
Training Graph Neural Networks with Policy
Gradients to Perform Tree Search

Matthew Macfarlane
University of Amsterdam
m.v.macfarlane@uva.nl

Diederik Roijers
Vrije Universiteit Brussel

City of Amsterdam
(Urban Innovation & R&D)
diederik.roijers@vub.be

Herke van Hoof
University of Amsterdam
h.c.vanhoof@uva.nl

Abstract

Monte Carlo Tree Search has been shown to be a well-performing approach for
decision problems such as board games and Atari games, but relies on heuristic
design decisions that are non-adaptive and not necessarily optimal for all problems.
Learned policies and value functions can augment MCTS by leveraging the state
information at the nodes in the search tree. However, these learned functions do not
take the search tree structure into account and can be sensitive to value estimation
errors. In this paper1, we propose a new method that, using Reinforcement Learning,
learns how to expand the search tree and make decisions using Graph Neural
Networks. This enables the policy to fully leverage the search tree and learn how
to search based on the specific problem. Firstly, we show in an environment where
state information is limited that the policy is able to leverage information from the
search tree. Concluding, we find that the method outperforms popular baselines on
two diverse and problems known to require planning: Sokoban and the Travelling
salesman problem.

1 Introduction

Planning in complex decision problems with many states is an important and challenging area
of research, with applications to areas such as routing [16] and game playing [28][26]. Without
planning, model free methods can require very large training budgets to learn a policy (mapping
states to distributions over actions) that leads to high reward, particularly when the problem is
non-Markovian.

Planning can make policies a lot more effective by explicitly looking ahead of the current state. This
can improve performance as there is more information to support decision making (future states and
rewards). Theoretically the current state should be sufficient for acting optimally, however this can
practically be a difficult function to learn. The downside to planning is that it costs time, often when
we need it the most (when the policy is being executed). Thus, methods that are parsimonious with
the amount of planning performed are desirable.

A popular method of planning is Monte Carlo Tree Search. This method consists of forming a search
tree containing future states and rewards, while also iteratively updating expected rewards for all
node-action pairs in the tree to guide expansions. MCTS only makes use of the reward information
and visit counts in the tree. With appropriate reward scaling (UCB requires action values to be
between 0 and 1), MCTS performs well on many decision problems with otherwise no domain
knowledge. However, since it does not generalise between states, it tends to be inefficient for larger
problems and requires tree search with a high budget. This prevents its use in domains where compute
at execution time is limited compared to the problem size.

1Accepted to the Deep Reinforcement Learning Workshop NeurIPS 2022

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

MCTS has been made more efficient through the use of policy and value functions [3] [28]. By
leveraging the state information at nodes in the search tree, these functions generalize to unseen
states without needing to expand the tree as extensively. However, adding learnt components to
MCTS in a heuristic manner adds some additional problems. Firstly, it can be difficult to balance
trading off the various components of the algorithm; the optimal hyperparameters controlling this
trade-off are game dependent. Secondly, using the value function to evaluate off-policy states leads
to bias and needs correction [11]. Such methods are usually designed in a way that they act as a
policy improvement operator for the model free policy. However, this is usually suboptimal when we
care about maximising performance for a given search budget. Other methods such as performing
policy gradient updates at test time [16] likewise are not optimized for a particular budget and usually
require long rollouts.

Instead of evaluating search trees in a heuristic manner, we design a policy capable of mapping search
trees directly to a distribution over actions. This policy can then be trained using Reinforcement
Learning to maximize reward for a given search budget. Some advantages of this method include
that it can be trained with any search budget. It also overcomes the problem of evaluating off-policy
states, by training directly how to use these states, even though we are unlikely to ever reach this
state outside of searching. We first demonstrate a parametrised Graph Network policy can be trained
in a stable manner using Reinforcement Learning to plan, on a problem designed for planning to
be necessary. In particular, we show this policy can generalise to budgets not seen at training and
continues to scale in performance for budgets larger than the maximum budget trained on. Then we
show on two diverse problems known to require planning, Sokoban and the Travelling Salesman
Problem, the parameterized Graph Network can outperform popular baselines with similar search
budgets.

2 Background

In this section, we first cover Markov Decision Processes and Search within them. We note that
search can be represented using graphs and then introduce Graph Networks [5], a framework for
representing functions on graphs. With these elements in place, we discuss how popular search
methods can be represented with Graph Networks.

2.1 Markov Decision Processes

The problems tackled in this work can be approximated as Markov Decision Processes (MDPs). An
MDP can be represented by the tuple (S,A, ρ, r, γ), where S is the set of available states, A is the set
of available actions, ρ is the transition function, r is the reward function and γ is the discount factor.

A stochastic policy that can be used to take actions in an MDP can be defined as π : S ×A → [0, 1].
An associated function is the expected discounted sum of rewards of a policy when acting in a
particular MDP.

n(π) = Es0,a0,s1...

t=n∑
t=0

γtr(st). (1)

Our focus is on finding a policy π∗ from the set of realizable policies Π such that the associated
n(π∗) is maximized:

π∗ = argmax
π∈Π

n(π). (2)

This policy can then be used to make decisions in the MDP in order to maximise the reward function
of interest.

2.2 Search in MDPs

Tree Search is an approach where before taking an irreversible action in an MDP, a tree containing
future actions, states and rewards is constructed. This tree provides more information which can be
utilized for selecting the most promising action. In some cases the true MDP model is available, and
therefore the tree (containing future states and rewards given certain actions) has no error and can be
relied upon [28][16]. In other cases this tree can be estimated using a learnt MDP model [26] but
will likely contain errors, making planning more difficult. In this paper, we focus on the case where

2

the model is given in order to isolate the impact of how we leverage tree information. We define an
associated maximum budget with search that is the number of MDP transitions used to expand the
search tree.

2.3 Graph Networks

Search trees formed by planning in MDPs can be represented using graphs. Planning algorithms
are then functions that process this graph in some way. Graph Networks [5] is a framework that
accommodates many popular functions for processing graphs. A Graph Network block defines a set
of functions which describe the computations for processing a graph and outputting a new graph.

2.3.1 Graphs

We can represent labelled directed graphs with the tuple G = (u, V,E). V represents the set of
nodes in the graph, each node can contain node specific features. E is a set of directional edges with
associated edge features. Lastly, u represents any graph level features.

2.3.2 Graph Network Block

A Graph Network block (GN block) is composed of six functions: three update functions and three
aggregation functions. Not all common graph network functions utilize all of these functions. The
first three equations (ϕe,ϕv ,ϕu) show the update functions for edges, nodes, graph respectively. The
last three equations contain the aggregation functions for local edges, global edges and global nodes.

e′k = ϕe(ek, vrk , vsk , u), v′i = ϕv(e′i, vi, u),

u′=ϕu(e′,v′,u), e′i = ρe→v(E′
i),

e′ = ρe→u(E′), v′ = ρv→u(V ′).

Nodes are notated as vi where i refers to the node id. Edges are notated as ek where k refers to the
edge id. Subscripts rk and sk refer to the node ids for the node receiving the message from ek and
the node sending the message, respectively.

2.3.3 GN Block Computation

For the GN block to act as a graph to graph function, each of the 6 functions is in turn triggered,
progressively updating node, edge and graph embeddings. This starts with all edge embeddings being
updated, the local edge aggregation function being determined for each node, followed by each node
being updated using the aggregation of incoming messages. Then the remaining two aggregation
functions are used to update 2 graph level variables that represent nodes and edges (v′, e′). The full
algorithm for updating a graph representation using a GN block is included in Appendix A.

2.4 Planning Methods as Graph Networks

2.4.1 Search Tree Graph Representation

When performing search in a state we can represent the current search state using a graph as shown in
Figure 1. The initial state where search begins takes root node placement, and then any actions from
this state induce an edge between this state and the successor state. Nodes in this graph have a state
feature which corresponds to the raw state representation vis . Edges are directional from successor
node to predecessor node, since the value of a state is determined by its children nodes (Bellman
equation). Edges have the following features, the action taken eja = a, the reward received ejr = r
and optionally we could add a terminal feature ejt = t indicating if the environment terminates
following this action. Note, even if the state representation is the same for two nodes, both nodes are
separately added to a tree. In deterministic environments, each node is connected to a maximum of
one child node through an edge feature of a particular action.

2.4.2 GN Block Sequential Computation

In trees, since no cycles can occur, instead of updating all the nodes at each iteration, we can instead
start with the lowest nodes in the tree, working up to the highest. The ordering in which nodes are

3

Figure 1: Search state as a graph

required to be updated is specified by a topological sort [22] where all dependencies of a node appear
before it in the list. TreeLSTM [29] is an example of a model that processes graphs in this way. See
Appendix A for the sequential GN block computation algorithm for trees.

2.4.3 Planning Algorithms

Popular Tree Search algorithms such as MCTS, Alpha Zero [28] and Policy Gradient Search [2] [16]
can be represented using Graph Networks with the GN block computation performed sequentially
(see Appendix A). This is then followed by a readout upon a subset of the graph nodes. Several
possible choices of readout functions are possible [8].

3 Parameterized Graph Network for Planning

Current planning algorithms are heuristic Graph Networks. By fully parameterizing a Graph Network
we can in principle train it to outperform these heuristics and tailor planning for specific problems.

In this section, we detail our method for parametrizing a Graph Network based policy that can be
trained to make decisions on search trees. We discuss important details regarding how this policy is
trained and implemented.

We parameterize our Graph Network with neural networks, forming a Graph Neural Network (GNN)
[34]. This GNN is used to update the graph such that node embeddings contain information about
the subtrees of states following them. This information can then be leveraged by a policy and value
readout function.

3.1 Architecture

3.1.1 Parameterized Graph Network

In the Background section, we detailed the general equations that form a GN block. Here, we specify
the parameterized equations we use in this paper for updating search trees. Specifically, we define
neural versions of the edge update function, edge aggregation function and the node update function
as

ϕe(ek,vrk ,vsk ,u) = GRU(fm(fe(vsks
),ekr

,ekt
),vsk), (3)

c(ek) = LeakyReLU(fa(ek)), (4)

ρe→v(E′
i) =

∑
k:rk=i

e′k
ec(e

′
k)∑

k:rk=i e
c(e′k)

, (5)

ϕv(e
′

i, vi, u) = e′i, (6)

where fm, fe, fa all represent neural network layers (see Appendix B). Note that vsks
refers to the

state feature of the sender node and ekr
,ekt

are the reward and terminal features of ek respectively.

4

For edge aggregation, an attention mechanism was used motivated by the Bellman optimality equation,
suggesting it is useful to ignore certain edge information when predicting the value of a node using
a subtree. A Gated Recurrent Unit [9] was used for the message passing function to reduce the
vanishing gradient problem which can happen when propagating messages from lower parts of the
tree to the root node [20].

3.1.2 Readout Equations

Once the Graph Network is used to update the node embeddings in the graph, to evaluate the actions
at the root node and to predict the value of the current state we use the following readout functions.

Vt(vi) = fv(GRU(fmv
(fev (vis), 0, 0), vi)), (7)

c(a, i) = m(a)fr1(en(a,vi)) + (1−m(a))fr2(vis , a), (8)

π(a|vi) =
ec(a,i)∑

a∈A ec(a,i)
, (9)

with fmv
, fev , fv, fr1 , fr2 all representing neural network layers (See Appendix B). m is an indicator

for each action, determining whether there is an edge from this action to a future state (has it been
expanded). For actions without a message, we use the logits from an alternative policy operating
directly on states. n(a, vi) refers to the edge id corresponding to taking a from node vi.

The value function is used for advantage estimation when conducting PPO. It does not necessarily
need to also be a function of the entire tree, however, it is likely to be beneficial for estimating value,
so we leverage it. In this paper, we consider a value function and policy with separate parameters to
ensure stable learning, they could be in principle combined for efficiency.

3.2 Expansion

To expand the search tree, we follow the method used in MCTS and Alpha Zero. An exploration
policy is used to take actions, starting from the root node, continuing until the action taken results in
a new node being added to the search tree.

We can interpret Alpha Zero’s exploration policy as combining two different policies, one which can
make decisions on small trees (just the root state) and one which can make decisions on large search
trees based on value estimation. The problem here is that a trade-off needs to be determined for how
to switch from one to another. This is very hard to predict for each problem and leads to parameter
tuning, which can be inefficient for Reinforcement Learning, which is already computationally heavy.

We leverage the fact that the tree policy can make decisions on any size of tree and use this as part of
the expansion policy. Expanding by only following the policy limits exploration. We expand using a
heuristic that combines the tree policy with the exploration term from MCTS

πexp(a|vi) = πr(a|vi) + c

√∑
a∈A Ni

Ni + 1
(10)

in order to make expansion decisions. Ni is a statistic referring to the number of times that action i
has been taken from node v. While we could utilize a method that also learns the best way to search
such as in [15] [17] in this paper we keep the expansion heuristic and focus on learning to process the
final tree in the best way possible.

In MCTSnets [15], Guez et al. learn to search using supervised learning, but find that using the
trained model free policy to make expansions instead of the policy trained to search has little effect
on the performance of the final policy. This suggests that with a reasonable expansion policy, most
gains come from having a good tree function, therefore learning this is the sole focus of this paper.
Note that trees can be reused between consecutive planning steps for efficiency. However, in order to
keep the tree distribution the same ensuring stable learning (early states will have trees with fewer
nodes) here we do not make use of previous search trees although it would be desirable for efficiency
reasons.

3.3 Enforcing Generalization

While in principle the GNN block and readout functions can be used to make decisions on any size
of tree, if we train it on one size of tree there is no guarantee that there will be any generalization

5

to different sizes or shapes of trees. Generalization is important firstly as it means users can select
the budget they want at test time. Secondly, the tree policy can be used as part of the expansion
policy, which by definition is making decisions on smaller trees and so needs to generalize in order
to make good expansion decisions. We consider two methods of enforcing generalisation during
training. The first refered to as GNN Dropout utilises dropout on the message passing framework,
with the idea of training the policy to not over rely on messages and to learn to make good predictions
with less information. This does however result in off-policy updates, which can be unstable if
the dropout policy is significantly different from the full GNN policy. Secondly, for the method
we refer to as GNN, we simply consider training the tree based model on varying budgets. Each
episode is generated using a fixed budget, this is to reduce variance added by the uncertainty of what
budgets were used later in the episode, which could have a large impact on expected reward. We
then introduce a budget conditional value function, which is important as the model likely will have
different expected rewards when using different budgets.

3.4 Training

We use Proximal Policy Optimization (PPO) [27] to train the tree policy. Each epoch 5000 tree action
pairs are collected, the tree policy and tree value function are then updated. Two versions of the GNN
policy were tested, GNN and GNN dropout (See Appendix C.2 for full training details).

3.5 Implementation

This project was implemented using Pytorch [24] along with Open AI Gym [7] for each environment
model. Deep Graph Library [32] was used to store expanded search trees and implement Graph
Networks. Experiments were run on a machine with an NVIDIA GeForce 1080Ti GPU and Intel
Xeon E5-2630 v3 CPU.

4 Experiments

We test the performance of our GNN policy on three diverse environments. The parameters for
training with PPO are kept constant throughout each of the experiments. We compare our method to
two heuristic planning algorithms, MCTS and an Alpha Zero style method (see Appendix C.3 for
implementation details), along with a model free policy that performs no planning. All methods are
trained for two seeds 1001 and 1002 with the average performance on a test set of problems evaluated
every epoch. For MCTS since low budgets perform very poorly we show performance for a budget
of 20 and the performance for a budget that gets close to the best method on that environment. See
Appendix C.2 for details regarding training of the GNN policy and specific hyperparameters.

4.1 Cartpole

In order to clearly demonstrate the ability for the GNN to leverage search trees, we adapt a simple
problem (Cartpole) such that information at each state is limited (using noise). This then encourages
planning since many states do not contain enough information in order to reliably make the optimal
action. By adding noise we are simulating how in complex planning problems, learning on states can
be difficult, particularly without the right inductive biases. This problem guarantees that planning is
important, and therefore is a useful initial problem to understand the capabilities of the GNN and
the stability of training it using Reinforcement Learning. We investigate 3 levels of Gaussian noise
for our algorithm and baselines, with σ = 0 being easy to learn a model free policy, σ = 10 being
practically difficult for a model free policy to learn anything and σ = 2 representing a mid-point
between these.

4.2 Sokoban

Sokoban [25] is a problem which planning is known to be useful and has frequently been used
as a domain for comparing planning methods. It consists of an agent in a grid world with the
goal of pushing boxes onto goal squares. Planning is often required as moves can have long term
consequences, such as making the problem unsolvable. We test on small problems in 7x7 grids with
2 boxes (See Appendix C.1).

6

(a) Cartpole σ = 0 (b) Cartpole σ = 2 (c) Cartpole σ = 10

Figure 2: Cartpole Experiments, lines in the same color show each model trained with different
random seeds

4.3 Travelling Salesman Problem

Lastly, we test methods on instances of the Travelling Salesman problem to demonstrate the applica-
bility of our model combinatorial problems. We demonstrate our method on TSP of size 10 to keep
training budgets feasible. Without inductive biases, it is very difficult for state based policies to learn
anything, and so we train using an encoder-decoder architecture [19] (See Appendix C.1).

5 Results

For all experiments, we train all models twice with 2 different seeds. Graphs then show two lines for
each model, each referring to a different seed.

5.1 Cartpole

Figures 2a, 2b and 2c show the results for training on Cartpole with varying levels of noise. We
see that for Cartpole with no noise, all methods converge fairly quickly to solving most instances.
Alpha Zero is the most stable of the methods, with the GNN method performing slightly worse. Once
noise is introduced in Figure 2b we see all baselines performance drop significantly, model free
method understandably drops however we also see Alpha Zero significantly suffers. This is likely
due to Alpha Zero equally weighting value estimates of nodes in subtrees, which isn’t good when our
confidence of value may change significantly depending on the state. MCTS does not change as it
does not make use of state information. Figure 2c shows the robustness of the GNN policy, where a
very large amount of noise makes state information difficult to leverage at all. This shows the GNN
policy can leverage only rewards if need be. This demonstrates the GNN policy can adapt depending
on the specific problem as to what information needs to be leveraged. We also see that the GNN
policy consistently can achieve the same performance as MCTS with much lower budgets.

5.2 Practical Planning Problems

5.2.1 Sokoban

The results for the Sokoban experiments are shown in Figure 3a. We see that on an epoch basis,
both GNN policies outperform other methods. However, the performance gap to model free is not
particularly large. One of the reasons for this gap might be that the GNN performance with budget 0
is fairly weak (See Appendix D). Good expansions of the search tree are critical for constructing a
useful tree, and this is likely limiting the performance of the GNN policy. This further highlights the
importance of generalisation and suggests that for some problems more compute should perhaps be
allocated to training the GNN on smaller budgets relative to larger budgets.

5.2.2 Travelling Salesman Problem

For the travelling salesman problem, we see that both GNN policies strongly outperform the model
free policy. The GNN Dropout model also significantly outperforms Alpha Zero. In contrast to
Sokoban this is likely down to the successful training of the GNN on budget 0 which also outperforms
Alpha Zero (See Appendix D) showing the off-policy Reinforcement Learning updates can be very

7

(a) Sokoban (b) Travelling Salesman Problem

Figure 3: Experiments for Sokoban and the Travelling Salesman Problem, lines in the same color
show each model trained with different random seeds

effective for enforcing generalisation in some problems. MCTS is very inefficient on the TSP, and it
takes around a budget of 2000 to match Alpha Zero.

6 Related Work

6.1 Heuristic Search Methods with Learnt Components

Monte Carlo Tree Search (MCTS) [10], inspired by the UCB algorithm [4], is a widely applied
method to Markov Decision Processes. All computation is done at test time by accumulating rewards
received in the tree and using them to inform future expansions and ultimately a final output. More
recently, MCTS has been adapted in [3] and in Alpha Zero [28] by integrating learnt components
through a model free policy and a value function that makes search orders of magnitude more efficient.
This method has been successfully applied to complex domains with high branching factors, such
as Chess and Go. MuZero [26] extends Alpha Zero by not requiring a model of the environment to
make expansions, by in parallel learning a model of the environment which is then used for planning.
To avoid the need for a search tree to be stored at all, [2] [13] perform planning by updating a policy
using policy gradient updates after sampling trajectories. TreeQN and ATreeC [12] introduce an
inductive bias into a policy by training a model to expand a search tree in a breadth first like way and
then enforce a structure on how the value function should behave. BCTS [11], like Alpha Zero, uses
value functions to evaluate a tree but introduces a correction for the problem of poor value estimates
for off policy trajectories. In Value Prediction network [21] a subset of actions are simulated to a
specific depth, with the resulting tree evaluated by weighting the value function estimates of the nodes
in the tree using a heuristic function. While able to deliver strong performance in some domains, each
of these methods, due to their heuristic nature, are unlikely to work well in all domains. Methods that
rely on using value functions to evaluate search trees suffer from problems such as off-policy node
bias [11]. Evaluating subtrees using mean value [3] [28] can be susceptible to outlier errors. Lastly,
in some domains (such as TSP) it appears that value functions can be difficult to learn [19] and so
methods that rely on using this for policy improvement are unlikely to be stable. These downsides
have led to a branch of work that focuses on learning to search instead of relying on crafted heuristics.

6.2 Learnt Search Methods

I2A [33] construct a very particular type of search tree by rolling out a single trajectory for a fixed
depth for every action and using an LSTM to encode trajectories, training this using policy gradients.
This can be viewed as a specific instance of our method with a very particular exploration function.
While it is suitable for problems with small action spaces, this would be very inefficient for large
action spaces. MCTSnets [15] train a parameterized graph network to process a more traditional
tree distribution like that seen in MCTS where actions can have multiple expansions. MCTSnets is
trained using supervised learning, showing in principle message passing architectures can learn to
process trees. However, it is not practical due to the requirement of strong targets beforehand. IBP
[23] makes use of imagined actions to build a history of future actions, which is then processed using

8

an LSTM to make an improved final decision. The approach is trained using policy gradients and
experiments shown an increase of performance when forward-looking budgets are increased and tree
based search is used. Tasfi et al. [30] introduce Dynamic Planning Networks (DPN) which learn an
environment model that is used for planning where the objective is to maximize information before
making an action. Neither DPN nor IBP leverage the tree structure inherent in search trees in any
way, opting to encode planning using a recurrent architecture encoding future state progressively.

6.3 Graph Neural Network Architectures

Graph Neural Networks [34] is a growing area of research which tackles learning functions on graphs.
Applications of such architectures include predicting the chemical properties of molecules [14] and
solving graph based combinatorial problems [19] [6]. Such architectures can also be applied to trees
with small changes. TreeLSTMs [29] have been applied to semantic representations, while MCTSnets
process search trees in Sokoban using message passing neural networks. I2A processes very specific
trees where there are only single trajectories for each action, so no message aggregation is needed,
and each trajectory can simply be encoded using an LSTM [33].

6.4 Combining Learning and Search in Combinatorial Optimization

Combinatorial Optimization is an example of a domain where search is important for achieving strong
performance. There have been numerous approaches to applying Graph Neural networks to routing
problems [31][18], Kool et al [19] show that significant performance gains can be made through
adding very simple search methods to a GNN policy, such as stochastic rollouts and beam search to
improve performance. Methods similar to Alpha Zero have also been applied to TSP problems [1].
Policy Gradient Search was used in [16] to improve the performance of a model free policy at test
time for routing problems, making it efficient by only updating a small number of parameters at test
time.

7 Conclusion

Firstly, we frame existing planning methods as Graph Networks. These Graph Networks are heuris-
tically designed to make decisions on trees for planning problems. We introduce a parameterized
Graph Network which we show can be trained using Reinforcement Learning to perform planning
and to outperform existing Graph Network heuristics. We demonstrate that this model can be trained
on a wide range of environments with the parameters. When compared to baselines for the same
number of updates, the GNN policy outperforms other methods on Cartpole with Noise, Sokoban
and the Travelling Salesman problem.

We also show that the Graph Neural Network policy demonstrates generalisation to other search
budgets beyond what it was trained on. Performance is stable for budgets not seen during training,
and even improves when given budgets larger than those seen during training, a strong indication that
it has learnt a generalisable planning method and has not overfit to the large amount of information in
trees.

An important application that this work can be utilized in that was not explored in this paper was the
use of imperfect environment models for planning. Such models are difficult to plan with as they can
contain many mistakes and the optimal planning method is tied closely to how well the environment
model has trained, which may be unstable between seeds. The results of this paper suggest that
Graph Neural Networks may be a promising approach to learning how to leverage imperfect planning
trees. With a model with no predictive power, the GNN could learn to utilize only the root state, but
with better models it could learn to utilise the tree. Our experiments in noisy Cartpole demonstrate
that the GNN policy is capable of adapting based on the available information in the search tree
and so this could be an important application of this work. In conclusion, this paper highlights that
parameterized graph networks are a very promising method for learning to plan that can learn to
outperform heuristics at planning using Reinforcement Learning.

9

Acknowledgments and Disclosure of Funding

This research was partly funded by the funded by LIFT-project 019.011 which
is partly financed by the Dutch Research Council (NWO).

This research was partly funded by Flemish Government under the “Onder-
zoeksprogramma Artifciële Intelligentie (AI) Vlaanderen”.

References
[1] Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving NP-hard problems on

graphs with extended Alphago Zero. arXiv preprint arXiv:1905.11623, 2019.

[2] Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Policy
gradient search: Online planning and expert iteration without search trees. arXiv preprint
arXiv:1904.03646, 2019.

[3] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Advances in Neural Information Processing Systems, 2017.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[6] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. In International Conference on Learning
Represenations, Workshop Track, 2017.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[10] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[11] Gal Dalal, Assaf Hallak, Steven Dalton, Shie Mannor, Gal Chechik, et al. Improve agents with-
out retraining: Parallel tree search with off-policy correction. Advances in Neural Information
Processing Systems, 34:5518–5530, 2021.

[12] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. TreeQN and
ATreeC: Differentiable tree-structured models for deep reinforcement learning. In International
Conference on Learning Representations, 2018.

[13] Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown. Scalable
online planning via reinforcement learning fine-tuning. Advances in Neural Information
Processing Systems, 34:16951–16963, 2021.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272, 2017.

10

[15] Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan
Wierstra, Rémi Munos, and David Silver. Learning to search with MCTSNets. In International
conference on machine learning, pages 1822–1831, 2018.

[16] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

[17] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing
systems, 29, 2016.

[18] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

[19] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

[20] Denis Lukovnikov, Jens Lehmann, and Asja Fischer. Improving the long-range performance of
gated graph neural networks. arXiv preprint arXiv:2007.09668, 2020.

[21] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

[22] Chaoyi Pang, Junhu Wang, Yu Cheng, Haolan Zhang, and Tongliang Li. Topological sorts on
DAGs. Information Processing Letters, 115(2):298–301, 2015.

[23] Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière,
David Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based
planning from scratch. arXiv preprint arXiv:1707.06170, 2017.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[25] Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-sokoban, 2018.

[26] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
Atari, Go, Chess and Shogi by planning with a learned model. Nature, 588(7839):604–609,
2020.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[28] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[29] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. Annual Meeting of the Association
for Computational Linguistics and the International Joint Conference on Natural Language
Processing, 2015.

[30] Norman Tasfi and Miriam Capretz. Dynamic planning networks. In International Joint
Conference on Neural Networks, 2021.

[31] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

11

[32] Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs.
In ICLR workshop on representation learning on graphs and manifolds, 2019.

[33] Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
et al. Imagination-augmented agents for deep reinforcement learning. In Advances in neural
information processing systems, 2017.

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

12

	Introduction
	Background
	Markov Decision Processes
	Search in MDPs
	Graph Networks
	Graphs
	Graph Network Block
	GN Block Computation

	Planning Methods as Graph Networks
	Search Tree Graph Representation
	GN Block Sequential Computation
	Planning Algorithms

	Parameterized Graph Network for Planning
	Architecture
	Parameterized Graph Network
	Readout Equations

	Expansion
	Enforcing Generalization
	Training
	Implementation

	Experiments
	Cartpole
	Sokoban
	Travelling Salesman Problem

	Results
	Cartpole
	Practical Planning Problems
	Sokoban
	Travelling Salesman Problem

	Related Work
	Heuristic Search Methods with Learnt Components
	Learnt Search Methods
	Graph Neural Network Architectures
	Combining Learning and Search in Combinatorial Optimization

	Conclusion
	Appendix
	A Graph Networks
	MCTS
	Graph Network
	Readout Functions
	Details
	Alpha Zero
	Graph Network
	Readout Functions
	Details

	B Model Architectures
	Graph Network Block
	Readout Functions

	C Experiments
	C.1 Environments
	Cartpole with Noise
	Sokoban
	Travelling Salesman Problem
	C.2 Training
	C.3 Baselines
	Model Free
	MCTS
	Alpha Zero

	D Ablations

