
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MLGLP: MULTI-SCALE LINE-GRAPH LINK PREDIC-
TION BASED ON GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This manuscript proposes a multi-scale link prediction approach based on Graph
Neural Networks (GNNs). The proposed method - Multi-Scale Line-Graph Link
Prediction (MLGLP) - learns the graph structure and extracts effective represen-
tative features of graph edges to address challenges such as information loss and
handle multi-scale information. This approach utilizes embedding vectors gen-
erated by GNNs from enclosing subgraphs. While expanding GNN layers can
capture more intricate relations, it often leads to overs-smoothing. To mitigate
this issue, we propose constructing coarse-grained graphs at three distinct scales
to uncover complex relations. To apply multi-scale subgraphs in GNNs without
using pooling layers that lead to information loss, we convert each subgraph into
a line-graph and reformulate the task as a node classification problem. The hierar-
chical structure facilitates exploration across various levels of abstraction, foster-
ing deeper comprehension of the relationships and dependencies inherent within
the graph. The proposed method is applied on link prediction problem, which can
be modelled as a graph classification problem. We perform extensive experiments
on several well-known benchmarks and compare the results with state-of-the-art
link prediction methods. The experimental results demonstrate the superiority of
our proposed model in terms of average precision and area under the curve.

1 INTRODUCTION

In our increasingly interconnected world, many problems can be seen as graph-structured data.
Graphs are mathematical structures composed of nodes (vertices) and edges (links or connections
between nodes). They are widely used to represent complex systems in various domains such as
social networks, biological networks, recommendation systems, chemistry, citation networks, and
power networks Cai et al. (2021). Link prediction is a fundamental task in graph analytics with
diverse applications across multiple domains such as friend recommendations in social networks or
predicting interactions between genes Zhu et al. (2023). Traditional methods for link prediction use
graph structural properties (e.g., common neighbors), often overlook important information such as
features associated with each node. In contrast, graph representation-learning techniques such as
Graph Neural Networks (GNNs), integrate graph structures with node/edge features, allowing the
capture of complex relationships through iterative message passing across graph edges.

GNN-based link prediction methods are categorized into node-based and subgraph-based ap-
proaches Zhang et al. (2020). Node-based techniques like Graph Convolutional Networks (GCN)
Yao et al. (2019), Graph Attention Network (GAT) Veličković et al. (2017), GraphSAGE (SAGE)
Hamilton et al. (2017), and Graph AutoEncoder (GAE) Kipf & Welling (2016) incorporate multi-
hop graph structures through message passing. They first extract the node embeddings and then
predict the possible link between two nodes using a similarity method or a classifier, such as a
multi-layer perceptron, to process both representations and determine the likelihood of a link be-
tween them. In contrast, subgraph-based methods, such as SEAL Zhang & Chen (2018), BUDDY
Chamberlain et al. (2022), mLink Cai & Ji (2020), LGLP Cai et al. (2021), and LGCL Zhang et al.
(2023) extract an h-hop enclosing subgraph around the target link, learning a representation specifi-
cally tailored to that subgraph. They then use a binary classifier to determine whether the subgraph
indicates the presence or absence of a link Li et al. (2024). However, methods like SEAL may strug-
gle when node representations closely resemble those of their local neighborhoods, as they may
fail to effectively capture information from distant neighbors. This limitation results in subgraphs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

containing redundant or irrelevant details, which can diminish model performance. If nodes share
similar features with nearby nodes, they may miss crucial information from farther nodes, leading to
less accurate predictions. A possible solution is to expand the GNN layers to extract more intricate
relations. However, it faces challenges like over-smoothing, where nuanced messaging becomes
difficult, resulting in node homogenization, particularly in limited subgraph scenarios. Multi-scale
methods such as mLink Cai & Ji (2020) provide hierarchical information retrieval capabilities. How-
ever, they rely on pooling layers to handle varying node numbers in subgraphs, which may result in
information loss.

Present work. To address these challenges, in this paper we propose a link prediction approach that
seamlessly integrates both local and global graph structures into a unified framework that allows
for a more complete understanding of the graph’s structure. The main idea is to learn relations and
features from subgraphs extracted at different scales—ranging from local (small) to global (large)
subgraphs. Each scale captures information at a different level of granularity. This allows the model
to understand relationships between nodes at multiple levels of detail. Instead of directly predicting
links between two nodes, we reformulate the link prediction task as a binary node classification
problem. To achieve this, we first convert the original graph into a line-graph, where each node
corresponds to an edge in the original graph. Since each node in the line-graph represents a link in
the original graph, a classification of 1 implies the existence of a link between two nodes in the orig-
inal graph, while a classification of 0 indicates no link. We apply a GCN on the line graph at each
scale to obtain node embeddings. For each node, the embeddings generated at different scales are
concatenated and fed into a multi-layer perceptron (MLP) to predict the node’s class. Hierarchical
structures resulting from different graph scales, enable the analysis of graphs at different levels of
granularity, allowing us to group nodes based on their relationships and capture broader patterns. By
considering not only individual nodes but also their collective interactions within subgraphs or clus-
ters, our method extracts richer information and provide a more nuanced understanding of the graph
structure for classification purposes. The results obtained from experiments on real-world datasets
demonstrate the superiority of the proposed method compared to state-of-the-art approaches. The
main properties of the proposed method listed as follows:

1. Our method incorporates both local and global graph structures by leveraging subgraphs at
different scales, allowing for a more comprehensive understanding of graph relationships,
capturing both micro and macro-level graph information.

2. Instead of directly predicting links, our approach reformulates the link prediction problem
as a node classification task using line-graphs. This approach helps in reducing information
loss and simplifying the learning process for the model.

3. The approach considers individual node attributes and their collective interactions within
subgraphs, enabling richer feature extraction and a more nuanced representation of the
graph’s structure and relationships.

2 RELATED WORKS

Several approaches have been proposed to address the link prediction task, which can be classified
into proximity-based (non-learning) and learning-based approaches. Proximity-based methods rely
on statistical properties of nodes/edges within the graph without explicitly learning embedding of
nodes or edges. They typically use heuristic or feature-based techniques. Heuristic methods gen-
erally employ predefined rules or measures and evaluate link existence by assigning scores derived
from the graph structure, utilizing either common neighbors or path information. Examples include
Common Neighbour (CN) Newman (2001), Adamic Adar (AA) Adamic & Adar (2003), Resource
Allocation (RA) Zhou et al. (2009), Significant Influence (SI) Yang et al. (2018), Shortest Path, and
Katz Katz (1953). They often assess the existence of a link by assigning a score derived from the
graph structure. CN, AA, and RA methods primarily depend on common neighbors, whereas SI,
Shortest Path, and Katz methods utilize the graph paths. These methods are widely used due to their
simplicity and interoperability. However, each heuristic relies heavily on an underlying assumption
regarding the likelihood of two nodes forming a connection, which constrains their efficacy when
these assumptions are not met in certain network contexts. Moreover, they rely solely on graph
structure and overlook node or edge features, often effective in link prediction tasks. Feature-based
methods, on the other hand, use machine learning models trained on a set of features, such as node,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

edge, or graph attributes. While they incorporate explicit features, they may not fully exploit the
underlying graph structure, potentially missing important relational information and dependencies.
This can lead to less accurate or insightful models than those that utilize the graph structure directly.

Representation learning methods transform the graph structure into a low-dimensional vector space.
They are divided into embedding-based and GNN-based methods. Popular embedding-based meth-
ods include Matrix Factorization (MF) Menon & Elkan (2011), MLP, Large-scale Information Net-
work Embedding (LINE) Tang et al. (2015), DeepWalk Perozzi et al. (2014), and node2vec Qiu et al.
(2018). For instance, DeepWalk Perozzi et al. (2014) uses the random walk strategy to generate node
sequences and applies the Skip-gram model to learn node embeddings. node2vec Qiu et al. (2018)
method extends the DeepWalk by using a biased random walk to better explore neighborhoods.
The LINE Tang et al. (2015) approach captures both first-order and second-order proximities in the
graph for better embedding quality. A key limitation of these methods is their inability to leverage
node features, relying solely on graph structure. Furthermore, they learn node embeddings with free
parameters from the observed network in a transductive manner, meaning they cannot generalize to
new nodes or networks not seen during training.

GNN-based methods leverage both network structure and node features. For the link prediction
task, GNN-based approaches can be broadly divided into two categories: node-based and subgraph-
based methods. In the Node-based category, models like GCN Yao et al. (2019), Graph Attention
Networks (GAT) Veličković et al. (2017), GraphSAGE (SAGE) Hamilton et al. (2017), and Graph
Autoencoders (GAE) Kipf & Welling (2016) represent nodes by leveraging the multi-hop struc-
ture of the graph through a message-passing mechanism. GCN utilizes convolutions operations on
graphs to aggregate information from neighbors and learn node embedding. GAT assigns varying
importance to neighbors using attention mechanisms when aggregating information. GAE uses an
Encoder-Decoder framework to learn node embeddings, where the encoder maps nodes to embed-
ding, and the decoder reconstructs the graph structure. GraphSAGE samples and aggregates features
from a node’s local neighborhood using neural networks.

Recent research studies have focused on subgraph-based methods, which integrate GNNs with en-
closing subgraphs extracted from target node pairs, demonstrating remarkable effectiveness. The
Weisfeiler-Lehman Neural Machine (WLNM) Zhang & Chen (2017) was among the first to apply
subgraph-based GNN approaches for link predictionZhang & Chen (2018). Subgraph-based meth-
ods integrate additional information, such as subgraph features and common neighbor information
to gain a deeper understanding of the relationships between nodes in predicted links. Well-known
methods in this category include SEAL Zhang & Chen (2018), BUDDY Chamberlain et al. (2022),
mLink Cai & Ji (2020), LGLP Cai et al. (2021), LGCL Zhang et al. (2023), DE-GNN Li et al.
(2020), and NBFNet Zhu et al. (2021). The subgraph-based methods, such as SEAL Zhang & Chen
(2018), extract an h-hop enclosing subgraph around the target link, learning a representation tailored
to that subgraph.

3 PRELIMINARIES

In this section, we state the problem of link prediction and provide the formal definitions for the
concepts of graphs, h-hop enclosing subgraph, line-graph, Multi-scale graph.

Graph. Let G = (V,E,A) be an undirected graph, where V = {1, 2, . . . , n} is the set of n vertices,
and E ⊆ V ×V is the observed edge set, which represents observed relationships and forms a subset
of the complete link set E∗. The tensor A ∈ Rn×n×k encapsulates the features of both nodes and
edges. In this representation, diagonal entries Ai,i,: capture the node attributes, while off-diagonal
entries Ai,j,: store the edge features. Additionally, we define A ∈ {0, 1}n×n as the adjacency
matrix, where Ai,j = 1 if and only if there exists an edge (i, j) ∈ E, and the matrix X ∈ Rn×k, as
the matrix of node features where Xi = Ai,i,: for each node i ∈ V . Without node or edge attributes,
we simply set A = A, treating the adjacency matrix as the feature tensor. Otherwise, the adjacency
matrix A is derived from the first slice of A, such that A = A:,:,1.

Link Prediction Problem. The link prediction task is framed as designing a link predictor that
operates on an observed subgraph G ⊂ G∗, defined as LP(G) = Π : V × V → {True,False},
which classifies the existence of links in the set of candidate edges Ec. The goal of LP is to estimate
the likelihood of a potential connection between two nodes, u and v, leveraging both the structural

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

characteristics of the graph and the feature information provided by A.Mathematically, this can be
expressed as p(u, v) = p(u, v|G,X), where X is the node feature matrix derived from the diagonal
entries of A. While traditional methods relied on heuristic approaches to estimate p(u, v), contem-
porary techniques employ a learnable function f , parameterized by Θ, enabling a more flexible and
data-driven estimation: p(u, v) = f(u, v|G,X,Θ). These advanced methods, often implemented
through GNNs, capture complex patterns in the graph structure and feature representations, improv-
ing their ability to identify potential links, specifically true missing links. The main objective is to
create a vector for each edge in the graph, which captures relevant features or characteristics of the
nodes and their relationships. This vector is then fed into a binary classifier that predicts the likeli-
hood of the presence of a given edge, or in other words, predicts whether a target node pair is likely
to be connected by a true missing link in the future while avoiding misclassification of false missing
links. To train the classifier, two sets of edges are used: positive samples and negative samples.
Positive samples are those edges that currently exist in graph G, while negative samples are a set of
pairs randomly sampled from the graph where no edge currently exists.

h-hop Enclosing Subgraph. The h-hop enclosing subgraph for a node pair (u, v) is the subgraph
induced by the set of nodes within h-hops of either u or v, i.e., nodes that are at most h-hops away
from either u or v. Specifically, the h-hop enclosing subgraph Gh

(u,v) is represented as Gh
(u,v) =

(V h
(u,v), E

h
(u,v)), where V h

(u,v) is the set of nodes within h-hops of u or v, and Eh
(u,v) is the set of edges

between these nodes in the original graph. The node set V h
(u,v) consists of all nodes x ∈ V that satisfy

V h
(u,v) = {x ∈ V : d(x, u) ≤ h or d(x, v) ≤ h}, where d(x, y) represents the shortest-path distance

between nodes x and y in the graph G = (V,E). This set includes all nodes that are reachable from
either u or v within h-hops. Additionally, the edge set Eh

(u,v) includes all edges (x, y) ∈ E such that
both x and y belong to V h

(u,v), Formally expressed as Eh
(u,v) = {(x, y) ∈ E : x, y ∈ V h

(u,v)}. These
edges represent connections between nodes within the h-hop neighborhood of u and v.

Multi-Scaled Graph. A multi-scaled graph SG = (Vs, Es) can be defined through several key
steps, starting with the original graph G = (V,E), where V is the set of nodes and E is the set of
edges. The first step involves a coarse-graining process, in which a similarity measure S : V ×V →
R is defined to quantify the similarity between pairs of nodes. Various similarity measures can be
utilized; specifically for the link prediction task, the similarity of a group of nodes is determined by
their proximity to the target nodes. Next, a partitioning function P : V → C is established to assign
each node v ∈ V to a cluster c ∈ C based on the similarity measure, where C represents a set of
clusters or hyper-nodes, denoted as C = {C1, C2, . . . , Ck}. Nodes are then grouped into hyper-
nodes according to predefined criteria, such that ∀u, v ∈ V, if S(u, v) ≥ θ, then P (u) = P (v),
where θ is a threshold for similarity. The vertex set of the scaled graph SG contain the hyper-nodes,
defined as Vs = {ci : ci ∈ C}. The edge set Es is constructed by connecting hyper-nodes that repre-
sent original nodes sharing edges in G, expressed as Es = {(ci, cj) : ∃u ∈ ci,∃v ∈ cj , (u, v) ∈ E}.
Finally, the process can be recursively repeated to create multiple scales SG1, SG2, SG3 for differ-
ent levels l in the hierarchy, where the l-th scaled graph is defined as SGl = (V

(l)
s , E

(l)
s). Each level

l represents a different granularity of the original graph, capturing varying patterns of interactions.
Transferring a graph to a new scale reduces the complexity of the graph while preserving structural
information. Fig 1 shows the process of generating graphs in different scales. The hierarchical

Figure 1: Example of generating graph in different scales. Similar nodes group together.

structure of a graph enables analyzing the graph at varying granularity levels. Rather than treating
every individual node independently, we can group nodes based on their relations, allowing us to
capture broader patterns and features that might be more insightful for classification tasks. This ap-
proach allows us to extract richer information by considering not just individual nodes, but also their
collective interactions within subgraphs or clusters, leading to a more nuanced understanding of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the graph’s structure and content for classification purposes. When a node’s representation closely
mirrors that of its local neighborhood, it struggles to gather information effectively from distant
neighbors. Consequently, the surrounding subgraph may contain repetitive or unnecessary details,
which can negatively impact the performance of models designed for link prediction. In simpler
terms, if a node’s features are too similar to those of its nearby nodes, it may miss out on impor-
tant information from farther away, potentially leading to less accurate predictions in link prediction
tasks.

Line-Graph. A line-graph L(G) of a graph G = (V,E) is a graph where each node in L(G)
corresponds to an edge in G, and two nodes in L(G) are adjacent if and only if their corresponding
edges in G share a common vertex. Formally, given a graph G = (V,E), the line-graph L(G) =
(VL, EL) can be described as follows: the vertex set VL consists of the edges of the original graph
G, meaning VL = E. The edge set EL is defined as EL = {(e1, e2) ∈ VL ×VL : e1 = (u,w), e2 =
(w, v) for some u, v, w ∈ V }. This implies that two nodes e1 = (u,w) and e2 = (w, v) in L(G) are
connected if the edges e1 and e2 in G share a common vertex w. In other words, two nodes in L(G)
are connected if their corresponding edges in G share at least one common vertex. If the G has edges
(u,w) and (w, v), then in the L(G), there will be nodes corresponding to these edges. Two nodes in
the L(G) are connected if their corresponding edges in the G share a common node. For example,
if edges (u,w) and (w, v) are present in the G, then in the L(G), the nodes corresponding to these
edges will be connected because they share the common node w. Fig. 2 illustrates the line-graph
derived from the original graph. This approach involves representing a link as a new node in a graph
and then calculating the representation of this new node to serve as a proxy for the original link.
This concept, known as line-graph transformation, treats edges (links) in the original graph as nodes
in a derived line-graph, thereby capturing relationships between edges through the derived graph’s
node representations. In this study, inspired by a method proposed in Cai et al. (2021), we utilized
the line-graph to convert the link prediction task to the node classification by using the line-graph.

Figure 2: Demonstration of the line-graph conversion process. In the line-graph, each node corre-
sponds to a specific edge in the original graph and is labeled with the identifiers of its two endpoints.

4 PROPOSED METHODOLOGY

In this section, we introduce the Multi-Scale line-graph Link Prediction (MLGLP) framework, de-
picted in Fig. 3. First, we group nodes with similar characteristics and connections. This consolida-
tion allows us to transform the graph into a new scale, enabling a more efficient representation. Next,
we convert the graph into a line-graph, creating three distinct line-graphs at different scales, which
provide rich hierarchical structural information. Using GCN, we implement a message-passing
mechanism to capture local collaborative patterns among nodes. We then focus on the embedding of
target nodes within each line-graph, corresponding to target edges in each multi-scale graph derived
from the original graph. By concatenating these embedding vectors, we reframe the problem from
binary graph classification into a binary node classification task. To accomplish this transformation,
we employ two fully connected layers as a binary classifier. Thus, we introduce a novel GNN de-
signed to learn comprehensive relationships and features from subgraphs at different scales. This
approach captures a deeper understanding of the underlying structure and dynamics of the data. The
following section describes the MLGLP method in detail.

4.1 SUBGRAPH EXTRACTION

Detecting the presence of a link between two nodes relies on examining the topology of the graph
centered around them. While leveraging global graph structural information often improves the
performance, subgraph-based methods typically limit the 2-hop neighbours to balance performance

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Overall structure of the MLGLP Framework. The process begins by extracting the en-
closing subgraph from target pair nodes. Then group nodes with similar characteristics and con-
nections, effectively merging them into single nodes. These graphs are then transformed into a
line-graphs, generating three distinct line-graphs at varying scales. Using Graph Convolutional
Networks (GCNs), a graph-based message-passing mechanism captures local collaborative patterns
among nodes. Focus is placed on the embeddings of target nodes corresponding to target edges
within each multi-scale graph derived from the original graph. These embedding vectors are con-
catenated, reframing the problem from binary graph classification to binary node classification. A
binary classifier, implemented with two fully connected layers, is employed to learn comprehensive
relationships and features of subgraphs at different scales.

and computational cost. We extract a subgraph containing the target nodes, along with all nodes
connected to them within a distance of 1 or 2. For subgraph extraction, we include the target edge
even for negative samples, as this step is necessary for later conversion of the subgraph into a line-
graph.

4.2 NODE AGGREGATION - MULTI-SCALE GRAPH TRANSFORMATION

Following common GNN-based link prediction models Zhang & Chen (2018), after extracting the
h-hop enclosing subgraph Gh

(vi,vj)
of target pair node (vi, vj), we map Gh

(vi,vj)
to three different

scales and form coarse-grained graphs SG1, SG2, SG3. We aim to construct these coarse-grained
scales by grouping nodes with similar connections. To do this, we measure the similarity between
nodes and assign labels based on their proximity to the target nodes. This labelling process is crucial
for predicting the presence of a link between the target nodes. Target nodes receive label of 1, while
others are labeled based on their distance from the target nodes. Neighbour nodes with the same
labels (f(i) = f(j)) are grouped together to create a hyper node in a subgraph. Equation (1) is used
to assign labels to nodes.

fi(u) = 1 +min(d(u, vi), d(u, vj)) + d(u, vi) + d(u, vj) (1)

where the variables d(u, vi) and d(u, vj) represent the shortest distances between a node u and
target pair nodes, vi and vj , respectively. By aggregating nodes, we form a subgraph, which is then
relabeled and further aggregated iteratively to produce three subgraphs representing varying detail
levels.

4.3 LINE-GRAPH TRANSFORMATION

In this stage, we transform subgraphs SG1, SG2, SG3 into three line-graphs L(SG1), L(SG2),
L(SG3), enriching our understanding of the hierarchical structural information within the data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Each node’s label in the subgraph is derived from the computation defined by (2), and these labels
are then encoded as one-hot vectors.

hl(u) = 1 +min (d(u, vi), d(u, vj)) +

⌊
d(u, vi)

2

⌋ [⌊
d(u, vi)

2

⌋
+ d(u, vj)%2− 1

]
(2)

The labelling function must be able to distinguish and identify two specific nodes within the sub-
graph. It should also be able to assign a label that reflects how important or relevant each node is in
relation to the two target nodes. This involves considering the position and role of each node in the
overall structure of the subgraph. Next, each subgraph is transformed into a line-graph, where sub-
graph edges become nodes in the line-graph. Then we assign a label to each node of the line-graph
and use them as the initial features for the target link (target node in the line-graph). This process is
applied for every edge in the original graph using graph transformation function T (.) in (3).

T (vi, vj) = Concat(min(hl(vi), hl(vj)) + max(hl(vi), hl(vj))) (3)

where h(vi) and h(vj), computed using (2), are used as the node representations of vi and vj ,
respectively, after being encoded as one-hot vectors. vi and vj denote the two endpoints of an edge.
The Concat(·) operation represents the concatenation of the two inputs, vi and vj , combining their
information into a single feature vector. We merge the two one-hot vectors of nodes into a single,
order-invariant vector to create their feature representation. This approach allows the edge attributes
to be used as node attributes in the line-graph, thereby preserving the structural information.

4.4 LOSS FUNCTION

We apply GCN to each line-graph to generate the representation of its nodes. We focus on the
embeddings of target nodes within each line-graph, particularly those corresponding to target edges
for pairs of nodes within each multi-scale graph. Therefore, by concatenating these embeddings, the
link prediction task is transformed into a binary node classification task.

Using node embeddings in the line-graph allows us to predict the likelihood of a potential link in the
network, framing the task as a binary node classification problem. To achieve this, we employ two
fully connected layers as a binary classifier, each with a dimensionality of 32.

In this paper, binary cross-entropy is used as an objective function to treat the link prediction task
as a binary classification problem. The training process minimizes the cross-entropy loss across all
training links. The loss function is defined as:

L = −
N∑
t=1

(yt log(ŷt) + (1− yt) log(1− ŷt)) (4)

where N represents the total number of target links used for training, yt and ŷt denote the true
label value and predicted probability value of the tth sample, respectively, indicating whether the
link exists or not. The function log(·) corresponds to the natural logarithm.The pseudocode of the
MLGLP algorithm is provided in Appendix C.

5 PERFORMANCE OF MLGLP ON BENCHMARK DATASETS

In this section, we evaluated our method (MLGLP) and compared it with 12 other methods including
CN Newman (2001), AA Adamic & Adar (2003), RA Zhou et al. (2009), PPR , Shortest Path Liben-
Nowell & Kleinberg (2003), Katz Katz (1953), GCN Yao et al. (2019), GAE Kipf & Welling (2016),
LGLP Cai et al. (2021), SEAL Zhang & Chen (2018), MLP, and MF Menon & Elkan (2011) across
seven datasets. Due to space constraints, detailed descriptions of the baselines are provided in
Appendix E. The results in terms of Average Precision (AP), Area Under the Curve (AUC), and loss
show that MLGLP significantly outperforms other methods, demonstrating its effectiveness in link
prediction tasks. detailed of the evaluation metrics are provided in Appendix D.

Datasets. In this study, we evaluate the MLGLP method on a diverse set of 7 datasets including
Celegans, USAir, Power, NSC, Cora, Citeseer, and Router. Our experiments cover graphs of differ-
ent magnitudes, encompassing variations in both node count and edge connections. Our goal is to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

demonstrate the broad applicability of our method across diverse datasets of varying scales, affirm-
ing its versatility and efficacy in addressing real-world challenges. The characteristics and statistics
of the datasets are presented in Table 5 of Appendix A, with further information provided in the
same appendix.

5.1 SETTINGS

In our experiments, we set test-ratio as 0.2, which means the datasets were randomly divided in
the following manner: 80% were allocated for training, and 20% were reserved for testing. All
learning-based methods are trained for 50 epochs. Also, the batch number is set as 50. Additionally,
experiments were conducted ten times, and the results were averaged. The damping factor is set
to 0.05 for Katz, and 0.85 for PPR. The learning rate for MF and MLP is set as 0.01. For a fair
comparison especially with SEAL and LGLP, we set all parameters as mentioned in the original
papers. The output feature dimension for all three graph convolution layers is configured to be
32. for MLGLP the output feature dimension is set to 3*32 due to different scaled subgraphs. All
experiments were conducted on AWS EC2 ml.p3.2xlarge instances equipped with 1 NVIDIA V100
GPU, 8 vCPUs, 61 GB of RAM.

5.2 RESULTS

The resulting average AP are presented in Table 1. It is evident that Heuristic-based methods fail
to deliver satisfactory performance across all datasets due to their manually designed functions,
which are unable to handle diverse cases effectively. Moreover, results show that embedding-based
methods exhibit varying performance across different datasets. Additionally, since the methods are
applied to plain graphs without node features, the performance of node-based GNNs decreases.
Based on the results from Table 1 subgraph-based GNNs achieve the best performance. It indicates
that they are capable of automatically learning the link representations from the datasets.

Table 1: Average Precision (AP) on Six Datasets for All Baseline Methods for Test-Ratio = 0.2

Methods Celegans Power Router USAir NSC Cora
Heuristics

CN 78.04% 56.88% 55.02% 93.93% 96.00% 68.66%
AA 85.45% 57.31% 55.16% 94.90% 96.81% 69.74%
RA 87.22% 57.41% 55.46% 94.67% 96.31% 70.27%
PPR 80.28% 76.37% 64.67% 90.38% 97.99% 87.96%
Shortest Path 67.35% 74.93% 61.42% 75.82% 96.05% 84.15%
Katz 87.23% 75.36% 63.85% 93.86% 98.22% 85.40%

Embedding
MF 84.41% 63.00% 82.55% 94.81% 99.35% 72.95%
MLP 65.38% 51.96% 61.69% 83.72% 93.21% 57.22%

Node-based GNN
GCN 79.00% 59.66% 69.35% 92.71% 99.07% 69.95%
GAE 70.68% 58.16% 55.55% 82.05% 72.57% 59.92%

Subgraph-based GNN
SEAL 86.63% 86.71% 97.31% 96.44% 99.65% 94.80%
LGLP 89.38% 93.71% 99.09% 97.23% 99.79% 96.20%
MLGLP 93.13% 94.96% 99.20% 98.28% 99.89% 96.23%

In terms of AP, our approach achieves the best performance across all datasets, with the LGLP
method securing the second-best performance. Specifically, for Celegans, USAir, and Router
datasets, the AP values for our method are 93.13, 98.29, and 99.20, respectively, while for the LGLP
method, these values are 89.38, 97.23, and 99.09. This demonstrates that our proposed method can
effectively learn superior features to represent the target link for prediction in the line-graph space.

In sub-graph-based approaches, the primary focus is on extracting the enclosing subgraph around
target nodes to effectively represent them based on the structure of each subgraph. In subgraph-based
GNNs, each subgraph is treated independently as a training sample. Therefore, the presence of test

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

edges in one subgraph does not influence other subgraphs. However, if test edges are masked, it
hinders the accurate calculation of the structure of positive and negative samples, which can impact
the learning process. To evaluate the impact of masking test edges, we conducted experiments
analyzing the performance of sub-graph-based methods, specifically SEAL, LGLP, and MLGLP.
The results in Table 2 indicate that masking the test data reduces performance and may introduce
inaccuracies in learning patterns for both positive and negative samples. However, our proposed
method, MLGLP, consistently demonstrates superior performance across all datasets compared to
SEAL and LGLP.

Table 2: Average Precision (AP) for Masked and Unmasked Test Data with Test Ratio = 0.2

Type Methods Celegans Power Router USAir NSC Cora
SEAL 83.12% 77.73% 91.10% 95.33% 99.61% 89.03%

Masked LGLP 88.25% 84.66% 93.43% 96.21% 99.65% 93.12%
MLGLP 90.15% 87.01% 94.25% 96.20% 99.78% 93.60%
SEAL 86.63% 86.71% 97.31% 96.44% 99.65% 94.80%

Unmasked LGLP 89.38% 93.71% 99.09% 97.23% 99.79% 96.20%
MLGLP 93.13% 94.97% 99.18% 98.29% 99.89% 96.23%

Fig. 4(a) illustrates the training loss over 50 epochs. It is evident that MLGLP outperforms both
LGLP and SEAL and achieves lower loss compared to other methods. This suggests that our pro-
posed approach learns more effective features for representing target links in the line-graph space.
Specifically, MLGLP gathers more information from different scales during the training process,
enabling it to extract complex features crucial for accurate predictions. In contrast, LGLP performs
better than SEAL but does not reduce the loss as effectively as MLGLP over the training period.
LGLP converges quickly but struggles to extract complex features effectively during the learning
phase, as depicted in the figure. This highlights the superior capability of MLGLP in leveraging
training data to enhance feature representation for link prediction tasks. Fig. 4(b) shows the AUC
comparison between LGLP, SEAL, and MLGLP methods for Celegans dataset. The results clearly
demonstrate that our proposed model significantly outperforms SEAL and LGLP in terms of achiev-
ing a higher AUC.

(a) Training loss (b) AUC

Figure 4: Comparison of training loss and AUC between the LGLP, SEAL, and MLGLP methods
on the Celegans dataset.

To highlight the performance of our proposed method, we extracted edge features from the penul-
timate fully connected layer and applied t-distributed stochastic neighbor embedding (t-SNE) for
visualization. Fig. 5 illustrates the results on the Router, Cora, and Citeseer datasets, focusing
on a 0.2 test ratio. Positive links are depicted in Red and negative links in Blue. The visualization
clearly demonstrates that the features learned by our model form well-separated clusters, making the
classification of positive and negative links remarkably straightforward. This showcases the strong
discriminative power of our approach.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Router Network (b) Cora Network (c) Citeseer Network

Figure 5: t-SNE visualization of the Router, Cora, and Citeseer datasets for the MLGLP method.
Red indicates positive links, while blue represents negative links.

6 ABLATION STUDY

Table 3 presents the Average Precision (AP) and Area Under the Curve (AUC) scores for our pro-
posed MLGLP framework across six datasets, evaluated using different scales and a combination of
all scales. The test ratio for this evaluation was set to 0.2, and we aimed to examine the contribution
of each scale within the multi-scale approach. Evaluating individual scales indicates that each scale
contributes valuable information, highlighting the significance of capturing different levels of struc-
tural patterns within the graph. Depending on the dataset, individual scales can sometimes yield
competitive results, particularly on the NSC and Router datasets. When all scales are used together
(the ”All” method), the model achieves the highest performance on most datasets. For instance, on
the USAir dataset, we observe an AP of 98.28% and an AUC of 98.31%. Also the Celegans dataset
achieves AP and AUC values of 93.13% and 90.76%, respectively. These results demonstrate that
leveraging all scales together consistently provides the best results, confirming the robustness of the
multi-scale approach.

Table 3: Average Precision (AP) and AUC on Six Datasets for MLGLP with Different Scales (Test
Ratio = 0.2): Evaluating the Impact of Each Scale in a Multi-Scale Approach.

Methods Celegans Power Router USAir NSC Cora Citeseer
AP

All 93.13% 94.96% 99.20% 98.28% 99.89% 96.23% 96.25%
Scale-1 89.38% 93.71% 99.09% 97.23% 99.79% 96.20% 95.86%
Scale-2 88.65% 89.14% 97.07% 95.87% 99.32% 93.43% 93.43%
Scale-3 75.67% 89.53% 97.06% 93.32% 99.33% 93.50% 93.50%

AUC
All 90.76% 93.84% 99.11% 98.31% 99.68% 95.79% 95.43%
Scale-1 90.75% 92.10% 99.05% 98.14% 99.82% 95.24% 94.47%
Scale-2 88.11% 87.93% 97.29% 95.75% 99.61% 92.35% 92.34%
Scale-3 75.33% 87.34% 97.27% 92.81% 99.37% 92.42% 92.42%

7 CONCLUSION AND FUTURE RESEARCH

In this study, we explored learning-based methods for link prediction. Specifically, we propose a
novel approach using GNNs called Multi-Scale line-graph Link Prediction (MLGLP). This method
aims to effectively learn the graph structure and extract representative features from edges, address-
ing challenges such as information loss and handling multi-scale information. To facilitate hierar-
chical learning, our approach involves constructing coarse-grained graphs at three distinct scales,
thereby revealing complex relationships within the data. Furthermore, to accommodate GNN learn-
ing across multi-scale graphs with varying node and edge sizes, we transform the graphs into line-
graph representations. This transformation allows us to learn node embeddings within each subgraph

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

and translates the link prediction task into a node classification problem. Experimental results indi-
cate promising performance enhancements compared to heuristics, embeddings, node-based GNNs,
and sub-graph-based GNNs link prediction methods, especially SEAL, and LGLP. A possible future
research is expanding this methodology to heterogeneous graphs and using the valuable heterogene-
ity information.

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3308–3315, 2020.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
1953.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmark-
ing. Advances in Neural Information Processing Systems, 36, 2024.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the twelfth international conference on Information and knowledge management, pp.
556–559, 2003.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011, Proceedings, Part II 22, pp. 437–452. Springer, 2011.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 459–467, 2018.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yujie Yang, Jianhua Zhang, Xuzhen Zhu, and Lei Tian. Link prediction via significant influence.
Physica A: Statistical Mechanics and its Applications, 492:1523–1530, 2018.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 7370–7377, 2019.

Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In Pro-
ceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 575–583, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Revisiting graph neural networks
for link prediction. arXiv preprint arXiv:2010.16103 (2020), 2020.

Zehua Zhang, Shilin Sun, Guixiang Ma, and Caiming Zhong. Line graph contrastive learning for
link prediction. Pattern Recognition, 140:109537, 2023.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71:623–630, 2009.

Jing Zhu, Yuhang Zhou, Vassilis N Ioannidis, Shengyi Qian, Wei Ai, Xiang Song, and Danai Koutra.
Spottarget: Rethinking the effect of target edges for link prediction in graph neural networks.
arXiv preprint arXiv:2306.00899, 2023.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021.

A NOTATIONS

This section provides an overview of the symbols and notations utilized in this paper, with a detailed
summary provided in Table 4.

True Missing Links are edges that should exist in the graph but are not currently observed. These
edges are part of the complete graph’s true edge set E∗ but are not included in the observed edge set
E. Formally, a true missing link (u, v) satisfies:

{(u, v) ∈ E∗ and (u, v) /∈ E}

where E is the set of obsserved edges and E∗ is the set of all true edges in the complete graph. For
example if E∗ includes an edge (u, v) but (u, v) is not in E, then (u, v) is a true missing link.

False Missing Links are pairs of nodes that are incorrectly considered as potential links but are not
part of the true edge set E∗. These are often pairs where a link is not present in both the complete
graph and the observed graph. Formally, a false missing link (u, v) satisfies:

{(u, v) | u, v ∈ V and (u, v) /∈ E∗ and (u, v) /∈ E}

for example if E∗ does not include an edge (u, v) and (u, v) is also not in E, this edge can be
mistakenly considered a potential link (false positive) by some models.

Positive Samples are defined as edges that exist in both the observed edge set E and the complete
graph E∗. In other words, these are edges that are part of the true edge set and are observed.
Formally, these are edges in E ∩ E∗.

Negative Samples are defined as edges that do not exist in either the set of true edges E∗ or the set
of observed edges E. They can be considered as false positives, i.e., pairs of nodes that should not be
connected. These correspond to pairs of nodes that are not connected by an edge in the graph. Since
identifying true negative samples—edges that should never exist—is often challenging due to the
lack of complete knowledge about the graph or underlying data distribution, a common strategy is
randomly selecting negative samples from the set of nonexistent edges. Thus, the negative samples
are selected randomly from edges that are not in E, acknowledging that while these may not be

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 4: Summary of Notations Used in the Paper

Notations Definitions or Descriptions

G = (V,E,X) Graph with node set V , edge set E, and node features X
n Number of nodes, n = |V |
m Number of edges, m = |E|
E∗ Complete set of possible edges between nodes in V
A Feature tensor, A ∈ Rn×n×k, capturing both node and edge features
Ai,i,: Node features for node i
Ai,j,: Edge features for edge (i, j)
A Adjacency matrix, A ∈ {0, 1}n×n

Ai,j Adjacency matrix entry, 1 if edge (i, j) exists, otherwise 0
X Node feature matrix, X ∈ Rn×k

Xi Feature vector for node i, Xi = Ai,i,:

G∗ Complete graph with all possible edges E∗ between nodes in V
Ec Set of candidate edges for link prediction
p(u, v) Probability of a link between nodes u and v
f(u, v|G,X,Θ) Learnable function to estimate p(u, v), parameterized by Θ
Θ Parameters of the learnable function f
h Maximum number of hops in the h-hop enclosing subgraph
Gh

(u,v) h-hop enclosing subgraph for node pair (u, v)
V h
(u,v) Node set within h-hops of either u or v

Eh
(u,v) Edge set within h-hops of either u or v

d(x, y) Shortest-path distance between nodes x and y
SG = (Vs, Es) Multi-scaled graph with vertex set Vs and edge set Es

S(u, v) Similarity measure between nodes u and v
P (v) Partitioning function assigning node v to a cluster
C Set of clusters or hyper-nodes
θ Threshold for node similarity
SGl = (V

(l)
s , E

(l)
s) Scaled graph at level l in a hierarchical structure

L(G) = (VL, EL) Line-graph of graph G
VL Node set of the line-graph
EL Edge set of the line-graph
L Loss function
N Total number of target links used for training
yt True label value for the tth sample
ŷt Predicted probability value for the tth sample
fi(u) Label of node u
h(u) Node representation of node u
T (vi, vj) Function for concatenating features of nodes vi and vj

guaranteed to be true negatives, they serve as a practical and sufficient set of negative examples for
training the model.

Candidate Set (Ec) is constructed to include both types of samples to train and evaluate the link
prediction model effectively. The goal is to differentiate between these two types of samples and
correctly classify which candidate edges should be present in the graph. These candidates help
train and test the model to accurately predict the presence of true missing links while avoiding false
positives.

B DATASETS

A brief overview of the benchmark datasets utilized in this study is as follows. These datasets are
used for evaluating models in various types of graphs, including social networks, citation networks,
and biological networks.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Router: This dataset represents a router-level Internet graph with 5022 nodes and 6258
edges, modeling connections between routers in the network. edges.

• Cora: This citation graph includes 2708 scientific publications and 5278 links, with a dic-
tionary of 1433 unique words derived from the papers.

• Citeseer: This dataset features 3312 scientific publications and 4552 links, accompanied
by a dictionary of 3703 unique words from the publication texts.

• USAir: This dataset represents a graph of US airlines, containing 332 nodes and 2126
edges.

• NSC: This dataset illustrates the collaboration relationships of network science researchers,
containing 1589 nodes and 2742 edges.

• Celegans: This dataset contains the biological neural network of C. elegans, consisting of
297 nodes and 2148 edges.

• Power: This dataset illustrates the topology of the Western States Power Grid of the United
States, containing 4941 nodes and 6594 edges.

Table 5: Summary Statistics of the Datasets Used in the Study

Statistic Router Cora Citeseer USAir NSC Celegans Power
#Nodes 5022 2708 3312 332 1461 297 4941
#Edges 6258 5429 4552 2126 2742 2148 6594
#Features NA 1432 3703 NA NA NA NA

C ALGORITHM

In this section, we present the pseudo-code of the MLGLP framework to enhance clarity and under-
standing.

Algorithm 1: MLGLP Algorithm
Data: Target link (vi, vj), graph G
Result: Predicting the existence or nonexistence of the target link
Input: h = 2

1 Extract h-hop enclosing subgraph of target node pair Gh
(vi,vj)

;
2 Compute node labeling by equation (3);
3 Transfer Gh

(vi,vj)
to three multi-scale subgraphs SG1, SG2, SG3;

4 Convert multi-scale subgraphs SG1, SG2, SG3 to line graphs LSG1, LSG2, LSG3;
5 Initialize node embedding;
6 Compute the node embedding using GCN;
7 Concatenate embedding vectors of target nodes in LSG1, LSG2, LSG3;
8 Predict existence or nonexistence of the link (vi, vj) using a binary classifier;

D EVALUATION METRICS

This section provides detailed descriptions of evaluation metrics including AUC, AP.

a) AUC: The AUC is computed as the number of successful predictions divided by the total number
of comparisons. Successful predictions can be determined based on scores for each node pair using
predefined heuristics (e.g., common neighbors) or probabilities for each node pair using the GNN
model. Compute the AUC using the formula:

AUC =
n′ + 0.5× n′′

n
(5)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Where n is the total number of predictions, n′ is the number of successful predictions (i.e., the
number of times for each positive-negative pair the positive sample has a higher score or probability
than the negative sample), and n′′ is the number of times that scores are the same.

b) AP: Average Precision measures the precision of a model at various threshold levels, capturing
the ability to rank positive links higher than negative ones. It is formulated as:

AP =

n∑
k=1

P (k) ·∆r(k) (6)

Where n is the total number of positive and negative links, P (k) is the precision at rank k, and
∆r(k) is the change in recall at rank k.

E BASELINE METHODS

This section provides detailed descriptions of the baseline methods utilized in this paper. We com-
pare our proposed MLGLP with 12 methods spanning various categories: heuristics, embeddings,
node-based GNNs, and sub-graph-based GNNs. In our study, we evaluated our proposed method
against heuristic approaches such as CN, AA, PPR, Shortest Path, and, Katz, embedding techniques
like MLP and MF, node-based GNN methods including GAE, GCN, and finally subgraph-based
GNN like SEAL and LGLP. Table 6 shows Details of heuristic-based methods utilized in this paper.

Table 6: Details of heuristic-based methods for link prediction utilized in this paper

Name Formula Order
Common Neighbors (CN) |Γ(x) ∩ Γ(y)| first
Adamic-Adar(AA)

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| second

Resource Allocation (RA)
∑

z∈Γ(x)∩Γ(y)
1

|Γ(z)| second
PageRank(PPR) [πx]y + [πy]x high
Shortest Path 1

length(shortestpath(x,y) high
Katz

∑∞
l=1 β

l|walks⟨l⟩(x, y)| high

F VISUALIZATION

Due to space constraints, the t-SNE visualizations for the Power, USAir, and NSC datasets are also
presented in Fig.6 within this section. The visualization effectively demonstrates that the features
generated by our model form distinct clusters, which simplifies the differentiation between positive
and negative links. This underscores the robust discriminative ability of our approach.

(a) Power Network (b) USAir Network (c) NSC Network

Figure 6: t-SNE visualization of the Power, USAir, and NSC datasets for the MLGLP method. Red
indicates positive links, while blue represents negative links.

Also, the t-SNE visualizations for the LGLP method on all six data sets Routers, Cora, Citeseer,
Power, USAir, and NSC presented in Fig.7.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Router Network (b) Cora Network (c) Citeseer Network

(d) Power Network (e) USAir Network (f) NSC Network

Figure 7: t-SNE visualization of the Router, Cora, Citeseer, Power, USAir, NSC datasets for the
LGLP method. Red indicates positive links, while blue represents negative links.

G AUC-BASED PERFORMANCE

The resulting average AUC are presented in Table 7. The data in the table indicates that subgraph-
based GNNs excel compared to alternative approaches, showcasing their effectiveness in automati-
cally capturing link representations from the datasets. For AUC, our method gains the best perfor-
mance except for NSC which gains 99.68.

Table 7: AUCs on Six Datasets for All Baseline Methods for Test-Ratio = 0.2

Methods Celegans Power Router USAir NSC Cora
Heuristics

CN 79.93% 56.91% 55.05% 94.42% 96.11% 68.75%
AA 83.92% 57.29% 55.09% 94.98% 96.78% 69.64%
RA 86.76% 57.40% 55.33% 93.99% 96.28% 70.33%
PPR 81.41% 62.57% 45.83% 89.70% 97.99% 82.03%
Shortest Path 74.69% 62.52% 40.74% 82.48% 96.72% 79.25%
Katz 87.74% 71.17% 43.89% 92.10% 98.18% 79.45%

Embedding-based
MF 85.34% 62.77% 79.29% 94.64% 99.27% 70.88%
MLP 64.80% 52.20% 61.66% 83.42% 93.09% 56.27%

Node-based GNN
GCN 79.45% 58.89% 68.74% 92.02% 98.93% 67.97%
GAE 70.53% 55.53% 53.05% 82.51% 82.42% 59.39%

Subgraph-based GNN
SEAL 89.16% 83.67% 97.36% 96.58% 99.66% 93.40%
LGLP 90.75% 92.11% 99.05% 98.14% 99.82% 95.25%
MLGLP 90.76% 93.84% 99.11% 98.31% 99.68% 95.79%

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H ROBUSTNESS EVALUATION WITH REDUCED TRAINING DATA

To demonstrate the robustness of our proposed approach with reduced training data, we conducted
experiments on all datasets using only 50 percent of the training links. The remaining links were
used as test data. The outcomes, including AUC and AP values, are presented in Tables 8 and 9 The
results consistently show that our method outperforms all baseline methods in terms of AP across all
datasets and AUC in the majority of datasets. Remarkably, our method maintains strong performance
even with only 50 percent of the training links, achieving AUC and AP values comparable to those
obtained with 80 percent of the training links. For example, AP for Celegans, Power, Router, USAir,
NSC, and Cora just reduced by 3.45%, 1.69%, 0.58%, 2.67%, 0.06%, and 0.90%, respectively.

Table 8: AUCs on Six Datasets for All Baseline Methods Using Test-Ratio = 0.5

Methods Celegans Power Router USAir NSC Cora
Heuristics

CN 70.87% 53.14% 53.39% 87.82% 90.38% 59.69%
AA 72.52% 53.05% 52.57% 88.11% 92.41% 59.79%
RA 72.78% 53.28% 52.86% 87.77% 92.60% 59.12%
PPR 79.51% 57.73% 54.32% 85.42% 95.56% 68.39%
Shortest Path 72.11% 57.45% 54.44% 82.66% 94.86% 67.10%
Katz 80.09% 58.28% 54.41% 89.71% 96.17% 68.95%

Embedding
MF 71.99% 54.70% 77.47% 90.87% 98.64% 63.96%
MLP 62.81% 51.19% 60.32% 80.32% 89.31% 55.88%

Node-based GNN
GCN 73.80% 52.44% 59.49% 90.08% 98.09% 60.14%
GAE 62.20% 53.88% 49.65% 70.70% 76.57% 55.14%

Subgraph-based GNN
SEAL 88.19% 82.21% 97.12% 96.32% 99.64% 93.42%
LGLP 90.94% 91.78% 98.98% 97.34% 99.77% 95.22%
MLGLP 91.52% 93.28% 98.62% 97.22% 99.83% 95.33%

Table 9: Average Precision (AP) on Six Datasets for All Baseline Methods Using Test-Ratio = 0.5

Methods Celegans Power Router USAir NSC Cora
Heuristics

CN 68.23% 53.12% 53.38% 87.47% 90.34% 59.57%
AA 70.72% 53.05% 52.55% 88.46% 92.44% 59.91%
RA 72.24% 53.27% 52.80% 88.51% 92.61% 59.18%
PPR 78.25% 57.68% 60.89% 84.90% 95.58% 75.41%
Shortest Path 66.00% 57.65% 60.64% 77.60% 94.47% 73.46%
Katz 79.90% 58.42% 61.07% 92.03% 96.25% 75.71%

Embedding
MF 82.25% 54.48% 81.38% 91.19% 98.86% 66.42%
MLP 64.28% 51.19% 60.06% 81.35% 89.67% 56.84%

Node-based GNN
GCN 73.06% 53.08% 62.04% 90.56% 98.33% 62.96%
GAE 61.54% 53.96% 49.80% 68.44% 66.95% 54.55%

Subgraph-based GNN
SEAL 86.58% 85.57% 97.06% 95.96% 99.51% 94.73%
LGLP 89.63% 93.87% 98.86% 98.28% 99.77% 95.98%
MLGLP 93.43% 95.04% 99.06% 98.54% 99.92% 96.42%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

I TIME COMPLEXITY ANALYSIS

For extracting each graph Gh
(vi,vj)

with n nodes and m edges where (vi, vj) is the target pair of
nodes, total time complexity for calculating distances for both target nodes is O(n +m) per scale.
Constructing a line-graph has a time complexity of O(m2), where m is the number of edges in
the original graph (since each edge in the original graph becomes a node in the line-graph). Time
Complexity for GCN operation depends on the number of nodes and edges in the line-graph. For a
graph with |V | nodes and |E| edges, the complexity is O(|V |+ |E|). Since we are dealing with line-
graphs, this translates to O(n2+n2) = O(n2) for each scale. For three scales, it’s O(3n2) = O(n2).

18

	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES
	PROPOSED METHODOLOGY
	Subgraph extraction
	Node Aggregation - Multi-scale Graph Transformation
	line-graph Transformation
	Loss Function

	Performance of MLGLP on benchmark datasets
	Settings
	Results

	Ablation study
	CONCLUSION AND FUTURE RESEARCH
	NOTATIONS
	Datasets
	ALGORITHM
	Evaluation Metrics
	Baseline Methods
	Visualization
	AUC-Based Performance
	Robustness Evaluation with Reduced Training Data
	Time Complexity Analysis

