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Abstract

Temporal observations such as videos contain essential information about the dynamics of the
underlying scene, but they are often interleaved with inessential, predictable details. One way of
dealing with this problem is by focusing on the most informative moments in a sequence. In this
paper, we propose a model that learns to discover these important events and the times when they
occur and uses them to represent the full sequence. We do so using a hierarchical Keyframe-Inpainter
(KEYIN) model that first generates a video’s keyframes and then inpaints the rest by generating the
frames at the intervening times. We propose a fully differentiable formulation to efficiently learn
this procedure. We show that KEYIN finds informative keyframes in several datasets with different
dynamics and visual properties. KEYIN outperforms other recent hierarchical predictive models for
planning. For more details, please see the accompanying arXiv report and the project website.!
Keywords: Subgoal-based Planning, Visual Planning, Learning Dynamics, Model-based Control

1. Introduction

When thinking about the future, humans focus on the important things that may happen (When will
the plane depart?) without fretting about the minor details that fill each intervening moment (What
is the last word I will say to the taxi driver?). Because the vast majority of elements in a temporal
sequence contain redundant information, a temporal abstraction can make reasoning and planning
both easier and more efficient. How can we build such an abstraction? Consider the example of a
lead animator who wants to draw the next scene of a cartoon. Before worrying about every low-level
detail, the animator first sketches out the story by keyframing, drawing the moments in time when
the important events occur. The scene can then be easily finished by other animators who fill in the
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Figure 1: Keyframing the future. Instead of predicting one frame after the other, we propose to
represent the sequence with the keyframes that depict the interesting moments of the
sequence. The remaining frames can be inpainted given the keyframes.

rest from the story laid out by the keyframes. In this paper, we argue that learning to discover such
informative keyframesis an efficient and powerful way to learn to reason about the future.

Our goal is to learn such an abstraction for learning dynamics of images. In contrast, much of
the work on future image prediction and planning has focused on frame-by-frame synthesis (Oh et al.
(2015); Finn et al. (2016); Ebert et al. (2018)). This strategy puts an equal emphasis on each frame,
irrespective of the redundant content it contains or how useful it is for reasoning relative to other
predicted frames. Other recent work has considered predictions that “jump” more than one step into
the future, using either fixed-offset jumps (Buesing et al., 2018) or heuristics such as predictability of
the frame (Neitz et al., 2018; Jayaraman et al., 2019; Gregor et al., 2019) to choose which frames
to predict. In this work, we instead propose a method that predicts the keyframes that are most
informative about the full sequence. We do so by ensuring that the full sequence can be recovered
from the keyframes with an inpainting strategy, similar to how a supporting animator fleshes out
the story keyframed by the lead (see Fig. 1). The keyframe structure allows us to reason about the
sequence holistically when planning future actions while only using a small subset of the frames.
Visual model-predictive control (MPC) methods that reason about every single future time step scale
poorly if the task requires long-horizon planning. In contrast, our method enables visual planning
over much greater horizons by using keyframes as subgoals in a hierarchical planning framework.

Our contributions are as follows. We formulate a hierarchical approach for the discovery of
informative keyframes using joint keyframing and inpainting (KEYIN), and propose a soft objective
that allows us to train the model in a fully differentiable way. We also propose a hierarchical planning
algorithm for this model. We first analyze our model in a controlled setting to show that it can reliably
recover the underlying keyframe structure on visual data. We then show that our model discovers
hierarchical temporal structure on more complex datasets of demonstrations: an egocentric gridworld
environment and a simulated robotic pushing dataset, which is challenging for current approaches
to visual planning. Our approach outperforms existing hierarchical and non-hierarchical planning
schemes on the pushing task, enabling long-horizon, hierarchical control.

2. Related work

Video modeling. Early deep probabilistic video models include autoregressive models that predict
the pixels sequentially (Kalchbrenner et al., 2017; Reed et al., 2017). To reason about the images
holistically, latent variable approaches were developed based on variational inference (Chung et al.,
2015; Rezende et al., 2014; Kingma and Welling, 2014), including (Babaeizadeh et al., 2018; Denton
and Fergus, 2018; Lee et al., 2018; Li and Mandt, 2018; He et al., 2018) and large-scale models such
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as (Castrejon et al., 2019; Villegas et al., 2019). We show how latent variable models can be used to
learn temporal abstractions with a novel keyframe-based generative model.

Visual planning and model predictive control. Several groups (Oh et al., 2015; Finn et al., 2016;
Chiappa et al., 2017) have proposed models that predict the future image observations given the
agent’s actions. Byravan et al. (2017); Hafner et al. (2018); Ebert et al. (2018) have shown that
visual model predictive control based on such models can be applied to a variety of different settings.
Fang et al. (2019) shows that a simple jumpy hierarchical prediction method improves planning
performance in the real world. Concurrently, Nair and Finn (2020) design a hierarchical planning
method that finds subgoals via extensive planning. In this work, we show that the hierarchical
representation of a sequence in terms of keyframes allows more efficient hierarchical planning.

Hierarchical temporal structure. Recently, several neural methods were proposed to leverage
temporal structure in video data for prediction. Neitz et al. (2018) and Jayaraman et al. (2019)
proposed models that find and predict the least uncertain “bottleneck” frames. Kipf et al. (2019)
propose a related method for video segmentation via generative modeling, and use it for hierarchical
reinforcement learning. Kim et al. (2019) propose a method for learning temporal abstractions
through hierarchical state-space models. Concurrently to our work, Shang et al. (2019) propose a
keyframing method that learns to select frames that are informative about the action trajectory. In
contrast to these works, KEYIN discovers informative keyframes via joint keyframing and inpainting.

3. Keyframing the future

Our goal is to develop a model that gen-
erates sequences by first predicting impor-
tant observations (keyframes) and the time
steps when they occur and then filling in the
observations in between. To achieve this
goal, in the following we (i) define a prob-

abilistic model for joint keyframing and F=T © ) n=1..N

inpainting, and (ii) show how a maximum

likelihood objective for this model leads to

the discovery of keyframe structure. Figure 2: A probabilistic model for jointly keyframing
and inpainting a future sequence. First, the

3.1. A probabilistic model model generates a sequence of keyframes

KN and the corresponding temporal in-
) dices 71V defining the structure of the under-
To represent a sequence [1.7 via a small lying sequence. Second, the model inpaints

s.et of keyframes, we propose a prob‘ablhs— the frames I,n.,n+1_; for each pair K™ and
tic model of the sequence that consists of K+l

two parts: the keyframe predictor and the
sequence inpainter (see Fig. 2).

The keyframe predictor takes in C' conditioning frames I, and produces N keyframes KV as
well as the corresponding time indices 7V, It factorizes in time as:

for joint keyframing and inpainting

p([{lzN7 7_1:N|Ico) — ]‘_[p(‘l;(n7 7_nu;(1:nfl7 7_1:1171’ Ico)‘ (1)
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From each pair of keyframes, the sequence inpainter generates the sequence of frames in between:

p(IT":T"Jrl—l‘Kna Kn+1’7_n+1 - Tn) - Hp(ltu(na KTH_I)L’”:tfla Tn+1 - Tn)a 2)
t

which completes the generation of the full sequence. The inpainter additionally observes the number
of frames it needs to generate 77! — 7™, The temporal spacing of the most informative keyframes is
data-dependent: shorter keyframe intervals might be required in cases of rapidly fluctuating motion,
while longer intervals can be sufficient for steadier motion. Our model handles this by predicting the
keyframe indices 7 and inpainting 77*! — 7" frames between each pair of keyframes.

3.2. Keyframe discovery

If a simple model is used for inpainting, most of the representational power of the model has to
come from the keyframe predictor. We use a powerful stochastic latent variable model for the
keyframe predictor and a simpler predictor network without stochastic latent variables for inpainting.
Because of this structure, the keyframe predictor has to predict keyframes that describe the underlying
sequence well enough to allow a simpler inpainting process to maximize the likelihood.

Specifically, to produce a complex multimodal distribution over K we use a per-keyframe
latent variable z with prior distribution p(z) and approximate posterior ¢(z|I, I.,).> We construct a
variational lower bound on the likelihood of both I and K as follows:

N
lnp(f, K|Ico) 2 Eq(Z\I,Ico) |:Z In Ep(Tn77-n+1|Zl:n7ICO) [p(ITn:TTH—l ‘Kn,nJrl’ Tn+1 _ Tn)]

n=1

inpainting (3)

Clap(K, 1@] ~ Dye.(a(=I1, L) [p(2))

keyframing regularization

In practice, we use a weight 3 on the KL-divergence term, as is common in amortized variational
inference (Higgins et al., 2017; Alemi et al., 2018; Denton and Fergus, 2018).

4. Continuous relaxation by linear interpolation in time

In principle, this model can dynamically predict the keyframe placement 7". However, learning
a distribution over the discrete variable 7" is challenging due to the expensive evaluation of the
expectation over p(7"|z!" I.,) in Eq. 3. To learn the keyframe placement efficiently and in a
differentiable manner, we propose a continuous relaxation of the objective.

Keyframe targets. Instead of sampling from 7" to pick a target frame, we compute the expected
target frame K" - we linearly interpolate between the ground truth images according to the predicted
distribution over the keyframe’s temporal placement 7": K" = > 71y, where 7;" is the probability
that the n'" keyframe occurs at timestep ¢ (see supplement, Fig. 7). When the entropy of 7" converges
to zero, the resulting continuous relaxation objective is equivalent to the original, discrete objective.

We parametrize temporal placement prediction in terms of offsets § with a maximum offset of J.
The maximum possible length of the predicted sequence is then /NJ. Large values of J may allow

2. For simplicity, the variable representing the full sequence is written without indices (I is the same as I-7T).
3. We find this occurs most of the time in practice.
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the model more flexibility, but this may also lead to the generation of sequences longer than the
target V.J > T'. To force the model to predict valid sequences at training time , we discard predicted
frames at times > 7" and normalize the placement probability over the first " steps. Specifically, for
each keyframe we compute this probability as ¢": ¢" = >, 7*. The loss corresponding to the last
two terms of Eq. (3) then becomes: -

S (IR = KM+ 8 Dit, (a1, Lo, 2 1) [p(="))
Liey = S o .

Inpainting targets. We produce a target image composed from the inpainted frames for each
ground truth frame.* We note that as offsets § have a maximum range of .J, and in general have
non-zero probability on each timestep, the inpainting network needs to produce J frames In L
between each pair of keyframes (K™, K"*!). The expected targets are computed as: I: I; =

“

(Z ” I ”) /> J m ;- Here, m] ; 1s the probability that the j-th predicted image in segment n
has an offset of ¢ from the beginning of the predicted sequence, which can be computed from 7. To
obtain a probability distribution over produced frames, we normalize the result with Zn j miy.

A detailed description of the loss computation can be found in the supplement, Sec. D. The full
loss for our model is:

['total = Ekey + 51 Z ||It - I~t||2‘ (5)
t

5. Keyframe-based planning

We next describe how we use the keyframe-

based prediction model for long-horizon, Keovin )
keyframe-based planning. The hierarchical plan- Y
ning procedure is outlined in Fig. 3. We can Keyframlng l
generate keyframe trajectories X'V from our

. . . . I, K1 KN )
model by rolling out trajectories of latent vari- Lo

ables z sampled from a Gaussian distribution Control
N (u, o). The planning problem can be formal-
ized as finding the set of latent variables z* for
which the resulting keyframe trajectory mini-
mizes a given cost function c, e.g. the final dis-
tance to the goal image: min, c(f( N(2), Igoal).
To optimize this objective, we use the Cross-
Entropy Method (CEM, Rubinstein and Kroese
(2004)), which is conceptually simple and has
given good results in similar settings in prior
work (Hafner et al. (2018); Ebert et al. (2018)).
CEM is a sampling-based optimizer that itera-
tively refits the sampling distributions to those parts of the latent space that resulted in trajectories
of low cost. We describe the CEM procedure in more detail in the supplement, Sec. E and provide
details on the used cost function in the experimental section.

Figure 3: Keyframe-based planning. We use the
keyframe model to plan a sequence of
keyframes between the current observa-
tion image and the goal. A low-level
controller, e.g. based on model predic-
tive control, produces the actions, a,
executed to reach each keyframe, until
the final goal is reached.

4. This ensures that each ground truth frame contributes equally to the final loss.
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Figure 4: Example generations by KEYIN. The generation is conditioned on a single ground truth
frame. Twelve of the 30 predicted frames are shown. We observe that for each transition
between pushes and each action of the Gridworld agent our network predicts a keyframe
either exactly at the timestep of the event or one timestep apart.

After planning a sequence of subgoals towards the goal, we execute the plan by sequentially
reaching the subgoals using a low-level controller. KEYIN is agnostic to the choice of low-level
controller used to reach the intermediate goals.

6. Experiments

We evaluate the quality of KEYIN’s representation for future sequences by addressing the following
questions: (i) Can it discover and predict informative keyframes? (ii) Can it model complex data
distributions? (iii) Is the discovered hierarchy useful for long-horizon hierarchical planning?

We instantiate KeyIn using neural networks and train our model using a two-stage training
procedure in which we first train the sequence inpainter to inpaint between ground truth frames
sampled with random offsets and then train the keyframe predictor with the loss from Eq. 5 while
freezing the weights of the inpainter. We found this lead to improved results. For further details on
model architecture, training procedure and hyperparameters we refer to the supplement, Sec. A & B.

Datasets. We evaluate our model on three datasets containing structured long-term behavior. The
Structured Brownian motion (SBM) dataset consists of binary image sequences of size 32 x 32 pixels
in which a ball randomly changes directions after periods of straight movement of six to eight frames.

The Gridworld Dataset consists of 20k sequences of an agent traversing a maze with different
objects. The agent sequentially navigates to objects and interacts with them. We use the same
maze for all episodes and randomize the initial position of the agent and the task sketch. We use
64 x 64 pixel image observations and further increase the problem complexity by constraining the
field of view to a 5 x 5 cells egocentric window.

The Pushing Dataset consists of 50k sequences of a robot arm pushing a puck towards a goal
on the opposite side of a barrier. Each sequence consists of six consecutive pushes. We vary start
and target position of the puck, as well as the placement of the barrier. The demonstrations were
generated with the MuJoCo simulator (Todorov et al., 2012) at a resolution of 64 x 64 pixels. For
more details on the data generation process, see supplement, Sec. C.
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6.1. Keyframe discovery

To evaluate KEYIN’s ability to dis- Table 1: F1 accuracy score for keyframe discovery on all
cover keyframes, we train KEYIN three datasets. Higher is better.
on all three datasets with N = 6

. . METHOD BROWNIAN PUSH GRIDWORLD
keyframes, which can be interpreted
as selecting the N most informative EANDOM 8;’ 812 8;;
frames from a sequence. We show TATIC ’ : :
litati les of kevf & SURPRISE 0.73 0.17  0.32
qualitative examples of keyframe dis- KEYIN (OURS)  0.94 0.43  0.42

covery for the Gridworld and Pushing
datasets in Fig. 4 and for the SBM dataset in the supplement, Fig. 10.

For quantitative analysis, we define approx-
imate ground truth keyframes to be the points
of direction change for the SBM dataset, the
moments when the robot lifts its arm to transi-
tion between pushes, or when the agent inter-
acts with objects in the gridworld. We report
F1 scores that capture both the precision and
recall of keyframe discovery. We compare to
random keyframe placement, a learned but static
baseline that chooses identical keyframe place-
ment for all sequences, and a method based on
surprise that is similar to prior approaches (see
supplement, Sec. F). The evaluation in Table 1
shows that KEYIN discovers better keyframes
than alternative methods. We analyze the ro-
bustness of keyframe discovery to misspecified
number of keyframes and image noise in supplement, Sec. G.

Ground Truth Generated

Figure 5: Distribution of trajectories sampled
from KEYIN. Each black line denotes
one of 100 trajectories of the manipu-
lated object. The barrier is shown in
blue, initial position in pink. The model
covers both modes of the distribution.

6.2. Keyframe-based video modeling

We verify that KEYIN can represent complex data distributions in terms of discovered keyframes and
attains diversity and visual quality comparable to state-of-the-art prediction models. We show sample
generations on the Pushing and Gridworld datasets on the supplementary website. Fig. 5 visualizes
multiple sampled Pushing sequences from our model conditioned on the same start position, showing
that KEYIN is able to cover both modes of the demonstration distribution. We further show that
KEYIN is competitive with prior approaches on video prediction metrics for sequence modeling and
outperforms prior approaches in terms of keyframe modeling in Tables 8 & 9 in the supplement.

6.3. Hierarchical keyframe-based planning

We test whether the inferred keyframes can be used as subgoals for hierarchical planning in the
pushing environment. We follow the planning procedure detailed in Sec. 5. We design a simple cost
function for the pushing domain based on detected centroids of the puck in both the goal image and
the predicted keyframes (more details in supplement, Sec. E). After finding a plan of subgoals, a
low-level controller reaches each subgoal via model predictive control using ground truth dynamics,
employing CEM for optimization of the action trajectory.
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We find that KEYIN is able to plan coherent subgoal paths towards the final goal that often
lead to successful task execution (executions are shown on the supplementary website® and in the
supplement, Fig. 11). To quantitatively evaluate the keyframes discovered, we compare to alternative
subgoal selection schemes: fixed time offset (Jumpy, similar to Buesing et al. (2018)), a method that
determines points of peak surprise (Surprise, see Sec. 6.1), a bottleneck-based subgoal predictor
(time-agnostic prediction or TAP, Jayaraman et al. (2019)), and subgoals selected at fixed intervals
from sequences generated by CIGAN, an alternative sequence modeling approach (Wang et al.
(2019)). We additionally compare to an approach that plans directly towards the final goal using the
low-level controller (Flat). We evaluate all methods with the shortest path between the target and the
actual position of the object after the plan is executed. As the goal of this experiment is to evaluate
the quality of predicted subgoals, all methods use the same low-level controller.

As shown in Table 2, our method outper-
forms prior approaches. TAP shows only a
moderate increase in performance over the
Flat planner, which is likely because it fails INTITIAL 1.32 4+ 0.06

. . RANDOM 1.32 4 0.07
to predict good subgoals and often simply

Table 2: Planning performance on the Pushing task.

METHOD POSITION ERROR  SUCCESS RATE

. . FLAT 0.90£0.14 15.0%
pr.edlcts 'th.e final image as the bottlene.cl.i. We TAP 0.80 016 93.3%
think this is due to the large stochasticity of SURPRISE 0.64 + 0.28 50.8%
our dataset and the absence of the clear bot- Jumpy 0.62 +0.33 58.8%
tlenecks that TAP is designed to find. Our Jumpy - CIGAN  0.99.£0.19 15.8%

KEYIN (OURS) 0.50 £+ 0.26 64.2%

method outperforms the planners that use
Jumpy and Surprise subgoals. This further confirms that KEYIN is able to produce informative
keyframes, such that it is easier for the low-level controller to follow them.

7. Conclusion

We introduced KEYIN, a method for representing a sequence through its informative keyframes by
jointly keyframing and inpainting. KEYIN first generates the keyframes of a sequence and their
temporal placement and then produces the full sequence by inpainting the frames in between. We
showed that KEYIN discovers informative keyframes on several datasets with stochastic dynamics.
Furthermore, by using the keyframes for planning, we showed our method outperforms several other
hierarchical planning schemes.
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