationship between the pattern
of the input observation (support set) and the model performance by shrinking the vision scope (r in
eq. 14). The results can be found in table 2. The results show that the model performance is strongly
related to the vision scope and the trajectory-based role diversity determines whether the small or
large vision is preferred. Small trajectory-based role diversity prefers large vision scope, indicat-
ing the similar pattern of support set is better. Large trajectory-based role diversity prefers small
vision scope, which means enlarging the pattern difference benefits the policy optimization. This
further prove that extra information provided by communication forms a similar pattern of support
set which is preferred in scenarios with small trajectory-based role diversity.

5.3 CREDIT ASSIGNMENT
The performance of different credit assignment methods is strongly related to the contribution-
based role. We mainly focus on three representative Q value-based MARL algorithm: VDN[48],
QMIX[35] and IQL[49], and compare their performance on different scenarios that have different
contribution-based role diversity measured by Q value according to Eq. 4. The result can be found

8



Under review as a conference paper at ICLR 2022

scenario obs overlap scope performance scenario obs overlap scope performance
6 15.6 / 19.5 / 19.5 6 6.3 / 9.2 / 10.4
9 16.4 / 19.5 / 19.7 9 6.5 / 10.1 / 10.91s1m1h1M vs 3z 0.41

18 X 16.1 / 19.6 / 19.9
4m vs 5m 0.47

18 X 6.8 / 10.9 / 11.1
6 8.4 / 15.3 / 18.8 6 11.5 / 15.1 / 17.6

9X 8.4 / 15.7 / 19.7 9 X 12.3 / 16.0 / 17.81s1m1h1M vs 4z 0.25
18 7.8 / 11.8 / 15.9

1c1s1z vs 1c1s3z 0.40
18 12.4 / 15.3 / 17.6

6X 6.6 / 14.2 / 17.7 6 X 6.0 / 15.1 / 17.5
9 6.3 / 12.6 / 15.3 9 5.4 / 12.9 / 16.41s1m1h1M vs 5z 0.18
18 5.9 / 8.9 / 10.4

3s vs 5z 0.21
18 5.2 / 9.0 / 12.1

Table 2: Different vision scopes (6-9-18) impact the model performance. The scope should be
larger than 6, which is the attack scope for agents. Xrepresents the scope with the best performance.
Detailed analysis can be found in Sec. 5.2.

no shared sharedscenario Q diversity vdn qmix iql vdn qmix iql
1c1s1z vs 1c1s3z 12.3 / 15.9 / 17.9 12.9 / 17.8 / 19.4X 10.8 / 12.3 / 12.2 11.2 / 14.5 / 17.2 12.5 / 15.8 / 18.4X 9.8 / 11.2 / 11.9

3s vs 5z 5.4 / 12.9 / 16.4 4.6 / 13.5 / 17.0X 4.6 / 5.1 / 7.9 6.0 / 13.6 / 17.2 4.2 / 12.9 / 20.0X 4.3 / 5.3 / 7.8
4m vs 4z

<0.1
4.3 / 13.2 / 17.1 4.3 / 18.3 / 18.8X 3.3 / 3.2 / 3.7 4.6 / 9.8 / 12.8 4.3 / 14.8 / 16.5X 2.6 / 3.2 / 3.2

4m vs 5m 6.5 / 10.1 / 10.9 * 7.0 / 9.9 / 10.9 * 4.8 / 7.6 / 8.1 6.8 / 11.9 / 12.6 * 6.9 / 12.4 / 13.3 * 5.1 / 8.1 / 8.5
4m vs 3z 0.1-0.5 7.5 / 19.6 / 19.3 * 6.5 / 19.7 / 19.3 * 4.5 / 5.7 / 11.1 6.3 / 19.1 / 19.5 * 6.1 / 19.7 / 19.7 * 4.2 / 4.5 / 5.7

1s1m1h1M vs 3z 16.4 / 19.6 / 19.6X 6.5 / 7.5 / 7.8 11.1 / 16.9 / 19.2 16.1 / 19.6 / 19.8X 9.9 / 9.8 / 8.9 12.2 / 17.9 / 19.6
1s1m1h1M vs 4z 8.4 / 16.0 / 19.8 X 4.9 / 5.1 / 6.1 7.4 / 9.0 / 10.7 8.1 / 13.5 / 18.2 X 5.5 / 5.0 / 5.0 7.1 / 8.5 / 8.5
1s1m1h1M vs 5z

>0.5
6.3 / 12.6 / 15.3 X 4.2 / 4.2 / 3.6 5.5 / 6.1 / 6.5 6.2 / 9.9 / 12.3X 4.0 / 2.5 / 4.2 5.4 / 6.3 / 6.3

Table 3: Policy-based role diversity influences the performance of different parameter sharing strate-
gies on the MPE[28] and SMAC[39] benchmarks. The best performance in each scenario is marked
X. Asterisks denote the algorithms that are not significantly different. Q diversity curves can be
referred to Fig. 18.

in table. 3. In small Q diversity (' 0.5) scenarios, QMIX significantly outperforms VDN with
both shared and no shared strategies. With the increase of Q diversity, the performance of QMIX
starts to degrade. In scenarios where agents have significantly different Q value distribution (Fig. 18
1s1m1h1M vs 3/4/5z), VDN significantly outperforms QMIX. As for IQL, the performance is not
as good as VDN and QMIX in most scenarios. However, IQL is not sensitive to Q diversity and
can perform well in easy scenarios like 1s1m1h1M vs 3z. Combined with theoretical analysis in
Sec. 4, we can conclude that QMIX is not suitable for a large contribution-based role diversity sce-
nario because of the additional value decomposition module, which is a sum function in VDN and
a learnable neural network in QMIX. The neural network fails to minimize the approximation error
for Qtot, and is an extra burden when the reward function (or the contribution to the global reward)
is diverse. IQL has no such problem as it treats Qtot as the individual Q value. From this part, we
conclude that using credit assignment methods with learnable value decomposition module should
be avoided in scenarios with large contribution-based role diversity.

6 FINDING A BETTER TRAINING STRATEGY

Based on our theoretical and experimental analysis, we contend that role diversity is a strong can-
didate metric to aid in selecting the proper training strategy for cooperative MARL. Specifically,
if the policy-based role diversity is large, we should choose a no parameter sharing strategy, and
vice versa. If the trajectory-based role diversity is large, we should avoid communication or other
unnecessary information sharing, and vice versa. If the contribution-based role diversity is large,
the fixed credit assignment method or independent learning method is preferred, and vice versa. In
this way, we can avoid the possible performance bottlenecks in the context of cooperative MARL.
Notably, however, the question remains as to how we might obtain an accurate measurement of the
role diversity before the training. In this study, all the role diversity comes from VDN and separated
training with no communication because we require the baseline method in our study to be robust
and training-efficient. The fact however remains that, in some cases, roles are different in ways that
are easy to notice and require no trained policy.

7 CONCLUSION

In this paper, we define the role and role diversity to describe a cooperative MARL task and explain
the question of why the model performance varies in different scenarios. We claim that a strong
relationship between the role diversity and model performance exists and we prove it through both
theoretical analyses on MARL error bound decomposition and experiments conducted on MARL
benchmarks. The experiment results clearly show that the role diversity significantly impacts the
model performance of different training strategies and this effect is ubiquitous in various environ-
ments and algorithms. Finally, we provide a guideline on choosing the proper training strategies for
cooperative MARL based on the role diversity description.
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A PROBLEM FORMULATION

Multi-agent Reinforcement Learning A cooperative multi-agent task is a decentralized partially
observable Markov decision process [33] with a tuple G = 〈S,A,U , P, r,Z, O, n, γ〉. Let S denote
the global state of the environment, whileA represents the set of n agents and U is the action space.
At each time step t, agent a ∈ A ≡ {1, ..., n} selects an action u ∈ U , forming a joint action u ∈ Un,
which in turn causes a transition in the environment represented by the state transition function
P (s′|s,u) : S ×Un×S → [0, 1]. All agents share the same reward function r(s,u) : S ×Un → R
, while γ ∈ [0, 1) is a discount factor. For any state-action pair, the reward r is bounded by M ,
i.e. |r| ≤ M. We consider a partially observable scenario in which each agent makes individual
observations z ∈ Z according to the observation function O(s, a) : S ×A → Z . Each agent has an
action-observation history that conditions a stochastic policy πt, creating the following joint action
value: Qπ(zt,ut) = Est+1:∞,ut+1:∞ [Rt|zt,ut], where Rt =

∑∞
i=0γ

irt+i is the discounted return.

Centralized training with decentralized execution Centralized training with decentralized execu-
tion (CTDE) is a commonly used architecture in the MARL context. Each agent is conditioned only
on its own action-observation history to make a decision using the learned policy. The centralized
value function provides a centralized gradient to update the individual function based on its output.
Therefore, a stronger individual value function can benefit the centralized training.

B PROOFS

In this section, we present more detailed results and the proofs for the theoretical analysis in Sec. 4.
In Sec. B.1, we denote more notations and state the concentration property of Markov decision pro-
cess. Sec. B.2 presents two useful lemmas about the error propagation and one-step approximation
respectively. In Sec. B.3, we consider a simple example of the decentralized and cooperative MARL
and provide the finite-sample analysis for the estimation error of the joint action-value function. We
use the value decomposition [35, 48] and the finite-sample results for single-agent RL [10]. For
more related results about MARL, please refer to [60] and [53]. Sec. B.4 studies the parameter
sharing case that all agents share one deep Q network. In Sec. B.5, we assume Q is a sparse ReLU
network and TQ is a composition of Hölder smooth functions. Then we discuss the convergence
rate of the statistical error as the sample size tends to infinity. According to Sec. B.3, B.4 and B.5,
one can find that each type of role diversity have different impact to the decomposed estimation
error. Furthermore, we explain the benefits of the training options, e.g. parameter sharing (Sec. 5.1),
communication (Sec. 5.2) and credit assignment (Sec. 5.3), and discuss how these options impact
the convergence rate of approximation error and statistical error.

We summarize our results as follows:

• The parameter sharing strategy introduces a bias term by constraining the diversity of indi-
vidual action-value functions, which corresponds to the policy-based role diversity. At the
same time, it speeds up the convergence rate of statistical error by pooling training data.

• The communication mechanism reduces the variance caused by the trajectory-based role
diversity but slows down the convergence rate of approximation error by introducing more
active input variables.

• When the contribution-based role diversity is nonnegligible, the credit assignment can sig-
nificantly reduce the estimation error of the action-value function.

B.1 MORE NOTATIONS AND ASSUMPTIONS

We denote the joint optimal action-value function by

Q∗tot(z,u) = Q∗tot(z1, . . . , zn, u1, . . . , un),

where z is the global state of the environment, u = {u1, . . . , un} is the action set that collects
the action of each agent ui and zi is the observation of the agent i generated from the emission
distribution zi ∼ Λ(z|i, s). We further denote the individual optimal action-value function by Q∗i
and write

Q∗(z,u) =
(
Q∗1(z1, u1), . . . , Q∗n(zn, un)

)
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as the vector of all agents’ action-value functions. According to the value decomposition assump-
tion, the joint optimal Q-function Q∗tot can be approximated with

F (Q∗)(z,u) = F (Q∗1(z1, u1), . . . , Q∗n(zn, un)),

where F ∈ F is a credit assignment function. The VDN method [48] approximates the joint as a
sum of individual action-value functions that condition only on individual observations and actions.
Then a decentralised policy arises simply from each agent selecting actions greedily with respect to
its Qi. Since n is a fixed integer, we write the hypothetical space of credit assign functions that only
contains one function as:

F =
{
F (Q) =

1

n

n∑
i=1

Qi : with Q = (Q1, . . . , Qn)
}
.

The QMIX method [35] generalizes the value decomposition scheme and prove that if

∂Qtot(z,u)

∂Qi(zi, ui)
≥ 0, for ∀1 ≤ i ≤ n, ∀z ∈ Zn, ∀u ∈ Un,

then the global arg max performed on joint Q-function yields the same result as a set of individual
arg max operations performed on each agent Q-function, that is

arg max
u

Q(z,u) =


arg maxu1 Q1(z1, u1)
arg maxu2 Q2(z2, u2)

...
arg maxun Qn(zn, un)

 .

Motivated by VDN and QMIX, we consider a simple case throughout this section:

F =
{
F (Q) = w>Q : w ∈ ∆n and Q = (Q1, . . . , Qn)

}
,

where ∆n is the n− 1 dimensional probability simplex.

Suppose the individual action-value function is estimated by the fitted-Q iteration (FQI) algorithm
[9, 38]. At the iteration 0 ≤ t ≤ T , we write Q̃i,t and πi,t as the output of FQI algorithm and the
corresponding greedy policy respectively. Let Qπi,t be the Q-function corresponding to πi,t. Then
the joint action-value function is estimated by F̂ (Qt), where

Qt(z,u) =
(
Qπ1,t(z1, u1), Qπ2,t(z2, u2), . . . , Qπn,t(zn, un)

)
.

To proceed further, we give the following assumption that controls the similarity between two prob-
ability distributions under the Markov decision process.

Assumption 1. Let µ, ν ∈ P(Z × U) be two probability measures that are absolutely continuous
with respect to the Lebesgue measure on Z × U . Let {πt} be a sequence of joint policies for all
the agents, with πt : Z → P(U) for all time t. Suppose the initial state-action pair (z0, u0) has
distribution µ, and the action ut is sampled from the joint policy πt. For any integer m, we denote
by PπmPπm−1 · · ·Pπ1µ the distribution of {(zt, ut)}mt=1 under the policy sequence {πt}t=1,...,m.
Then, the m-th concentration coefficient is defined as

κ(m;µ, ν) = sup
π1,...,πm

[
Eν
∣∣∣d(PπmPπm−1 · · ·Pπ1µ)

dν

∣∣∣2]1/2 ,
where d(PπmPπm−1 · · ·Pπ1µ)/dν is the Radon-Nikodym derivative of PπmPπm−1 · · ·Pπ1µ with
respect to ν and the supremum is taken over all possible policies.

Furthermore, let ν be the stationary distribution of the samples {(zt, ut)} from the Markov decision
process and let µ be a fixed distribution on S ×U . We assume that there exists a constant φµ,ν such
that

(1− γ)2 ·
∑
m≥1

γm−1 ·m · κ(m;µ, ν) ≤ φµ,ν .
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To proceed further, we denote Q as the space of individual Q-functions and let

ω(Q) = sup
Q∈Q

inf
Q′∈Q

‖Q′ − TQ‖22,ν ,

where ‖ · ‖2,ν as the L2 norm with respect to a probability measure ν. In the following, we take ν as
the independent data sampling distribution in the FQI algorithm, e.g. experience replay [26].

We say a collection {Q1, . . . , QK} ⊆ Q is an δ-cover of Q if for each Q ∈ Q, there exists Qk such
that ‖Q−Qk‖ ≤ δ. The δ-covering number of Q with respect to ‖ · ‖ is

N(Q, δ, ‖ · ‖) := inf{K ∈ N : there is an δ-cover of Q with respect to ‖ · ‖}.

In the following, we take the L∞(Z × U) norm on Q by

‖Q−Q′‖L∞(Z×U) = sup
(z,u)∈Z×U

∣∣Q(z, u)−Q′(z, u)
∣∣.

For the sake of simplicity, we rewriteN(Q, δ, ‖ ·‖) asNδ. In Sec. B.3, we study the estimation error
of the joint action-value function and prove that the statistical error depends on lnN0/N , where N0

is the 1/N -cover of Q and N is the sample size. For the parameter sharing settings, the sample size
increases while the cover number also increases due to the smaller δ. Thus, we still do not know
whether the parameter sharing improves the convergence rate of the statistical error. So we present
a fine-grain analysis to discuss the convergence rate in Sec B.5.

B.2 USEFUL LEMMAS

Lemma 1. (Theorem 6.1 in [10]). For each agent i ∈ [n], we denote {Q̃i,t}0≤t≤T as the iterates
of FQI Algorithm. Let πi,t be the one-step greedy policy with respect to Q̃i,t, and let Qπi,t be the
action-value function corresponding to πi,t. Under Assumption 1, we have

‖Q∗i −Qπi,t‖1,µ ≤ 2φµ,νγ

(1− γ)2
max
t∈[T ]

‖TQ̃i,t−1 − Q̃i,t‖2,ν +
4γT+1

(1− γ)2
M. (7)

Proof: Please see Appx C.1 of [10] for a complete proof.

�

This lemma quantifies the error propagation procedure of each agent action-value functions through
each iteration of FQI Algorithm. The first term on the RHS is the one-step statistical error and will
not vanish even when the iteration goes to infinity (T → ∞). For more related error propagation
results, please refer to [11, 12, 22, 32, 40].

Lemma 2. (Theorem 6.2 in [10]). Let {(zij , uij)}j∈[N ] be N i.i.d. random variables. For each
j ∈ [N ], let rij and z′ij be the reward and the next state corresponding to (zij , uij). In addition, for
any fixed Q̃i,t−1 ∈ Q, we define yij = rij+γ ·maxu Q̃i,t−1(z′ij , u). Based on {(zij , uij , yij)}j∈[N ],
we define Q̃i,t as

Q̃i,t = arg min
Q∈Q

1

N

N∑
j=1

(
Q(zij , uij)− yij

)2
.

Then for any δ > 0, we have

‖TQ̃i,t−1 − Q̃i,t‖22,ν ≤ 4ω(Q) + C
M2

(1− γ)2
lnNδ
N

+ C
Mδ

1− γ
, (8)

where ω(Q) = supQ∈Q infQ′∈Q ‖Q′ − TQ‖2ν and Nδ is the δ-covering number of Q with respect
to the norm ‖ · ‖∞.
Proof: Please see Appx C.2 of [10] for a complete proof.
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B.3 INDIVIDUAL Q-FUNCTION

Theorem 1. We consider the separated strategy that each agent has its own action-value function
and reward. All agents’ learning process is independent. Suppose {Q̃i,t}0≤t≤T are the output of
FQI Algorithm for the agent i. Let πi,t be the one-step greedy policy with respect to Q̃i,t, and let
Qπi,t be the action-value function corresponding to πi,t. We rewrite

Qt =
(
Qπ1,t , Qπ2,t , . . . , Qπn,t

)
, and Q∗ =

(
Q∗1, Q

∗
2, . . . , Q

∗
n

)
.

Recall that 0 ≤ γ < 1 is the discount factor, the reward function is bounded, i.e., |r(s, u)| ≤ M , Q
is the space of individual Q-functions and ω(Q) = supQ∈Q infQ′∈Q ‖Q′ − TQ‖22,ν . Then, under
Assumption 1, we have

‖Q∗tot − F̂ (Qt)‖1,µ ≤ ‖Q∗tot − (w∗)>Q∗‖1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗(z,u)

)∥∥∥∥
1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN0

N
) +

4γT+1

(1− γ)2
M,

where N0 is the 1/N -covering number of Q with respect to the norm ‖ · ‖∞ and

Varn
(
Q∗(z,u)

)
=

1

n

n∑
i=1

(
Q∗i (zi, ui)−

1

n

n∑
i=1

Q∗i (zi, ui)

)2

.

Proof: It is easy to see that

‖Q∗tot − F̂ (Qt)‖1,µ
= ‖Q∗tot − F ∗(Q∗) + F ∗(Q∗)− F̂ (Q∗) + F̂ (Q∗)− F̂ (Qt)‖1,µ
≤ ‖Q∗tot − F ∗(Q∗)‖1,µ + ‖F ∗(Q∗)− F̂ (Q∗)‖1,µ + ‖F̂ (Q∗)− F̂ (Qt)‖1,µ. (9)

Here the first term at the RHS of (9):

‖Q∗tot − F ∗(Q∗)‖1,µ = ‖Q∗tot − (w∗)>Q∗‖1,µ (10)

represents the best achievable estimation error under the value decomposition assumption. Next we
consider the second term in the inequality (9):

‖F ∗(Q∗)− F̂ (Q∗)‖1,µ = ‖(w∗)>Q∗ − ŵ>Q∗‖1,µ
= ‖(w∗ − ŵ)>Q∗‖1,µ

For any given z = (z1, . . . , zn) and u = (u1, . . . , un),

(w∗ − ŵ)>Q∗(z,u) =

n∑
i=1

(w∗i − ŵi)Q∗i (zi, ui)

=

n∑
i=1

(w∗i − ŵi)

(
Q∗i (zi, ui)−

1

n

n∑
i=1

Q∗i (zi, ui)

)
.

The second equality holds since
∑n
i=1(w∗i −ŵi)×c = 0 for any constant c. By the Cauchy–Schwarz

inequality, we have

(w∗ − ŵ)>Q∗(z,u) ≤

√√√√ n∑
i=1

(w∗i − ŵi)2 ×

√√√√ n∑
i=1

(
Q∗i (zi, ui)−

1

n

n∑
i=1

Q∗i (zi, ui)

)2

= ‖w∗ − ŵ‖ ×
√
nVarn

(
Q∗(z,u)

)
where

Varn
(
Q∗(z,u)

)
=

1

n

n∑
i=1

(
Q∗i (zi, ui)−

1

n

n∑
i=1

Q∗i (zi, ui)

)2
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is the variance of the output vector of Q∗ given z and u. Plugging the positive upper boundary of
(w∗ − ŵ)>Q∗ into the expression of ‖F ∗(Q∗)− F̂ (Q∗)‖1,µ, we obtain that

‖F ∗(Q∗)− F̂ (Q∗)‖1,µ ≤
∥∥∥∥‖w∗ − ŵ‖ ·

√
n ·Varn

(
Q∗(z,u)

)∥∥∥∥
1,µ

=
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗(z,u)

)∥∥∥∥
1,µ

. (11)

Here the term ‖
√

Varn
(
Q∗(z,u)

)
‖1,µ stands for the diversity of the agents.

Finally, we deal with the third term on the RHS of (9). Notice that

‖F̂ (Q∗)− F̂ (Qt)‖1,µ = ‖
n∑
i=1

ŵi(Q
∗
i −Q

πt
i )‖1,µ

≤
n∑
i=1

ŵi‖Q∗i −Q
πt
i ‖1,µ.

Therefore, it suffices to consider the deep Q-learning procedure of each agent separately and to give
upper bound of ‖Q∗i −Q

πt
i ‖1,µ for each i ∈ [n]. According to (7) and (8),

‖Q∗i −Q
πt
i ‖1,µ ≤ 2φµ,νγ

(1− γ)2
max
t∈[T ]

‖TQ̃i,t−1 − Q̃i,t‖2,ν +
4γT+1

(1− γ)2
M

≤ 2φµ,νγ

(1− γ)2

√
4ω(Q) + C

M2

(1− γ)2
lnNδ
n

+ C ′
Mδ

1− γ
+

4γT+1

(1− γ)2
M

≤ 4φµ,νγ

(1− γ)2

√
ω(Q) + C

2Mφµ,νγ

(1− γ)3

√
lnNδ
N

+ C ′
2
√
Mφµ,νγ

(1− γ)5/2

√
δ +

4γT+1

(1− γ)2
M.

We take δ = 1/N and write N0 as the 1/N -covering number of Q. Then, we have

‖Q∗i −Q
πt
i ‖1,µ ≤ 4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN0

N
) +

4γT+1

(1− γ)2
M.

Furthermore,

‖F̂ (Q∗)− F̂ (Qt)‖1,µ ≤ 4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN0

N
) +

4γT+1

(1− γ)2
M. (12)

Combining the results of (10), (11) and (12), we know

‖Q∗tot − F̂ (Qt)‖1,µ ≤ ‖Q∗tot − (w∗)>Q∗‖1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗(z,u)

)∥∥∥∥
1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN0

N
) +

4γT+1

(1− γ)2
M.

�

Remark. The term
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗(z,u)

)∥∥∥∥
1,µ

shows the benefits of learning credit assignment, where w∗ stands for the best credit assignment
scheme. Here we assume ŵ is given and do not take the modelling and learning of ŵ into con-
sideration. In practice, ŵ is the output of a credit distribution network and its learning procedure
also influence the convergence properties of individual Q-functions. On the other hand, Varn(Q)
corresponds to the contribution-based role diversity in Sec. 3.3. Therefore, when the variance is
nonzero, a good credit assignment ŵ can the estimation error. For the parameter sharing case in
the next section, we decompose the variance term into the sum of a bias and a variance caused by
policy-based role diversity and the trajectory-based role diversity respectively. This decomposition
does not always hold. Here, we assume that all agents’ learning processes are independent and that
each agent has its own reward function. In practice, these assumptions are idealistic and limited.
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B.4 SHARED Q-FUNCTION

Theorem 2. We consider the parameter sharing strategy that all individual agents shares one action-
value function. Suppose {Q̃t}0≤t≤T are the output of FQI Algorithm. Let πt be the one-step greedy
policy with respect to Q̃t, and let Qπt be the action-value function corresponding to πt. We further
denote Q̄∗ as the optimal shared action-value function and write

Q̄t(z,u) =
(
Qπt(z1, u1), Qπt(z2, u2), . . . , Qπt(zn, un)

)
,

Q̄∗(z,u) =
(
Q̄∗(z1, u1), Q̄∗(z2, u2), . . . , Q̄∗(zn, un)

)
.

Recall that 0 ≤ γ < 1 is the discount factor, the reward function is bounded, i.e., |r(s, u)| ≤ M , Q
is the space of individual Q-functions and ω(Q) = supQ∈Q infQ′∈Q ‖Q′ − TQ‖22,ν . Then, under
Assumption 1, we have

‖Q∗tot − F̂ (Q̄t)‖1,µ ≤ ‖Q∗tot − (w∗)>Q∗‖1,µ +

∥∥∥∥∥
n∑
i=1

w∗i (Q
∗
i − Q̄∗)

∥∥∥∥∥
1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q̄∗(z,u)

)∥∥∥∥
1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN ′0
nN

) +
4γT+1

(1− γ)2
M.

where N ′0 is the 1/(nN)-covering number of Q with respect to the norm ‖ · ‖∞ and

Varn
(
Q̄∗(z,u)

)
=

1

n

n∑
i=1

(
Q̄∗(zi, ui)−

1

n

n∑
i=1

Q̄∗(zi, ui)

)2

.

Proof: Similar to the arguments in (9), we have

‖Q∗tot − F̂ (Q̄t)‖1,µ ≤ ‖Q∗tot − F ∗(Q∗)‖1,µ + ‖F ∗(Q∗)− F ∗(Q̄∗)‖1,µ
+‖F ∗(Q̄∗)− F̂ (Q̄∗)‖1,µ + ‖F̂ (Q̄∗)− F̂ (Q̄t)‖1,µ. (13)

The term ‖Q∗tot−F ∗(Q∗)‖1,µ caused by the value decomposition is the same to that in (9). So (10)
still holds. For the second term on the RHS of (13),

‖F ∗(Q∗)− F ∗(Q̄∗)‖1,µ = ‖(w∗)>(Q∗ − Q̄∗)‖1,µ

=

∥∥∥∥∥
n∑
i=1

w∗i (Q
∗
i − Q̄∗)

∥∥∥∥∥
1,µ

,

which is the bias term caused by the parameter sharing. Next, we turn to a turn that is related to the
trajectory-based role diversity. Similar to (11), we know(

F ∗(Q̄∗)− F̂ (Q̄∗)
)
(z,u) = (w∗ − ŵ)>Q̄∗(z,u)

=

n∑
i=1

(w∗i − ŵi)Q̄∗(zi, ui)

=

n∑
i=1

(w∗i − ŵi)

(
Q̄∗(zi, ui)−

1

n

n∑
i=1

Q̄∗(zi, ui)

)

=
√
n× ‖w∗ − ŵ‖ ×

√
Varn

(
Q̄∗(z,u)

)
.

On the other hand, by (7) and (8),

‖Q∗ −Qπt‖1,µ ≤ 2φµ,νγ

(1− γ)2
max
t∈[T ]

‖TQ̃t−1 − Q̃t‖2,ν +
4γT+1

(1− γ)2
M

≤ 2φµ,νγ

(1− γ)2

√
4ω(Q) + C

M2

(1− γ)2
lnNδ
nN

+ C ′
Mδ

1− γ
+

4γT+1

(1− γ)2
M

≤ 4φµ,νγ

(1− γ)2

√
ω(Q) + C

2Mφµ,νγ

(1− γ)3

√
lnNδ
nN

+ C ′
2
√
Mφµ,νγ

(1− γ)5/2

√
δ +

4γT+1

(1− γ)2
M.

19



Under review as a conference paper at ICLR 2022

We take δ = 1/(nN) and write N ′0 as the 1/(nN)-covering number of Q. Then, we have

‖Q∗ −Qπt‖1,µ ≤ 4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN ′0
nN

) +
4γT+1

(1− γ)2
M.

Therefore,

‖F̂ (Q̄∗)− F̂ (Q̄t)‖1,µ ≤ 4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN ′0
nN

) +
4γT+1

(1− γ)2
M.

Summarizing the above results, we have

‖Q∗tot − F̂ (Q̄t)‖1,µ ≤ ‖Q∗tot − (w∗)>Q∗‖1,µ +

∥∥∥∥∥
n∑
i=1

w∗i (Q
∗
i − Q̄∗)

∥∥∥∥∥
1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q̄∗(z,u)

)∥∥∥∥
1,µ

+
4φµ,νγ

(1− γ)2

√
ω(Q) +O(

√
lnN ′0
nN

) +
4γT+1

(1− γ)2
M.

�

B.5 CONVERGENCE RATE

Similar to the Theorem 4.4 in [10], we assume that Q belongs to a family of sparse ReLU networks
and TQ can be written as compositions of Hölder smooth functions. Here T is the optimal Bellman
operator. We start with the definition of a (L+ 1) layers and {dj}L+1

j=1 width ReLU networks:

f(x) = WL+1σ(WLσ(WL−1 . . . σ(W2σ(W1x+ v1) + v2) . . . vL−1) + vL),

where σ is the ReLU activation function, and Wl and vl are the weight matrix and the bias in the
l-th layer, respectively. The family of sparse ReLU networks is defined as

F(L, {dj}L+1
i=0 , s) =

{
f : max

l∈[L+1]
‖W̃l‖∞ ≤ 1,

L+1∑
l=1

‖W̃l‖0 ≤ s, max
j∈[dL+1]

‖fj‖∞ ≤
M

1− γ

}
,

where W̃l is the parameter matrix that containsWl and vl and fj is the j-th output of f. On the other
hand, the set of Hölder smooth functions is

Cr(D, β,H) =

f : D → R :
∑

α:|α|<β

‖∂αf‖∞ +
∑

α:‖α‖1=bβc

sup
x,y∈D,
x 6=y

|∂αf(x)− ∂αf(y)|
‖x− y‖β−bβc∞

≤ H

 ,

whereD is a a compact subset of Rr, b·c stands for the floor function and ∂α = ∂α1∂α2 · · · ∂αr with
α = (α1, α2, . . . , αn)>. Furthermore, we write G({pj , tj , βj , Hj}j∈[q]) as the family of functions
that can be decomposed into the composition of a sequence of Hölder smooth functions {gj}j∈[q].
That is, for any function f ∈ G({pj , tj , βj , Hj}j∈[q]),

f = gq ◦ gq−1 ◦ · · · ◦ g2 ◦ g1,
where for any k ∈ [pj+1] and j ∈ [q], the k-th component of the function gj is a Hölder smooth
function, i.e., gjk ∈ Ctj ([aj , bj ]tj , βj , Hj). For simplicity, we take pj+1 = 1. Here we assume that
the input of gjk is tj-dimensional, where tj can be much smaller than pj . More specific, the deep Q
network we used is a sparse ReLU network for any given action u. Therefore, we rewrite the space
of individual Q-functions Q as

F0 = {f : S × U → R : f(, u) ∈ F(L, {dj}L+1
j=0 , s) for any u ∈ U}.

Furthermore, for any Q ∈ F0, we assume TQ is a composition of Hölder smooth functions and
belongs to the following family:

G0 = {f : S × U → R : f(, u) ∈ G({pj , tj , βj , Hj}j∈[q]) for any u ∈ U}.
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To proceed further, we denote

α∗ = max
j∈[q]

tj
2β∗j + tj

, β∗j = βj ×
∏
l=j+1

min(βl, 1), and β∗q = 1.

Now we are ready to state the following result.

Theorem 3. Suppose the assumptions of Theorem 1 hold and for any Q ∈ F0, TQ ∈ G0, where
T is the optimal Bellman operator. The sample size N is sufficiently large such that there exists a
constant ξ > 0 satisfies

max


q∑
j=1

(tj + βj + 1)3+tj ,
∑
j∈[q]

ln(tj + βj), max
j∈[q]

pj

 . (lnN)ξ.

The network architecture of the Q-function is well designed such that

L . (lnN)ξ
∗
, r ≤ min

j∈[L]
dj ≤ max

j∈[L]
dj . N

ξ∗ , and s � Nα∗(lnN)ξ
∗

for some constant ξ∗ > 1 + 2ξ. The number of iterations T is sufficiently large, such that

T ≥ C ′(1− α∗) lnN,

where C ′ is a constant. Then, under Assumption 1, we have

‖Q∗tot − F̂ (Qt)‖1,µ ≤ ‖Q∗tot − (w∗)>Q∗‖1,µ

+
√
n× ‖w∗ − ŵ‖ ×

∥∥∥∥√Varn
(
Q∗(z,u)

)∥∥∥∥
1,µ

+O

(
(lnN)1+2ξ∗N

−minj∈[q]
β∗j

2β∗
j
+tj

)
.

Proof: This is a direct conclusion reached by Theorem 4.4 in [10]. That is, for any agent i ∈ [n],

‖Q∗i −Qπi,t‖1,µ ≤ O
(

(lnN)1+2ξ∗N (α∗−1)/2
)

+
4γT+1

(1− γ)2
M.

The approximation error in Theorem 1 that involves ω(Q) is bounded above via Theorem 5 in [41].
The upper bound for the cover number N0 is derived from Theorem 14.5 in [2]. Please refer to
Section 6 in [10] and Sec. B.3 for a complete proof.

�

Remark: Note that

4γT+1

(1− γ)2
M → 0 as T →∞,

which is the algorithmic error that converges to zero at a linear rate of T. In Theorem 3, we assume
T is sufficiently large such that this error is negligible comparing to the statistical error. If we ignore
the logarithmic term, the convergence rate of the statistical error is about

max
j∈[q]

N
−

β∗j
2β∗
j
+tj .

Here β∗j and tj are parameters of the functional space of TQ. Therefore, the parameter sharing
(Sec. 5.1) keeps β∗j and tj unchanged and increases the sample size N to nN by pooling train-
ing data. In addition, tj is the number of active input variables of gj . Thus, the communication
mechanism (Sec. 5.2) slows down the convergence rate by enlarging tj .
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C OBSERVATION OVERLAP PERCENTAGE CALCULATION

C.1 OVERLAP PERCENTAGE CALCULATION IN GAMES

In this part, we demonstrate how to calculate the observation overlap percentage in SMAC [39]. As
the partial observable area is circular, and the coordinate system is a 2D map with axis X and Y, the
observation overlap on one battle scenario can be computed as:

l =
√

(xa0 − xa1) · (xa1 − xa0) + (ya0 − ya1) · (ya1 − ya0)

p = (1 + 2 · r)/2

s = 2 ·
√
p · (p− l) · (p− r) · (p− r)

o = 2 · cos−1(l/(2 · r)) · r · r − s
da0,a1T = o/(π · r2)

(14)

Here r is the vision scope. Notice that if l < 2r, dT equals zero as no overlap exists. We provide the
observation overlap curve in Fig. 2b to show how trajectory-based role distance varies in one game.

C.2 OVERLAP PERCENTAGE CALCULATION IN REAL WORLD SCENARIO (SEMANTIC)

Kitchen

Living RoomBedroom 1

Bathroom (target)

Bedroom 2

Blue agent’s from balcony to living room:

Trajectory: green plants, sofa, coffee table, television

I want to find the bathroom with a shower and a toilet. The 

bathroom is opposite the bedroom. There is a bed and cabinets

in the bedroom. On the right side of the bedroom is the living 

room. There is a sofa, a television and a coffee table in the 

living room. The opposite of the living room is the kitchen. The 

kitchen has a dining table, dining chairs, and stove. The balcony

is on the right side of the kitchen, there are chairs and green 

plants on the balcony.

Green agent’s from living room to kitchen:

Trajectory: television, sofa, dining table, stove

Orange agent’s from bedroom 2 to bedroom 1:

Trajectory: bed, cabinets, bed

Bounding Box Trajectory Shared Detected Object

Figure 5: A multi-agent visual language navigation task. Agents are initialized in different locations
and the target description is given. Agents need to cooperate with each other to find the target
location according to the description as soon as possible.

In this part, we demonstrate how to apply the observation overlap concept and trajectory-based role
diversity calculation (Eq. 3) to real-world scenarios. Different from game scenarios like SMAC and
MPE, the observation of real-world tasks is usually an image. For example, in the vision language
navigation task (VLN[1]), agents take real indoor scene pictures as the input, combine them with
language description to locate the target as shown in Fig. 5. Considering the learning efficiency, ob-
ject detection techniques like YOLO[36] and FasterRCNN[37] are used in VLN to help extract the
objects from the scene pictures as semantic information. The semantic information can be recorded
as part of the agents’ trajectory, enabling agents to use the past information for future decisions.
Under the multi-agent setting, agents are required to cooperate and find the target together. There-
fore, trajectory overlap should be avoided, which means that large trajectory-based role diversity is
preferred in this task, and policies that cause trajectory overlap should be punished. Directly using
scene pictures as input or its feature pattern can bring large noise in observation overlap calculation.
Instead, using semantic information from the detected object can significantly reduce the noise and
serve as a good observation history representation. As shown in Fig. 5, the red dotted frames indicate
that the blue agent and green agent share some similar observation semantic in their trajectories. In
this way, the trajectory-based role diversity of multi-agent VLN task can be calculated the same as
Eq. 3. Only the da0,a1T is replaced by the observation semantic overlap, which is the shared detected
object percentage in total detected objects. In this way, without knowing the exact trajectory, we
still manage to calculate the trajectory distance. And using overlap to represent the trajectory-based
role diversity, we can keep this metric in a fixed range from 0 to 1.
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C.3 OVERLAP PERCENTAGE CALCULATION IN REAL WORLD SCENARIO (RAW)

Pretrained BackboneObservationAgent Feature vector

.
x Vector wise

Channel wise

Overlap calculation (2 ways)

…

0

Threshold

1 1

Overlap

N 0 and M 1

=

Overlap

M/(N+M)

= cosine similarity

Figure 6: Using real images as observation overlap percentage calculation. Two methods are pro-
posed including vector-wise cosine similarity and channel-wise threshold-based similarity percent-
age. A detailed discussion can be found in Sec. C.3

It is also possible that we can get observation overlap directly based on real image MARL tasks. As
showed in Fig. 6. Passing the input image to pre-trained CNN/Transformer backbone and getting
its feature, we can use cosine similarity or channel-wise similarity to compute the overlap between
different observation features as da0,a1T in Eq. 3. However, these methods can bring large noise to
this metric. Moreover, how to stabilize the reinforcement learning with real pictures as input is still
under investigation. In addition, it is rare in MARL tasks that the only information provided in the
training stage is one single image. Location and communication are necessary auxiliary information
to help learn the coordination of agents in most MARL tasks. Therefore, simply using the raw image
to calculate the observation overlap can be a choice, but not the best choice.

D TYPES OF ROLE

We present two illustration figures for different types of role based on MPE [28] and SMAC [39].
Fig. 7 is based on MPE. Grey circles and black circles represent agents and goals respectively.
Dashed arrows in different colors represent different actions. Larger circles receive more rewards
when they reach the goal.

(a) policy-based role (b) trajectory-based role (c) contribution-based role

Figure 7: An illustration of different role based on MPE.

Fig. 8 is based on SMAC. A detailed explanation can be found in the caption.

E CONNECTIONS OF DIFFERENT ROLES

Is there any redundancy in the definition of different kinds of role diversity in Sec. 3? Here we
discuss the connections of different role diversity.

From the theoretical perspective, the contribution-based role diversity is a compound description
of role diversity. It corresponds to the variance term in (5). For the parameter sharing case, we
decompose this variance into a sum of two terms: a bias term corresponds to the policy-based role
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Types of role difference

Type 1: policy based role difference

t

t-2

t-1

t+1

t+2

t

t-2

t+2

t

t-2

t+2

Move

Attack

Agent 1:  

Role: move-move-move-move

Target: Attract the enemy

Agent 2&3:

Role: attack-move-attack-move

Target: Fight the enemy

(a) Policy-based role difference in a period from t-2
to t+2. Action statistic shows only two different roles
among three agents.

Types of role difference
Type 2: trajectory based role difference

t

t-2

t-1

t+1

t+2

t
t-2

t+2

t
t-2

t+2

Trajectory of agent 1

Trajectory of agent 2

Move

Trajectory of agent 3

Observation overlap

Observation scope

(b) Trajectory-based role difference in a period
from t-2 to t+2. The area covered by the grey dot-
ted line is the observation overlap of agents 2 and
3. There is no overlap for agent 1.

Types of role difference

Type 3: agent attributes based role difference

(c) Contribution-based role difference depends on agents’ original attributes including attack method
and defense.

Figure 8: Illustration of policy-based role, trajectory-based role, and contribution-based role on real
scenarios from SMAC.

Scenario Semantic Policy Diversity Real Policy Diversity Trajectory Diversity (overlap) Contribution Diversity (max Q)
4m vs 5m 1.5 9.1 0.47 0.13
3s vs 5z 2.7 18.7 0.21 0.09
4m vs 4z 3.3 19.3 0.31 0.06
4m vs 3z 3.8 12.1 0.35 0.25

1c1s1z vs 1c1s3z 8.7 22.0 0.40 0.03
1s1m1h1M vs 3z 2.4 13.2 0.41 0.61
1s1m1h1M vs 4z 2.7 15.8 0.25 0.75
1s1m1h1M vs 5z 6.2 22.5 0.18 0.82

Table 4: Different role diversities on different scenarios from SMAC. The minimum value of one
column is labeled in green and the largest value is labeled in red. Detailed analysis can be found in
Appx. E.

diversity and a variance term corresponds to the trajectory-based role diversity. Therefore, under the
simple scenario in Sec. 4, we can find a clear relationship between different role diversity.

From the experiment perspective, the decomposition in (6) may not hold because of the more compli-
cated settings. We have discussed this issue in the remark on Page 18. Here we collect all different
role diversity data in Table. 4. We find scenarios like 3s vs 5z have relatively small diversity in
the policy-based role while the observation overlap of trajectory diversity is small. Scenarios like
4m vs 5m have small policy-based role diversity while the observation overlap is large. Contribute-
based role diversity can not be inferred from the policy diversity and trajectory diversity, and is more
depending on the agents’ behavior difference.

In conclusion, the relationship between different roles exists in MARL training theoretically, while
this relationship is not so significant in the experimental perspective due to more complicated set-
tings of the real MARL tasks. Yet the strong relation between different role diversity and the MARL
training process still exists with no conflict with the conclusion of this paper.
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F PARAMETER SHARING

Four different parameter sharing strategies are tested in our experiment including shared, no shared,
partly shared, and selectively shared[8]. For partly shared, we only shared the GRU cell across dif-
ferent agents while keeping the embedding layer of the policy function model separated for each
agent. For selectively shared strategy, we reproduce the grouping results following[8]. An illustra-
tion figure can be found in Fig. 9.

Environment Environment Environment

Separated Fully Shared Partly Shared

Environment

Selectively Shared

Figure 9: An overview of how knowledge sharing works with the MARL framework. Fully shared,
partly shared, no shared (separated), and selectively shared[8] strategies are shown here. The same
color indicates the same policy function part across different agents. Dash line represent only sharing
no gradient backpropagation.

F.1 SELECTIVELY SHARING THE PARAMETER

Here we provide the selective parameter sharing strategy result in Table. 5 as a supplement for Ta-
ble. 1. The main purpose for doing so is to verify whether this method can serve as a general solution
for parameter sharing strategy choosing issue. Selective parameter sharing strategy partitions the
agents into the different groups automatically with an encoder-decoder model. However, the parti-
tion process is before the MARL training stage, which can not fully catch the policy difference. And
according to the grouping result column in Table. 5, the selective parameter sharing strategy tends
to divide agents by their initial attributes. This works well in scenarios like 1s1m1h1M vs 4z and
1c1s1z vs 1c1s3z but ignores the fact that the same type of agents may evolve to different functions
during MARL training, which is the weakness of the selective parameter sharing strategy.

Benchmark Scenario Role Diversity Warm up No shared Shared Selectively shared Grouping results
4m vs 5m 1.5 / 9.1 6.5 +3.6 / +4.4 +5.4 / +6.1 +5.4 / +6.1 all shared
3s vs 5z 2.7 / 18.7 5.4 +7.5 / +11.0 +8.2 / +11.8 +8.2 / +11.8 all shared

2m 3.1 / 12.2 6.0 +9.2 / +11.1 +18.1 / +17.6 +18.1 / +17.6 all shared
4m vs 4z 3.3 / 19.3 4.4 + 8.8 / +12.7 +5.4 / +8.4 + 8.1 / +11.7 2m+2m
4m vs 3z 3.8 / 12.1 7.2 +12.4 / +12.1 +11.9 / +12.3 +12.6 / +12.2 2m+2m
3s vs 4z 5.2 / 32.5 4.8 +2.2 / +4.5 +0.9 / +1.2 +0.9 / +1.2 all shared

1c1s1z vs 1c1s3z 8.7 / 22.0 11.8 +4.1 / +6.1 +2.7 / +5.4 +4.1 / +6.1 1c+1s+1z
1s1m1h1M vs 3z 2.4 / 13.2 16.2 +3.4 / + 3.4 +3.4 / +3.6 +3.4 / + 3.4 1s+1m+1h+1M
1s1m1h1M vs 4z 2.7 / 15.8 8.2 +7.8 / +11.6 +5.3 / +10.0 +7.8 / +11.6 1s+1m+1h+1M

SMAC

1s1m1h1M vs 5z 6.2 / 22.5 6.2 +6.4 / +9.1 +3.7 / +6.1 +6.4 / +9.1 1s+1m+1h+1M

Table 5: Model performance including selective parameter sharing as a supplement to Table. 1. The
grouping result is provided in the last column.

G COMMUNICATION FRAMEWORK

The communication mechanism is important for MARL. The information shared can be location,
action, and partial observation as showed in Fig. 10a. In many cases, communication is optional
where the agent should learn when to communicate and how to ingest the information (dash line in
Fig. 10b). In our experiment, we only consider the observation sharing method where the support set
of policy functions contains both self partial observation and the aggregated observation information
from other agents. The aggregated information is obtained by getting the mean value of other agents’
observation and concatenate with the self partial observation. This means the support set of policy
functions is now much similar to the global state.
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info sharing

observation

RL

supervised

policy of agent 3

policy for agent 2

policy of agent 1

predict agent 1’s policy

predict agent 3’s policy

supervised

RL

(a) Communicate with others: where I am, what I
see and what I will do

Env

communication

interaction

(b) Communication is optional during optimization.

Figure 10: Communication works as a supplement part for MARL under the CTDE framework.
(a) The sharing information can be current status or future policy, as the extra information for the
decision making. (b) Learning when and how to communicate is critical to help policy learning.

H CREDIT ASSIGNMENT

Credit assignment is the key part module for cooperative MARL, especially for the value
decomposition-based method as it leverages the reward signal to each agent by approximate the
Qtot. Then the learned individual policies combine to form a joint policy interacting with the MAS.

Global Reward

Credit Assignment

Individual Reward 1 Individual Reward 2 Individual Reward 3

ENV

Joint Policy

Figure 11: Credit assignment method focuses on assigning the proper individual reward from the
total reward to update.

I EXPERIMENT TABLE & CURVE

Benchmark Scenario Sharing IQL IA2C MADDPG MAPPO MAA2C QMIX
no shared 19.4 / 53.0 / 52.6 1.4 / 13.1 / 14.7 3.3 / 2.5 / 2.3 1.1 / 55.6 / 47.2 0.6 / 11.3 / 47.9 2.4 / 15.2 / 22.5Tag sharedX 16.8 / 50.3 / 47.9 1.0 / 16.6 / 27.5 3.1 / 5.9 / 32.8 1.4 / 40.0 / 45.9 0.8 / 42.1 / 60.9 2.9 / 23.3 / 36.0
no shared 15.8 / 16.3 / 16.7 17.1 / 19.7 / 19.9* 16.8 / 19.0 / 16.0* 18.8 / 20.1 / 20.8* 15.3 / 19.6 / 20.4* 13.3 / 16.1 / 16.5Adversary shared 15.3 / 15.8 / 15.5 16.7 / 19.9 / 20.3* 16.5 / 18.4 / 16.4* 19.8 / 19.9 / 20.5* 17.9 / 19.8 / 20.4* 14.8 / 17.3 / 17.3

no sharedX 7.1 / 59.4 / 59.8 0.3 / 59.9 / 64.1 5.3 / 10.5 / 11.6* 0.6 / 63.0 / 63.7 0.2 / 41.6 / 63.8 0.5 / 0.9 / 9.5DoubleSpread-2 shared 4.3 / 5.4 / 8.0 0.2 / 7.9 / 11.1 5.3 / 10.5 / 11.6* 3.1 / 25.6 / 56.5 0.3 / 10.1 / 19.2 0.6 / 4.3 / 6.0
no sharedX 32.2 / 144.3 / 212.2 12.3 / 436.4 / 480.8 1.1 / 1.2 / 1.3* 47.0 / 261.4 / 261.1 4.7 / 343.6 / 390.5 3.2 / 3.2 / 2.9*

MPE

DoubleSpread-4 shared 31.3 / 29.1 / 20.1 18.6 / 83.4 / 106.3 4.9 / 1.2 / 1.3* 61.9 / 291.7 / 504.8 32.7 / 94.4 / 231.0 3.8 / 3.5 / 3.2*
no shared 4.8 / 7.6 / 8.1* 6.4 / 6.6 / 6.7 2.5 / 2.4 / 1.1 6.9 / 7.1 / 7.2* 6.6 / 7.0 / 7.1* 7.0 / 9.9 / 10.94m vs 5m sharedX 5.1 / 8.1 / 8.5* 5.8 / 7.1 / 7.9 4.7 / 4.0 / 3.1 7.0 / 7.1 / 7.2* 6.9 / 7.0 / 7.1* 6.9 / 12.4 / 13.3
no shared 4.6 / 5.1 / 7.9* 4.2 / 4.3 / 4.4* 2.8 / 4.1 / 4.5 4.3 / 6.0 / 6.1 4.1 / 4.4 / 5.3 4.6 / 13.5 / 17.03s vs 5z sharedX 4.3 / 5.3 / 7.8* 4.1 / 4.4 / 4.4* 3.3 / 4.5 / 5.1 5.7 / 6.9 / 6.5* 4.1 / 5.8 / 6.0 4.2 / 12.9 / 20.0

no sharedX 10.8 / 12.3 / 12.2 11.0 / 11.4 / 11.5 9.5 / 13.4 / 13.5* 11.1 / 12.9 / 13.5 10.2 / 11.6 / 12.2 12.9 / 17.8 / 19.41c1s1z vs 1c1s3z shared 9.8 / 11.2 / 11.9 9.0 / 9.2 / 9.4 9.7 / 12.8 / 13.4 10.7 / 12.2 / 12.6 9.7 / 10.6 / 11.0 12.5 / 15.8 / 18.4
no sharedX 3.3 / 3.2 / 3.7 2.6 / 4.0 / 5.4 2.4 / 2.0 / 3.0 4.3 / 4.5 / 4.5* 4.0 / 4.6 / 4.5* 4.3 / 18.3 / 18.8

SMAC

4m vs 4z shared 2.6 / 3.2 / 3.2 3.7 / 3.9 / 3.9 3.2 / 2.9 / 1.4 4.1 / 4.2 / 4.3* 3.8 / 4.1 / 4.2* 4.3 / 14.8 / 16.5

Table 6: Policy-based role diversity influence the performance of different parameter sharing strate-
gies on the MPE [28] and SMAC [39] benchmarks.
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scenario obs overlap baseline communication scenario obs overlap baseline communication
6.6 / 11.5 / 11.4 7.7 / 19.6 / 19.44m vs 5m 0.47 6.5 / 10.1 / 10.9 +1.4 +0.5 4m vs 3z 0.37 7.5 / 19.6 / 19.3 0.0 +0.1
12.4 / 15.7 / 18.1 5.4 / 12.4 / 15.51c1s1z vs 1c1s3z 0.40 12.3 / 15.9 / 17.9 -0.2 +0.2 3s vs 5z 0.21 5.4 / 12.9 / 16.4 -0.5 -0.9
4.1 / 15.9 / 18.3 7.9 / 13.2 / 19.04m vs 4z 0.32 4.3 / 13.2 / 17.1 +2.7 +1.2 1s1m1h1M vs 4z 0.25 8.4 / 16.0 / 19.8 -2.8 -0.8

Table 7: Model performance with and without communication. The performance is recorded in the
’warmup performance / half steps performance / final performance’ pattern. Detailed analysis can
be found in Sec. 5.2.
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Figure 12: Policy learning curve with different parameter sharing strategies.
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Figure 13: Policy learning curve with and without communication on different scenarios.
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Figure 14: Policy learning curve with different vision scope (6-9-18).

(a) 3s vs 5z (b) 4m vs 3z (c) 4m vs 4z (d) 4m vs 5m

(e) 1c1s1z vs 1c1s3z (f) 1s1m1h1M vs 3z (g) 1s1m1h1M vs 4z (h) 1s1m1h1M vs 5z

Figure 15: Observation overlap curve of one episode game on different battle scenarios. The
policy is trained using VDN[48] and no parameter sharing. We also provide the curve of game
progress(equals to the enemy health), ally in scope and ally alive. All values are normalized from 0
to 1.
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(a) 3s vs 5z (b) 4m vs 3z (c) 4m vs 4z (d) 4m vs 5m

(e) 1c1s1z vs 1c1s3z (f) 1s1m1h1M vs 3z (g) 1s1m1h1M vs 4z (h) 1s1m1h1M vs 5z

Figure 16: Policy based role diversity(real) in one episode.

(a) 3s vs 5z (b) 4m vs 3z (c) 4m vs 4z (d) 4m vs 5m

(e) 1c1s1z vs 1c1s3z (f) 1s1m1h1M vs 3z (g) 1s1m1h1M vs 4z (h) 1s1m1h1M vs 5z

Figure 17: Policy based role diversity(semantic) in one episode.

(a) 3s vs 5z (b) 4m vs 3z (c) 4m vs 4z (d) 4m vs 5m

(e) 1c1s1z vs 1c1s3z (f) 1s1m1h1M vs 3z (g) 1s1m1h1M vs 4z (h) 1s1m1h1M vs 5z

Figure 18: Q value curve in one episode on different scenarios.
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