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Abstract

Reinforcement learning (RL) is challenging in
the common case of delays between events and
their sensory perceptions. State-of-the-art (SOTA)
state augmentation techniques either suffer from
state space explosion or performance degenera-
tion in stochastic environments. To address these
challenges, we present a novel Auxiliary-Delayed
Reinforcement Learning (AD-RL) method that
leverages auxiliary tasks involving short delays to
accelerate RL with long delays, without compro-
mising performance in stochastic environments.
Specifically, AD-RL learns a value function for
short delays and uses bootstrapping and policy
improvement techniques to adjust it for long de-
lays. We theoretically show that this can greatly
reduce the sample complexity. On deterministic
and stochastic benchmarks, our method signifi-
cantly outperforms the SOTAs in both sample effi-
ciency and policy performance. Code is available
at https://github.com/QingyuanWuNothing/AD-
RL.

1. Introduction
Reinforcement learning (RL) has already proved its mettle
in complex tasks such as Backgammon (Tesauro, 1994),
Go (Silver et al., 2018), MOBA Game (Berner et al., 2019),
building control (Xu et al., 2021; 2022), and various cyber-
physical systems (Wang et al., 2023a;b; Zhan et al., 2024).
Most of the above RL settings assume that the agent’s inter-
action with the environment is instantaneous, which means
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that the agent can always execute commands without de-
lay and gather feedback from the environment right away.
However, the persistent presence of delays in real-world
applications significantly hampers agents’ efficiency, perfor-
mance, and safety if not handled properly (e.g., introducing
estimation error (Hwangbo et al., 2017) and losing repro-
ducibility (Mahmood et al., 2018) in practical robotic tasks).
Delay also needs to be considered in many stochastic set-
tings such as financial markets (Hasbrouck & Saar, 2013)
and weather forecasting (Fathi et al., 2022). Thus, address-
ing delays in RL algorithms is crucial for their deployment
in real-world timing-sensitive tasks.

Delays in RL can be primarily divided into three categories:
observation delay, action delay, and reward delay (Firoiu
et al., 2018), depending on where the delay occurs. Among
them, observation delay receives considerable attention due
to the application-wise generality and the technique-wise
challenge: it has been proved to be a superset of action de-
lay (Katsikopoulos & Engelbrecht, 2003; Nath et al., 2021),
and unlike well-studied reward delay (Han et al., 2022; Kim
& Lee, 2020), it disrupts the Markovian property of systems
(i.e., the underlying dynamics depend on an unobserved
state and the sequence of actions). In this work, we focus
on non-anonymous and constant observation delay under
finite Markov Decision Process (MDP) settings, where the
delay is known to the agent and always a constant num-
ber of time steps (details in Section 3), as in most existing
works (Schuitema et al., 2010; Chen et al., 2021).

Promising augmentation-based approaches (Altman & Nain,
1992; Katsikopoulos & Engelbrecht, 2003) transform the
delayed RL problem into an MDP by augmenting the latest
observed state with a sequence of actions related to the delay,
also known as the information state (Bertsekas, 2012). After
retrieving the Markovian property, the augmentation-based
methods adopt classical RL methods to solve the delayed
RL problem properly, such as augmented Q-learning (A-
QL) (Nath et al., 2021). However, existing augmentation-
based methods are plagued by the curse of dimensional-
ity, shown by our toy examples in Fig. 1. Under a deter-
ministic MDP setting (Fig. 1(a)), the original augmented
state space grows exponentially with the delays, causing
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Figure 1. Our AD-RL method introduces an adjoint task with short delays, enhancing the original augmentation-based method (A-QL) in
deterministic MDP (Fig. 1(a)) with delay ∆ = 10, shown in Fig. 1(b). Whereas, in stochastic MDP (Fig. 1(c)) with delay ∆ = 10, a short
auxiliary delays may lead to performance improvement (AD-QL(5)) or drop (AD-QL(0)) as shown in Fig. 1(d). BPQL always uses a fixed
0 auxiliary delays, equivalent to AD-QL(0) in these examples. Notably, the optimal auxiliary delays is irregular and task-specific, which
we discussed in subsequent experiments in Section 6.

learning inefficiency. The variant of augmentation-based
methods BPQL (Kim et al., 2023) approximates the value
function based on the delay-free MDP to tackle the ineffi-
ciency, which unexpectedly results in excessive information
loss. Consequently, it cannot properly handle stochastic
tasks (Fig. 1(c)).

To address the aforementioned challenges, we propose a
novel technique named Auxiliary-Delayed RL (AD-RL). Our
AD-RL is inspired by a key observation that an elaborate
auxiliary task with short delays carries much more accurate
information than the delay-free case about the original task
with long delays, and is still easy to learn. By introducing
the notion of delayed belief to bridge an auxiliary task with
short delays and the original task with long delays, we can
learn the auxiliary-delayed value function and map it to the
original one. The changeable auxiliary delays in our AD-RL
has the ability to flexibly address the trade-off between the
learning efficiency and approximation accuracy error in vari-
ous MDPs. In toy examples (Fig. 1(a) and Fig. 1(c)) with 10
delays, we compare the performance of A-QL and AD-RL
with 0 and 5 auxiliary delays respectively (AD-QL(0) and
AD-QL(5)). Our AD-RL not only remarkably enhances
the learning efficiency (Fig. 1(b)) but also possesses the
flexibility to capture more information under the stochastic
setting (Fig. 1(d)). Notably, BPQL is a special variant of
our AD-RL with fixed 0 auxiliary delays, resulting in poor
performance under the stochastic setting. In Section 4, we
develop AD-DQN and AD-SAC, extending from Deep Q-
Network and Soft Actor-Critic with our AD-RL framework
respectively. Besides, we provide an in-depth theoretical
analysis of learning efficiency, performance gap, and conver-
gence in Section 5. In Section 6, we show superior efficacy
of our method over the SOTA approaches on the different
benchmarks. Our contributions can be summarized as:
• We address the sample inefficiency of the original

augmentation-based approaches (denoted as A-RL) and
excessive approximation error of the belief-based ap-
proaches by introducing AD-RL, which is more efficient
with a short auxiliary-delayed task and achieves a theo-

retical similar performance with A-RL.
• Adapting the AD-RL framework, we devise AD-DQN

and AD-SAC to handle discrete and continuous control
tasks, respectively.

• We analyze the superior sampling efficiency of AD-RL,
the performance gap bound between AD-RL and A-RL,
and provide the convergence guarantee of AD-RL.

• We show notable improvements of AD-RL over exist-
ing SOTA methods in policy performance and sampling
efficiency for deterministic and stochastic benchmarks.

2. Preliminaries
2.1. Delay-free RL

The delay-free RL problem is usually modelled as a
Markov Decision Process (MDP), defined as a tuple
⟨S,A,P,R, γ, ρ⟩. An MDP consists of a state space
S, an action space A, a probabilistic transition function
P : S×A×S → [0, 1], a reward functionR : S×A → R,
a discount factor γ ∈ (0, 1) and an initial state distribution
ρ. At each time step t, based on the input state st ∈ S
and the policy π : S ×A → [0, 1], the agent has an action
at ∼ π(·|st) where at ∈ A, and then the MDP evolves to
a new state st+1 ∈ S based on the probabilistic transition
function P and the agent receive a reward signal rt from
reward functionR(st, at). We use dπs0 to denote the visited
state distribution starting from s0 based on policy π. The
objective of the agent in an MDP is to find a policy that
maximizes return over the horizon H . Given a state s, the
value function of policy π is defined as

V π(s) = E
st+1∼P(·|st,at)
at∼π(·|st)

[
H∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
.

Similarly, given a state-action pair (s, a), the Q-function of
policy π can be defined as

Qπ(s, a) = E
st+1∼P(·|st,at)
at∼π(·|st)

[
H∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

a0 = a

]
.
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2.2. Deep Q-Network and Soft Actor-Critic

A widely used off-policy RL method is the Deep Q-Network
(DQN) (Mnih et al., 2015) with the Q-function Qθ : S ×
A → R parameterized by θ. It conducts temporal-difference
(TD) learning based on the Bellman optimality equation.
Given the transition data (st, at, rt, st+1), DQN updates the
Q-function via minimizing TD error.

∇θ
[
1

2
(Qθ(st, at)− Y)2

]
where Y = rt+γmaxat+1

Qθ(st+1, at+1) is the TD target.

Based on the maximum entropy principle, Soft Actor-Critic
(SAC) (Haarnoja et al., 2018a) provides a more stable actor-
critic method by introducing a soft value function. Given
transition data (st, at, rt, st+1), SAC conducts TD update
for the critic using the soft TD target Ysoft.

Ysoft = rt

+ γ E
at+1∼πψ(·|st+1)

[Qθ(st+1, at+1)− log πψ(at+1|st+1)]

where πψ is the policy function parameterized by ψ. For the
policy πψ , it can be optimized by the gradient update:

∇ψ E
â∼πψ(·|st)

[log πψ(â|st)−Qθ(st, â)]

3. Problem Setting
We assume that delay-free MDP is endowed with a constant
delay variable ∆ ∈ N. In this setting, the state of environ-
ment st is only observed by the agent at a later timestep
t+∆. In other words, the real state of the environment
is st, but the agent’s observation is st−∆. To retrieve the
Markov property in this Delayed MDP (DMDP) (Altman
& Nain, 1992; Katsikopoulos & Engelbrecht, 2003), we
need to augment the state space X = S × A∆, where
A∆ stands for actions in delay time steps. An augmented
state xt = (st−∆, at−∆, . . . , at−1) ∈ X is composed
with the latest observed state st−∆ and actions taken in
last ∆ time steps (at−∆, . . . , at−1). Thus, with consider-
ation of the delay into the dynamics, we can formulate a
new MDP dynamic called Constant Delayed MDP (CD-
MDP), ⟨X ,A,P∆,R∆, γ, ρ∆⟩, where X is defined above,
A stands for the action-space. P∆ is the delayed probabilis-
tic transition function defined below.

P∆(xt+1|xt, at) =
P(st−∆+1|st−∆, at−∆)δat(a

′
t)Π

∆−1
i=1 δat−i(a

′
t−i)

where δ is the Dirac distribution. We also have a new
delayed reward functionR∆ defined as follows.

R∆(xt, at) = E
st∼b(·|xt)

[R(st, at)]

Correspondingly, the initial state distribution is represented
as ρ∆ = ρΠ∆

i=1δa−i , where b(st|xt) is called belief defined
as follows.

b(st|xt) =∫
S∆

Π∆−1
i=0 P(st−∆+i+1|st−∆+i, at−∆+i)dst−∆+i+1

(1)
The idea is to infuse delayed state information st−∆ to st
into the augmented state xt (Gangwani et al., 2020).

In this work, we assume the MDPs, policies and Q-functions
satisfy the following Lipschitz Continuity (LC) property,
where Euclidean distance is adopted in a deterministic space
(e.g., dS for state space S, dA for action space A and dR
for reward spaceR), and L1-Wasserstein distance (Villani
et al., 2009), denoted as W1, is used in a probabilistic space
(e.g., transition space P and policy space Π) respectively.

Definition 3.1 (Lipschitz Continuous MDP (Rachelson
& Lagoudakis, 2010)). An MDP ⟨S,A,P,R, γ, ρ⟩ is
(LP , LR)-LC, if ∀(s1, a1), (s2, a2) ∈ S ×A, we have

W1(P(·|s1, a1)||P(·|s2, a2)) ≤ LP(dS(s1, s2) + dA(a1, a2))

dR(R(s1, a1)−R(s2, a2)) ≤ LR(dS(s1, s2) + dA(a1, a2))

Definition 3.2 (Lipschitz Continuous Policy (Rachelson
& Lagoudakis, 2010)). A stationary markovian policy π is
Lπ-LC, if ∀s1, s2 ∈ S, we have

W1(π(·|s1)||π(·|s2)) ≤ LπdS(s1, s2)

Definition 3.3 (Lipschitz Continuous Q-function (Rachel-
son & Lagoudakis, 2010)). Given (LP , LR)-LC MDP and
Lπ-LC policy π, such that γLP (1 + Lπ) < 1 where γ is
the discount factor of MDP, then Q-function Qπ is LQ-LC
with LQ = LR

1−γLP (1+Lπ)
.

Note that is a mild assumption commonly used in RL litera-
ture (Rachelson & Lagoudakis, 2010; Liotet et al., 2022).

4. Our Approach: Auxiliary-Delayed RL
In this section, we introduce our AD-RL framework to ad-
dress the sample inefficiency of the original augmentation-
based approach and illustrate the underlying relation be-
tween learning the original delayed task and the auxiliary
one in Section 4.1. Then we extend the AD-RL framework
to the practical algorithms in Section 4.2 and Section 4.3.

4.1. Auxiliary-Delayed Reinforcement Learning

Instead of learning on the original augmented state space
X with delays ∆, we introduce a corresponding auxiliary-
delayed task with the shorter delays ∆τ (∆τ<∆) and, ac-
cordingly, a much smaller augmented state space X τ . Shar-
ing a similar idea as belief function b in Eq. (1), X and X τ
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Figure 2. The overview of AD-RL framework. Compared with
the conventional augmentation-based method, AD-RL additionally
introduces the auxiliary-delayed task shown in the dashline box.

can be bridged by a delayed belief function b∆ as:

b∆(x
τ
t |xt) =∫

S∆

Π∆−∆τ−1
i=0 P(st−∆+i+1|st−∆+i, at−∆+i)dst−∆+i+1

(2)
where xt = (st−∆, at−∆, . . . , at−1) ∈ X and xτt =
(st−∆τ , at−∆τ , . . . , at−1) ∈ X τ . As shown in the Fig. 2 (a),
both xt and xτt share the sub-sequence (at−∆τ , . . . , at−1)
of A∆. Besides, in the original MDP setting, transitioning
from the state st−∆ to the state st−∆τ can be accomplished
by applying the action sub-sequence (at−∆, . . . , at−∆τ+1).
Remark 4.1 (Implicit Delayed Belief). Practically, we do
not need to learn the delayed belief b∆ explicitly. As in the
CDMDP, every state will be observed by the agent eventu-
ally. In other words, given an entire trajectory collected by
the agent, we can create the synthetic augmented state for
any required delay.

With b∆ we can transform learning the original ∆-delayed
task into learning the auxiliary ∆τ -delayed task which is
much easier to learn for a much smaller augmented state
space. As shown in Fig. 2 (b), we can use the easier-to-
learn auxiliary Q-function Qτ to help bootstrapping the
Q-function Q or improving the policy π. The specific algo-
rithms will be proposed in the next sections. In this way,
we can significantly improve the learning efficiency of the
∆-delayed task, and a more rigorous proof will be presented
in Section 5.

As a highly flexible delayed RL framework (Algorithm 1),
our AD-RL can be naturally embedded in most of the ex-
isting RL methods to serve different task specifications. In
this paper, we specifically develop two practical algorithms
AD-DQN and AD-SAC based on DQN (Mnih et al., 2015)
and SAC (Haarnoja et al., 2018a) to tackle discrete and
continuous control tasks respectively.
Remark 4.2. BPQL (Kim et al., 2023) can be seen as a
special case of our AD-RL via setting the auxiliary delays
to fixed zero (i.e., ∆τ = 0). However, the excessive loss of
information might lead to poor performance in stochastic
MDP in Fig. 1(d). We provide more experimental results

Algorithm 1 Auxiliary-Delayed RL Framework

Input: Q, π for ∆ delays; Qτ , πτ for ∆τ delays
for each update step do

# Learning ∆τ -delayed task
Updating Qτ , πτ by a given delayed RL method
# Learning ∆-delayed task based on Qτ

Bootstrapping Q based on Qτ via Eq. (3) # discrete
Improving π based on Qτ via Eq. (5)# continuous

end for
Output: Q, π

about this in Section 6.

4.2. Discrete Control: from AD-VI to AD-DQN

Before developing the practical algorithm: AD-DQN, we
first have to derive AD-VI, the AD-RL version of value
iteration (VI) (Sutton & Barto, 2018). In the tabular setting,
AD-VI maintains two Q-functionsQ andQτ for the original
delayed task(∆) and the auxiliary-delayed task(∆τ ), respec-
tively. Different from Qτ updated by the original Bellman
operator, we update Q by applying the auxiliary-delayed
Bellman operator T as follow:

T Q(xt, at) ≜ R∆(xt, at)

+ γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, argmax

at+1

Q(xt+1, at+1))

]
(3)

Then AD-DQN can be extended from AD-VI naturally via
approximating the Q-functions by the parameterized func-
tions (e.g., neural networks). The implementation details of
AD-DQN are presented in Appendix A.

4.3. Continuous Control: from AD-SPI to AD-SAC

Similarly, before AD-SAC, we begin with deriving AD-SPI,
soft policy iteration (SPI) (Haarnoja et al., 2018a) in the
context of our AD-RL. AD-SPI also alternates between two
steps: policy evaluation and policy improvement. In policy
evaluation, we evaluate the policy π via iteratively applying
the auxiliary-delayed soft Bellman operator T π as follow:

T πQ(xt, at) ≜ R∆(xt, at)

+ γ E
at+1∼π(·|xt+1)
xτt+1∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)− log π(at+1|xt+1)

]
(4)

where Qτ is updated by the original soft Bellman opera-
tor (Haarnoja et al., 2018a). In policy improvement, we will
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update the policy π based on Qτ instead of Q as follow:

πnew =

argminπ′∈ΠKL
(
π′(·|xt)

∣∣∣∣∣∣∣∣exp(Exτt∼b∆(·|xt)[Q
τ (xτt , ·)])

Z(xτt , ·)

)
(5)

where Π is the set of policies for tractable learning, KL
is the Kullback-Leibler divergence and Z is the term for
normalizing the distribution. Functions approximations of
the Q-functions (Q and Qτ ) and policies (π and πτ ) bring
us AD-SAC, the practical algorithm for continuous control
task. In AD-SAC, the policy πψ parameterized by ψ is
updated by gradient with

▽ψ E
â∼πψ(·|xt)
xτt ∼b∆(·|xt)

[log πψ(â|xt)−Qτ (xτt , â)] (6)

In addition, we further improve AD-SAC with multi-step
value estimation (Sutton & Barto, 2018; Bouteiller et al.,
2020) for accelerating learning. The implementation details
of AD-SAC are presented in Appendix A.

5. Theoretical Analysis
In this section, we first discuss why our AD-RL has better
sample efficiency in Section 5.1, then analyse the perfor-
mance gap between optimal auxiliary-delayed value func-
tion and optimal delayed value function in Section 5.2, and
finally derive the convergence guarantee of our AD-RL in
Section 5.3.

5.1. Sample Efficiency Analysis

Though it is hard to directly derive a formal conclusion on
the sample efficiency of AD-RL, as the learning process is
correlated to two different learning tasks at the same time,
some existing works (Even-Dar et al., 2003; Azar et al.,
2011) related to sample complexity provide insight into why
our method has better sample efficiency. The sample com-
plexity of the optimized Q-learning isO

(
log(|S||A|)
ϵ2.5(1−γ)5

)
(Azar

et al., 2011), which shows the amount of samples are re-
quired for Q-learning to guarantee an ϵ-optimal Q-function
with high confidence. We can conclude that the sample
complexity of augmented Q-learning in the augmented state
space with delay ∆ isO

(
log(|S||A|∆+1)
ϵ2.5(1−γ)5

)
. Then our AD-RL

makes bootstrapping in the auxiliary ∆τ -augmented state-
space instead of the original ∆-augmented state-space, the
sample efficiency is improved by O(|A|∆−∆τ ).
Remark 5.1 (Sample Inefficiency Issue). AD-RL provides
an effective framework to alleviate the sample inefficiency
issue. However, as shown in Fig. 2 (d), in the stochastic
environment with longer delays ∆, we need to set relatively
longer auxiliary delays ∆τ to achieve better performance
while somewhat compromising the sample efficiency.

5.2. Performance Gap

While acknowledging that bootstrapping in a smaller aug-
mented state space combined with delayed belief might lead
to sub-optimal performance, we demonstrate in this section
that this degradation can be effectively bounded. We start
by deriving the Lemma 5.2, unifying performance gap be-
tween policies (π and πτ ) on the same auxiliary-delayed
state space X τ . Then, we derive the bounds on the perfor-
mance gap through the difference of policies in Theorem 5.3.
Next, we extend this bound to get the bound on Q-functions
of different state spaces in Theorem 5.4. Finally, we show
that the bound on optimal Q-functions will become nominal
under the deterministic MDP setting.

Following the similar proof sketch with (Kakade & Lang-
ford, 2002; Liotet et al., 2022), we give the general delayed
policies performance difference lemma as below.

Lemma 5.2 (General Delayed Performance Difference, see
Appendix B.2 for proof). For policies πτ and π, with delays
∆τ < ∆. Given any xt ∈ X , the performance difference is
denoted as I(xt)

I(xt) = E
xτt∼b∆(·|xt)

[V τ (xτt )]− V (xt)

=
1

1− γ E
x̂τ∼b∆(·|x̂)
a∼π(·|x̂)
x̂∼dπxt

[V τ (x̂τ )−Qτ (x̂τ , a)]

Lemma 5.2 tells us that the performance difference I be-
tween policies (π and πτ ) can be measured by the corre-
sponding value functions (V and V τ ) sitting on different
augmented state spaces (X and X τ ). Since the connection
of X and X τ can be specified by the delayed belief b∆,
we can unify the expressions on X τ to measure the perfor-
mance gap, using the auxiliary value functions (V τ andQτ ).
Assuming Qτ is LQ-LC (Definition 3.3), we can show that
this performance difference between policies (π and πτ ) can
be bounded by the L1-Wassestein distance between them as
followed Theorem 5.3.

Theorem 5.3 (Delayed Performance Difference Bound,
proof in Appendix B.3). For policies πτ and π, with ∆τ

<∆. Given any xt ∈ X , if Qτ is LQ-LC, the performance
difference between policies can be bounded as follow

E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[V τ (xτt )−Qτ (xτt , at)]

≤ LQ E
xτt∼b∆(·|xt)

[W1(π
τ (·|xτt )||π(·|xt))]

Combining Lemma 5.2 and Theorem 5.3, we can extend the
bound on state-values (V and V τ ) to the bound on Q-values
(Q and Qτ ) and optimal Q-values (Q(∗) and Qτ(∗)) by the
L1-Wassestein distance of the corresponding policies (π and
πτ ) and optimal policies (π(∗) and πτ(∗)), respectively.
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Theorem 5.4 (Delayed Q-value Difference Bound, proof in
Appendix B.4). For policies π and πτ , with ∆τ <∆. Given
any xt ∈ X , if Qτ is LQ-LC, the corresponding Q-value
difference can be bounded as follow

E
at∼π(·|xt)
xτt ∼b∆(·|xt)

[Qτ (xτt , at)−Q(xt, at)]

≤ γLQ
1− γ E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[W1(π
τ (·|x̂τ )||π(·|x̂))]

Specially, for optimal policies π(∗) and πτ(∗), if Qτ(∗) is LQ-
LC, the corresponding optimal Q-value difference can be
bounded as follow∣∣∣∣∣
∣∣∣∣∣ E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
−Q(∗)(xt, at)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ2LQ
(1− γ)2 E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(∗)(·|xt)

[
W1

(
πτ(∗)(·|x̂

τ )
∣∣∣∣∣∣π(∗)(·|x̂))]

The results provided in Theorem 5.4, however, is hard to
derive the unifying insight further. For instance, it is diffi-
cult to calculateW1(π

τ
(∗)(·|x̂

τ )||π(∗)(·|x̂)), as the optimal
policies (π(∗) and πτ(∗)) indeed depend on the property of the
underlying MDP. In the case of deterministic MDP where
the optimal policies (π(∗) and πτ(∗)) are the same, we can
conclude that the optimal delayed Q-value difference be-
comes nominal in the following remark.
Remark 5.5 (Deterministic MDP Case). For deterministic
MDP, b∆ is also deterministic and becomes injection func-
tion meaning that given the x, the xτ is determined. And
then due to π(∗)(·|x) = Exτ∼b∆(·|x)

[
πτ(∗)(·|x

τ )
]
, we have

E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
= Q(∗)(xt, at)

We also discuss stochastic MDPs as summarized in the
following remark.
Remark 5.6 (Stochastic MDP Case). In the case of stochas-
tic MDP, the performance gap might become larger as the
difference between ∆ and ∆τ increases. Using a moderate
auxiliary delays ∆τ could trade-off the sample efficiency
(closer to 0) and performance consistency (closer to ∆). We
also provide experimental results to investigate this in Sec-
tion 6. Additionally, in Appendix C, we give a stochastic
MDP case to exemplify the above conclusion.

5.3. Convergence Analysis

We show in this section that our AD-RL does not sacrifice
the convergence. Before presenting the final result, we

assume action space A is finite, which means |A| < ∞.
Then, for any x ∈ X , the L1-Wassestein distance between
policies π and πτ becomes the bounded l1 distance, and
then the following holds

E
xτ∼b∆(·|x)

[W1(π
τ (·|xτ )||π(·|x))] <∞

Furthermore, the entropy of the policy π is also bounded as
H(π(·|x)) <∞. Then, we show the convergence guarantee
of AD-VI and AD-SPI in Section 5.3.1 and Section 5.3.2
respectively.

5.3.1. CONVERGENCE OF AD-VI

We assume that auxiliary Q-function Qτ converges to the
fixed point Qτ(∗) and the Q-function Q is updated based on
Qτ(∗), since we only care about the final converged point of
Q. Then, we can update an initial Q-functionQ(0) by repeat-
edly applying the Bellman operator T given by Eq. (3) to
get the fixed point Q(≈)= Exτ∼b∆(·|x)

[
Qτ(∗)(x

τ , a)
]

(The-
orem 5.7).
Theorem 5.7 (AD-VI Convergence Guarantee, proof in
Appendix B.5). Consider the bellman operator T in Eq. (3)
and the initial Q-functionQ(0): X ×A → R with |A| <∞,
and define a sequence {Q(k)}∞k=0 where Q(k+1)= T Q(k).
As k →∞, Q(k) will converge to the fixed point Q(≈) with
Qτ converges to Qτ(∗). And for any (xt, at) ∈ X × A, we
have

Q(≈)(xt, at) = E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
Theorem 5.7 guarantees the convergence of the Bellman
operator T and ensures the stability and effectiveness of
the learning process in the context of the corresponding
practical method, AD-DQN.

5.3.2. CONVERGENCE OF AD-SPI

Next, we derive the convergence guarantee of AD-SPI which
consists of policy evaluation (Eq. (4)) and policy improve-
ment (Eq. (5)). Similar to AD-VI, we assume that Qτ has
converged to the soft Q-value Qτsoft (Haarnoja et al., 2017;
2018a) in the context of AD-SPI. For the policy evaluation,
Q-function Q can converge to a fixed point via iteratively
applying the soft Bellman operator T π defined in Eq. (4).
Lemma 5.8 shows this convergence guarantee.
Lemma 5.8 (Policy Evaluation Convergence Guarantee,
proof in Appendix B.6). Consider the soft bellman operator
T π in Eq. (4) and the initial Q-value function Q(0): X ×
A → R with |A| < ∞, and define a sequence {Q(k)}∞k=0

where Q(k+1)= T πQ(k). Then for any (xt, at) ∈ X × A,
as k →∞, Q(k)(xt, at) will converge to the fixed point

E
xτt∼b∆(·|xt)

[
Qτsoft(x

τ
t , at)

]
− log π(at|xt)
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Table 1. Results of MuJoCo tasks with 25 delays for 1M global time-steps. Each method was evaluated with 10 trials and is shown with
the standard deviation denoted by ±. The best performance is in blue.

Delays=25 Ant-v4 HalfCheetah-v4 Hopper-v4 Humanoid-v4 HumanoidStandup-v4 Pusher-v4 Reacher-v4 Swimmer-v4 Walker2d-v4
A-SAC 0.07±0.07 0.04±0.01 0.13±0.04 0.05±0.01 0.97±0.09 0.49±0.32 0.96±0.02 0.72±0.02 0.12±0.02

DC/AC 0.19±0.02 0.16±0.07 0.19±0.04 0.04±0.01 1.03±0.03 1.12±0.02 1.00±0.00 0.78±0.12 0.26±0.08

DIDA 0.29±0.07 0.12±0.03 0.27±0.08 0.07±0.00 0.97±0.02 1.04±0.01 0.98±0.01 0.93±0.09 0.10±0.02

BPQL 0.57±0.11 0.87±0.04 1.21±0.18 0.12±0.01 1.09±0.05 1.07±0.06 0.87±0.05 1.36±0.56 0.59±0.30

AD-SAC (ours) 0.66±0.04 0.71±0.12 0.86±0.25 0.25±0.16 1.15±0.08 1.29±0.03 0.98±0.02 2.52±0.40 0.72±0.11
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Figure 3. Results of deterministic Acrobot for (a) learning curves with 10 delays and (b) final performance with varying delays (5-50).
The shaded area is the standard deviation. Results of stochastic Acrobot for (c) the normalized return of ∆τ

best with different delays
(10-50). Different colors stand for different best returns achieved by different optimal auxiliary delays ∆τ

best.

For the soft policy improvement, we improve the old policy
πold to the new one πnew via applying the update rule in
Eq. (5). And formalizing in Lemma 5.9, we can show that
the improved policy πnew is better than πold.

Lemma 5.9 (Policy Improvement Guarantee, proof in Ap-
pendix B.7). Consider the policy update rule in Eq. (5), and
let πold, πnew be the old policy and new policy improved
from old one respectively. Then for any (xt, at) ∈ X × A
with |A| <∞, we have Qold(xt, at) ≤ Qnew(xt, at).

Alternating between the policy evaluation and policy im-
provement, the policy learned by the AD-SPI will converge
to a policy π(≈) having the highest value among the policies
in Π. This result formalized in Theorem 5.10 establishes
the theoretical fundamental for us to develop the AD-SAC.

Theorem 5.10 (AD-SPI Convergence Guarantee). Apply-
ing policy evaluation in Eq. (4) and policy improvement in
Eq. (5) repeatedly to any given policy π ∈ Π, it converges
to π(≈) such that Qπ(xt, at) ≤Qπ(≈)(xt, at) for any π ∈ Π,
(xt, at) ∈ X ×A with |A| <∞.

6. Experimental Results
6.1. Benchmarks and Baselines

Benchmarks. We choose the Acrobot (Sutton, 1995) and
the MuJoCo control suite (Todorov et al., 2012) for discrete
and continuous control tasks, respectively. Especially, to
investigate the effectiveness of AD-RL in the stochastic

MDPs, we adopt the stochastic Acrobot where the input
from the agent is disturbed by the noise from a uniform
distribution with the probability of 0.1. In this way, the
output for the same inputted action from the agent becomes
stochastic.

Baselines. We select a wide range of techniques as base-
lines to examine the performance of our AD-RL under
different environments. In Acrobot, we mainly compare
AD-DQN against the augmented DQN (A-DQN) (Mnih
et al., 2015). For the continuous control task, we com-
pared our AD-SAC against existing SOTAs: augmented
SAC (A-SAC) (Haarnoja et al., 2018a), DC/AC (Bouteiller
et al., 2020), DIDA (Liotet et al., 2022) and BPQL (Kim
et al., 2023). In the deterministic Acrobot and Mujoco, the
auxiliary delays ∆τ of our AD-RL is set to 0. For computa-
tionally fairness, we keep all methods training with the same
amount of gradient descent. In other words, the training
times of π in our AD-RL is half of that in all baselines,
as AD-RL trains πτ additional to the original task at the
same time. The result of each method was obtained using
10 random seeds and its hyper-parameters are in Appendix
A.

6.2. Empirical Results Analysis

Deterministic Acrobot. We first compare A-DQN and our
AD-DQN in the deterministic Acrobot under fixed 10 delays.
From Fig. 3(a), we can tell that within the 500k time steps,
AD-DQN learns much faster than the A-DQN. In addition,

7
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Table 2. Results of MuJoCo tasks with stochastic delays for 1M global time-steps. Each method was evaluated with 10 trials and is shown
with the standard deviation denoted by ±. The best performance is in blue.

Task A-SAC DC/AC DIDA BPQL AD-SAC
Ant-v4 0.18±0.01 0.27±0.02 0.55±0.08 0.58±0.12 0.69±0.17

HalfCheetah-v4 0.36±0.12 0.36±0.18 0.75±0.02 0.76±0.16 1.03±0.06

Hopper-v4 0.85±0.22 0.94±0.29 0.31±0.08 0.68±0.34 1.05±0.22

Humanoid-v4 0.15±0.06 0.67±0.18 0.07±0.01 0.40±0.42 0.97±0.07

Standup-v4 1.03±0.05 1.20±0.08 1.00±0.00 1.10±0.07 1.26±0.07

Pusher-v4 1.11±0.02 1.17±0.02 1.02±0.01 1.07±0.05 1.22±0.01

Reacher-v4 0.98±0.01 1.02±0.01 1.02±0.00 0.85±0.11 1.05±0.01

Swimmer-v4 0.82±0.10 1.47±0.58 1.03±0.02 1.53±0.52 2.36±0.64

Walker2d-v4 0.68±0.28 0.89±0.08 0.54±0.09 0.63±0.39 1.19±0.14

as delays change from 5 to 50, from Fig. 3(b), A-DQN is not
able to learn any useful policy after 20 delays. However, our
AD-DQN shows robust performance even under 50 delays.

MuJoCo. The results for MuJoCo are presented in Table 1.
Our AD-SAC and BPQL provide leading performance in
most MuJoCo tasks. We report the delay-free normalized
scores Retnor = (Retalg −Retrand)/(Retdf −Retrand),
where Retdf is the return of a delay-free agent trained by
the soft actor-critic and Retrand is the return of a random
policy. The experiment results support our argument that
learning the auxiliary-delayed task facilitates agents to learn
the original delayed task. In deterministic scenarios, the
delayed belief estimation degenerates to a deterministic
function for any auxiliary delays ∆τ , and a smaller ∆τ

benefits the sampling efficiency. BPQL (a special variant of
our approach when ∆τ= 0) and AD-SAC(0) thus provide
comparable results. The results for MuJoCo tasks with 5
and 50 delays, presented in Appendix D, also validate this
conclusion.

MuJoCo with Stochastic Delays. We evaluate the per-
formance and robustness of AD-RL in MuJoCo which has
the delay ∆ = 5 with a probability of 0.9, and the delay
∆ ∈ [1, 5] with a probability of 0.1. We adopt a similar
stochastic delay setting as BPQL (Kim et al., 2023) wherein
the evaluation environment has the delay ∆ = 5 with a prob-
ability of 0.9, and the delay ∆ ∈ [1, 5] with a probability of
0.1. As shown in Table 2, AD-RL outperforms all the other
baselines including BPQL in all tasks with stochastic delays.
Compared with the result of AD-RL in the constant delay
setting, we can see that AD-RL is more robust than others.

Stochastic Acrobot. Then we investigate the influence of
auxiliary delays for AD-RL on the stochastic Acrobot. We
conduct a series of experiments for various combinations of
delays (ranging from 10 to 50) and auxiliary delays (rang-
ing from 0 to 5). The optimal auxiliary delays, denoted
as ∆τ

best, which yield the best performance under different
delays, are recorded. Furthermore, the relative return is de-
fined as Retrela = (Ret∆τbest − Ret0)/(Ret0 − Retrand)

where Ret∆τbest is the return of setting ∆τ = ∆τ
best, Ret0

is the return of setting ∆τ = 0 and Retrand is the return of
the random policy. It measures the comparatively improved
performance in return by ∆τ = ∆τ

best instead of setting
∆τ = 0. As illustrated in Fig. 3(c), we can observe that
∆τ = 0 (as in BPQL) may not always be the optimal choice
and the selection of best auxiliary delays appears irregular
in the stochastic MDP. It is evident to confirm our aforemen-
tioned conclusion: the shorter auxiliary delays ∆τ could
improve the learning efficiency but also potentially result
in performance degradation caused by a more significant
information loss in stochastic environments. So there exists
a trade-off between learning efficiency (∆τ closes to 0) and
performance consistency (∆τ closes to ∆).

Table 3. The best auxiliary delays and corresponding normalized
score of AD-RL in Stochastic MuJoCo with 50 delays.

Delays=50 Normalized score (∆τ
best)

Ant-v4 0.16±0.04 (4)
HalfCheetah-v4 0.05±0.28 (2)

Hopper-v4 0.05±0.17 (5)
Humanoid-v4 0.00±0.00 (0)

HumanoidStandup-v4 0.03±0.06 (1)
Pusher-v4 0.02±0.01 (3)

Reacher-v4 0.03±0.02 (1)
Swimmer-v4 0.00±0.00 (0)
Walker2d-v4 0.00±0.00 (0)

Stochastic MuJoCo. We adopt a similar stochastic Mu-
JoCo setting as BPQL (Kim et al., 2023) wherein an agent-
unaware action noise is added into the environment with a
probability of 0.1, making the MuJoCo stochastic (different
outputs for the same input action). In stochastic MuJoCo
with 50 delays, we train AD-RL with different auxiliary
delays ∆τ ranging from 0 to 5, and we report the best aux-
iliary delays ∆τ

best and corresponding normalized scores
(Retbest − Ret0)/(Ret0 − Retrand). As shown in Table
3, the best choice is not always 0, and it is sensitive to the
specific task setting and shows strong irregularity.
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7. Related Work
Early works model a continuous system with observation
delay by Delay Differential Equations (DDE) (Myshkis,
1955; Cooke, 1963) which have been extensively studied
in the control community in terms of reachability (Fridman
& Shaked, 2003; Xue et al., 2021), stability (Feng et al.,
2019), and safety (Xue et al., 2020). These techniques rely
on explicit dynamics models and cannot scale well.

In recent RL approaches, the environment with observa-
tion delay is modelled under the MDP framework (Altman
& Nain, 1992; Katsikopoulos & Engelbrecht, 2003). Un-
like the well-studied reward delay problem which raises the
credit assignment issue (Sutton, 1984; Arjona-Medina et al.,
2019; Wang et al., 2024), the observation delay problem
disrupts the Markovian property required for traditional RL.
Existing techniques differ from each other in how to tame
the delay, including memoryless-based, model-based, and
augmentation-based methods. Inspired by the partially ob-
served MDP (POMDP), memory-less approaches, e.g., dQ
and dSARSA, were developed in (Schuitema et al., 2010),
which learn the policy based on the observed state. However,
these methods ignore the non-Markovian property of the
problem and could lead to performance degeneration.

Model-based methods retrieve the Markovian property by
predicting the unobserved state and then selecting an action
based on it. The performance thus highly relies on state
generation techniques. Walsh et al. propose a deterministic
generative model which is learned via model-based simu-
lation. Similarly, Derman et al. suggested successively
applying an approximate forward model to estimate state
(Derman et al., 2021). Different stochastic generative mod-
els, e.g., the ensemble of Gaussian distributions (Chen et al.,
2021) and Transformers (Liotet et al., 2021), were also ex-
plored. However, the non-negligible prediction error results
in sub-optimal returns (Liotet et al., 2021).

Augmentation-based methods seek to equivalently retrieve
the Markov property by augmenting the delay-related in-
formation into the state-space (Altman & Nain, 1992). For
instance, inspired by multi-step learning, Bouteiller et al.
develops a partial trajectory resampling technique to accel-
erate the learning process (Bouteiller et al., 2020). Addi-
tionally, based on imitation learning and dataset aggregation
technique, Liotet et al. trains an undelayed expert policy
and subsequently generalizes the expert’s behavior into an
augmented policy (Liotet et al., 2022). Despite possessing
optimality and the Markov property, augmentation-based
methods are plagued by the curse of dimensionality in fac-
ing tasks with long delays, resulting in learning inefficiency.
BPQL (Kim et al., 2023) evaluates the augmented policy
by a non-augmented Q-function. However, BPQL suffers
from performance loss in stochastic environments. Certain
difficult problems can be solved by ’divide and conquer’

methods such as the neural sequence chunker (Schmidhu-
ber, 1991a) which learns to hierarchically decompose se-
quences into predictable subsequences, and the subgoal gen-
erator (Schmidhuber, 1991b), which decomposes task into
smaller tasks with shorter solutions by learning appropriate
subgoals.

8. Conclusion
In this work, we focus on RL in environments with delays
between events and their observations. Existing methods
exhibit learning inefficiency in the presence of long delays
and performance degradation in stochastic environments.
To address these issues, we propose AD-RL, which lever-
ages auxiliary tasks with short delays to enhance learning.
Under the AD-RL framework, we develop AD-DQN and
AD-SAC for discrete and continuous control tasks respec-
tively. We further provide a theoretical analysis in terms
of sample efficiency, performance gap, and convergence.
In both deterministic and stochastic benchmarks, we em-
pirically show that AD-RL achieves new state-of-the-art
performance, dramatically outperforming existing methods.

9. Limitations and Chanllenges
Hyperparameter ∆τ

best It is worth noting that the perfor-
mance of AD-RL is subject to the selection of the auxiliary
delays ∆τ

best. Such selection is deeply related to the spe-
cific tasks and even the delay ∆, and is highly challenging:
Fig. 3(c) demonstrates that the relation between ∆τ

best and
∆ is not linear or parabolic. We will consider a systemic
framework to select the best auxiliary delay by exploring
the underlying relationship between the auxiliary delay, the
original delay and the task specification, etc.

Implicit Belief Learning Learning delayed belief, espe-
cially in stochastic environments, proves to be challenging.
AD-RL implicitly represents the belief function by sampling
in two augmented state spaces (∆ and ∆τ ) to overcome this
issue, leading to additional memory cost compared to con-
ventional augmentation-based approaches. In the future, we
will explore learning explicit belief using different neural
representations.

Sample Efficiency Sample efficiency remains a critical
challenge, especially in environments characterized by long
delays or stochasticity. In both cases, AD-RL needs to set
relatively longer auxiliary delays ∆τ to carry more informa-
tion of the augmented state in the auxiliary state. While a
longer auxiliary delay achieves better performance, it brings
back the sample inefficiency issue, which will be investi-
gated in the next step.

9
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A. Implementation Detail
The hyper-parameters setting used in this work is provided in Table 4 for Acrobot and MuJoCo benchmarks. We provide the
pseudo-code of AD-DQN and AD-SAC in Algorithm 2 and Algorithm 3, respectively, along with the description of how to
practically implement them in detail. The code for reproducing our results can be found in the supplementary material.

A.1. Hyper-parameters Setting

Hyper-parameter Setting(Acrobot) Setting(MuJoCo)
buffer size 1,000 1,000,000
batch size 128 256

total timesteps 500,000 1,000,000
discount factor 0.99 0.99
learning rate 2.5e-4 3e-4(actor), 1e-3(critic)

network layers 3 3
network neurons [128, 64] [256, 256]

activation ReLU ReLU
optimizer Adam (Kingma & Ba, 2014) Adam

initial ϵ for ϵ-greedy 1.0 -
final ϵ for ϵ-greedy 0.05 -

initial entropy α for SAC - 0.2
learning rate for entropy α - 1e-3

train frequency 5 2(actor), 1(critic)
target network update frequency 500 -
target network soft update factor - 5e-3

n for N-steps - 3
auxiliary delays ∆τ for AD-RL 0 0

Table 4. Hyper-parameters Setting on Acrobot and MuJoCo benchmarks.

A.2. Discrete Control: AD-DQN

In practice, we will maintain two Q-networks (Qψ , Qτθ ) at the same time, and each of them corresponds to different delays
(∆, ∆τ ). When the agent needs to select an action, it will first enquire about two Q-networks and get the two best actions
in different views of delays, separately. Then evaluate these two actions based on the auxiliary Q-network Qτθ . Here, we
experimentally found that the argmin operator, taking a more conservative action is more stable than argmax operator.
For the auxiliary Q-network Qτθ , its update rule is the same as the original DQN. And for the Q-network Qτψ, we update
it in our way: bootstrapping on Qτθ . To stabilize the training process, we also adopt the target networks to estimate the
td-targets (Mnih et al., 2015).

A.3. Continuous Control: AD-SAC

Applying our method to soft actor-critic, we adopt some advanced modifications (Haarnoja et al., 2018b), including removing
the unnecessary value network, adjusting entropy automatically. We maintain two policies πψ and πτϕ for delays ∆ and ∆τ

respectively. To stabilize off-policy training and reduce bootstrapping error (Kumar et al., 2019) in AD-SAC, we maintain
two Q-functions (Qτθ1 , Q

τ
θ2

) for evaluating πψ and πτϕ respectively. Similar to the AD-DQN, selecting the conservative
action from policies πψ and πτϕ can stabilize the learning process.
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Algorithm 2 Auxiliary-Delayed Deep Q-Network (AD-DQN)

Input: Q-network Qψ and target network Q̂ψ̂ for delays ∆; Q-network Qτθ and target network Q̂τ
θ̂

for auxiliary delays
∆τ ; discount factor γ; empty replay buffer D;
for each episode do

Initial state buffer (s1, · · · , s∆τ , · · · , s∆) and action buffer (a1, · · · , a∆τ , · · · , a∆)
for each environment step t do

Observe augment states xt = (s1, a1, · · · , a∆) and xτt = (s∆τ , a∆τ , · · · , a∆)
Sample and take action at = argmin

â∈{argmaxaQψ(xt,a),argmaxaQτθ (x
τ
t ,a)}

Qτθ (x
τ
t , â)

Observe reward rt and next state st+1

Update state buffers: (s1, · · · , s∆)← (s2, · · · , s∆, st) and action buffers: (a1, · · · , a∆)← (a2, · · · , a∆, at)
Update replay buffer: D ← D ∪ {xt, xτt , at, rt, xt+1, x

τ
t+1}

for each batch {xt, xτt , at, rt, xt+1, x
τ
t+1} ∼ D do

if Uniform(0, 1) > 0.5 then
Update Qτθ via applying gradient descent

▽θ

(
Qτθ (x

τ
t , at)−

[
rt + γmax

at+1

Q̂τ
θ̂
(xτt+1, at+1)

])
else

Update Qψ via applying gradient descent

▽ψ
(
Qψ(xt, at)−

[
rt + γQ̂τ

θ̂
(xτt+1, argmaxat+1

Q̂ψ̂(xt+1, at+1))
])

end if
end for
Update target networks weights Q̂ψ̂ and Q̂τ

θ̂
via copying from Qψ and Qτθ , respectively

end for
end for
Output: Q-network Qψ
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Algorithm 3 Auxiliary Delay Soft Actor-Critic (AD-SAC)

Input: actor πψ for delay ∆; actor πτϕ, critics Qτθ1 , Q
τ
θ2

and target critics Q̂τ θ̂1 , Q̂
τ
θ̂2

for auxiliary delays ∆τ ; n-step n;
replay buffer D;
for each episode do

Initial state buffer (s1, · · · , s∆τ , · · · , s∆) and action buffer (a1, · · · , a∆τ , · · · , a∆)
for each environment step t do

Observe augment states xt = (s1, a1, · · · , a∆) and xτt = (s∆τ , a∆τ , · · · , a∆)
Sample and take action at = argmin

a∈{πψ(xt),πτϕ(x
τ
t )}

Qτθi(x
τ
t , a)

Observe reward rt and next state st+1

Update state buffer (s1, · · · , s∆)← (s2, · · · , s∆, st) and action buffer (a1, · · · , a∆)← (a2, · · · , a∆, at)
Update replay buffer: D ← D ∪ {xt, xτt , at, rt, xt+1, x

τ
t+1}

end for
end for
for each batch {xt, xτt , at, rt : rt+n−1, xt+n, x

τ
t+n} ∼ D do

Compute TD Target

Y = E
â∼πτ

ϕ
(·|xτ

t+n
)

â∼πψ(·|xt+n)

[
n−1∑
i=0

[
γirt+i

]
+ γnmin

(
Qτθ1(x

τ
t+n, â)− log πτϕ(â|xτt+n), Qτθ2(xt+n, â)− log πϕ(â|xt+1),

)]

Update Qτθi(i = 1, 2) via applying gradient descent

▽θi
[
Qτθi(x

τ
t , at)− Y

]
if Uniform(0, 1) > 0.5 then

Update πτϕ via applying gradient descent

▽ϕ E
â∼πτϕ(·|x

τ
t )

[
log πτϕ(â|xτt )− min

i=1,2
Qτθi(x

τ
t , â)

]
else

Update πψ via applying gradient descent

▽ψ E
â∼πψ(·|xt)

[
log πψ(â|xt)− min

i=1,2
Qτθi(x

τ
t , â)

]
end if
Soft update target critics weights Qτθ1 , Q

τ
θ2

via copying from Q̂τ θ̂1 , Q̂
τ
θ̂2

, respectively
end for
Output: actor πψ
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B. Theoretical Analysis
B.1. Performance Difference

Proposition B.1 (Lipschitz Continuous Q-value function Bound (Liotet et al., 2022)). Consider a LQ-LC Q-function Qπ of
the Lπ-LC policy π in the (LP , LR)-LC MDP, it satisfies that ∀x ∈ X ,∣∣∣∣∣ E

a1∼µ
a2∼υ

[Qπ(x, a1)−Qπ(x, a2)]

∣∣∣∣∣ ≤ LQW1 (µ||υ)

where µ, υ are two arbitrary distributions over X .
Lemma B.2 (General Delayed Performance Difference). For policies πτ and π, with delays ∆τ <∆. Given any xt ∈ X ,
the performance difference is denoted as I(xt)

I(xt) = E
xτt∼b∆(·|xt)

[V τ (xτt )]− V (xt)

=
1

1− γ E
x̂τ∼b∆(·|x̂)
a∼π(·|x̂)
x̂∼dπxt

[V τ (x̂τ )−Qτ (x̂τ , a)]

Proof.
E

xτt∼b∆(·|xt)
[V τ (xτt )]− V (xt)︸ ︷︷ ︸
I(xt)

= E
xτt∼b∆(·|xt)

[V τ (xτt )]− E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[
Rτ (xτt , at) + γ E

xτt+1∼P∆τ (·|xτt ,at)

[
V τ (xτt+1)

]]
︸ ︷︷ ︸

A

+ E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[
Rτ (xτt , at) + γ E

xτt+1∼P∆τ (·|xτt ,at)

[
V τ (xτt+1)

]]
− V (xt)︸ ︷︷ ︸

B

For A, we have
A = E

xτt∼b∆(·|xt)
[V τ (xτt )]− E

xτt ∼b∆(·|xt)
at∼π(·|xt)

[Qτ (xτt , at)]

And for B, note that V (xt) = E xτt ∼b∆(·|xt)
at∼π(·|xt)

[Rτ (xτt , at)] + γ E xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[V (xt+1)], then we have

B = E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[
Rτ (xτt , at) + γ E

xτt+1∼P∆τ (·|xτt ,at)

[
V τ (xτt+1)

]]
− E

xτt ∼b∆(·|xt)
at∼π(·|xt)

[Rτ (xτt , at)]− γ E
xt+1∼P∆(·|xt,at)

at∼π(·|xt)

[V (xt+1)]

= E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[
γ E
xτt+1∼P∆τ (·|xτt ,at)

[
V τ (xτt+1)

]]
− E
at∼π(·|xt)

[
γ E
xt+1∼P∆(·|xt,at)

[V (xt+1)]

]

=γ E
xt+1∼P∆(·|xt,at)

at∼π(·|xt)

[
E

xτt+1∼b∆(·|xt+1)

[
V τ (xτt+1)

]
− V (xt+1)

]
︸ ︷︷ ︸

I(xt+1)

The last step can be derived due to the fact that

E
xτt+1∼P∆τ (·|xτt ,at)

xτt∼b∆(·|xt)
at∼π(·|xt)

[
xτt+1

]
= E

xτt+1∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[
xτt+1

]
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Based on the above iterative equation, we have

I(xt) = E
xτt∼b∆(·|xt)

[V τ (xτt )]− E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[Qτ (xτt , at)] + γ E
xt+1∼P∆(·|xt,at)

at∼π(·|xt)

[I(xt+1)]

=

∞∑
i=0

γi E
xt+i∼P∆(·|xt+i−1,at+i−1)

at+i−1∼π(·|xt+i−1)

 E
xτt+i∼b∆(·|xt+i)

[
V τ (xτt+i)

]
− E

xτ
t+i

∼b∆(·|xt+i)
at+i∼π(·|xt+i)

[
Qτ (xτt+i, at+i)

]
=

1

1− γ E
x̂τ∼b∆(·|x̂)
a∼π(·|x̂)
x̂∼dπxt

[V τ (x̂τ )−Qτ (x̂τ , a)]

Theorem B.3 (Delayed Performance Difference Bound). For policies πτ and π, with ∆τ < ∆. Given any xt ∈ X , if Qτ is
LQ-LC, the performance difference between policies can be bounded as follow

E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[V τ (xτt )−Qτ (xτt , at)] ≤ LQ E
xτt∼b∆(·|xt)

[W(πτ (·|xτt )||π(·|xt))]

Proof. We can rewrite the left hand side and apply the Proposition B.1 to get the result

E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[V τ (xτt )−Qτ (xτt , at)]

= E
xτt ∼b∆(·|xt)
at∼πτ (·|xτt )

[Qτ (xτt , at)]− E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[Qτ (xτt , at)]

= E
xτt ∼b∆(·|xt)
at∼πτ (·|xτt )

[Qτ (xτt , at)]− E
xτt ∼b∆(·|xt)
at∼π(·|xt)

[Qτ (xτt , at)]

= E
xτt∼b∆(·|xt)

[
E

at∼πτ (·|xτt )
[Qτ (xτt , at)]− E

at∼π(·|xt)
[Qτ (xτt , at)]

]
≤LQ E

xτt∼b∆(·|xt)
[W(πτ (·|xτt )||π(·|xt))]

Theorem B.4 (Delayed Q-value Difference Bound). For policies π and πτ , with ∆τ < ∆. Given any xt ∈ X , if Qτ is
LQ-LC, the corresponding Q-value difference can be bounded as follow

E
at∼π(·|xt)
xτt ∼b∆(·|xt)

[Qτ (xτt , at)−Q(xt, at)] ≤
γLQ
1− γ E

x̂τ∼b∆(·|x̂)x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[W1(π
τ (·|x̂τ )||π(·|x̂))]

Specially, for optimal policies π(∗) and πτ(∗), ifQτ(∗) is LQ-LC, the corresponding optimal Q-value difference can be bounded
as follow∣∣∣∣∣

∣∣∣∣∣ E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
−Q(∗)(xt, at)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ2LQ
(1− γ)2 E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(∗)(·|xt)

[
W

(
πτ(∗)(·|x̂

τ )
∣∣∣∣∣∣π(∗)(·|x̂))]
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Proof. For policies π and πτ , we can rewrite the left hand side as

E
at∼π(·|xt)
xτt ∼b∆(·|xt)

[Qτ (xτt , at)−Q(xt, at)]

= E
at∼π(·|xt)
xτt ∼b∆(·|xt)

[
Rτ (xτt , at) + γ E

xτt+1∼P∆τ (·|xτt ,at)

[
V τ (xτt+1)

]]
− E
at∼π(·|xt)

[
R∆(xt, at) + γ E

xt+1∼P∆(·|xt,at)
[V (xt+1)]

]

=γ E
at∼π(·|xt)

 E
xτ
t+1

∼P∆τ (·|xτt ,at)
xτt ∼b∆(·|xt)

[
V τ (xτt+1)

]
− E
xt+1∼P∆(·|xt,at)

[V (xt+1)]


=γ E

xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[
E

xτt+1∼b∆(·|xt+1)

[
V τ (xτt+1)

]
− V (xt+1)

]
︸ ︷︷ ︸

I(xt+1)

≤ γLQ
1− γ E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(·|xt)

[W(πτ (·|x̂τ )||π(·|x̂))]

The last two steps are derived via applying Lemma B.2 and Theorem B.3 Then based on the above result, for optimal
policies π(∗) and πτ(∗), we have∣∣∣∣∣

∣∣∣∣∣ E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
−Q(∗)(xt, at)

∣∣∣∣∣
∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣γ E

xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(xt,at)

[
max
at+1

Qτ(∗)(x
τ
t+1, at+1)

]
− γ E

xt+1∼P∆(xt,at)

[
max
at+1

Q(∗)(xt+1, at+1)

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

=||γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(xt,at)

[
max
at+1

Qτ(∗)(x
τ
t+1, at+1)

]
− γ E

at+1∼π(∗)(·|xt+1)

xτt+1∼b∆(·|xt+1)

xt+1∼P∆(xt,at)

[
Qτ(∗)(x

τ
t+1, at+1)

]

+ γ E
at+1∼π(∗)(·|xt+1)

xτt+1∼b∆(·|xt+1)

xt+1∼P∆(xt,at)

[
Qτ(∗)(x

τ
t+1, at+1)

]
− γ E

xt+1∼P∆(xt,at)

[
max
at+1

Q(∗)(xt+1, at+1)

]
||∞

≤γ

∣∣∣∣∣
∣∣∣∣∣ E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
−Q(∗)(xt, at)

∣∣∣∣∣
∣∣∣∣∣
∞

+ γ
γLQ
1− γ E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+1

xt+1∼P∆(·|xt,at)
at∼π(∗)(·|xt)

[
W

(
πτ(∗)(·|x̂

τ )
∣∣∣∣∣∣π(∗)(·|x̂))]

B.2. Convergence Analysis

Here, we recall that we assume the action-space A is finite where |A| <∞. When the assumption is satisfied, for any x ∈
X , the L1-Wasserstein distance between two delayed policies π and πτ becomes the l1 distance and it is bounded.

E
xτ∼b∆(·|x)

[W (πτ (·|xτ )||π(·|x))] <∞ (7)

Furthermore, the entropy of policy π is also bounded

H (π(·|x)) <∞ (8)
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Theorem B.5 (AD-VI Convergence Guarantee). Consider the bellman operator T in Eq. (3) and the initial Q-function Q(0):
X ×A → R with |A| <∞, and define a sequence {Q(k)}∞k=0 where Q(k+1)= T Q(k). As k →∞, Q(k) will converge to
the fixed point Q(≈) with Qτ converges to Qτ(∗). And for any (xt, at) ∈ X ×A, we have

Q(≈)(xt, at) = E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]

Proof. The update rule of the bellman operator T is as follows

Q(xt, at)← R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, argmax

at+1

Q(xt+1, at+1))

]

and the right hand side can be written as

R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Q
τ
(x
τ
t+1, argmax

at+1

Q(xt+1, at+1)) − max
at+1

Q(xt+1, at+1)

]

︸ ︷︷ ︸
rτ (xt,at)

+ γ E
xt+1∼P∆(·|xt,at)

max
at+1

Q(xt+1, at+1)

Next, we prove that rτ (xt, at) is bounded

rτ (xt, at) = R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, argmax

at+1

Q(xt+1, at+1))−max
at+1

Q(xt+1, at+1)

]

= R∆(xt, at) + γ E
xτt+1∼b∆(·|xt+1)

at+1=argmaxat+1
Q(xt+1,at+1)

xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)−max

at+1

Q(xt+1, at+1)

]

≤ R∆(xt, at) + γ
γLQ
1− γ E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+2

xt+2∼P∆(·|xt+1,at+1)
at+1=argmaxat+1

Q(xt+1,at+1)

xt+1∼P∆(·|xt,at)

[W (πτ (·|x̂τ )||π(·|x̂))]

<∞

The last two steps are derived via applying Lemma B.4 and Eq. (7), respectively. Then, we can get the property of
convergence by applying original VI (Sutton & Barto, 2018), and the convergence is related to the Qτ .

For the Qτ , we know that it converges to Qτ(∗) as it is updated by the original VI rule, and it satisfies that

E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]
= Rτ (xτt , at) + γ E

xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
max
at+1

Qτ(∗)(x
τ
t+1, at+1)

]

Without loss of generality, we can assume that the update of Q(k) is based on the Qτ(∗), then the converged fixed point of
Q(k)(k →∞), denoted as Q(≈), satisfies the equation as followed:

Q(≈)(xt, at) = R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ(∗)(x

τ
t+1, argmax

at+1

Q(≈)(xt+1, at+1))

]

then we can get the fixed point
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Q(≈)(xt, at) = R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ(∗)(x

τ
t+1, argmax

at+1

Q(≈)(xt+1, at+1))

]

= R∆(xt, at) + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ(∗)(x

τ
t+1, argmax

at+1

E
xτt+1∼b∆(·|xt+1)

[
Qτ(∗)(x

τ
t+1, at+1)

]
)

]

= E
xτt∼b∆(·|xt)

[Rτ (xτt , at)] + γ E
xτ
t+1

∼b∆(·|xt+1)

xt+1∼P∆(·|xt,at)

[
max
at+1

Qτ(∗)(x
τ
t+1, at+1)

]

= E
xτt∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]

Lemma B.6 (Policy Evaluation Convergence Guarantee). Consider the soft bellman operator T π in Eq. (4) and the initial
delayed Q-value function Q(0): X ×A → R with |A| <∞, and define a sequence {Q(k)}∞k=0 where Q(k+1)= T πQ(k).
Then for any (xt, at) ∈ X ×A, as k →∞, Q(k)(xt, at) will converge to the fixed point

E
xτt∼b∆(·|xt)

[
Qτsoft(x

τ
t , at)

]
− log π(at|xt)

Proof. The update rule of the soft bellman operator T π is as follows

Q(xt, at)← R∆(xt, at) + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)− log π(at+1|xt+1)

]

Similar to AD-VI, we rewrite the right-hand side as

R∆(xt, at) + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)−Q(xt+1, at+1)− log π(at+1|xt+1)

]
︸ ︷︷ ︸

rπ(xt,at)

+γ E
at+1∼π(·|xt+1)

xt+1∼P∆(·|xt,at)

[Q(xt+1, at+1)]

Similarly, we prove that rπ(xt, at) is bounded

rπ(xt, at) = R∆(xt, at) + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)−Q(xt+1, at+1)− log π(at+1|xt+1)

]

= R∆(xt, at) + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)−Q(xt+1, at+1)

]
− γ logH(π(·|xt+1))

≤ R∆(xt, at) +
γLQ
1− γ E

x̂τ∼b∆(·|x̂)
x̂∼dπxt+2

xt+2∼P∆(·|xt+1,at+1)
at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[W(πτ (·|x̂τ )||π(·|x̂))]− γ logH(π(·|xt+1))

<∞

The last step can be derived due to Eq. (7) and Eq. (8). Then, we can get the result from the original policy evaluation (Sutton
& Barto, 2018). Similarly, without loss of generality, we can assume that Qτ has converged to Qτ(soft), and can get the fixed
point easily:

E
xτt∼b∆(·|xt)

[
Qτ(soft)(x

τ
t , at)

]
− log π(at|xt)
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Lemma B.7 (Soft Policy Improvement Guarantee). Consider the policy update rule in Eq. (5), and let πold, πnew be the
old policy and new policy improved from the old one respectively. Then for any (xt, at) ∈ X ×A with |A| <∞, we have
Qold(xt, at) ≤ Qnew(xt, at).

Proof. As
πnew = argmin

π′∈Π
E

xτt ∼b∆(·|xt)
at∼π′(·|xt)

[log π′(at|xt)−Qτ (xτt , at)]

So
E

xτt ∼b∆(·|xt)
at∼πnew(·|xt)

[log πnew(at|xt)−Qτ (xτt , at)] ≤ E
xτt ∼b∆(·|xt)
at∼πold(·|xt)

[log πold(at|xt)−Qτ (xτt , at)]

Then, we have
Qold(xt, at) = rt + γ E

xτt+1∼b∆(·|xt+1)

at+1∼πold(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)− log πold(at+1|xt+1)

]

≤ rt + γ E
xτt+1∼b∆(·|xt+1)

at+1∼πnew(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ (xτt+1, at+1)− log πnew(at+1|xt+1)

]

= Qnew(xt, at)

Theorem B.8 (Soft Policy Iteration Convergence Guarantee). Applying policy evaluation in Eq. (4) and policy improvement
in Eq. (5) repeatedly to any given policy π ∈ Π, it converges to π(≈) such that Qπ(xt, at) ≤ Qπ(≈)(xt, at) for any π ∈ Π,
(xt, at) ∈ X ×A with |A| <∞.

Proof. Based on Lemma B.6 and Lemma B.7, we have

Qπ(xt, at) = rt + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(·|xt+1)
xt+1∼P∆(·|xt,at)

[
Qτ(soft)(x

τ
t+1, at+1)− log π(at+1|xt+1)

]

≤ rt + γ E
xτt+1∼b∆(·|xt+1)

at+1∼π(≈)(·|xt+1)

xt+1∼P∆(·|xt,at)

[
Qτ(soft)(x

τ
t+1, at+1)− log π(≈)(at+1|xt+1)

]

= Qπ(≈)(xt, at)
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C. Stochastic MDP Case: Selection of Auxiliary Delays ∆τ

We give the following Theorem C.2 to exemplify that the naive selection (e.g. ∆τ = 0) might cause a larger performance
gap and potential approximation error.

First of all, we introduce a stochastic MDP ⟨S,A,P,R, γ, ρ⟩ (Liotet et al., 2022) where

• S = R

• A = R

• P(s′|s, a) = N (s+ a
Lπ
, σ2) which means that s′ = s+ a

Lπ
+ ϵ where ϵ ∼ N (0, σ2)

• R(s, a) = −LQLπ|s+ a
Lπ
|

Lemma C.1 (value function upper bound (Liotet et al., 2022)). Let Lπ, LQ > 0, in the MDP defined above with a Lπ-LC
optimal policy and LQ-LC optimal value function, given ∆ > 0, for any ∆-delayed policy π and any augmented state
x ∈ X , it’s value function V π has following upper bound

V π(x) ≤ −LQLπ
1− γ

√
2∆√
π
σ

= V π(∗)(x)

(9)

where V π(∗)(x) is the value function of the optimal ∆-delayed policy π(∗).

Then, we can extend Lemma C.1 in the context of our AD-RL. Given any delay ∆ and auxiliary delays ∆τ (<∆), the
corresponding optimal value functions are V(∗) and V τ(∗), respectively. For V(∗) and V τ(∗), we can derive the performance
difference in the following Theorem.
Theorem C.2. For optimal policies π(∗) and πτ(∗), for any xt ∈ X , their corresponding performance difference I(xt) is

I(xt) =
LQLπ
1− γ

σ

√
2√
π

[√
∆−

√
∆τ

]
Proof. By applying Lemma C.1, we can get that

V(∗)(xt) = E
at∼π(∗)(·|xt)

[Q(∗)(xt, at)]

= −LQLπ
1− γ

√
2∆√
π
σ

and
E

xτt∼b∆(·|xt)

[
V τ(∗)(x

τ
t )
]
= E

at∼πτ(∗)(·|x
τ
t )

xτt ∼b∆(·|xt)

[
Qτ(∗)(x

τ
t , at)

]

= −LQLπ
1− γ

√
2∆τ

√
π

σ

then based on Lemma 5.2, we can derive that

I(xt) = E
xτt∼b∆(·|xt)

[V τ (xτt )]− V (xt)

=
LQLπ
1− γ

σ

√
2√
π

[√
∆−

√
∆τ

]

From Theorem C.2, we can observe that when the difference between delays (∆τ and ∆) increases, the performance
difference becomes larger. In other words, if selecting a extremely short ∆τ (e.g., ∆τ = 0) for a long ∆, the value difference
between Qτ(∗) and Q(∗) might be enlarged, and introducing potential estimation bias. Based on the analysis presented above,
it actually exists a trade-off between sample efficiency (shorter ∆τ is better) and approximation error (∆τ is closer to ∆).
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D. MuJoCo: Additional Experimental Results

Table 5. Results of MuJoCo tasks with 5, 25 and 50 delays for 1M global time-steps. Each method was evaluated with 10 trials and is
shown with the standard deviation denoted by ±. The best performance is in blue.

Task Delay-free SAC Random Delays A-SAC DC/AC DIDA BPQL AD-SAC (ours)
5 0.18±0.01 0.25±0.05 0.89±0.03 0.96±0.03 0.72±0.25

25 0.07±0.07 0.19±0.02 0.29±0.07 0.57±0.11 0.66±0.04Ant-v4 5053.30 -123.88
50 0.02±0.04 0.19±0.02 0.19±0.05 0.38±0.07 0.48±0.06

5 0.35±0.15 0.40±0.23 0.90±0.01 1.00±0.06 1.07±0.06

25 0.04±0.01 0.16±0.07 0.12±0.03 0.87±0.04 0.71±0.12HalfCheetah-v4 5322.74 -304.29
50 0.12±0.17 0.12±0.13 0.15±0.03 0.73±0.17 0.74±0.10

5 1.02±0.28 1.16±0.25 0.40±0.40 1.25±0.09 1.07±0.30

25 0.13±0.04 0.19±0.04 0.27±0.08 1.21±0.18 0.86±0.25Hopper-v4 2455.18 12.93
50 0.04±0.01 0.04±0.01 0.09±0.01 0.71±0.13 0.72±0.03

5 0.13±0.02 0.59±0.17 0.08±0.04 0.96±0.05 0.98±0.07

25 0.05±0.01 0.04±0.01 0.07±0.00 0.12±0.01 0.25±0.16Humanoid-v4 5269.34 135.47
50 0.04±0.01 0.03±0.01 0.07±0.00 0.08±0.01 0.10±0.01

5 1.02±0.08 1.16±0.12 1.00±0.00 1.13±0.07 1.22±0.03

25 0.97±0.09 1.03±0.03 0.97±0.02 1.09±0.05 1.15±0.08HumanoidStandup-v4 129827.70 35743.26
50 0.90±0.02 1.02±0.07 0.89±0.06 1.06±0.04 1.12±0.02

5 1.11±0.02 1.29±0.05 1.01±0.01 1.06±0.08 1.36±0.01

25 0.49±0.32 1.12±0.02 1.04±0.01 1.07±0.06 1.29±0.03Pusher-v4 -56.03 -148.51
50 0.00±0.05 1.13±0.01 1.04±0.02 1.09±0.05 1.23±0.02

5 0.97±0.01 1.02±0.00 1.03±0.00 1.00±0.01 1.03±0.01

25 0.96±0.02 1.00±0.00 0.98±0.01 0.87±0.05 0.98±0.02Reacher-v4 -5.89 -44.11
50 0.86±0.02 0.89±0.01 0.93±0.02 0.90±0.02 0.91±0.03

5 0.88±0.09 1.11±0.30 1.05±0.01 0.97±0.02 1.82±0.78

25 0.72±0.02 0.78±0.12 0.93±0.09 1.36±0.56 2.52±0.40Swimmer-v4 49.41 -3.18
50 0.69±0.04 0.68±0.06 0.87±0.03 2.23±0.55 2.71±0.14

5 0.76±0.21 0.85±0.12 0.61±0.07 1.20±0.11 1.12±0.09

25 0.12±0.02 0.26±0.08 0.10±0.02 0.59±0.30 0.72±0.11Walker2d-v4 3999.54 1.48
50 0.11±0.02 0.11±0.02 0.08±0.01 0.23±0.10 0.00±0.11
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Figure 4. Results of MuJoCo tasks with 5 delays for learning curves. The shaded areas represented the standard deviation (10 seeds).
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Figure 5. Results of MuJoCo tasks with 25 delays for learning curves. The shaded areas represented the standard deviation (10 seeds).
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Figure 6. Results of MuJoCo tasks with 50 delays for learning curves. The shaded areas represented the standard deviation (10 seeds).
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