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Abstract

Many machine learning applications, such as feature selection, recommendation, and social
advertising, require the joint optimization of the global utility and the representativeness
for different groups of items or users. To meet such requirements, we propose a novel multi-
objective combinatorial optimization problem called Submodular Maximization with Fair
Representation (SMFR), which selects subsets from a ground set, subject to a knapsack
or matroid constraint, to maximize a submodular (utility) function f as well as a set of d
submodular (representativeness) functions g1, . . . , gd. We show that the maximization of f
might conflict with the maximization of g1, . . . , gd, so that no single solution can optimize
all these objectives at the same time. Therefore, we propose a Pareto optimization approach
to SMFR, which finds a set of solutions to approximate all Pareto-optimal solutions with
different trade-offs between the objectives. Our method converts an instance of SMFR into
several submodular cover instances by adjusting the weights of the objective functions; then
it computes a set of solutions by running the greedy algorithm on each submodular cover
instance. We prove that our method provides approximation guarantees for SMFR under
knapsack or matroid constraints. Finally, we demonstrate the effectiveness of SMFR and
our proposed approach in two real-world problems: maximum coverage and recommendation.

1 Introduction

The problem of subset selection aims to pick a maximum utility subset S, under a given constraint, from a
ground set V of items. This fundamental problem arises in a wide range of machine learning applications,
such as social advertising (Kempe et al., 2003; Aslay et al., 2015; 2017; Tang, 2018), recommendation
systems (Ohsaka & Matsuoka, 2021; Mehrotra & Vishnoi, 2023), data summarization (Lin & Bilmes, 2010;
Mirzasoleiman et al., 2016), and feature selection (Liu et al., 2013; Bao et al., 2022), to name just a few.
A common combinatorial structure in such problems is submodularity (Krause & Golovin, 2014), which
naturally captures the “diminishing returns” property: adding an item to a smaller set produces a higher
marginal gain than adding it to a larger set. This property not only captures the desirable properties of
coverage and diversity of subsets, but also enables the design of efficient approximation algorithms.

Among the various combinatorial optimization problems for subset selection in the literature, maximizing
a monotone submodular function subject to a knapsack constraint (SMK) or a matroid constraint (SMM)
has attracted a lot of attention, as such constraints capture common scenarios in which the selected subset
must be limited within a budget (Krause & Guestrin, 2005; Călinescu et al., 2011).
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More formally, given a ground set V of n items, we consider a set function f : 2V → R+ to measure the utility
f(S) of any set S ⊆ V . We assume that f is normalized, i.e., f(∅) = 0, monotone, i.e., f(S) ≤ f(T ) for any
S ⊆ T ⊆ V , and submodular, f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ) for any S ⊆ T ⊆ V and v ∈ V \ T .
We also consider a cost function c : V → R+ which assigns a positive cost c(v) to each item v ∈ V , and we
denote c(S) the cost of a set S ⊆ V , defined as the sum of costs for all items in S, i.e., c(S) =

∑
v∈S c(v).

For a given budget k ∈ R+, the set of all feasible solutions subject to the knapsack constraint contains all
subsets of V whose costs are at most k, i.e., Ik = {S ⊆ V : c(S) ≤ k}. The SMK problem on f is defined
as S∗

f = arg maxS∈Ik
f(S). Furthermore, a matroid M on a ground set V is defined by a collection I(M)

of subsets of V called the independent sets, that satisfies the following properties: (1) ∅ ∈ I(M); (2) for
any S ⊂ T ⊆ V , if T ∈ I, then S ∈ I(M) holds; (3) for any S, T ⊆ V , if |S| < |T |, there exists v ∈ T \ S
such that S ∪ {v} ∈ I(M). Here, the size of the maximum independent sets in M is called its rank r(M).
Similarly to SMK, the SMM problem on f is defined as S∗

f = arg maxS∈I(M) f(S).

In many real-world problems, in addition to the primary objective of maximizing the utility function f , it is
often essential to take into account the representativeness with respect to different groups of items or users.
For example, consider the influence maximization problem (Tsang et al., 2019; Becker et al., 2020):
Example 1. Let G = (V, E) be a graph that denotes the relationships between a set of users V on a social
network. Each user v ∈ V is also associated with a sensitive attribute A to divide V into multiple protected
groups. The influence maximization (IM) problem (Kempe et al., 2003) aims to select a subset S ⊆ V
of users as seeds to maximize a (monotone, submodular) influence spread function under an information
diffusion (e.g., independent cascade or linear threshold) model. If the information to be spread is related to
education and employment opportunities, fair access to information between protected groups (Tsang et al.,
2019; Becker et al., 2020) becomes a critical issue. This is often formulated as maximizing the influence
spread functions specific to all protected groups in a balanced manner so that none of the groups is much
worse off than the others. Furthermore, we should also impose constraints in different contexts on the seed
set S, e.g., to limit the overall budget for the propagation campaign, the total cost of S should be within an
upper bound (knapsack constraint), or to ensure diversity, the number of seeds in S from any demographic
category cannot exceed an upper limit (matroid constraint).

The above problem, as well as many other subset selection problems with fairness or other representativeness
considerations (Krause et al., 2008; Mirzasoleiman et al., 2016; Wang et al., 2024), can be formulated as a
multi-objective optimization problem of selecting a set S to simultaneously maximize a monotone submodular
utility function f and a set of d monotone submodular representativeness functions g1, . . . , gd, all defined on
the same ground set V , subject to a knapsack or matroid constraint I:

max
S∈I

(f(S), g1(S), . . . , gd(S)) . (1)

We call this problem Submodular Maximization with Fair Representation (SMFR)1 since it captures the
case where the submodular utility function f and all the submodular representativeness functions g1, . . . , gd

are maximized at the same time to avoid under-representing any of them.

Our Contributions. To the best of our knowledge, SMFR is a novel optimization problem, never addressed
before (see Section 2 for a detailed discussion of how the related literature differs from SMFR). It is easy to
see that SMFR is at least as hard as SMK and SMM, which cannot be approximated within a factor better
than 1−1/e unless P = NP (Feige, 1998). However, SMFR is much more challenging than SMK and SMM
due to its multi-objective nature. By providing a counterexample (see Example 2), we show that there might
not exist any single solution to an instance of SMFR that achieves an approximation factor greater than 0 to
maximize f and g1, . . . , gd at the same time, even when d = 1. Due to the inapproximability of SMFR, we
consider approaching it by Pareto optimization. Specifically, we call a set S an (α, β)-approximate solution
for an instance of SMFR if S ∈ I, f(S) ≥ αOPTf , where OPTf = maxS′∈I f(S′), and gi(S) ≥ βOPTgi

for all i = 1, . . . , d, where OPTgi
= maxS′∈I gi(S′). An (α, β)-approximate solution S is Pareto optimal if

there does not exist an (α′, β′)-approximate solution S′ ∈ I for any α′ ≥ α, β′ ≥ β and at least one is
strictly larger. Since computing a single Pareto optimal solution to SMFR is still NP-hard, we turn our
attention to identifying a set S of multiple solutions to approximate the Pareto frontier ; that is, to find

1Note that all objective functions are unordered and equally important in Eq. 1.

2



Published in Transactions on Machine Learning Research (06/2024)

a set S such that for any Pareto-optimal solution, there exists a corresponding solution in S achieving a
bounded approximation for it. Our framework first uses any existing algorithm for SMK (Sviridenko, 2004;
Yaroslavtsev et al., 2020; Tang et al., 2021; Feldman et al., 2022; Li et al., 2022) or SMM (Fisher et al., 1978;
Vondrak, 2008; Călinescu et al., 2011; Badanidiyuru & Vondrák, 2013; Filmus & Ward, 2014; Buchbinder
et al., 2019) to approximate OPTf and each OPTgi

. Based on the approximations, our proposal transforms an
instance of SMFR into multiple instances of the submodular cover problem with different weights on OPTf

and each OPTgi
to capture the trade-offs between f and each gi. Then, classic greedy algorithms (Wolsey,

1982; Torrico et al., 2021) are used to obtain an approximate solution for each submodular cover instance.
Finally, all the above-computed solutions that are not “dominated”2 by any other computed solution are
returned as the set S of at most O( 1

ε ) approximate solutions to SMFR for any ε ∈ (0, 1). Theoretically, our
framework provides approximation bounds for SMFR under both knapsack and matroid constraints:

• When using a δ-approximation algorithm for SMK, it provides a set S such that for each (α, β)-
approximate Pareto optimal solution of SMFR, there must exist a corresponding (δα − ε, δβ − ε)-
approximate solution of cost O(k log d

ε ) in S, where k ∈ R+ is the budget of the knapsack constraint.
• When using a δ-approximation algorithm for SMM, it also provides a set S such that for each (α, β)-

approximate Pareto optimal solution of SMFR, there must exist a corresponding (δα − ε, δβ − ε)-
approximate solution of size O(r log d

ε ) in S, where r ∈ Z+ is the rank of the matroid constraint.

In the empirical assessment, we evaluate our proposed framework for the problems of maximum coverage
and recommendation using real-world data. The numerical results confirm the effectiveness of our proposal
compared to competitive baselines.

Paper Organization. The remainder of this paper is organized as follows. We review the related work
in Section 2. Then, we analyze the hardness of SMFR in Section 3. Next, our algorithmic framework for
SMFR is presented in Section 4. Subsequently, the experimental setup and results are provided in Section 5.
Finally, we conclude the paper and discuss future work in Section 6. The proofs of theorems and lemmas
and several supplemental experiments are deferred to the appendices due to space limitations.

2 Related Work

Monotone Submodular Maximization with Knapsack or Matroid Constraints. There exists a
wide literature on maximizing a monotone submodular function subject to a knapsack constraint (SMK)
or a matroid constraint (SMM). For cardinality constraints, a special case of both knapsack and matroid
constraints, Nemhauser et al. (1978) proposed a simple greedy algorithm that runs in O(kn) time and
yields the best possible approximation factor 1 − 1/e unless P = NP . However, the greedy algorithm can
be arbitrarily bad for general knapsack or matroid constraints. Sviridenko (2004) first proposed a greedy
algorithm with partial enumerations that achieves the best possible approximation 1 − 1/e for SMK in
O(n5) time. Kulik et al. (2021) and Feldman et al. (2022) improved the time complexity to O(n4) while
keeping the same approximation factor. Krause & Guestrin (2005) proposed an O(n2)-time 1

2 (1 − 1
e ) ≈

0.316-approximation cost-effective greedy algorithm for SMK. Tang et al. (2021), Kulik et al. (2021), and
Feldman et al. (2022) improved the approximation factor of the cost-effective greedy algorithm to 0.405,
[0.427, 0.4295], and [0.427, 0.462] independently. Ene & Nguyen (2019a) proposed a near-linear time (1−1/e−
ε)-approximation algorithm for SMK based on multilinear relaxation. Yaroslavtsev et al. (2020) proposed
a 1

2 -approximation Greedy+Max algorithm for SMK in O(n2) time. Feldman et al. (2022) further provided
an approximation factor of 0.6174 in O(n3) time by enumerating each item as a partial solution and running
Greedy+Max on each partial solution. Li et al. (2022) recently proposed a ( 1

2−ε)-approximation algorithm for
SMK in O( n

ε log 1
ε ) time. Fisher et al. (1978) first proposed a 1

2 -approximation greedy algorithm for SMM
running in O(nr) time. Călinescu et al. (2011) and Vondrak (2008) independently proposed randomized
continuous greedy algorithms with rounding for SMM. Both algorithms achieved the best possible (1−1/e)-
approximation in expectation but had prohibitive O(n8) running time. Badanidiyuru & Vondrák (2013)
proposed a faster continuous greedy algorithm that yielded a (1 − 1/e − ε)-approximation for SMM in

2A solution S will be dominated by another solution T if the approximation factors α, β of S are both no greater than those
of T and at least one is strictly smaller.
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O( n2

ε4 log2 n
ε ) time. Filmus & Ward (2014) proposed a (1− 1/e− ε)-approximation algorithm in O( nr4

ε3 ) time
and a (1−1/e)-approximation algorithm in O(n2r7) time, both randomized and based on non-oblivious local
search. Buchbinder et al. (2019) proposed the first deterministic algorithm for SMM with an approximation
factor over 1/2 in O(nr2) time. Ene & Nguyen (2019b) also proposed a nearly linear-time (1 − 1/e − ε)-
approximation algorithm for SMM based on multilinear relaxation. Although the above algorithms cannot
be applied directly to SMFR, any of them can serve as a subroutine in our algorithmic framework for SMFR.

Multi-objective Submodular Maximization. There exist several variants of submodular maximization
problems to deal with more than one objective. Next, we discuss multi-objective submodular maximiza-
tion problems relevant to SMFR. One basic problem of this kind is to maximize a weighted sum of d > 1
submodular functions g1, . . . , gd. Since the weighted sum of multiple submodular functions is still submod-
ular (Krause & Golovin, 2014), this problem can be directly resolved with any algorithm for submodular
maximization. However, maximizing the weighted sum is often not enough to achieve a fair representation
among all objectives, as its (optimal) solution may not have any approximation guarantee for each objective
function individually. The problem of maximizing the minimum of d > 1 submodular functions g1, . . . , gd

was studied in (Krause et al., 2008; Udwani, 2018; Anari et al., 2019; Torrico et al., 2021). This problem
differs from SMFR because it does not consider maximizing f and aims to return only a single solution for
all functions. Nevertheless, we draw inspiration from the Saturate framework first proposed by Krause
et al. (2008) to address SMFR. Another two relevant problems to SMFR are Submodular Maximization
under Submodular Cover (SMSC) (Ohsaka & Matsuoka, 2021), which maximizes one submodular function
subject to the value of the other submodular function not being below a threshold, and Balancing utility
and fairness in Submodular Maximization (BSM) (Wang et al., 2024), which maximizes a submodular util-
ity function subject to that a fairness function in form of the minimum of d > 1 submodular functions is
approximately maximized. SMSC and BSM differ from SMFR in the following four aspects: (i) they also
return a single solution to optimize a user-specified trade-off between multiple objectives; (ii) they are spe-
cific to cardinality constraints but cannot handle more general knapsack or matroid constraints; (iii) SMSC
is limited to two submodular functions, that is, a special case of d = 1 in SMFR; (iv) BSM requires all
objective functions to be decomposable. Thus, SMFR can work in more general scenarios than SMSC and
BSM. Due to the above differences, the algorithms for SMSC and BSM cannot be used directly for SMFR,
and in the experiments they will be compared with our algorithm after adaptations. Very recently, Tang
& Yuan (2023) proposed a randomized subset selection method to maximize a (submodular) overall utility
function while the (submodular) utility functions for d groups are all not below a lower bound in expectation.
They also considered submodular maximization with group equality, which ensures that the difference in the
expected utilities of any two groups does not exceed an upper bound. As they limit their consideration to
cardinality constraints and their problem formulations are different from SMFR, their proposed methods do
not apply to SMFR. The problem of regret-ratio minimization (Soma & Yoshida, 2017; Feng & Qian, 2021;
Wang et al., 2023) for multi-objective submodular maximization is similar to SMFR in the sense that they
also aim to find a set of approximate solutions for different trade-offs between multiple objectives. However,
they consider denoting the trade-offs as different non-negative linear combinations of multiple submodular
functions but cannot guarantee any approximation for each objective individually.

Finally, several subset selection problems, e.g., (Qian et al., 2015; 2017; 2020; Roostapour et al., 2022),
utilize a Pareto optimization method by transforming a single-objective problem into a bi-objective problem
and then solving the bi-objective problem to obtain an approximate solution to the original problem. These
problems are interesting but orthogonal to our work.

3 Hardness of SMFR

In this paper, we focus on the SMFR problem in Eq. 1 subject to a knapsack or matroid constraint. Next,
we formally analyze the computational hardness of SMFR. Since SMK and SMM are both NP-hard and
cannot be approximated within a factor 1 − 1/e + ε in polynomial time for any ε > 0 unless P = NP
(Feige, 1998; Khuller et al., 1999), the problem of maximizing f or each gi individually can only be solved
approximately. We provide a trivial example to indicate that the maximization of f and the maximization
of each gi could conflict with each other, and there might not exist any S ∈ I with approximation factors
greater than 0 for both of them, even when d = 1.
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Example 2. Suppose that d = 1 and the set of feasible solutions I is defined by a cardinality constraint
1, i.e., I = {S ⊆ V : |S| ≤ 1}. Note that a cardinality constraint is a special case of both knapsack and
matroid constraints. For the two functions f and g1, we have OPTf = f({v0}) = 1, OPTg1 = g1({v1}) = 1,
g1({v0}) = 0, f({v1}) = 0, and f({vj}) = g1({vj}) = 0 for any j > 1. In the above SMFR instance, there
is no set S ∈ I such that f(S) > 0 and g1(S) > 0.

Given the above result, we are motivated to introduce Pareto optimization, a well-known concept for multi-
objective optimization (Qian et al., 2015; Soma & Yoshida, 2017) which provides more than one solution with
different (best possible) trade-offs between multiple objectives. We call a set S ∈ I an (α, β)-approximate
solution for an instance of SMFR if f(S) ≥ αOPTf and gi(S) ≥ βOPTgi ,∀i ∈ [d]. An (α, β)-approximate
solution S is Pareto optimal if there does not exist an (α′, β′)-approximate solution for any α′ ≥ α and
β′ ≥ β and at least one is strictly larger. Ideally, by enumerating all distinct Pareto optimal solutions (which
form the so-called Pareto frontier), one can obtain all different optimal trade-offs between maximizing f
and each gi. However, computing any Pareto optimal solution is still NP-hard. To circumvent the barrier,
a feasible approach to SMFR is to find a set S of approximate solutions, in which, for any Pareto optimal
solution, at least one solution close to it is included. This is the approach that we follow in our framework.

4 The SMFR-Saturate Framework

To find approximate solutions to an instance of SMFR, we propose to transform it into a series of instances
of its corresponding decision problems, that is, to determine whether there exists any (α, β)-approximate
solution for the SMFR instance. Then, we introduce the Saturate framework first proposed in (Krause
et al., 2008) to approximately solve each instance of the decision problem as Submodular Cover (SC), that
is, the problem of finding a set S∗

c with the minimum cardinality/cost such that f(S∗
c ) ≥ L for some L ∈ R+.

Now, we formally define the decision problem and analyze why the transformation follows.
Definition 1 (SMFR-Dec). Given an instance of SMFR and two approximation factors α, β ∈ [0, 1], find
a set S ∈ Ik such that f(S) ≥ αOPTf and gi(S) ≥ βOPTgi for each i ∈ [d], or decide that there does not exist
any set that can meet the conditions.

Assuming that OPTf and each OPTgi are already known, the above conditions can be equivalently expressed
as f(S)

αOPTf
≥ 1 and gi(S)

βOPTgi
≥ 1. Then, using the truncation technique in (Krause et al., 2008), SMFR-Dec is

converted to decide whether the objective value of the following problem is d + 1:

max
S∈I

Fα,β(S) := min
{

1,
f(S)

αOPTf

}
+

d∑
i=1

min
{

1,
gi(S)

βOPTgi

}
. (2)

Note that Fα,β is ill-formulated due to division by zero when α, β or OPTf , OPTgi are equal to 0. To solve
this problem, the first term of Fα,β is replaced by 1 when α = 0 or OPTf = 0; the second term of Fα,β is
replaced by d when β = 0 or OPTgi

= 0 for any i ∈ [d].

The above conversion holds because Fα(S) = d+1 if and only if f(S) ≥ αOPTf and gi(S) ≥ βOPTgi , ∀i ∈ [d].
In addition, Fα,β is a normalized, monotone, and submodular function because the minimum of a positive
real number and a monotone submodular function is monotone and submodular (Krause et al., 2008), and
the nonnegative linear combination of monotone submodular functions is monotone and submodular (Krause
& Golovin, 2014). In this way, SMFR-Dec is transformed to SC on Fα,β .

Since computing OPTf and OPTgi
is NP-hard, we should use any existing algorithm for SMK (Sviridenko,

2004; Yaroslavtsev et al., 2020; Tang et al., 2021; Feldman et al., 2022; Li et al., 2022) or SMM (Fisher
et al., 1978; Vondrak, 2008; Călinescu et al., 2011; Badanidiyuru & Vondrák, 2013; Filmus & Ward, 2014;
Buchbinder et al., 2019) to compute their approximations. Suppose that we run an approximation algorithm
for SMK or SMM to obtain OPT′

f ≤ OPTf and OPT′
gi
≤ OPTgi

, ∀i ∈ [d] accordingly. The problem in Eq. 2 is
relaxed as follows:

max
S∈I

F ′
α,β(S) := min

{
1,

f(S)
αOPT′

f

}
+

d∑
i=1

min
{

1,
gi(S)

βOPT′
gi

}
, (3)
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Algorithm 1: SMFR-Saturate
Input: Normalized, monotone, and submodular set functions f, g1, . . . , gd : 2V → R+; Cost function c :

V → R+ and budget k ∈ R+ (for knapsack constraint) or Collection of feasible sets I(M) ⊆ 2V

and rank r ∈ Z+ (for matroid constraint); Error parameter ε ∈ (0, 1)
Result: A set S of approximate solutions to SMFR
Initialize S ← ∅;
Run an algorithm for SMK or SMM to maximize f, g1, . . . , gd subject to the constraint Ik or I(M) to
compute OPT′

f , OPT′
g1

, . . . , OPT′
gd

;
for β ← 0; β ≤ 1; β ← β + ε

2 do
Initialize αmax ← 1, αmin ← 0;
while αmax − αmin > ε

2 do
Set α← (αmax + αmin)/2 and define F ′

α,β(S) according to Eq. 3;
S ← CostEffectiveGreedy(f, g1, . . . , gd, c, k, ε) (for knapsack constraint) or
IterativeGreedy(f, g1, . . . , gd, I(M), ε) (for matroid constraint);

if F ′
α,β(S) ≥ d + 1− ε

2 then
αmin ← α and Sα,β ← S;

else
αmax ← α;

end
end
Add Sαmin,β to S and remove all Sα′,β′ with α′ ≤ αmin and β′ < β from S;

end
return S;
Function CostEffectiveGreedy(f, g1, . . . , gd, c, k, ε):

Initialize S ← ∅;
while ∃v ∈ V \ S such that c(S ∪ {v}) ≤ k(1 + ln 2d+2

ε ) do
I ← {v ∈ V : c(S ∪ {v}) ≤ k(1 + ln 2d+2

ε )};
v∗ ← arg maxv∈I

(
F ′

α,β(S ∪ {v})− F ′
α,β(S)

)
/c(v) and S ← S ∪ {v∗};

end
return S;

Function IterativeGreedy(f, g1, . . . , gd, I(M), ε):
for l← 1; l ≤ 1 + ⌈log2

d+1
ε ⌉; l← l + 1 do

Sl ← ∅;
while ∃v ∈ V : Sl ∪ {v} ∈ I(M) do

I ← {v ∈ V : Sl ∪ {v} ∈ I(M)};
v∗ ← arg maxv∈I F ′

α,β(∪l
j=1Sj ∪ {v})− F ′

α,β(∪l
j=1Sj) and Sl ← Sl ∪ {v∗};

end
end
return S ←

⋃1+⌈log2
d+1

ε ⌉
l=1 Sl;

where the problem of division by zero is solved in the same way as for Fα,β when α, β or OPT′
f , OPT′

gi
are

equal to 0. Next, the following lemmas indicate that SMFR-Dec can still be answered approximately by
solving the relaxed problem in Eq. 3.

Lemma 1. Any set S ∈ I with F ′
α,β(S) ≥ d + 1 − ε

2 must be a (δα − ε
2 , δβ − ε

2 )-approximate solution to
SMFR, where δ ∈ (0, 1− 1/e] is the approximation factor of the algorithm used for SMK or SMM.

Lemma 2. If there is no set S ∈ I with F ′
α,β(S) = d + 1, no (α, β)-approximate solution to SMFR exists.

See Appendices A.1 and A.2 for the proofs of the above two lemmas.
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Based on Lemmas 1 and 2, we propose SMFR-Saturate in Algorithm 1 for SMFR. Generally, SMFR-
Saturate follows the same framework to handle the knapsack and matroid constraints but uses different
greedy algorithms to obtain approximate solutions to SC on F ′

α,β . We first run an algorithm for SMK or
SMM on each objective function individually with the same knapsack constraint Ik or matroid constraint
I(M) to calculate OPT′

f , OPT′
g1

, . . . , OPT′
gd

. Then, we iterate over each value of β from 0 to 1 with an interval
of ε

2 . For each value of β, we perform a bisection search on α between 0 and 1. Given a pair of α and β, we
formulate an instance of SC on F ′

α,β in Eq. 3.

To address SC on F ′
α,β , we adopt two different types of greedy algorithms specific to the knapsack and matroid

constraints, respectively. For a knapsack constraint Ik, we run the CostEffectiveGreedy algorithm, which
starts from S = ∅ and adds the most “cost-effective” item v∗ with the largest ratio between its marginal
gain w.r.t. S and its cost c(v∗) until no more items can be added with a relaxed knapsack constraint with
a budget k(1 + ln 2d+2

ε ), to find the candidate solution S. For a matroid constraint I(M), we run the
IterativeGreedy algorithm, which performs the classic greedy algorithm for SMM (Fisher et al., 1978)
iteratively in 1 + ⌈log2

d+1
ε ⌉ rounds. In the l-th round, we start from Sl = ∅ and add the item v∗ that

satisfies Sl ∪{v∗} ∈ I(M) and has the largest marginal gain w.r.t. ∪l
j=1Sj until no more items can be added

to Sl under the knapsack constraint I(M). Finally, we return the union of the items selected over all rounds,
i.e.,

⋃1+⌈log2
d+1

ε ⌉
l=1 Sl, as the candidate solution S.

After computing a candidate solution S, if F ′
α,β(S) ≥ d + 1 − ε

2 , that is, S reaches the “saturation level”
w.r.t. α, β according to Lemma 1, we set S as the current solution Sα,β and search in the upper half for a
better solution with a higher value of α; otherwise, we search in the lower half for a feasible solution. When
αmax − αmin ≤ ε

2 , we add the solution Sαmin,β to S, remove all solutions dominated by Sαmin,β , and move
on to the next value of β. Finally, all non-dominated solutions in S are returned for SMFR.

The theoretical guarantees of SMFR-Saturate for SMFR with knapsack and matroid constraints are
analyzed in the following two theorems, respectively.
Theorem 1. For SMFR with a knapsack constraint Ik, SMFR-Saturate runs in O(dt(A) + n2

ε log 1
ε )

time, where t(A) is the time complexity of the δ-approximation algorithm for SMK, and provides a set S
of solutions with the following properties: (1) |S| = O( 1

ε ), (2) c(S) = O(k log d
ε ) for each S ∈ S, (3) for

each (α∗, β∗)-approximate Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution
S ∈ S such that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi

,∀i ∈ [d].

Theorem 2. For SMFR with a matroid constraint I(M), SMFR-Saturate runs in O(dt(A) + nr
ε log2 d

ε )
time, where t(A) is the time complexity of the δ-approximation algorithm for SMM, and provides a set S
of solutions with the following properties: (1) |S| = O( 1

ε ), (2) |S| = O(r log d
ε ) for each S ∈ S, (3) for

each (α∗, β∗)-approximate Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution
S ∈ S such that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi ,∀i ∈ [d].

See Appendices A.3 and A.4 for the proofs of the above two theorems.

5 Experiments

In this section, we present extensive experimental results to evaluate the performance of our proposed algo-
rithm (SMFR-Saturate) on two benchmark problems, namely Maximum Coverage and Recommendation,
using several real-world data sets. We compare SMFR-Saturate with the following non-trivial baselines.

• Greedy+Max (or Greedy): The original greedy algorithms for single-objective submodular max-
imization. For SMK, we adopt the O(n2)-time Greedy+Max algorithm by Yaroslavtsev et al.
(2020); and for SMM, we adopt the O(nr)-time Greedy algorithm by Fisher et al. (1978). Both
algorithms have the same approximation factor of 1/2.

• Saturate: The bicriteria approximation algorithms for the problem of multi-objective submodu-
lar maximization (MOSM) that maximizes the minimum among multiple (submodular) objective
functions. As for SMFR, we should maximize the minimum among the d + 1 functions of f and
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g1, . . . , gd. In particular, Saturate for MOSM with knapsack and matroid constraints is presented
in (Krause et al., 2008) and (Anari et al., 2019), respectively.

• SMSC: A (0.16, 0.16)-approximation algorithm for the problem of Submodular Maximization under
Submodular Cover (SMSC) (Ohsaka & Matsuoka, 2021), which can be used for SMFR only when
d = 1 by maximizing f under the submodular cover constraint defined on g1.

• BSM-Saturate: The instance-dependent bicriteria approximation algorithm for balancing utility
(i.e., maximizing f) and fairness (i.e., maximizing the minimum of g1, . . . , gd) in (Wang et al., 2024).

• OPT: Formulating an instance of SMFR as an integer-linear program (ILP) and using a solver to
enumerate its Pareto optimal solutions in the worst-case exponential time. The ILP formulations of
SMFR for Maximum Coverage and Recommendation are deferred to Appendix B.

All algorithms are appropriately adapted to provide solutions without violating the specified constraints. We
implemented them in Python 3, and for the OPT algorithm, we applied the Gurobi3 optimizer to solve the
ILP formulations of the Maximum Coverage and Recommendation instances. All algorithms except OPT
were accelerated using the lazy-forward strategy (Leskovec et al., 2007), as this strategy cannot be applied
to OPT. All experiments were run on a MacBook Pro laptop with an Apple M1 Max processor and 32GB
memory running MacOS 14. Data and code are available publicly at https://github.com/adrianfaz/
Fair-Representation-in-Submodular-Subset-Selection-A-Pareto-Optimization-Approach.

5.1 Maximum Coverage

Setup. In this subsection, we evaluate the performance of different algorithms for SMFR on the Maximum
Coverage problem using two real-world data sets: Facebook and DBLP. The Facebook data set (Mislove
et al., 2010) is an undirected graph of 1, 216 nodes and 42, 443 edges representing the friendships between
Rice University students on Facebook, and the DBLP data set (Dong et al., 2023) is an undirected graph of
3, 980 nodes and 6, 966 edges denoting the coauthorships between researchers.

Our settings for Maximum Coverage follow those used in the existing literature on submodular maximization
(Halabi et al., 2020; Ohsaka & Matsuoka, 2021; Wang et al., 2024). Given a graph G = (V, E), the utility
(i.e., coverage) function is defined as f(S) := |

⋃
v∈S N (v)|, where N (v) is the set of nodes consisting of v and

its neighbors in G. That is, the coverage of a set S ⊆ V is measured by the number of nodes in the union of
the neighborhoods of all nodes in S. To define the representativeness functions g1, g2, . . . , gd, we divide the
node set into d communities C1, . . . , Cd such that

⋃d
i=1 Ci = V . For each i ∈ [d], the function gi is associated

with a particular community Ci as gi(S) := |
⋃

v∈S N (v)∩Ci|. That is, the representativeness of a set S for
a community Ci is measured by the number of nodes in Ci covered by S. For both data sets, the node set
V is partitioned into four disjoint groups using the Louvain method (Blondel et al., 2008) for community
detection. We then index the four communities according to their sizes as |C1| ≥ |C2| ≥ |C3| ≥ |C4|. For the
DBLP data set, we follow the scheme of (Jin et al., 2021) to define a knapsack constraint by assigning a cost
of 0.2 times its degree to each node and then normalizing all costs by the minimum cost. For the Facebook
data set, we define a partition matroid constraint by dividing all nodes into 4 disjoint groups based on a
sensitive attribute (i.e., age). We then follow the rule of equal representation (Halabi et al., 2020) to set the
same upper bound k ∈ Z+ for each age group, resulting in a partition matroid of rank r = 4k.

Results. Figures 1a–1c and 2a–2c present the trade-offs between α and β achieved by each algorithm for
different instances of SMFR on Maximum Coverage with knapsack and matroid constraints on the DBLP
and Facebook data sets, respectively. We fix k = 40 for the knapsack constraint and k = 5 (and thus r = 20)
for the matroid constraint. We set d = 1, 2, and 4 by considering the representativeness functions on the
first group C1, the first two groups C1 and C2, and all four groups from C1 to C4. In each of these figures,
the x- and y-axes represent the values of α and β for all solutions with a distinct marker for each algorithm.
Furthermore, we also use a black line and a red line to denote the optimal Pareto frontier returned by OPT
and its approximation returned by SMFR-Saturate. From the results, we observe that the Pareto frontiers
provided by SMFR-Saturate are equal or very close to the optimal ones. This confirms the effectiveness of

3https://www.gurobi.com/solutions/gurobi-optimizer/
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Figure 1: Results for Maximum Coverage on the DBLP data set, with knapsack constraints.

SMFR-Saturate for the SMFR problem. We also find that the Greedy+Max and Greedy algorithms,
which focus solely on maximizing f , generally provide solutions with low values of β, indicating significant
neglect of representativeness functions. Furthermore, Saturate, which maximizes the minimum among
all representativeness and utility functions and does not allow any trade-off between f and g by design, in
some cases (e.g., Figures 1a–1c), it provides a solution with the highest value of β while having a value of
α equal to or close to that of SMFR-Saturate and OPT for maximum β. However, it returns inferior
solutions dominated by those of SMFR-Saturate in other cases. BSM-Saturate and SMSC provide
different trade-offs between f and g by adjusting the threshold value τ in their definitions. The trade-offs
reported by SMSC are marginally better than those of SMFR-Saturate on the Facebook data set with
matroid constraints (Figure 2a). Conversely, it performs poorly for knapsack constraints (Figure 1a). In
fact, SMSC is a special case of SMFR when d = 1, the matroid/knapsack constraint is reduced to the
cardinality constraint, and the trade-off between f and g is predetermined by τ . It is also noted that SMSC
cannot work when d > 1. Although BSM-Saturate does not have the restriction of d = 1, its trade-offs
are never better than those obtained by SMFR-Saturate, and significantly worse for Maximum Coverage
on the DBLP data set with knapsack constraints (Figures 1a–1c).

Figures 1d–1f and 2d–2f report the effect of the parameter k, which directly decides the solution size, on the
performance of each algorithm for different instances of SMFR in the context of Maximum Coverage with
knapsack and matroid constraints on the DBLP and Facebook data sets, respectively. In each plot, the x-
axis represents the value of k in the knapsack or matroid constraint, and the y-axis represents the maximum
utility value f(S) among all solutions with a certain level of representativeness, i.e., the value of β reaches a
given threshold, provided by an algorithm. We also set d = 1, 2, and 4 by considering the representativeness
functions on C1, C1&C2, and C1–C4. Only solutions with β ≥ 0.8 are considered for d = 1, β ≥ 0.4 for
d = 2, and β ≥ 0.2 for d = 4. A unique marker and a distinct line color are used for each algorithm.
From Figures 1d–1f, we observe that the solutions provided by SMFR-Saturate consistently achieve the
highest utility value f(S) across all values of k in the knapsack constraint. The absence of SMSC and
BSM-Saturate indicates that they fail to provide solutions with an adequate level of representativeness
(i.e., the value of β is below the given thresholds), with the only exception shown in Figure 1e when k = 100.
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Figure 2: Results for Maximum Coverage on the Facebook data set, with matroid constraints.

Furthermore, although Saturate provides valid solutions in all cases, the gap in the utility value f(S)
between SMFR-Saturate and Saturate widens as the knapsack restriction becomes less stringent (i.e.,
increasing k), for all values of the number of representativeness functions d. Figures 2d–2f show that across
all values of k, the solutions provided by SMFR-Saturate always achieve utility values f(S) higher than
those of BSM-Saturate and Saturate. Unlike the case of knapsack constraints, the gap in the utility
value f(S) among all methods decreases as the matroid constraint becomes less stringent (i.e. increasing
k), for all values of the number of representativeness functions d. In the case of d = 1, SMSC and SMFR-
Saturate exhibit the same performance, as shown in Figure 2d. The above results confirm that when the
trade-off level between f and g is pre-specified, one can still find a corresponding solution from those of
SMFR-Saturate that is comparable to or better than those provided by other baselines.

5.2 Recommendation

Setup. In this subsection, we evaluate the performance of different algorithms for SMFR on the Recommen-
dation problem using another two real-world data sets: X-Wines (de Azambuja et al., 2023) and MovieLens4.
The X-Wines data set consists of 150 000 ratings from 10 561 users on 1 007 wines, where each rating takes a
value in the range [1.0, 1.5, . . . , 5.0]. Moreover, each wine in the data set is associated with one or more food
types that pair with the wine itself; we group these food types into four categories: “meat”, “fish”, “pasta”,
and “cheese”. The MovieLens data set consists of 100 000 ratings from 600 users on 9 000 movies, where
each rating takes a value in the range [0.5, 1.0, . . . , 5.0]. Each movie in the data set is associated with one or
more genres, with a total of 20 genres.

Our experimental settings are similar to those adopted in (Ohsaka & Matsuoka, 2021). In the following, we
use the term “item” to refer to either a wine in the X-Wines data set or a movie in the MovieLens data set. By
performing the non-negative matrix factorization5 (NMF) on the user-item rating matrix with p = 32 factors,
we obtain a 32-dimensional feature vector for each item and user. Denoting by vi ∈ Rp the feature vector of

4https://grouplens.org/datasets/movielens/
5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
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Figure 3: Results for Recommendation on the X-Wines data set, with knapsack constraints.

item i, and by uj ∈ Rp the feature vector of user j, the inner product ⟨vi, vj⟩ between two feature vectors
associated with two items measures their similarity. The same holds for users and items as well: ⟨vi, uj⟩
indicates the level at which a user likes an item. To design the utility function f according to the facility
location objective, we select a subset T of items with at least 54 ratings (|T | = 503 for the X-Wines data
set, and |T | = 403 for the MovieLens data set), and define f : 2V → R+ as f(S) :=

∑
t∈T maxs∈S ⟨vs, vt⟩,

where V is the set of all items in each data set: |V | = 1 007 for the X-Wines data set, and |V | = 9 000 for
the MovieLens data set. The function f captures how well the selected subset S can represent all items in T
in the sense that for any item t ∈ T , there exists an item in S that is highly similar to it. This function, as
defined, is known to be monotone and submodular (Frieze, 1974). To define the representativeness functions
g1, g2, . . . , gd, we consider using, for the X-Wines data set, the food type categories with which a wine pair,
and, for the MovieLens data set, the genres to which a movie belongs. Specifically, for the X-Wines data
set, we divide wines into four groups according to their associated food type categories as G1 (meat), G2
(fish), G3 (pasta), and G4 (cheese). Similarly, for the MovieLens data set, we divide movies into four groups
according to their genres as G1 (dramas), G2 (comedies), G3 (thrillers), and G4 (action movies). Then, each
gi function is associated with a particular set of items and is defined as gi(S) := |S ∩Gi|. To be specific, the
representativeness of S for Gi is measured by the number of items in S selected from Gi. For the X-Wines
data set, we define a knapsack constraint by assigning to each item (wine) a random integer cost in the
range [1, 10]. For the MovieLens data set, to define a matroid constraint, we partition the movies into 7
groups according to their release dates: [1900, 1950), [1950, 1970), [1970, 1980), [1980, 1990), [1990, 2000),
[2000, 2010), and [2010, 2019). We also use an equal upper bound k ∈ Z+ for each group, resulting in a
partition matroid of rank r = 7k.

Results. Figures 3 and 4 present the performance of each algorithm for different instances of SMFR
on Recommendation with knapsack and matroid constraints on the X-Wines and MovieLens data sets,
respectively. In general, we observe results similar to those for Maximum Coverage and further confirm the
effectiveness of SMFR-Saturate for SMFR in different applications. The absence of OPT in Figures 4a–
4c is due to the inefficiency of the ILP solver: it cannot finish on any SMFR instance for the MovieLens data
set within one hour. We also find that SMFR-Saturate shows more significant advantages over SMSC
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Figure 4: Results for Recommendation on the MovieLens data set, with matroid constraints.

and BSM-Saturate for the knapsack constraints than for the matroid constraints. In particular, SMSC
slightly outperforms SMFR-Saturate when d = 1 on the MovieLens data set, with matroid constraints.
This is because the solutions with cardinality constraints are typically very close to those with the partition
matroid constraints that we define but differ significantly from those with knapsack constraints. As such,
SMSC, which is designed specifically for cardinality constraints, can achieve good performance under matroid
constraints without adaptations. Again, SMSC is not comparable to SMFR-Saturate in other cases.

Finally, we omit the remaining experimental results due to space limitations. Please refer to Appendix C for
those results, which further confirm the effectiveness of SMFR-Saturate in other experimental settings
and provide additional evaluations for the efficiency of SMFR-Saturate and other baselines.

6 Conclusion and Future Work

In this paper, we study a novel multi-objective combinatorial optimization problem called Submodular Max-
imization with Fair Representation (SMFR), which aims to select subsets from a ground set under a specific
knapsack or matroid constraint such that a submodular (utility) function f is maximized while d submod-
ular (representativeness) functions g1, . . . , gd are also maximized. We show the hardness of finding optimal
solutions to SMFR and propose a Pareto optimization approach, SMFR-Saturate, to enumerating a set of
approximate solutions to all Pareto optimal solutions with different trade-offs between multiple objectives for
SMFR. Finally, we demonstrate the effectiveness of SMFR-Saturate in two classic submodular problems,
Maximum Coverage and Recommendation, using real-world data.

We note that SMFR-Saturate still has several limitations. For example, it cannot support more general
classes of functions in subset selection problems, such as non-monotone and weakly submodular functions,
and more complex constraints, including the intersection of multiple knapsack and matroid constraints and
the P -system constraint. We would like to extend SMFR-Saturate to support them in future work.
Furthermore, it would also be interesting to expand the realm of fair submodular optimization (Halabi et al.,
2023; Mehrotra & Vishnoi, 2023) by considering more novel and practical notions of fairness.
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A Proofs of Lemmas and Theorems

A.1 Proof of Lemma 1

Lemma 1. Any set S ∈ I with F ′
α,β(S) ≥ d + 1 − ε

2 must be a (δα − ε
2 , δβ − ε

2 )-approximate solution to
SMFR, where δ ∈ (0, 1− 1/e] is the approximation factor of the algorithm used for SMK or SMM.

Proof. We first consider the two special cases of α = 0 and β = 0. When α = 0 or β = 0, if F ′
α,β(S) > d+1− ε

2 ,
we will have gi(S)

βOPT′
gi

> 1 − ε
2 for every i ∈ [d] or f(S)

αOPT′
f

> 1 − ε
2 . In the general case of α, β > 0, if

F ′
α,β(S) > d + 1− ε

2 , we will have f(S)
αOPT′

f
> 1− ε

2 and gi(S)
βOPT′

gi

> 1− ε
2 for every i ∈ [d] at the same time. Thus,

it holds that
f(S) ≥ (1− ε

2)αOPT′
f ≥ δα(1− ε

2)OPTf ≥ (δα− ε

2)OPTf

and
gi(S) ≥ (1− ε

2)βOPT′
gi
≥ δβ(1− ε

2)OPTgi
≥ (δβ − ε

2)OPTgi
, ∀i ∈ [d].

Therefore, S is a (δα− ε
2 , δβ − ε

2 )-approximate solution to SMFR.

A.2 Proof of Lemma 2

Lemma 2. If there is no set S ∈ I with F ′
α,β(S) = d + 1, no (α, β)-approximate solution to SMFR exists.

Proof. If F ′
α,β(S) < d + 1, then we will have f(S) < αOPT′

f ≤ αOPTf or there is some i ∈ [d] with gi(S) <
βOPT′

gi
≤ βOPTgi

. Therefore, if F ′
α,β(S) < d + 1, S will not be an (α, β)-approximate solution to SMFR.

And if there is no set S ∈ I with F ′
α,β(S) = d + 1, no (α, β)-approximate solution to SMFR exists.

A.3 Proof of Theorem 1

Theorem 1. For SMFR with a knapsack constraint Ik, SMFR-Saturate runs in O(dt(A) + n2

ε log 1
ε )

time, where t(A) is the time complexity of the δ-approximation algorithm for SMK, and provides a set S
of solutions with the following properties: (1) |S| = O( 1

ε ), (2) c(S) = O(k log d
ε ) for each S ∈ S, (3) for

each (α∗, β∗)-approximate Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution
S ∈ S such that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi

,∀i ∈ [d].

Proof. Let us first analyze the time complexity of SMFR-Saturate for a knapsack constraint Ik. First,
it runs the SMK algorithm d + 1 times to compute OPT′

f and OPT′
gi

for every i ∈ [d]. Then, it iterates over
⌈ 2

ε⌉ values of β in the for loop. For each value of β, it attempts to use O(log 1
ε ) different values of α in

the bisection search. Finally, the subroutine CostEffectiveGreedy takes O(n2) time for SC on each F ′
α,β .

In summary, the time complexity of SMFR-Saturate for a knapsack constraint Ik is O(dt(A) + n2

ε log 1
ε )

time, where t(A) is the time complexity of the SMK algorithm.

For the solution S of SMFR-Saturate, it is easy to see that |S| ≤ ⌈ 2
ε⌉ and thus |S| = O( 1

ε ) because SMFR-
Saturate adds at most one set to S for each value of β. Then, due to the condition in the while loop of the
subroutine CostEffectiveGreedy, it must hold that c(S) ≤ k(1 + ln 2d+2

ε ) and thus c(S) = O(k log d
ε ) for

each S ∈ S. Finally, given an (α∗, β∗)-approximate Pareto optimal solution S∗, there must exist a value of
β in the for loop such that 0 ≤ β∗ − β ≤ ε

2 . Let Sαmin,β be the solution of SMFR-Saturate w.r.t. such β
and its corresponding αmin. Since F ′

αmin,β(Sαmin,β) ≥ d+1− ε
2 , Sαmin,β is a (δαmin− ε

2 , δβ− ε
2 )-approximate

solution according to Lemma 1. Furthermore, we have F ′
αmax,β(Sgr) < d + 1− ε

2 , where Sgr is the solution
w.r.t. F ′

αmax,β with a relaxed knapsack constraint for a budget k(1 + ln 2d+2
ε ) returned by the subroutine

CostEffectiveGreedy in Algorithm 1, and αmax − αmin < ε
2 . Suppose that S′

gr is the first intermediate
subset of Sgr with c(S′

gr) ≥ k ln 2d+2
ε constructed using the cost-effective greedy procedure. Let S∗

k =

17
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arg maxS∈Ik
F ′

αmax,β(S) and OPTF ′
αmax,β

= F ′
αmax,β(S∗

k). According to the monotonicity and submodularity
of F ′

αmax,β , we have

F ′
αmax,β(S∗

k) ≤ F ′
αmax,β(S(i)

gr ) +
∑

v∈S∗
k

\S
(i)
gr

∆(v|S(i)
gr ) = F ′

αmax,β(S(i)
gr ) +

∑
v∈S∗

k
\S

(i)
gr

c(v) ·∆(v|S(i)
gr )

c(v) ,

for any S
(i)
gr ⊂ S′

gr after i iterations and ∆(v|S(i)
gr ) = F ′

αmax,β(S(i)
gr ∪ {v})− F ′

αmax,β(S(i)
gr ). Let u∗

i be the i-th
item added to S′

gr for any i = 1, . . . , |S′
gr|. Based on the cost-effective greedy selection in Algorithm 1,

∆(u∗
i+1|S

(i)
gr )

c(u∗
i+1) ≥ ∆(v|S(i)

gr )
c(v)

for any v ∈ S∗
k \ S

(i)
gr and i ∈ [0, . . . , |S′

gr − 1|] because c(v) ≤ k for any v ∈ S∗
k and thus no item from S∗

k

is excluded from consideration due to budget violation when u∗
i+1 is added to S

(i)
gr . Therefore, we further

obtain

F ′
αmax,β(S∗

k) ≤ F ′
αmax,β(S(i)

gr ) +
∆(u∗

i+1|S
(i)
gr )

c(u∗
i+1)

∑
v∈S∗

k
\S

(i)
gr

c(v) ≤ F ′
αmax,β(S(i)

gr ) +
∆(u∗

i+1|S
(i)
gr )

c(u∗
i+1) · k,

After rearranging the inequality above, we have

F ′
αmax,β(S∗

k)− F ′
αmax,β(S(i+1)

gr ) ≤
(
1−

c(u∗
i+1)
k

)(
F ′

αmax,β(S∗
k)− F ′

αmax,β(S(i)
gr )

)
.

Moreover, since 1− x ≤ e−x for any x > 0, it holds that 1− c(u∗
i+1)
k ≤ exp(− c(u∗

i+1)
k ). Therefore,

F ′
αmax,β(S∗

k)− F ′
αmax,β(S(i+1)

gr ) ≤ exp(−
c(u∗

i+1)
k

) ·
(
F ′

αmax,β(S∗
k)− F ′

αmax,β(S(i)
gr )

)
. (4)

By applying Eq. 4 recursively to i = 0, . . . |S′
gr| − 1, we have

F ′
αmax,β(S∗

k)− F ′
αmax,β(S′

gr) ≤ exp(−
c(u∗

i+1)
k

) ·
(
F ′

αmax,β(S∗
k)− F ′

αmax,β(S(i)
gr )

)
≤ exp(−

c(u∗
i+1)
k

) exp(−c(u∗
i )

k
)
(
F ′

αmax,β(S∗
k)− F ′

αmax,β(S(i−1)
gr )

)
≤ . . . . . . ≤ exp(−

∑|S′
gr|−1

i=0 c(u∗
i+1)

k
)F ′

αmax,β(S∗
k)

= exp(−
c(S′

gr)
k

)F ′
αmax,β(S∗

k) = exp(−
c(S′

gr)
k

)OPTF ′
αmax,β

.

Since c(S′
gr) ≥ k ln 2d+2

ε , it holds that

F ′
αmax,β(S′

gr) ≥ (1− exp
(
−

c(S′
gr)

k
)
)
OPTF ′

αmax,β
≥ (1− ε

2d + 2)OPTF ′
αmax,β

.

In addition, F ′
αmax,β(Sgr) ≥ F ′

αmax,β(S′
gr) since S′

gr ⊆ Sgr. Therefore, we have OPTF ′
αmax,β

< d + 1 and,
according to Lemma 1, there does not exist any (αmax, β)-approximate solution of cost at most k. Since
S∗ is an (α∗, β∗)-approximate Pareto optimal solution and β ≤ β∗, S∗ must be an (α∗, β)-approximate
solution of cost at most k. As such, we obtain αmax > α∗ and αmin > α∗ − ε

2 . Because we have shown
that Sαmin,β is a (δαmin− ε

2 , δβ− ε
2 )-approximate solution, Sαmin,β is guaranteed to be a (δα∗− ε, δβ∗− ε)-

approximate solution. If Sαmin,β is included in S, we will conclude the proof directly; otherwise, the solution
in S dominating Sαmin,β can confirm our conclusion.
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A.4 Proof of Theorem 2

Theorem 2. For SMFR with a matroid constraint I(M), SMFR-Saturate runs in O(dt(A) + nr
ε log2 d

ε )
time, where t(A) is the time complexity of the δ-approximation algorithm for SMM, and provides a set S
of solutions with the following properties: (1) |S| = O( 1

ε ), (2) |S| = O(r log d
ε ) for each S ∈ S, (3) for

each (α∗, β∗)-approximate Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution
S ∈ S such that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi

,∀i ∈ [d].

Proof. Let us analyze the time complexity of SMFR-Saturate for a matroid constraint I(M). First, it
runs the SMM algorithm d + 1 times to compute OPT′

f and OPT′
gi

for every i ∈ [d]. Then, it iterates over
⌈ 2

ε⌉ values of β in the for loop. For each value of β, it attempts to use O(log 1
ε ) different values of α in

the bisection search. Finally, the subroutine IterativeGreedy takes O(nr) time per round and runs in
O(log d

ε ) rounds. In summary, the time complexity of SMFR-Saturate for a matroid constraint I(M)
is O(dt(A) + nr

ε log d
ε log 1

ε ) time, where t(A) is the time complexity of the SMM algorithm, and can be
simplified as O(dt(A) + nr

ε log2 d
ε ).

For the solution S of SMFR-Saturate, it is easy to see that |S| ≤ ⌈ 2
ε⌉ and thus |S| = O( 1

ε ) because SMFR-
Saturate adds at most one set to S for each value of β. Then, because the subroutine IterativeGreedy
runs in at most 1 + ⌈log2

d+1
ε ⌉ rounds and the size of each Sl is bounded by the rank r of the matroid M,

it must hold that |S| ≤ r · (1 + ⌈log2
d+1

ε ⌉) and thus |S| = O(r log d
ε ) for each S ∈ S. Finally, given an

(α∗, β∗)-approximate Pareto optimal solution S∗, there must exist a value of β in the for loop such that
0 ≤ β∗−β ≤ ε

2 . Let Sαmin,β be the solution of SMFR-Saturate w.r.t. such β and its corresponding αmin.
Since F ′

αmin,β(Sαmin,β) ≥ d + 1 − ε
2 , Sαmin,β is a (δαmin − ε

2 , δβ − ε
2 )-approximate solution according to

Lemma 1. Furthermore, we have F ′
αmax,β(Sgr) < d + 1− ε

2 , where Sgr is the solution w.r.t. F ′
αmax,β returned

by the subroutine IterativeGreedy in Algorithm 1, and αmax − αmin < ε
2 . Since IterativeGreedy runs

a 1
2 -approximation greedy algorithm for submodular maximization with matroid constraints in each round,

we have
F ′

αmax,β(S1)− F ′
αmax,β(∅) ≥

(
1− 1

2
)
· max

S′∈I(M)
(F ′

αmax,β(S′)− F ′
αmax,β(∅)).

Since f̃(S) = f(S ∪A)− f(S) is nonnegative, monotone, and submodular if f(·) is nonnegative, monotone,
and submodular for any A ⊆ V , we can extend the above result for each round l > 1 as follows:

F ′
αmax,β(∪l

j=1Sj)− F ′
αmax,β(∪l−1

j=1Sj) ≥
(
1− 1

2
)
· max

S′
l
∈I(M)

(F ′
αmax,β(S′

l ∪ (∪l−1
j=1Sj))− F ′

αmax,β(∪l−1
j=1Sj))

≥
(
1− 1

2
)
· max

S′∈I(M)
(F ′

αmax,β(S′)− F ′
αmax,β(∪l−1

j=1Sj)).

By induction, we obtain the following:

F ′
αmax,β(∪l

j=1Sj) ≥
(
1− 1

2l

)
· max

S′∈I(M)
F ′

αmax,β(S′) =
(
1− 1

2l

)
OPTF ′

αmax,β
.

Since Sgr = ∪1+⌈log2
d+1

ε ⌉
j=1 Sj , we have

F ′
αmax,β(Sgr) ≥

(
1− 1

2l

)
· OPTF ′

αmax,β
≥

(
1− ε

2d + 2
)
· OPTF ′

αmax,β
.

Therefore, we have OPTF ′
αmax,β

< d + 1 and, according to Lemma 1, there does not exist any (αmax, β)-
approximate solution under matroid constraint I(M). Since S∗ is an (α∗, β∗)-approximate Pareto optimal
solution and β ≤ β∗, S∗ must be an (α∗, β)-approximate solution under matroid constraint I(M). As such,
we obtain αmax > α∗ and αmin > α∗ − ε

2 . Because we have shown that Sαmin,β is a (δαmin − ε
2 , δβ − ε

2 )-
approximate solution, Sαmin,β is guaranteed to be a (δα∗ − ε, δβ∗ − ε)-approximate solution. If Sαmin,β

is included in S, we will conclude the proof directly; otherwise, the solution in S dominating Sαmin,β can
confirm our conclusion.

19



Published in Transactions on Machine Learning Research (06/2024)

B ILP Formulations

In this section, we present the integer linear programming (ILP) formulations for the Maximum Coverage
and Recommendation problems, specifically tailored to the SMFR problem, as defined in Section 5.1 and
Section 5.2, respectively. Any ILP solver can be employed to identify optimal solutions for small SMFR
instances on Maximum Coverage and Recommendation. For our experimental results in Section 5 and
Appendix C, we refer to this approach as the OPT algorithm. Note that these formulations are specifically
designed for these settings and cannot be applied directly to general SMFR problems.

Problems 5 and 6 are specialized versions of the standard ILP formulation of SMFR on Maximum Coverage6

in Section 5.1, with knapsack and partition matroid constraints, respectively.

max
∑

j∈[m]

yj (5)

subject to
∑
l∈[n]

clxl ≤ k

∑
ej∈Sl

xl ≥ yj , ∀j ∈ [m]

∑
ej∈Ci

yj ≥ β OPTgi
, ∀i ∈ [d]

yj ∈ {0, 1}, ∀j ∈ [m]
xl ∈ {0, 1}, ∀l ∈ [n]

max
∑

j∈[m]

yj (6)

subject to
∑

Sl∈Vt

xl ≤ k, ∀t ∈ [p]

∑
ej∈Sl

xl ≥ yj , ∀j ∈ [m]

∑
ej∈Ci

yj ≥ β OPTgi
, ∀i ∈ [d]

yj ∈ {0, 1}, ∀j ∈ [m]
xl ∈ {0, 1}, ∀l ∈ [n]

These ILPs maximize the coverage (i.e., the utility function f in SMFR) on a universe U = {e1, . . . , em}
of m elements and a collection V = {S1, . . . , Sn} of n sets (Sl ⊆ V,∀l ∈ [n]), subject to additional coverage
constraints on each subset C1, . . . , Cd of U (w.r.t. each representativeness function g1, . . . , gd in SMFR). In
both formulations, xl indicates whether Sl ∈ V is included in the solution S, and yj indicates whether ej ∈ U
is covered by S. Problem 5 is specific to the knapsack constraint defined on a budget k ∈ Z+ and a cost
function c(·). Problem 6 is specific to the partition matroid constraint, where V is divided into p disjoint
partitions V1, . . . , Vp and at most k sets can be selected from each partition. Solving optimally Problems 5
and 6 with β = 0 and U = Ci yields the value of OPTgi for each representativeness function gi corresponding
to the knapsack and the partition matroid constraints, respectively.

Problems 7 and 8 are specialized versions of the ILP formulation for capacitated facility location7, with a
benefit matrix B = {bjl = ⟨vi, vj⟩ : j ∈ [m], l ∈ [n]} ∈ Rm×n (m = |T | and n = |V |), specifically designed
for SMFR on the Recommendation setting in Section 5.2, with knapsack and partition matroid constraints,
respectively.

max
∑

j∈[m]

∑
l∈[n]

bjlyjl (7)

subject to
∑
l∈[n]

clxl ≤ k

∑
l∈[n]

yjl ≤ 1, ∀j ∈ [m]

yjl ≤ xl, ∀j ∈ [m], l ∈ [n]∑
el∈Ci

xl ≥ β OPTgi , ∀i ∈ [d]

yjl ∈ {0, 1}, ∀j ∈ [m], l ∈ [n]
xl ∈ {0, 1}, ∀l ∈ [n]

max
∑

j∈[m]

∑
l∈[n]

bjlyjl (8)

subject to
∑

el∈Vt

xl ≤ k, ∀t ∈ [p]

∑
l∈[n]

yjl ≤ 1, ∀j ∈ [m]

yjl ≤ xl, ∀j ∈ [m], l ∈ [n]∑
el∈Ci

xl ≥ β OPTgi , ∀i ∈ [d]

yjl ∈ {0, 1}, ∀j ∈ [m], l ∈ [n]
xl ∈ {0, 1}, ∀l ∈ [n]

6https://en.wikipedia.org/wiki/Maximum_coverage_problem
7https://en.wikipedia.org/wiki/Optimal_facility_location
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Given a set V = {e1, . . . , en} of n items, both ILPs maximize the total benefit (i.e., the utility function f in
SMFR) provided by a set S ⊆ V for a subset T ⊆ V of m items, subject to representativeness constraints on
each C1, . . . , Cd subset of V (i.e., the representativeness functions g1, . . . , gd in SMFR). In both formulations,
xl indicates whether el ∈ V is included in the solution S, and yjl indicates whether ej ∈ T takes the benefit
from item el ∈ V . Problem 7 is specific to the knapsack constraint defined on a budget k ∈ Z+ and a cost
function c(·). Problem 8 is specific to the partition matroid constraint, where V is divided into p disjoint
partitions V1, . . . , Vp. For the knapsack constraint, the value of OPTgi

for each representativeness function
gi can be easily computed by sorting the items in Ci ascendingly according to their costs and finding the
maximum number of items whose cumulative cost does not exceed k. For the partition matroid constraint,
the value of OPTgi

for each representativeness function gi is trivially the maximum between k and |Ci|.

C Additional Experiments

In this section, we complement the experimental analysis described in Sections 5.1 and 5.2.

C.1 Additional Experiments on Maximum Coverage

In this section, we use the same data sets and settings as in Section 5.1 for the Maximum Coverage problem.
For the Facebook data set, we alternatively define the knapsack constraint in the same way as for the
DBLP data set. For the DBLP data set, we alternatively define a partition matroid constraint based on
the geographic area of the researchers, with five groups: Asia, Europe, North America, Oceania, and South
America. We also set the same upper bound k ∈ Z+ for each geographic group, resulting in a partition
matroid of rank r = 5k. Figures 5 and 6 present the performance of each algorithm for different instances of
SMFR on Maximum Coverage with knapsack and matroid constraints on the Facebook and DBLP data sets,
respectively. Generally, we observe trends similar to those already presented in Section 5.1, which further
confirm the effectiveness of SMFR-Saturate.

C.2 Additional Experiments on Recommendation

In this section, we use the same data sets and settings as in Section 5.2 for the Recommendation problem.
For the MovieLens data set, we alternatively define a knapsack constraint by assigning to each item (movie) a
random integer cost in the range [1, 10]. For the X-Wines data set, we alternatively define a partition matroid
constraint based on the continent of origin for wine production: Africa, Asia, Europe, North America, South
America, and Oceania. We also set the same upper bound k ∈ Z+ for each geographic group, resulting in a
partition matroid of rank r = 6k. Figures 7 and 8 present the performance of each algorithm for different
instances of SMFR on Recommendation with knapsack and matroid constraints on the MovieLens and X-
Wines data sets, respectively. Generally, we observe trends similar to those already presented in Section 5.2,
which further confirm the effectiveness of SMFR-Saturate.

C.3 Time Efficiency

Figure 9 reports the running time (in seconds) of SMFR-Saturate, Saturate, BSM-Saturate, and
SMSC for SMFR on both Maximum Coverage and Recommendation instances. We use the same settings
as in Sections 5.1 and 5.2. In each plot, the x-axis represents the value of k in the knapsack or matroid
constraint and the y-axis represents the running time (in seconds) used by each algorithm to solve an SMFR
instance. We present the results for d = 1 and 4 in Figure 9.

All algorithms take less than a minute to complete on each tested instance. SMFR-Saturate is faster than
SMSC in all cases. For the knapsack constraints, SMFR-Saturate generally runs faster than or close to
BSM-Saturate. However, for the matroid constraints, SMFR-Saturate is slower than BSM-Saturate.
Saturate is the fastest method in most configurations. This is because Saturate does not allow for any
trade-off between utility (f) and representativeness (g) by design and thus is run only once for each instance.
However, all other algorithms should be run multiple times with different values of β or τ .
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C.4 Experiments on Large Data Sets

Setup. To show the applicability of SMFR-Saturate to data sets larger than those used in Section 5,
we performed additional experiments on two larger real-world data sets: Pokec (Kosicky) for Maximum
Coverage and MovieLens-25M for Recommendation.

The Pokec (Kosicky) data set is an undirected graph with 234, 320 nodes and 2, 417, 175 edges, extracted
from the Pokec8 data set. Pokec itself is a directed graph that represents the follower-followee relationships
of users in a Slovakian social network. Pokec (Kosicky) is a subgraph of the Pokec graph induced by nodes
representing Pokec users who reside in the Kosicky region while ignoring the directions of the edges. The
MovieLens-25M 9 data set is a larger version of the MovieLens data set presented in Section 5. The only
difference relies on the size: the MovieLens-25M data set consists of 25, 000, 095 ratings from 162, 541 users
on 62, 423 movies.

We evaluate the SMFR-Saturate algorithm and baseline methods on the Pokec (Kosicky) data set for the
Maximum Coverage problem under a knapsack constraint, and on the MovieLens-25M data set for the Rec-
ommendation problem under a partition matroid constraint. We apply the same pre-processing and settings
used for the Maximum Coverage problem on the DBLP data set (Section 5.1) and the Recommendation
problem on the MovieLens data set (Section 5.2) to the Pokec (Kosicky) and MovieLens-25M data sets,
respectively.

Results. The top row of Figure 10 presents the performance of each algorithm for different instances
of SMFR on Maximum Coverage with knapsack constraints on the Pokec (Kosicky) data set (see Fig-
ures 10a, 10b, and 10c); while the bottom row of Figure 10 presents the performance of each algorithm for
different instances of SMFR on Recommendation with matroid constraints on the MovieLens-25M data set
(Figures 10d, 10e, and 10f). Generally, we observe trends similar to those already presented for the other
data sets for the same problems under the same kind of constraints.

Figure 11 reports the running time (in seconds) of SMFR-Saturate, Saturate, BSM-Saturate, and
SMSC for SMFR on both Maximum Coverage instances with knapsack constraints on the Pokec (Kosicky)
data set and Recommendation instances with matroid constraints on the MovieLens-25M data set. We use
the same settings as in Appendix C.3: In each plot, the x-axis represents the value of k in the knapsack
or matroid constraint, and the y-axis represents the running time (in seconds) used by each algorithm to
solve an SMFR instance. We present the results for d = 1 and 4 in Figure 11. Generally, we observe trends
similar to those in Figures 9b, 9f, 9c, and 9g (see Appendix C.3). Execution times generally grow linearly
with the size of the data sets in both applications. The above results have confirmed the applicability of
SMFR-Saturate to larger data sets.

8https://snap.stanford.edu/data/soc-pokec.html
9https://grouplens.org/datasets/movielens/
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Figure 5: Results for Maximum Coverage on the Facebook data set, with knapsack constraints.
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(a) DBLP (d = 1, k = 35)
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Figure 6: Results for Maximum Coverage on the DBLP data set, with matroid constraints.
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(a) MovieLens (d = 1, k = 50)
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(d) MovieLens (d = 1, β ≥ 0.8)

20 40 60 80 100
k

0.80

0.85

0.90

0.95

1.00

f(S
)

1e6

(e) MovieLens (d = 2, β ≥ 0.4)
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Figure 7: Results for Recommendation on the MovieLens data set, with knapsack constraints.
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Figure 8: Results for Recommendation on the X-Wines data set, with matroid constraints.
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(h) X-Wines, d = 4, Kna.

Figure 9: Running times (in seconds) of SMFR-Saturate, Saturate, BSM-Saturate, and SMSC for
SMFR when d = 1, 4. Here, the Facebook and DBLP data sets are used for Maximum Coverage (MC); the
X-Wines and MovieLens data sets are used for Recommendation (RE). In addition, the matroid constraints
(Mat.) are imposed on the Facebook and MovieLens data sets; the knapsack constraints (Kna.) are imposed
on the DBLP and X-Wines data sets.
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(a) Pokec (Kosicky) (d = 1, β ≥ 0.8)
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(b) Pokec (Kosicky) (d = 2, β ≥ 0.4)
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(c) Pokec (Kosicky) (d = 4, β ≥ 0.2)
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(d) MovieLens-25M (d = 1, β ≥ 0.8)
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(e) MovieLens-25M (d = 2, β ≥ 0.4)
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(f) MovieLens-25M (d = 4, β ≥ 0.2)

Figure 10: Results for Maximum Coverage on the Pokec (Kosicky) data set with knapsack constraints, and
for Recommendation on the MovieLens-25M data set with matroid constraints.
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(a) Pokec (Kosicky), d = 1, Kna.
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(b) MovieLens-25M, d = 1, Mat.
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(c) Pokec (Kosicky), d = 4, Kna.
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(d) MovieLens-25M, d = 4, Mat.

Figure 11: Running times (in seconds) of SMFR-Saturate, Saturate, BSM-Saturate, and SMSC
for SMFR when d = 1, 4. Here, the Pokec (Kosicky) data set is used for Maximum Coverage (MC) with
knapsack constraints (Kna.); the MovieLens-25M data set is used for Recommendation (RE) with matroid
constraints (Mat.).
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