Beyond the limitation of monocular 3D detector via knowledge distillation
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Abstract

Knowledge distillation (KD) is a promising approach
that facilitates the compact student model to learn dark
knowledge from the huge teacher model for better results.
Although KD methods are well explored in the 2D detection
task, existing approaches are not suitable for 3D monocular
detection without considering spatial cues. Motivated by
the potential of depth information, we propose a novel dis-
tillation framework that validly improves the performance
of the student model without extra depth labels. Specif-
ically, we first put forward a perspective-induced feature
imitation, which utilizes the perspective principle (the far-
ther the smaller) to facilitate the student to imitate more
features of farther objects from the teacher model. More-
over, we construct a depth-guided matrix by the predicted
depth gap of teacher and student to facilitate the model
to learn more knowledge of farther objects in prediction
level distillation. The proposed method is available for ad-
vanced monocular detectors with various backbones, which
also brings no extra inference time. Extensive experiments
on the KITTI and nuScenes benchmarks with diverse set-
tings demonstrate that the proposed method outperforms
the state-of-the-art KD methods.

1. Introduction

With the development of autonomous driving, 3D ob-
ject detection has become a popular field. In general, multi-
view-based[39, 20, 15, 14, 26, 27,21, 42] and LiDAR-based
approaches[17, 45] show impressive performance. But con-
sidering the massive expensive equipment demand of the
above methods, monocular vision methods have attracted
more attention in recent years. Moreover, lightweight mod-
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Figure 1: The statistics for object depth and area in KITTL
We set a 3m length in a bin, and the number and area repre-
sent the object amount and average pixel area, respectively.
The logarithmic scale is used for area coordinates.

els [47, 33] are more favored for practical deployments due
to the constraints of hardware resources and the need for
real-time. But a lightweight 3D monocular detector usu-
ally has a weak feature extraction ability and an inaccuracy
depth estimation, which results in a not satisfying perfor-
mance.

To tackle the issue, knowledge distillation (KD) [12] is
proposed to facilitate the compact student model to learn
implicit knowledge from the huge teacher model. KD
can indeed improve the performance of the student model
without extra inference costs, which motivates researchers
to propose better distillation techniques in classification
[1, 16, 5, 49, 22, 44] and detection [4, 19, 37, 35, 10, §]
task. Moreover, some 3D distillation methods [7, 13] also
adopt the LiDAR data as the input for the teacher model to
guide the student. But there is a cost associated with the
acquisition of LiDAR data. Therefore, an interesting idea
naturally arises: can we only use a vision-based strategy to
optimize the student model like 2D distillation approaches?

2D distillation methods perform poorly on 3D tasks ow-
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Figure 2: Implicit depth distribution map. An implicit depth
distribution can be found in the image, which is the farther
in the real world, the smaller in the image.

ing to the lack of spatial clues consideration. Distinguished
from the planarity of the 2D task, depth is the key dimen-
sion in the 3D task. We believe that the model performance
could be improved if depth information is taken into consid-
eration in KD. Firstly, we analyze the depth and area distri-
bution of objects in the KITTI dataset as illustrated in Fig.
1. The results present that distant objects account for an
indispensable proportion of all objects and it also demon-
strates that farther objects occupy fewer pixels and fewer
features, fewer and low-quality features would be a disas-
ter for downstream detection tasks. Therefore, some KD
strategies need to be devised for promoting the distant ob-
jects’ feature quality and detection results. But acquiring
the distance in the monocular image usually is an ill-posed
problem, and some researchers have taken some prior meth-
ods for estimation. In our observation illustrated in Fig. 2,
although the image lost the depth dimension, an implicit
depth distribution still can be acquired. We discover that
distant object appears more frequently at the end of the road,
which are close to the center of the camera axis. Moreover,
the further the object is in the real world, the smaller the ob-
ject is in the image. The two above observations motivate
us to introduce the implicit depth in KD.

To better use the observed depth information, we pro-
pose a novel distillation framework for 3D monocular vi-
sion tasks, which is guided by implicit spatial distribution
information. According to the implicit depth distribution
map as illustrated in Fig. 2, we put forward a perspective-
induced feature imitation module, which focuses more on
learning farther object features. Specifically, a perspec-
tive matrix is designed according to the pixel distance be-
tween the farthest point in the image and other points, which
endows more attention on the distant objects. Moreover,
we also propose a depth-guided prediction distillation that
introduces the depth information, including the depth of
ground truth, student, and teacher prediction. We adopt
the above depth information to construct the depth-guided
matrix, which not only reduces the difference in classifica-
tion distribution between the teacher and student model but
also motivates the student to imitate the depth estimation of
the teacher model. Extensive experimental results on the
KITTI[9] and nuScenes[3] benchmarks prove that the pro-

posed approach surpasses the previous SOTA methods on
different teacher-student pairs with various backbones. Our
main contributions can be summarized as follows:

1) We design a perspective matrix that follows the im-
plicit depth distribution map to achieve better feature
imitation of the distant object.

2) We devise a depth-guided prediction distillation
method, which facilitates the student to learn the dis-
tant instance prediction from the teacher model.

3) We propose a unified 3D monocular distillation frame-
work purely based on a visual scheme, which intro-
duces implicit depth information to the knowledge-
transferring process. Extensive experiments on KITTI
and nuScenes demonstrate that the proposed method
outperforms the previous SOTA distillation methods.

2. Related Work
2.1. 3D Monocular Detection

3DOP[6], MLFusion[41], and Deep3DBox [31] usually
adopt the depth estimation subnet to assist the detection
task. M3D-RPN][2] proposes a single-stage detector that
uses a depth-aware convolution for 3D position features
learning. MonDIS[34] presents a disentangling loss for bet-
ter multitask learning. FQNet[24] measures the overlaps
between objects and 3D projected proposals to choose the
best proposals. RTM3D[18] predicts the nine perspective
key points of the 3D bounding box and obtains 3D prop-
erties by the geometric relationship of 3D and 2D perspec-
tives. FCOS3D[38] adopts FCOS[36] as baseline and adds
new detection heads for 3D attribute predictions. PGD[40]
incorporates a probabilistic representation to capture the
depth uncertainty for better estimation. MonoEF [50] pro-
poses to capture camera pose to formulate the detector free
from extrinsic perturbation. MonoFlex[48] decouples the
representations of objects and optimizes them respectively.
GUPNet [30] proposes a geometry uncertainty projection
net for better depth estimation. AutoShape[29] proposes
an approach for incorporating the shape-aware 2D/3D con-
straints into the 3D detection. MonoCon [25] presents to
learn monocular contexts as auxiliary tasks in training.

2.2. Knowledge Distillation

Knowledge distillation has been firstly proposed by Hin-
ton et al. [12]. Since then, many approaches are pro-
posed for better knowledge delivery. FitNet [1] introduces
intermediate-level hints from the teacher hidden layers to
guide the training process of the student. AT [16] designs
a attention mechanism to deliver more valuable informa-
tion. ReviewKD [5] proposes a knowledge review mecha-
nism by the cross-stage connection paths. DKD [49] de-
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Figure 3: The distillation framework of our 3D monocular detection. Firstly, we adopt the implicit depth distribution map to
endow more weight on farther object imitation at the feature level. Then, we introduce the depth information of the ground
truth, student, and teacher estimation for assistance at prediction level distillation.

couples the target class knowledge distillation and non-
target class knowledge distillation enabling them to play
their roles more efficiently. Lin ef al. [22] propose a one-
to-all spatial matching knowledge distillation method con-
sidering the feature similarity between teacher and student
models. MGD [44] proposes that teachers can improve stu-
dents’ representation by guiding students’ feature recovery.

Besides, more work devote themselves to object detec-
tion distillation. LEOD [4] transfers the knowledge of fea-
turem map and respone. Mimic [19] points out that Rol
regions are more valuable for learning including positive
and negative samples. FGFI [37] suggests that the student
learns the fine-grained feature of the teacher model. TAR
[35] proposes a gaussian mask to enhance the object infor-
mation and suppress those background regions. DeFeat [10]
suggests that both the background feature and object feature
should be distilled together but assigned different weights.
GID[8] proposes to distill the feature, response, and relation
knowledge of discriminative instances. Monodistill[7] pro-
poses to distill LiDAR signals to the monocular 3D detec-
tors. CMKD [13] introduces the cross-modal information
for better 3D distilaltion. In conclusion, existing vision-
based methods are not explored in 3D monocular detection.

3. Methods
3.1. Overview

Knowledge distillation (KD) [12] is a promising ap-
proach to improve the performance of student model, which

delivers dark knowledge except for the ground truth. Given
the student model parameters 6, and teacher model param-
eters f;. The dataset is D which contains images and labels.
A standard K D process is formulated below,

KD(HS) = argmingsl.:(l(ﬁs,D),I(Ot,D)), (D

where L is the loss function. The model input data and ac-
quires information I, which contains the intermediate fea-
tures F' and final predictions P. Moreover, the KD transfers
the knowledge by the £ , which means the student needs to
imitate the information of the teacher model.

In our distillation framework, not only the feature maps
from the feature level but also some responses at the pre-
diction level are selected as the knowledge to facilitate the
student model beyond its limitation. Both teacher and stu-
dent models are monocular 3D detectors. They adopt the
same network structure but use different backbones. The
teacher is a well-trained frozen model and the student is
trained from scratch during the distillation process. Fig. 3
illustrates the whole process of our distillation framework.

3.2. Perspective-induced Feature Imitation

Feature quality affected by model extraction ability usu-
ally decides the performance of the subsequent downstream
task. A heavy teacher model has a better feature capture
ability than a lightweight student model. Intermediate fea-
tures distillation is introduced by FitNet [1] firstly, and most
recent work [37, 35, 10, 43] have demonstrated the effec-
tiveness. Since Feature Pyramid Network (FPN) [23] can
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Figure 4: Perspective-induced feature imitation. We calcu-
late the L2 distance of feature maps between teacher and
student models and use the perspective matrix M to weigh
the knowledge.

fuse features of different levels to obtain better detection ef-
fects, the existing work usually chooses the multi-scale fea-
ture maps output by FPN as distillation knowledge. There-
fore, we also follow this strategy, and the feature imitations
are defined as follows,

11, L2
ﬁ.fZE;EHFt—W(FS)’ ,

Ny =W+ HyxC,

2

where L represents the FPN level numbers and F! ¢
RWi=Hi=Cl refers the multiscale feature maps. ¢ is an adap-
tion layer that ensures the feature between the teacher and
student model is alignment. H;, W;, C; denote the height,
width, and channel of the [-th level features, respectively.

We want to combine the information of depth with
knowledge distillation. But the depth estimation in the
monocular image is an ill-posed issue, and some priors may
help to get some help. According to the implicit depth
distribution map, the farther the object is in the world,
the smaller it is in the image. Generally, the input image
is downsampled four times during the feature extraction,
which means the distant object will have fewer features and
results in inaccuracy detection. Therefore, the teacher with
a heavy backbone can impart valuable feature knowledge to
the student with a lightweight backbone. But classic feature
imitations endow equal attention to all features, which is not
suitable for 3D distillation affected by depth.

Although it is hard to directly acquire an accurate depth
estimation from an image, we still can distinguish relative
distance. As illustrated in Fig. 3, we observe that distant ob-
jects appear more often at the end of the road, which usually
is in the center of the camera. Therefore, the white point in
the image is farthest from the observer. With it as the cen-
ter, the other points gradually approach the observer. Based
on this observation, we propose a perspective-induced fea-
ture imitation that imposes more attention on features of far-
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Figure 5: Depth-guided predcition distillation. We adopt
ground truth depth “p(7(D))” and the depth devia-
tion “¢ (|7 (P¢) — 7 (P{)])” between teacher and student
models to weigh the knowledge.

ther objects in distillation. Assuming the farthest point p*
is (z*, y*) in the image, we adopt the 2D-Gauss function to
transform the pixel distances to perspective matrix M be-
low,

_(@/w—z*/w)? _ (y/h—y*/n)?
2 2

M=Axe 7z 7y , €)

where z € [0,w],y € [0,h]. 02 and o, are the decay fac-
tor along the two directions. A refers to the amplitude. We
set the farthest point in the center of an image which satis-
fies most situations. But for occlusion by close front car, we
will decrease the occlusion region weight of the depth distil-
lation matrix in practice. Then, multiscale M are acquired
by operating in the multiscale features as Eq. 3.

Finally, we employ the multiscale perspective matrix M
in the feature imitation as follows,

1 ¢ M 2
L= IF - eEll

N =W, x H xCy,

“)

where F} and F! represents the multiscale features from the
teacher and studnet model, respectively. Fig. 4 presents the
workflow of M in the feature imitation.

3.3. Depth-guided Prediction Distillation

Except for the intermediate features, the predictions are
also valuable for distillation. Hinton ef al. [12] propose
the category probabilities of the teacher predictions can be
viewed as soft labels to help the student to learn the relation-
ship between different classes. For example, cyclists and
pedestrians have some similarities rather than with cars. In
our framework, we mainly distill the classification relation-
ship between the student and teacher models at the predic-
tion level.



In addition, considering that depth estimation usually has
a huge influence on the accuracy of 3D location in monoc-
ular detection, we propose to use depth estimation to guide
the distillation at the prediction level. Firstly, the distillation
strategy can reduce the difference in classification between
the teacher and student model. Secondly, better depth es-
timation knowledge will be transferred to the student. To
be specific, given a set of the positive sample K ; in the
image, we can get the depth predictions P¢ and P of the
student and teacher, respectively. Besides, Dg; is the cor-
responding depth ground truth for each sample. The depth-
guided matrix is defined below,

D=¢ (|7 (P]) =7 (PO)|) xp (T (D)), (5

where 7 is the normalization function, ¢ and p are map-
ping functions for weight control. In experiments, we set
¢(z) = 10z + 1. And we test two types p(z) = exp(z)
and p(z) = x + 1 in our ablation study. The matrix D can
be splited into two parts. ¢ (|7 (Pd) — 7 (P?)|) facilitates
the student to learn the depth estimation from the teacher
model. p (7 (D)) is designed for enhancing the weight of
the distant object. We want the student to learn the teacher’s
more precise depth estimation and pay more attention to the
knowledge of farther objects. Therefore, we have multiplied
them in Eq. 5. In conclusion, the D adopts depth informa-
tion to guide prediction level distillation, which contributes
to improving the performance of detectors.

In the detection task, samples are usually separated into
two groups, which contain positive samples (objects) and
negative samples (background). But most previous work
usually distills the knowledge of the positive samples to
avoid the influence of background noise. However, DeFeat
[10] demonstrates that the decoupled distillation is more
valid than only distilling the positive samples. It endows
the positive and negative samples with different weights in
knowledge transfer to make full use of underlying informa-
tion. Therefore, the depth-guided prediction distillation is
defined below,

) Kobj
L, =N DMLyt (P, Fl)
Kob] i—1 6
Ko, (6)
(6% . .
+ 2N (1 = My) L (P, PY),

where K, and K34 represent the number of positive sam-
ple and negative sample, respectively. op; and apg are co-
efficients to keep the scale balance. M; € {0,1} is the bi-
nary label of ¢-th sample with respect to ground-truth object.
P, and P; are the classification prediction of the teacher and
student, respectively. Fig. 5 presents the workflow of D in
the prediction distillation.

3.4. Overall loss

The overall loss is defined as follows,
L= Ligsk + M1 *Ef + A2 *‘Cpa (N

where the L, is the specific detection task loss such as
classification, location loss, and others. A1 and A5 are distil-
lation weight for the balance of each loss in the same scale.

4. Experiment
4.1. Datasets and Metrics
4.1.1 KITTI

We evaluate our method on commonly used KITTI[9]
3D object detection benchmark. We follow the previous
work [6] to split the training images into two groups, 3712
images are selected as train sets, and 3769 images are as
val sets. We evaluate the results by 3D detection (3D IoU)
and Bird’s-Eye-View IoU (BEV IoU) with three levels of
difficulty: easy, moderate, and hard. Both metrics are eval-
uated by AP| g4 at the 0.7 IoU threshold. We jointly train
the detector with three classes such as car, pedestrian, and
cyclist. Considering the difficulty of detecting small objects
including pedestrians and cyclists with limited samples, we
only report the car detection results.

4.1.2 nuScenes

The nuScenes [3] dataset is a large-scale autonomous
driving benchmark, which includes multi-modal data. 1000
driving scenarios are in total, which is officially split into
train/val/test sets with 700/150/150 scenes. nuScenes de-
tection score (NDS) and mean average precision (mAP) are
the main 3D detection evaluation metric. mAP is calculated
by averaging over the distance thresholds of 0.5m, Im, 2m,
and 4m across 10 classes. NDS is the weighted combination
of mAP, mATE, mASE, mAOE, mAVE, and mAAE.

4.2. Implementation Details

We adopt the PGD[40] as the detector baseline for the
teacher and student models. For the KITTI dataset, we train
the model on a single Nvidia 3090 GPU for 48 epochs with
a batch size of 9. The initial learning rate is 0.001 and de-
cayed by 0.1 on the 32nd and 44th epochs, respectively. The
weight decay and momentum are set to 0.0001 and 0.9, re-
spectively. SGD is set as the optimizer. All images are re-
sized to the same size of 375 x 1242 on the train and test
stages. For the nuScenes dataset, we train the model on four
NVIDIA V100 GPUs for 12 epochs with a batch size of 4.
The initial learning rate is 0.004 and decayed by 0.1 on the
8th and 11th epochs, respectively. All images are resized to
the same size of 900 x 1600 on the train and test stages.



BEV@IoU=0.7 AP 3D@IoU=0.7 AP
Easy Mod Hard | Easy Mod Hard

2465 1742 1458 | 1727 1213 995
2523 1744 1452 | 1728 11.73 9.62
2340 1648 1352 | 1629 11.13  9.10
26.23 17.37 1430 | 18.36 12.53 10.10
2557 1777 1479 | 1851 12.82 10.36
25.57 1727 1432 | 1749 1193 9.68
2521 1723 1406 | 17.34 11.71  9.50

Distance

>
>

Figure 6: The impact of A. The curve represents the dis-
tillation weight attenuation according to the distance to the
farthest point.

4.3. Ablation Study

In the ablation study, we adopt ResNet101 as the back-
bone for the teacher model, and ResNet18 is used for the
student model. Besides, to create a lightweight student
model, we also reduce the channel of detection heads to
half, which indeed helps decrease the FLOPs and parame-
ters of the student model.

4.3.1 Impact of perspective-induced feature imitation

In this part, we evaluate the effectiveness of perspective-
induced feature imitation. As discussed in Section 3.2, we
introduce the perspective matrix to endow the far object
with more weight to imitate the feature of the teacher model.
The perspective matrix is involved with an important trans-
formation that maps the distance to weight by the 2D-Gauss
function. To be specific, A refers to the amplitude which
affects weight, and o, o, are the variance that influences
distribution.

We first fix 0, = 0y, = 1 and change A to test the am-
plitude impact. As shown in Fig. 6, although the easy index
of BEV IoU gets the maximum when A = 0.5, we want to
get better results in the more index. Hence, A = 0.3 is the
optimum parameter we need, which has five better results.
Besides, we fixed the A = 0.3 and alter 0, 0. In our ab-
lation study, we set o, = o, for simplicity. It can be seen
in Fig. 7, 0, = 0, = 0.7 has more better results compared
to others, which improves 6.59%, 3.97%, 4.02%, 6.73%,
3.98%, 3.69 % performance.

4.3.2 Impact of depth-guided prediction distillation

In this part, we explore the effectiveness of depth-guided
prediction distillation. Previous approaches usually use the
KL divergence to measure the classification distribution be-
tween teacher and student models. And they minimize the

BEV@IoU=0.7 AP 3D@IoU=0.7 AP
Easy Mod Hard | Easy Mod Hard
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Figure 7: The impact of 0. Note that 0, = o,

KL divergence for reducing the differences in classification
prediction. The L2 constraint is also used in classification
distillation in recent research. As illustrated in Table 1,
we first evaluate the impact of L2 constraint and KL diver-
gence for basic classification distillation. The L2 constraint
is more stable for more indexes, so we adopt L2 for subse-
quent ablation study. Then we add the depth attention mod-
ule which facilitates the student learning depth estimation
from the teacher model. Besides, we set ¢(x) = 10x + 1
for a scale balance. And the 7(z) = z/max(D) is the
function for depth normalization. The max (D) refers to
the max depth of ground truth in each mini-batch. The re-
sults (third row) present depth attention module validly im-
proves the performance of detectors compared to basic clas-
sification distillation. Finally, we test the effectiveness of
the gt-depth-weighted module. In our analysis, we use the
ground truth depth to weigh each object, the farther object
will have more weight in distillation. We adopt a monoton-
ically increasing mapping function p to achieve this goal.
Two types of mapping functions are tested, including ex-
ponential function (p(z) = exp(x)) and linear function
(p(x) = x + 1). Tabel 1 shows the accuracy of the ex-
ponential function surpasses the linear function. And com-
bined with the depth attention module, the performance has
achieved a new peak (improved by 5.36 %, 3.97 %, 4.06 %,
4.96%, 3.48%, 3.28%). Table 2 shows the specific accu-
racy improvement through two modules.

4.3.3 Analysis for differnet T-S pairs distillation

To verify the generalization of the proposed methods,
we also conduct experiments with different teacher and stu-
dent pairs. As shown in Table 3, we adopt ResNet101
[11] and RegNet-3.2GF [32] as the backbone for teacher
model. In contrast, ResNet18[11], RegNet-800MF [32],
MobileNetV2 [33], and ShuffleNet [47] are used as the stu-
dent backbone. In some teacher-student pairs, although
they have heterogeneous network structures, the distil-
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Figure 8: Visualization of FPN features. Our method can extract better features of objects.

BEV@IoU=0.7 AP 3D@IoU=0.7 AP

L b W Easy Mod Hard | Easy Mod Hard
KL - - 23.67 16.07 1325|1652 11.18 8.92
L2 - - 24.62 1692 14.03 | 1590 11.26 9.36
L2 - \ 2523 1779 1442 \ 17.01 11.80 9.60
L2 - linear | 2449 16.77 13.86 | 16.12 1145 9.36
L2 / linear | 25.56 17.53 14.56 | 17.14 11.76 9.57
L2 - exp |2526 17.66 14.84 | 17.23 1222 10.20
L2 |/ exp |2582 1815 1515 |17.52 1225 9.96

Table 1: Ablation study for depth-guided prediction dis-
tillation. L refers the loss function which transfesr classi-
fication knowledge. D represents depth attention module
() (|’7’ (Psd) -7 (Ptd) |)) W denotes the gt-depth-weighted
module (p (7 (D))).

BEV @IoU=0.7 AP 3D@IoU=0.7 AP
Easy Mod Hard | Easy Mod Hard

Teacher | 25.48 18.12 15.02 | 18.59 13.22 10.73
Student | 2046 14.18 11.09 | 12.56 8.77 6.68

v - | 27.05 18.15 1511 19.29 12.75 10.37
-4/ 2582 1815 15.15|17.52 1225 9.96
Vo 4/ | 2798 1894 15.87 | 1991 13.24 1091

F P

Table 2: Effectiveness of each module. F refers feature im-
itation and P represents the prediction distillation.

lation validly helps them promote performance that can
not achieve only by themselves. Results demonstrate our
method is universal for the distillation framework and sta-
ble for accuracy improvement. Moreover, some cases in Ta-
ble 3 present that the student can obtain better performance
than the teacher. We think the student model learns ground
truth and extra soft knowledge from the teacher, which may
help the student break the limitation of model capacity and
have a better convergence.

We also test another detector architecture SMOKE [28]
and results are presented in Table 4. Teacher and student
adopt the DLA60 [46] and DLA34 [46] as the backbone,
respectively. Table 4 proves the stability of our method for
different detector architectures.

BEV@IoU=0.7 AP 3D@IoU=0.7 AP

Method Easy Mod Hard | Easy Mod Hard
T:ResNet101[11] | 2548 18.12 15.02 | 18.59 1322 10.73
ResNetI8#[11] | 2046 14.18 11.09 | 12.56 8.77  6.68

+Ours 27.98 1894 1587 | 1991 1324 1091
ResNet18[11] 2335 1649 1421|1634 1161 9.72

+Ours 2811 1949 16.14 | 2044 1412 1159
MobileNetV2[33] | 1549 1099 9.05 | 9.65 7.09 585

+Ours 1726 1224 10.06 | 10.55 7.96 6.47
ShuffleNet[47] | 19.78 1293 1043|1220 833 6.71

+Ours 20.66 14.37 1090 | 13.77 9.01  7.20

T:RegNet-3.2GF[32] | 25.61 18.08 14.08 ‘ 18.04 12.75 10.36
RegNet-800MF*[32] | 20.24 14.54 11.70 | 14.03 10.07 8.06

+Ours 23.08 1594 12.89 | 1645 1140 9.16
RegNet-800MF[32] | 22.27 15.54 1293 | 15.08 10.61 6.37
+Ours 24.71 17.06 14.06 | 16.83 11.48 9.30
MobileNetV2[33] 1549 1099 9.05 | 9.65 7.09 5.85
+Ours 19.06 12.81 10.62 | 12.07 849 6.91
ShuffleNet[47] 19.78 1293 10.43 | 1220 833 6.71
+Ours 21.44 1383 1097 | 13.13 8.60 6.91

Table 3: KITTI-3D val set evaluation on Car with different
teacher-student distillation pairs. * refers to the model that
is reduced the channels of detection heads to half.

BEV@IoU=0.7 AP 3D@IoU=0.7 AP
Easy Mod Hard | Easy Mod Hard

T: DLA60 | 16.49 13.73 1345 | 12.45 10.82 10.81
S: DLA34 | 14.87 1037 9.04 | 893 601 545
+Ours 16.37 11.79 10.02 | 10.62 7.79 6.46

Method

Table 4: Smoke architecture distillation

4.3.4 Qualitative analysis

As illustrated in Fig. 8, we present some visualization
results of the FPN output features between the baseline and
distillation model. We observe that the distillation model
focuses more on objects compared to the baseline rather
than the background.



BEV@IoU=0.7 AP 3D@IoU=0.7 AP
Method Easy Mod Hard | Easy Mod Hard

T:Res101 ‘25.48 18.12 15.02‘18.59 13.22  10.73

S:Res18* | 20.46 14.18 11.09 | 12.56 8.77 6.68
+KD[12] 2295 16.73 1390 | 15.16 1094 8.89
+FitNet[1] | 25.72 18.14 15.17 | 1832 13.06 10.79
+AT[16] 26.69 17.89 14.85| 1847 1279 10.32
+FGFI[37] | 25.09 17.19 1434 | 17.60 11.84 9.74
+TAR[35] | 26.84 18.11 15.04 | 19.37 1292 1042
+GID[8] 2639 17.64 1421 | 1852 1232 9.98
+DeFeat[10] | 25.22 17.11 14.09 | 17.01 11.87 9.60
+FGD[43] | 26.69 19.08 15.99 | 1848 13.19 10.69
+Ours 2798 1894 15.87 | 1991 13.24 1091

S:Res18 2325 1649 1421|1634 11.61 9.72
+KD[12] 2625 17.83 14.60 | 18.19 12.33 10.10
+FitNet[1] | 26.39 19.03 15.87 | 18.02 13.12 11.06
+AT[16] 27.19 18.88 15.83 | 19.99 13.79 11.22
+FGFI[37] | 26.35 18.00 15.06 | 18.05 12.33 10.05
+TAR[35] | 27.44 19.36 16.15 | 19.83 13.67 11.28
+GID[8] 26.57 1835 15.22 | 1841 12.83 10.38
+DeFeat[10] | 25.88 18.16 15.05 | 17.32 12.23 10.08
+FGD[43] | 27.99 19.30 1596 | 19.85 13.75 11.35
+Ours 28.11 1949 16.14 | 2044 14.12 11.59

T:Reg3.2 | 25.61 18.08 14.08‘18.04 12.75 10.36

S:Reg800* | 20.24 14.54 11.70 | 14.03 10.07 8.06
+KD[12] 20.82 14.84 12.32 | 14.17 10.18 8.31
+FitNet[1] | 21.92 15.29 12.09 | 1496 10.26 8.61
+AT[16] 2229 1557 1255 | 15.65 11.02 8.79
+FGFI[37] | 2228 15.54 12.68 | 15.62 11.09 9.02
+TAR[35] | 21.88 15.26 1222 | 15.14 10.64 8.40
+GID[8] 21.17 14.46 11.56 | 1458 9.89 7.71
+DeFeat[10] | 21.58 14.33 11.39 | 1443 9.55 7.51
+FGD[43] | 21.52 1495 1195|1449 10.05 8.06
+Ours 23.08 1594 12.89 | 1645 1140 9.16

Table 5: KITTI-3D wal set evaluation on Car with SOTA
distillation approaches. * refers to the model that is reduced
the channels of detection heads to half.

4.3.5 Analysis for parameters and FLOPs of models

We calculate the parameters and FLOPs of student and
teacher models. The teacher model has more parame-
ters (403.09MB) and FLOPs (54.71G) than the student
(106.64MB, 14.31G). But our proposed distillation frame-
work helps the performance of the student model after dis-
tillation beyond the teacher model without the overhead.

4.4. Comparision with State-of-the-art Methods

Comparisons with other state-of-the-art distillation ap-
proaches are shown in Table 5 and Table 6. For the KITTI
dataset, we conduct experiments on three teacher-student
pairs by two network structures which include ResNet [11]
and RegNet [32]. As for the nuScenes dataset, we test the
ResNet structures, and the results are presented in Table 6.
As illustrated in Table 5, our approaches surpass state-of-

Method | mAP NDS | Method | mAP NDS
T:Res101 | 31.7 393 | T:Resl01 | 31.7 39.3

S:Res18 229 316 S:Res50 27.5 358
+KDJ[12] 23.5 324 +KD[12] 287 372
+FitNet[1] 23.7 32.8 | +FitNet[1] | 284 36.9
+AT[16] 232 321 +AT[16] 289 378
+FGFI[37] | 243 33.5 | +FGFI[37] | 29.3 379
+TAR[35] 244 337 +TAR[35] 294 38.1
+GIDI[38] 240 329 +GID[8] 290 273
+DeFeat[10] | 24.7 33.9 | +DeFeat[10] | 29.2 38.2
+FGD[43] 249 342 | +FGDI[43] 29.5 38.0
+Ours 25.1 34.6 +Ours 30.2 384

Table 6: nuScenes val set evaluation with SOTA distillation
approaches.

the-art methods when deploying on diverse network struc-
tures (Average improvement for ResNet distillation pairs:
6.19%, 3.88%, 3.59%, 5.73%, 3.49%, 3.05, Average im-
provement for RegNet distillation pairs: 2.84%, 1.40%,
1.19%, 2.42%, 1.33%, 1.10%). Moreover, our methods also
achieve state-of-the-art performance on a large nuScenes
dataset and we show the results in Table 6.

Previous distillation methods based on the visual scheme
lack the consideration for spatial cues and they tend to ex-
plore better features and response imitation regions. How-
ever, depth information is crucial in the 3D task. We intro-
duce two depth modules in KD for learning assistance. On
the one hand, we use the depth distillation matrix, which
helps farther objects imitate more feature knowledge from
the teacher model. On the other hand, we facilitate the stu-
dent to learn depth estimation knowledge in instance-level
prediction with a weight according to distance.

5. Conclusion

In this paper, we consider spatial cues and propose a
vision-based distillation framework for the 3D monocular
detector. Specifically, we discover that the image contains
some implicit depth distributions that are meaningful to
guide the distillation. Based on the observation, we propose
two modules that facilitate the student learning of the fea-
ture and prediction knowledge from the teacher model by
spatial cues. Firstly, perspective-induced feature imitation
validly enhances the study of features for far objects. Sec-
ondly, the depth-guided prediction distillation contributes
to the difference reduction of classification distribution and
depth estimation between the teacher and the student model.
Massive experiments on KITTI and nuScenes demonstrate
the effectiveness of our method and the generalization for
diverse backbones. It is worth mentioning that the perfor-
mance of the compact student optimized by distillation is
beyond the huge teacher model, which reveals the great po-
tential of knowledge distillation.
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