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ABSTRACT

Cancer cells exploit non-equilibrium signaling dynamics to develop transient drug
resistance through mechanisms that conventional equilibrium-based analyses can-
not detect. We present a probabilistic framework integrating live-cell biosensor
data with asynchronous multi-omics snapshots to learn these adaptive states. Us-
ing data from BRAFV600E melanoma as a model system, we demonstrate how such
learning scheme characterize competing timescales drive resistance mechanisms:
rapid post-translational feedback (minutes) versus delayed transcriptional regula-
tion (hours), including RAF dimer rewiring, DUSP-mediated ERK reactivation
pulses, and NRASQ61K-dependent EGFR recycling. Our approach further com-
bines multi-marginal Schrödinger bridges for distribution alignment with the ex-
tracted dynamical patterns from live-cell trajectories. Each step of the algorithm
is validated with real-data and further validation is through in silico melanoma
models. This framework could help identify therapeutic windows that delay pro-
gression to persistent resistant states and targeting adaptive plasticity across cancer
types.

1 INTRODUCTION

Modern biology has witnessed a revolution in single-cell technologies, enabling unprecedented res-
olution in profiling cellular states. Techniques such as multiplexed iterative immunofluorescence
imaging (Lin et al., 2018) and live-cell biosensors (Cutrale et al., 2017) now allow researchers to
map protein expression, post-translational modifications, and signaling activity across millions of
individual cells under diverse perturbations. These advances are particularly valuable for drug dis-
covery, where understanding heterogeneous responses to pathway inhibition targeted therapies is
critical to overcoming resistance (Samatar & Poulikakos, 2014).

Cancer cells exhibit remarkable plasticity, maintaining a multi-attractor landscape even in homeosta-
sis. In melanoma, spontaneous transitions between proliferative, invasive, and drug-tolerant states
occur without external perturbation Roesch et al. (2010). When treated with drugs, cells are forced
from these steady states into non-equilibrium transients. Within 24 hours of RAF/MEK inhibition,
BRAFV600E melanoma cells shift from monomeric BRAF-driven ERK activation to RAS-mediated
dimeric CRAF signaling (Fröhlich et al., 2023).

The adapted cells demonstrate complex signaling dynamics across multiple timescales. ERK activ-
ity pulses occur with 45-90 minute periodicity, driven by post-translational modifications occurring
within seconds to minutes, EGFR receptor trafficking and recycling taking 10-30 minutes, and tran-
scriptional feedback via DUSP/SPRY downregulation occurring over hours Fröhlich et al. (2023).
Traditional analysis pipelines struggle with these dynamics due to combinatorial complexity—even
20 signaling proteins can generate over 105 biochemical species through modifications and com-
plex formation Jamison (1975). Rule-based modeling approaches Faeder et al. (2005) show how
allosteric drug effects propagate through this network via ∆G energy landscapes, while the Gibbs
free energy difference governing drug-target interactions becomes time-dependent under rapid sig-
naling transients Lavoisier (1789).

Current dimensionality reduction techniques compound these challenges by obscuring critical high-
dimensional features and averaging out transient states that drive phenotypic outcomes. Our frame-
work addresses this through optimal transport regularized by live-cell biosensors (?), preserving
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both high-dimensional structure and temporal dynamics. More specifically, we propose a proba-
bilistic framework that bridges asynchronous snapshot data with continuous live-cell trajectories.
Rather than relying on deterministic flow maps, we model cellular responses as stochastic processes
informed by partial observations. Our approach combines stochastic flow matching to align high-
dimensional marginal distributions via unbalanced Schrödinger bridges (?) with spectral analysis of
transient dynamics using delay embeddings (Takens, 198) and Koopman operator theory Giannakis
(2019). Using melanoma as a testbed, we demonstrate how these methods reveal coherent dynamics
in drug resistance and predict context-dependent phenotypic outcomes, offering a framework for
combining high-throughput and live-cell modalities.

Figure 1: UMAP embed-
ding of 5 simulated cell
trajectories with differ-
ent colors in (top) snap-
shot data and (bottom)
in live cell. Individ-
ual cell trajectories are
shown in both cases de-
spite their unavailability
in snapshot data.

Challenges in Cell Perturbation Analysis Transforming the data
from high-throughput single-cell perturbation experiments into predic-
tive dynamical models presents three fundamental challenges. First,
temporal discontinuity arises from destructive measurement techniques
that yield asynchronous marginal distributions q(x0), q(x1), . . . , q(xT )
at discrete timepoints, destroying cells during measurement. While the
slow, quasi-equilibrium case can be addressed using multi-marginal opti-
mal transport, drug perturbations often trigger rapid transitions occurring
faster than typical sampling intervals, making displacement interpola-
tion of the measures unreliable. The second challenge stems from lim-
itations in traditional dimensionality reduction techniques like UMAP.
These methods cannot capture temporal evolution in their static embed-
dings and often fragment transient states into disconnected clusters. The
third challenge involves non-equilibrium dynamics: Drug perturbations
drive cells into turbulent-like regimes where small initial differences am-
plify exponentially. This exponential amplification makes local distances
unreliable predictors of cell fate and significantly complicates trajectory
reconstruction from snapshots. The chaotic nature of these systems fun-
damentally limits our ability to make deterministic predictions about cel-
lular responses to perturbations.

Therefore, despite their effectiveness for unsupervised static methods,
low-dimensional embeddings of single-cell snapshot data fall short for
dynamical analysis (Kiselev et al., 2019; La Manno et al., 2018). More-
over, snapshot data captures many molecular species at intervals without
cell tracking, while live cell data continuously monitors specific activi-
ties such as activation of key signaling molecules. Using snapshot data,
UMAP (Figure 1, top) reveals a lower-dimensional manifold that lacks
directional flow. In contrast, delay coordinate embedding of live cell
data Takens (198); Packard et al. (1980) reveals structured trajectories
(Figure 1, bottom).

1′
2′

1

2

Figure 2: A schematic
of two dynamically
adjacent cells that fol-
lowing non-homeostasis
transients, settle back to
homeostasis.

Perturbations as Attractor-Kicking Events Cellular homeostasis
evolves on a metastable manifold Mh ⊂ Rd maintained by self-
correcting biochemical networks (Fig. 2). It is common to assume this
manifold acts as an attractor with dynamics governed by a potential field
(Pillai & Jolly, 2021). The system’s evolution can be formulated us-
ing the Fokker-Planck equation where the drug perturbations modify the
drift term, creating transitions to alternative attractors Mi:

Xt
Perturbation−−−−−−→


M′

h with rate λ1(Xt−),

Mres with rate λ2(Xt−),

Mdeath with rate λ3(Xt−),

(1)

where Xt− is the pre-perturbation state. Here we focus on resistance
mechanisms emerging on faster timescales, setting aside apoptosis and
genetic/epigenetic alterations. Two cells are dynamically adjacent if
their perturbed trajectories converge to the same attractor despite initial
separation (see Fig. 2):

lim
t→∞

|Xi(t)−Xj(t)|Mk
< ϵ =⇒ i ∼ j (2)
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2 REGULARIZED MULTI-MARGINAL FLOW MATCHING

To address these challenges, we propose a framework that combines high-dimensional snapshot data
with live-cell biosensor measurements. Rather than relying on dimensionality reduction, which dis-
cards critical dynamical features, or integrating differential equations, which become intractable in
high dimensions, we develop a robust simulation-free approach using spline measures, score match-
ing, and live cell trajectory guidance. This integration is crucial: snapshot data provides comprehen-
sive molecular states but lacks temporal resolution, while biosensor live data offers precise temporal
information for selected molecules. We validate each step using experimental data and apply this
framework to a mechanistic model of MAPK signaling, where we systematically evaluate biosensor
selection based on information density, time-scale coverage, and pathway specificity. This approach
represents a significant step toward understanding and potentially controlling cellular response to
therapeutic perturbations.

2.1 ROBUST MULTI-MARGINAL FLOW MATCHING

Our framework addresses high-dimensional temporal modeling through three synergistic compo-
nents that prevent overfitting while maintaining dynamical fidelity:

Spline-Decomposed Mini-Flows To handle irregular timepoints {ti}Mi=0, we construct the global
flow as overlapping windows of spline measure triplets for observed marginals:

µt =

M−k∑
i=0

Bi(t) [µi + (t− ti)vi] , t ∈ [ti, ti+k] (3)

where Bi(t) are B-spline basis functions with local support, µi = E[ρi], and vi are window-specific
velocity fields. The B-spline construction ensures several important properties: It maintains C2

smoothness between windows through basis function overlap, providing continuous transitions.
Through localized parameter sharing, it has O(1) extra memory complexity to the previous scal-
able algorithms (Tong et al., 2023), making it computationally efficient.

Score-Matched Stochastic Dynamics Similar to Tong et al. (2023), we regularize the determin-
istic flow with learned stochastic components via score matching:

Lscore = Et,x∼pt

[
|sθ(x, t)−∇x log pt(x)|2

]
(4)

where corrupted samples x̃ = x + σ(t)ϵ use a Brownian bridge noise schedule σ(t) =
√

t(1− t).
This approach avoids explicit density estimation in high dimensions, captures uncertainty through
stochastic differential equations, and prevents mode collapse via noise-adaptive regularization.

Live-Cell Biosensor Anchoring Experimental trajectories yj(t) from biosensors constrain the
learned velocity field through a direct matching term:

Llive =
∑
j

∫ tmax

tmin

|v(yj(t), t)− ẏj(t)|2dt (5)

This coupling to continous dynamics serves multiple purposes. It enables physics-informed learn-
ing by directly matching observed velocities, provides multi-scale alignment by bridging biosensor
measurements at µm/min resolution with snapshot hour-scale data, and offers pathway specificity
where channel selection (such as pERK versus RAS) determines the dynamical focus of the model
via a subset-correspondence regularity on the optimal transport (Liu et al., 2019).

Theoretical Guarantees The combined framework provides several key theoretical guarantees.
The divergence matching between the velocity field and score function (∇ · v = ∇ · sθ) ensures
consistency with the Fokker-Planck equation. The incorporation of live-cell data resolves the drift-
diffusion ambiguity inherent in stochastic differential equations. Additionally, the local nature of
spline measures ensures bounded Lipschitz constants across time windows, providing stability to
the framework.
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Real Data Validation Applied to CITEseq and Multiome gene expression datasets measuring
50-1000 molecular features at irregular intervals (2-7 days) (Burkhardt et al., 2022), our frame-
work demonstrates robust performance across dimensionality reduction strategies. For the 1000-
dimensional highly-variable genes (Hi-Var 1000), Triplet-MMSFM achieves near-identical W1 dis-
tances (50.64 vs 50.71) to Pairwise while reducing W 2

2 significantly, indicating precise distribu-
tion matching in higher dimensions. The model maintains stability across preprocessing methods,
while maximum mean miscrepancy metrics reveal consistent pattern capture. This performance
persistence across 50-1000 features and 4-7 day intervals confirms the method’s capacity to handle
biological noise and temporal sparsity inherent in real perturbation studies.

2.2 OPERATOR-THEORETIC REGULARIZATION FOR FLOW MATCHING

Direct application of equation (5) may be unreliable because single cell trajectories contain both
measurement noise and inherent chaotic dynamics. This makes velocity matching susceptible to
overfitting temporary fluctuations rather than capturing true biological patterns. To address this,
we employ Koopman operator theory (Mauroy et al., 2020) to decompose trajectories into coherent
dynamical patterns that provide regularization constraints for the flow matching process. The Koop-
man operator K linearly advances observables g(x) in time via Kg(xt) = g(xt+∆t), even when
the underlying system exhibits nonlinear dynamics. Spectral decomposition of K yields eigenfunc-
tions ϕj encoding predictable states and eigenvalues λj = e(θj+iωj)∆t, where θj and ωj govern
growth/decay rates and oscillation frequencies, respectively.

For observed trajectories of molecular activity, y(t), we approximate Koopman eigenfunctions from
the eigenfunctions of Markov kernel operators constructed over delay-embedded states Y (t) =
[y(t), y(t−τ), . . . , y(t−(d−1)τ)] (see Giannakis (2019)). This reveals dominant modes ϕ1, ϕ2 cor-
responding to drug response adaptation phases and oscillatory feedback. These data-driven modes
replace the flow matching penalty (5) with the spectral signatures of the live cell dynamics. This
loss enforces preservation of coherent temporal patterns. The regularization anchors the flow to
biologically interpretable dynamics: eigenfunction gradients ∇ϕj localize to key signaling nodes
like DUSP6 and SPRY2, validating their roles as dynamical bottlenecks. By bridging data-driven
pattern extraction with mechanistic interpretability, this operator-theoretic approach ensures robust
generalization despite trajectory-level unpredictability.

2.2.1 EXPERIMENTAL VALIDATION

0 100 200 300 400

Time

-0.1

-0.05

0

0.05

0.1

mode 1 mode 2

Figure 3: The first two extracted
principal Koopman modes.

Application to BRAFV600E melanoma cells under ERK inhibi-
tion revealed three key findings. First, delay-embedded ERK
trajectories exhibited block-diagonal kernel structure, indicating
predictable states, and two dominant Koopman modes (Fig. 3).
The first mode exhibited slow decay capturing ERK suppression,
while the second mode shows oscillations from negative feed-
back.

Figure 4 demonstrates our framework’s ability to reconstruct
ERK trajectories in the Low ERKi training condition (left) and
generalize to unseen High ERKi data (right). Compared to
Probabilistic Linear Dynamical Systems (PLDS) Chen et al.
(2017)–a conventional approach modeling dynamics through
low-dimensional linear transitions with Gaussian noise–our operator-based method maintains phase
coherence in unseen conditions where PLDS trajectories diverge rapidly

Remark: Biological systems under perturbation exhibit inherent non-ergodicity in time, yet modern
single-cell technologies provide spatial ergodicity through simultaneous measurements of millions
of cells. This allows approximation of temporal averages by ensemble averages: Et[f(Xt)] ≈
Ex∼qt [f(x)], where qt is the empirical distribution at time t. Here, rather than attempting to con-
struct exact flow maps, we focus on extracting predictable patterns using the transition density func-
tion pτ : X × X → [0,∞), which quantifies P[Φτ (Xt) ∈ A|Xt = x] for any measurable subset
A ⊂ X.
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Figure 4: Performance examples of model prediction for ERK activity trajectories in the Low ERKi
condition (left, training set) and High ERKi condition (right, test set).

3 IN-SILICO VALIDATION WITH MECHANISTIC MODELS

While operator-theoretic regularization demonstrates promising results in biological data, rigorous
validation of the learning algorithm necessitates controlled environments with fully known dynam-
ics. We address this through a high-fidelity in-silico MAPK/AP-1 network model that replicates
BRAFV600E melanoma signaling at single-molecule resolution developed by Fröhlich et al. (2023).
This computational model of BRAFV600E melanoma captures allosteric regulation, transcriptional
feedback, and compartmentalization through 68 mechanistic rules that generate over 100,000 reac-
tions.

The model provides two parameterizations: a base model for generic RAF/MEK inhibition stud-
ies, and a specialized pRAF model calibrated for p-RAF inhibitors with adjusted ∆∆G values for
RAF dimer allostery, specific phosphorylation rules for CRAF(S642) and BRAF(T753), and mod-
ified MEK-ERK binding kinetics. The rule-based architecture is built on fundamental biochemical
processes. Binding interactions, comprising 23 rules, include key processes such as BRAF-MEK

binding: BRAF + MEKu k1

⇌
k−1

BRAF:MEKu. Catalytic reactions, described by 24 rules, follow

Michaelis-Menten kinetics, as exemplified by MEK phosphorylation of ERK: v = kcat[MEKp][ERK]
Km+[ERK] .

Thermodynamic constraints are encoded through energy patterns, particularly for RAF dimer stabi-
lization by inhibitors: ∆∆Gbind = −RT ln

(
[RAFi:RAF2]
[RAFi][RAF]2

)
+ ∆∆Gallostery for pan-RAF inhibitors.

The model classifies biochemical interactions into six fundamental types: GTP exchange, gene ex-
pression, phosphorylation, endosomal shuttling, dephosphorylation, and drug inhibition. Each type
is represented by specific mathematical formulations and experimentally derived parameters. For
example, gene expression follows d[DUSP]

dt = αDUSP[pERK]− δDUSP[DUSP], while drug inhibition is

governed by binding energies ∆Gbind = −RT ln
(

[RAFi-RAF]
[RAFi][RAF]

)
.

The model has been extensively validated, achieving RMSD ¡15% for ERK activity trajectories
and Pearson R = 0.91 for drug synergy predictions. These results demonstrate key biological
insights: RAF inhibitor efficacy depends strongly on dimerization energetics, MEK inhibitor re-
sistance emerges through DUSP6 feedback mechanisms, and NRASQ61K mutation substantially re-
duces the EC50 for EGF by 83%.

3.1 OPTIMAL BIOSENSOR SELECTION FOR MAPK SIGNALING DYNAMICS

The MAPK pathway exhibits complex dynamics involving allostery, feedback, and adaptive
rewiring Fröhlich et al. (2023). We propose a sensor set to maximize information capture from
live-cell imaging, enabling accurate alignment and reconstruction of high-dimensional snapshot
data. Assume four key molecules: pERK (phosphorylated ERK), which integrates signals from
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BRAF(V600E) and RAS-driven pathways with pulsatile dynamics measured via FRET-based
biosensor; RAS-GTP (active RAS), which initiates RAF dimerization and MAPK activation mea-
sured using GFP-tagged RAS-binding domain probe; pMEK (phosphorylated MEK), which acts
as a convergence node for BRAF(V600E) monomers and RAS-driven RAF dimers measured via
antibody-based live-cell biosensor; and DUSP mRNA, which provides slow transcriptional feed-
back measured via MS2 stem-loop system.

These sensors were selected to maximize information through coverage of BRAF(V600E) and RAS
channels, time-scale heterogeneity from seconds to hours, and mutual information minimization
for redundancy reduction: i.e. I(pERK;DUSP mRNA|pMEK). The temporal alignment strategy
leverages the heterogeneous time scales of these sensors, with RAS-GTP capturing pulse initiation
(seconds), pMEK/pERK tracking signal propagation (minutes), and DUSP mRNA reflecting tran-
scriptional memory (hours). Flow matching is implemented with the added regularity to the loss
function (Equation (5)).

4 DISCUSSION

Our framework fundamentally reorients single-cell perturbation analysis from alignments of static
snapshots to dynamic process reconstruction. By combining multi-marginal Schrödinger bridges
with spectral operators, we attack a critical paradox in systems biology: how to preserve high-
dimensional molecular states while capturing transient dynamics essential for predicting cellular
decision-making. This approach reveals several key mechanistic insights into drug resistance and
how early molecular events orchestrate subsequent cell fate decisions.

Our operator-theoretic approach provides spectral regularization that preserves coherent and pre-
dictable transient valleys in the dynamic landscape where the traditional dimensionality reduc-
tion methods collapse. Delay-embedded Koopman modes successfully reconstruct unmeasured
JUN/ATF dynamics from ERK biosensors alone, while causal optimal transport disentangles
minute-scale phosphorylation from hour-scale transcription. Notably, preliminary in silico val-
idation achieved early resistance prediction, demonstrating the framework’s practical utility. In
other words, though highly variable at the single-cell level, contain predictive patterns when viewed
through the lens of operator theory. The Koopman decomposition of live-cell trajectories identifies
coherent modes of behavior that emerge during the initial response to perturbation.

Looking forward, several challenges remain. The careful selection of biosensors proves essential
for capturing the multi-scale nature of cellular response. Our chosen set spans timescales from sec-
onds to hours, providing temporal anchors that constrain the flow matching problem. This temporal
hierarchy enables robust reconstruction of transition paths that would be invisible to the null align-
ment of optimal transport alone. Integrating mitotic history as covariates of the dynamic bridges
could resolve heritable versus stochastic resistance mechanisms. Realizing the full potential of
this approach demands developing benchmark datasets with time-matched live/snapshot pairs, and
establishing mechanistic taxonomies for drug responses based on dynamical signatures. Conse-
quently, our framework represents a significant advance in resolving early transient responses to
perturbation. It demonstrates that the era of equilibrium-focused single-cell biology must yield to
a dynamical paradigm that embraces turbulence as fundamental, not artifact. As biological reality
flows, our models must learn to navigate its currents rather than seek frozen snapshots of its waves.
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