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ABSTRACT

Large, autoregressive models trained on databases of chemical compounds
and biomolecules have yielded powerful generators, but we still lack robust
strategies for controlled generation. This molecular search problem closely
resembles the “alignment” problem for large language models, though for
many chemical tasks we have a specific and easily evaluable reward func-
tion. Here, we introduce an algorithm called energy rank alignment (ERA)
that leverages an explicit reward function to produce a gradient-based ob-
jective that we use to optimize autoregressive policies. We deploy this ap-
proach to align molecular transformers and protein language models to gen-
erate molecules and protein sequences, respectively, with externally specified
properties and find that it does so robustly, searching through diverse parts
of chemical space. The algorithm is highly scalable, does not require rein-
forcement learning, and performs well relative to DPO when the number of
preference observations per pairing is small.

1 INTRODUCTION

Foundation models strongly reflect the distribution of the data on which they are trained

( ), and controlling the outputs to reflect externally imposed preferences is an increasingly
important challenge for deployment. The aforementioned task, often called “alignment”, requires
either careful curation of training data or large sets of human preference data—both options are
labor-intensive ( ). Reinforcement learning from human feedback (RLHF), a fam-
ily of algorithms that employs these human preference datasets, has been widely employed to align
instruction and chat models ( ); ( ), but it is both expensive to acquire
the training data and difficult to carry out in practice ( ). Recent algorithmic devel-
opments, such as direct preference optimization (DPO) ( ), simplify the alignment
framework by making the reward function implicit, but still require human preference data. While
these algorithms succeed in constraining outputs, many “alignment”-like tasks require evaluation
that would be difficult for human experts, including applications to chemical and biomolecular de-
sign.

We formulate a generic alignment algorithm that we call Energy Rank Alignment (ERA) that lever-
ages an explicit reward function to guide autoregressive sampling while targeting specific properties
or preferences. Unlike reward maximization in RL-based algorithms, the policy that minimizes
our objective is designed to sample fluctuations around a maximal reward value to promote sam-
ple diversity. Our algorithm enables direct gradient-based optimization of a policy to match the
ideal preference distribution and converges asymptotically to an optimal distribution with tuneable
entropy and controllable regularization, which we show theoretically. In numerical experiments,
we demonstrate that this algorithm successfully aligns a molecule transformer model to identify a
highly diverse set of chemicals with properties favored by our choice of reward. Finally, we demon-
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strate that ERA is able to align a protein language model to generate mutated protein sequences with
desirable properties according to a computational reward model.
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Figure 1: Energy rank alignment (ERA) enables targeting low-energy, high-reward regions with
controllable fluctuations. Optimal policy approaches Boltzmann distribution with low regularization
(7 — 0) and reference policy with high regularization (v — oo) (left). Aligned models can be used
to sample molecules with desired chemical properties (right).
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* Applications of machine learning to inverse molecular design tasks. Existing approaches
use weaker base models or rely on costly and tedious RL workflows
(2018); (2019); (2018);
(2023); (2018); (2020);
(2018); (2019); (2022); (2019)

* A number of algorithms for LLM alignment are already in wide use. Our approach uniquely
views the alignment procedure as a conditional sampling algorithm and has strong statisti-

cal guarantees (2022); (2017); (2023).

* Our theoretical findings provide support to observations in the literature regarding existing
LLM alignment algorithms, including ( ); ( );
(2023); (2023).

2 ENERGY RANK ALIGNMENT

A policy is a conditional probability distribution 7(-|) : ) — R; we generate an output y from
prompt . The spaces ) and X are discrete and finite, corresponding to sequences of tokenized
outputs of the model with a maximum length. In alignment tasks, we begin with a pre-trained
reference policy 7t and seek to optimize a parametric, trainable policy 7g to adapt the conditional
sampling for a particular task or constraint.

Consider a prompt € X" and model outputs y,y’ € Y and a collection of preferences D = {(y; >
yi;x;) ", ; the notation > indicates that y; is preferred to y,. The conditional probability that
y = y’ given  can be modeled as a pairwise Boltzmann ranking within the Bradley-Terry model,
ie.,
, e—BU(z.y) ,
Py = Y'1®) = FrG ey = o (BU(,y) — AU, y)). )

Here 3 > 0 is a constant, o(z) = (1 + e ®)~! and we refer to U : X x J) — R as an energy
function to make clear the connection to statistical physics, but it is the negative reward within the
RL framework for alignment.
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To impose the preferences we minimize the objective

J(1) = Egrw U U(z,y)dr(ylz) + 67 /(1 + ) log 7 (y|z) — vlog(mef(ylw))dﬂ(yw)}(,z)

where 37! is a parameter controlling the magnitude of the entropic term, v sets the scale of the
Kullback-Leibler regularization compared with the energy term, and v is a probability distribution
over the prompts v € P(X). A proximal scheme for gradient descent on this objective corresponds
to a gradient flow on J ( ); ( ); the functional can be viewed as a free
energy, and the corresponding flow is

81571'15 =V- (WtVCSﬂ—J[ﬂ'tD s (3)

and J,; denotes the Fréchet derivative with respect to . Assuming that 7y has full support on X x ),
the optimization converges asymptotically to a stationary policy which satisfies

Viérd[me] =0 <= 7, xe — T Ut log Tref 4)

and this minimizer is globally optimal. In the context of LLM alignment, a representation of the
energy function U : X x Y — R is learned as a “reward model”, though we also consider tasks in
which U is an easily evaluated function of the pair (x,y). The optimal distribution 7, is a Gibbs-
Boltzmann measure

ro(ylz) = 27 (@) exp —%(U(w, y) — By log mer(ylz)) 5)

where Z(x) is the x-dependent normalization constant. This expression makes clear the effect of
B: when 8 — oo (low temperature), the reward dominates and fluctuations around the maximal
reward are small, which could lead to “mode-seeking”; when § — 0O (high physical temperature)
fluctuations around the maximal reward increase and the regularization term favors proximity to
Trer. Similarly, ¥ — 0 recovers a Gibbs-Boltzmann distribution proportional to e#V at inverse
temperature /3, while v — oo is dominated by the reference policy.

3 EXPERIMENTS

GSK3/ top-100 JNK3 top-100
mean score IntDiv mean score IntDiv
ERA 0.996 +0.000  0.219 £+ 0.002 0.987 + 0.001  0.264 + 0.005

MoIRL-MGPT  1.000 £ 0.000 0.362 +0.015 0.961 +£0.010  0.372 £ 0.025
GFlowNet 0.649 +£0.072  0.715 £ 0.104  0.437 £0.219 0.716 £ 0.145
GraphGA 0919 £0.016  0.365 +£0.024  0.875 £0.025 0.380 £ 0.015

JT-VAE 0.235£0.083 0.770 £0.067 0.159 £ 0.040 0.781 £ 0.127
REINVENT 0.965 £0.011 0308 £0.035 0.942+0.019 0.368 £ 0.021

Table 1: Mean scores and internal diversities (IntDiv) of experiments on GSK33 and JNK3 tasks
averaged across 5 random seeds. For each task, 20K molecules were sampled, and metrics were
computed on top-100 scoring valid, novel and unique molecules filtered from the initial 20K samples
(i.e. molecules not in dataset and molecules not previously sampled). Compared to state-of-the-art
methods, ERA samples more diverse molecules with higher predicted docking scores. Results for
compared methods are reproduced from ( ).

Unprompted molecular alignment on protein-ligand docking oracles We investigate the per-
formance of ERA in designing compounds that have high predicted docking scores for the kinases
JNK3 and GSK38. For each of these targets, we use an in silico oracle that predicts docking scores,
ranging from O to 1, where a higher value corresponds to stronger predicted score ( ).
Using only data from ChemBL, we first carry out a short supervised fine-tuning step on all molecules
in ChemBL with an oracle score above 0.5 (7386 molecules for JNK3 and 43381 for GSK3/). Us-
ing this fine-tuned model as our reference policy, we then carry out alignnment using ERA (=100
and y=0), where we use a comparably high ( to target molecules with high activity. We define the
energy for this task as the negative logarithm of the oracle score.

From the aligned models, we sample 20000 molecules (see Fig. 5) and tabulate metrics of the top-
100 performing molecules (see Table 1). We note that the molecules in the top-100 are filtered to
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exclude any molecules that are present in the ChemBL dataset and any repeated molecules. As such,
the top-100 selected molecules are both novel and unique. For GSK3 3, our mean score is marginally
lower than the best performing method but the diversity in sampled molecules is significantly higher
(i.e. lower IntDiv). For JNK3 our mean score is significantly higher than the best performing method
and the diversity in sampled molecules is higher than any method. The inference costs are notably
low for our approach; sampling 20000 molecules and filtering takes only minutes on a single GPU.

We additionally measure sample efficiency using the top-10 AUC metric Gao et al. (2022), which
is the area under the curve (AUC) of the mean property value of the top-10 performing molecules
versus the number of oracle calls (see Fig. 6 and Table 2). We likewise only include novel, unique,
and valid molecules in this analysis; any sampled molecule that is in ChemBL, that has already been
sampled, or that is invalid is discarded and additionally does not count towards an oracle call as
these are filtered out before oracle evaluation. We observe that we are able to generate novel and
unique high-scoring molecules, with high sample efficiency especially in comparison to existing
state-of-the-art methods. Ultimately, high sample efficiency is crucial in settings where evaluation is
expensive, which will generally be true for most real-world chemical and biological tasks (e.g. wet-
lab experiment). Finally, we also perform Glide Standard Precision Friesner et al. (2004) docking on
the top-scoring molecules according to the oracles (score of 1.0) against their respective receptors.
We observe that the diverse set of sampled molecules exhibit chemically plausable docked poses
obtained from a physics-based docking approach (Fig. 2).

Figure 2: Visualization of three generated ligands docked against the GSK3/ kinase target (top) and
three generated ligands docked against the JNK3 kinase target (bottom). In each case, these were the
three molecules with the best (most negative) Glide Standard Precision docking scores and oracle
scores of 1.0.

Prompted multi-property molecular alignment on RDKit oracles Inspired by the task of lead
optimization in drug discovery efforts Keserii & Makara (2009), we ask whether we can use ERA to
train a molecular generator that can sample a molecule that is both similar to the prompt molecule
and also exhibits some desired property. First, we fine-tune the pretrained molecular generator to
enable prompted molecular generation and use this fine-tuned model as our reference policy for all
prompted molecular alignment tasks. This reference policy disproportionately samples molecules
that are identical (i.e. a Tanimoto similarity of 1.0) to the prompt molecule (see Fig. 3), so we
carry out multi-property alignment on this reference policy to generate molecules that are similar—
but not identical—to the prompt molecule and also have a high drug-likeness as measured by the
quantitative estimate of drug-likeness (QED). Using ERA, we optimize the reference policy with
a generated dataset D = {(y%l), x®), (yél), x@), U(yy), x®), U(yél), M) where we sam-
ple four molecules for each prompt molecule from the reference policy and consider all possible
preference pairs for a total of six preference pairs per prompt molecule.

We observe that the per-prompt average QED under the optimized policy for a given prompt is higher
than the corresponding average under the reference policy (Fig. 3). Furthermore, we see that we are
able to sample a diverse set of molecules that are chemically similar to the prompt molecule, and also
chemically valid. We repeat the experiment with a related objective of generating molecules similar
to the prompt molecule with a high Wildman-Crippen LogP (hydrophobicity) instead and again
observe that we increase the per-prompt average LogP under the optimized policy relative to the
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Multienergy Alignment (QED and Tanimoto) — Multienergy Alignment (LogP and Tanimoto)
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Figure 3: Prompted multi-property molecular generator alignment. From left to right: Tanimoto
similarities computed between the prompt and sampled molecules for both aligned and unaligned
policies (QED and Tanimoto alignment), per-prompt difference in the average QED under aligned
and unaligned policies (QED and Tanimoto alignment), Tanimoto similarities computed between
the prompt and sampled molecules for both aligned and unaligned policies (LogP and Tanimoto
alignment), and per-prompt difference in the average LogP under aligned and unaligned policies
(LogP and Tanimoto alignment). With alignment, we target higher QED and LogP values, while
still sampling molecules chemically similar—but not identical to—the prompt molecule.

reference policy without degrading sample diversity and validity. For both of these experiments, we
required regularization to the reference policy (y > 0). With no regularization, the aligned generator
would almost exclusively sample sequences that were chemically invalid (< 25% chemical validity).
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Figure 4: Alignment of ESM3-1.4B with =0, 0.1, 1.0, 10.0 and y=0.001 on the task of maximizing
EVmutation score. Positions 182, 183, 184, and 186 of the TrpB parent sequence were masked
and ESM3-1.4B predicted amino acids at those sites. The distribution of the EVmutation scores for
generated sequences shifts significantly as [ is increased.

Directed evolution of proteins with ERA  We also consider the performance of ERA in a large-
molecule setting, namely ML-guided directed evolution of proteins. Directed evolution campaigns
aim to optimize a protein sequence toward some desired property of interest via iterative muta-
genesis, library screening, and selection of best variants ( ). This has become a
widely used methodology in protein engineering but comes with key limitations. The inherently it-
erative nature of directed evolution campaigns can lead to costly and time-consuming experimental
campaigns, and meaningfully understanding the effects of protein mutations on protein activity can
often be difficult. These challenges have led to the application of machine learning methods to more
efficiently guide directed evolution campaigns ( ) ( ).

There has been significant recent effort to design and train large protein language models (PLMs)
( ); ( ). Furthermore, these models have demonstrated remarkable
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capabilities across a number of protein tasks ( ); ( ). As such,
we decided to use the state-of-the-art ESM3-1.4B ( ) as our pretrained model, for
which we carried out alignment using ERA. Despite the multimodal nature of ESM3, here, we only
focus on generating primary-sequence-based representations of proteins.

We consider directed evolution of the (-subunit of tryptophansynthase (TrpB) from Thermotoga
maritima, an enzyme that catalyzes tryptophan production ( ). Here, we seek to
evolve the protein to increase its evolutionary fitness. In this work, we do not have access to exper-
imental validation and so we evaluate the fitness of sequences using the computationally evaluable
EVmutation score, an oracle that is predictive of a variant sequence’s performance relative to the
parent sequence in its native function ( ).

As in other directed evolution campaigns for the TrpB protein ( ), we consider mu-
tating four different sites to one of the 20 standard amino acids. We randomly sampled 512 mutated
sequences, emulating a random mutagenesis experiment. Using ESM3-1.4B as our reference model,
we carry out alignment using ERA with various 5 = (0.1,1.0,10.0) and v = 0.001 and plot the
results in Fig. 4. We observe that with higher /3, we are able to sample mutants with the highest
possible EVmutation score in a single round of alignment. These results are promising for the ap-
plication of ERA in directed evolution campaigns and future work will focus on the guidance of
wet-lab directed evolution campaigns in conjunction with multi-round, on-policy ERA.
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A APPENDIX
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Figure 5: Distribution of GSK3/5 and JNK3 oracle scores sampled from unaligned reference model
and aligned model (5 = 100.0, v = 0.0). 20K molecules were sampled from each model and only
oracle scores of valid molecules are plotted.
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Figure 6: The average score of top-10 performing valid, novel, and unique molecules as a function
of the number of oracle calls made to the aligned models. Scores are computed using the JNK3 and
GSK37 oracles, respectively, for five different random seeds. Samples that are invalid, present in
the dataset, or already previously sampled are discarded and do not count towards an oracle call.

GSK3p top-10 AUC _ JNK3 top-10 AUC

ERA 0.985 + 0.001 0.989 + 0.002
REINVENT 0.865 £ 0.043 0.783 £0.023
GraphGA 0.788 £ 0.070 0.553 £0.136

Table 2: Top-10 AUC scores on GSK33 and JNK3 tasks averaged across 5 random seeds. Compared
to state-of-the-art methods as reported in Gao et al. (2022), ERA has higher sampling efficiency.
Results for compared methods are reproduced from Gao et al. (2022).
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