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ABSTRACT

Large language models (LLMs) demonstrate strong reasoning abilities in solv-
ing complex real-world problems. Yet, the internal mechanisms that support
these behaviors remain opaque, raising concerns regarding truthfulness, safety,
and controllability in practical applications. Existing interpretability approaches
either rely on human-annotated contrastive pairs to derive control vectors, which
limits reliability and generalization, or identify neurons correlated with superfi-
cial textual concepts, failing to capture the complexity of reasoning processes.
Consequently, current methods struggle to precisely localize complex reasoning
mechanisms or capture causal effects from model internal workings to the rea-
soning outputs. In this paper, we build on causality-aware and outcome-oriented
principles that focus on identifying components that have causal contributions to
reasoning behavior where outcomes are cumulated by long-range effects. We pro-
pose Integrated Policy Gradient (IPG), a novel framework that attributes reason-
ing behaviors to model inner workings like neurons, by propagating compound
outcome-based signals (e.g., post reasoning accuracy) backward through model
inference trajectories. IPG is efficient requiring only a few calls to the standard
gradient operator, which uncovers causal structures governing complex reasoning
and avoids large manual supervision. Empirical evaluations demonstrate that our
approach achieves more precise mechanistic interpretability and enables reliable
modulation of reasoning behaviors across diverse reasoning models.

1 INTRODUCTION

Large Language Models (LLMs) have shown outstanding performance in addressing natural lan-
guage processing (NLP) tasks (Touvron et al., 2023; Brown et al., 2020; Qwen Team, 2024). Beyond
simple next-token prediction, modern LLMs now demonstrate sophisticated reasoning abilities, in-
cluding structured, step-by-step problem solving (Wei et al., 2022; Khot et al., 2023). Despite these
advancements, the internal reasoning mechanisms underlying large language models, especially
how they represent and encode such capability, remain unclear. This lack of transparency poses
challenges for truthfulness, safety, and controllability in reasoning systems (Wang et al., 2025b).

Mechanistic interpretability studies suggest that the internal representation space of LLMs encodes
reasoning-related concepts. Existing approaches fall into two categories. The first derives control
vectors in the representation space to induce desired behaviors (Højer et al., 2025; Wang et al.,
2025a), but these methods heavily rely on well-designed contrastive input pairs, raising uncertainty
about whether the target reasoning behaviors are truly elicited and limiting their reliability in cou-
pling behaviors to specific prompts. The second line of work analyzes individual internal compo-
nents, such as neurons (Stolfo et al., 2023; Rai & Yao, 2024) or sparse features (Galichin et al.,
2025), focusing on correlations between their activations and text patterns, e.g., reasoning-related
tokens. While informative, these prevalent approaches face two major limitations: (i) Lack of causal-
ity: correlation-based analyses fail to isolate mechanisms that causally drive reasoning behaviors.
(ii) Limited scope: they capture only short-term effects of the inner workings, neglecting their cu-
mulative influence across multi-step reasoning (Sui et al., 2025), such as on final task accuracy.

We design our approach for mechanistic interpretability of reasoning in LLMs based on two key
principles: causality-aware and outcome-oriented. The effects of internal components should be
evaluated by their causal contribution to reasoning behaviors, and these contributions should be
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Figure 1: Paradigms of interpretability for reasoning in LLMs and comparison results on reasoning
datasets. (a) Illustration of the three paradigms, regarding (i) text-pattern methods that associate high
activations with special tokens (e.g., “Wait”); (ii) control-vector methods that rely on human-craft
contrastive input pairs; and (iii) our proposed Integrated Policy Gradient method. t is the reasoning
time step. (b) Intervention procedure of our method: selected components are scaled by a factor γ
(see Section 3.3). (c) Average accuracy after steering across reasoning tasks for each paradigm.

measured with respect to the final outcome of reasoning. Since reasoning unfolds over long horizons,
the outcome (e.g., correctness of the final answer) captures the integrated influence of intermediate
steps (Sui et al., 2025). Both principles further enable effective steering of LLM reasoning.

Building on these principles, we propose Integrated Policy Gradient (IPG), a novel training-free
framework for interpreting and controlling reasoning in LLMs. IPG first applies gradient-based
attribution to identify influential internal components (such as neuron or sparse features) within the
LLM model that causally shape reasoning behavior. However, standard gradient approaches are
limited because reasoning outcomes are typically non-differentiable, e.g., final answer correctness
provided by external verifier (Guo et al., 2025). To address this, IPG incorporates policy gradi-
ent (Mnih et al., 2016; Schulman et al., 2017), which propagates outcome-based reward signals
backward through the entire inference trajectory. This enables attribution of cumulative, long-range
effects, overcoming challenges of sparse and non-differentiable outcome signals. Inspired by Sun-
dararajan et al. (2017); Dhamdhere et al. (2019), IPG further aggregates policy gradients along the
path from a baseline to the observed activation level of each component. This integrated path ac-
cumulation ensures completeness and faithfulness in attributing reasoning behaviors. Importantly,
IPG achieves this efficiently, requiring only a small number of gradient computations without up-
dating model parameters. By eliminating the need for hand-crafted contrastive input pairs and mov-
ing beyond correlation with surface text patterns, IPG provides a principled, causality-aware, and
outcome-oriented approach to mechanistic interpretability of LLM reasoning. Figure 1 illustrates
the paradigms of current methods and our IPG and shows our advantages by the effectiveness of
controlling reasoning behavior.

We evaluate the reasoning-related components identified by IPG on two representative open-source
LLMs and demonstrate their superior control effectiveness in steering reasoning behaviors. Across
four large-scale reasoning benchmarks, IPG consistently outperforms prior approaches. Moreover,
the identified components exhibit strong transferability, results derived from prompt-elicited rea-
soning models (Yang et al., 2024) can be directly applied to training-induced variants (Guo et al.,
2025) within the same model family, eliminating redundant interpretation efforts. Finally, individ-
ual components, such as specific neurons, enable fine-grained controllability over distinct aspects of
reasoning, including problem comprehension and task decomposition, underscoring the potential of
IPG for advancing mechanistic interpretability of LLM reasoning.

In summary, our work makes three key contributions. (i) We introduce Integrated Policy Gradient
(IPG), a novel training-free framework that overcomes the limitations of prior approaches by mov-
ing beyond correlation analysis and hand-crafted contrastive inputs. IPG is both causality-aware and
outcome-oriented, attributing reasoning behaviors directly to internal components based on long-
horizon outcomes. (ii) We demonstrate that IPG achieves superior control effectiveness, enabling
not only reliable steering of reasoning behaviors but also fine-grained controllability over specific
reasoning skills. (iii) We show that the identified components exhibit strong transferability across
model variants, substantially reducing redundant interpretation efforts. Together, these contributions
advance the mechanistic understanding and controllability of reasoning in large language models.
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2 RELATED WORK

Reasoning in Large Language Models. Reasoning has become a core capability of Large Lan-
guage Models (LLMs). To improve LLM’s reasoning ability, existing methods primarily include
prompt-elicited (Wei et al., 2022; Khot et al., 2023) and training-induced reasoning. The training-
induced methods involve reinforcement learning (RL) (Guo et al., 2025; OpenAI, 2024; Qwen Team,
2024), optimizing reasoning behaviors with reward signal. Alternatively, other methods utilize su-
pervised fine-tuning, where models are explicitly trained on datasets of reasoning chains (Yue et al.,
2023) or distilled from more powerful reasoning models (Guo et al., 2025). Despite the success in
enabling reasoning capabilities, how these models encode their internal reasoning remains unclear.

Mechanistic Interpretability in Language Models. Mechanistic interpretability seeks to reverse-
engineer the computations of language models by examining their internal representations (Bereska
& Gavves, 2024). Representation space steering aims to control model behavior, by adding vectors
derived from contrastive pairs (Liu et al., 2023; Højer et al., 2025; Song et al., 2025; Zhu et al.,
2025). These methods require carefully annotated contrastive pairs and prompt design, which strug-
gle to ensure the intended target states are truly elicited and makes it challenging to reliably align
the desired behaviors with specific prompts (Højer et al., 2025). Other work targets concept-specific
neurons (Dai et al., 2022; Gurnee et al., 2023; Wang et al., 2022; 2025c), and feature extractions us-
ing sparse autoencoders (Gao et al., 2025; Huben et al., 2024). Such methods have also been applied
to reasoning-related concepts, including arithmetic (Stolfo et al., 2023; Rai & Yao, 2024) neurons
and reason-specific features (Galichin et al., 2025), focusing on correlating activations with surface
text patterns (e.g., reasoning tokens like “wait”). These methods do not establish cause relation
between target reasoning behavior and components, and struggle to capture cumulative, multi-step
influences in reasoning. In contrast, our approach is causality-aware and outcome-oriented, attribut-
ing reasoning behavior without relying on human annotations or hand-crafted text patterns.

3 INTEGRATED POLICY GRADIENT (IPG) METHOD

In this section, we introduce IPG, a framework for identifying internal components that causally
underlie reasoning in LLMs and for exerting fine-grained control over their reasoning behavior, de-
picted in part (a) of Figure 1. Using outcome-aware reward signals (Section 3.1), IPG attributes rea-
soning performance to internal activations via gradient-based attributions (Section 3.2). The selected
components are then scaled to modulate reasoning behavior (Section 3.3), enabling interpretable and
causal interventions.

3.1 REASONING BEHAVIOR MEASUREMENT

Complex reasoning abilities that unfold over long-horizon inference trajectories have become a cen-
tral focus in recent language model research (Guo et al., 2025). A key challenge for mechanistic
interpretability is to identify internal components that causally drive reasoning behavior, where the
final outcome rely on multi-step dependencies across the trajectory.

To this end, we employ gradient-based attribution methods to localize hidden components that cause
reasoning outcomes. However, standard gradient approaches are limited in this setting, since rea-
soning feedback is typically sparse and non-differentiable, and the objective (e.g., final-answer cor-
rectness) is often only realized after an entire inference sequence. To overcome this limitation,
we integrate policy-gradient methods (Mnih et al., 2016; Schulman et al., 2017), which propagate
outcome-aware signals (such as correctness rewards) backward through the trajectory, thereby en-
abling attribution over long-horizon reasoning effects.

To obtain reliable measurements of reasoning behavior, we extend the perspective of policy gra-
dient (Mnih et al., 2016; Schulman et al., 2017) from parameter space to representation space by
propagating outcome-based signals back to intermediate hidden states h. Concretely, for a measure
J(h) that assesses reasoning ability, the policy gradient with respect to the hidden state is

∂J(h)

∂h
= Eτ∼πθ

[
T∑

t=1

∂

∂h
log πθ

(
at | st;h

)
·Aπ(st, at)

]
, (1)
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where τ = (a1, . . . , aT ) is a reasoning trajectory following πθ which is the policy parameterized by
θ, i.e., the LLM to be interpreted. st is the prefix tokens and at is the next token at the reasoning
time step t. Aπ(st, at) is an advantage function estimating the long-horizon benefit, for example,
reasoning accuracy rewards (Zhong et al., 2025)). The targeted hidden representation h is treated as
the variable of interest. The process is depicted in part (a) of Figure 1.

Rather than using policy gradients to update model parameters θ, we compute gradients with re-
spect to h to obtain attribution signals that reflect the long-horizon impact of internal activations
on reasoning outcomes. These signals form the basis for quantifying their effects on reasoning
performance and selecting components for subsequent causal interventions (Sections 3.2 and 3.3).

3.2 REASONING COMPONENTS ATTRIBUTION

Next, we attribute outcome-aware reasoning signals to internal hidden components. Prior inter-
pretability methods often rely on contrastive example pairs or hand-crafted input patterns (e.g.,
arithmetic templates) (Højer et al., 2025; Rai & Yao, 2024; Galichin et al., 2025). Such strategies
are limited: (i) they do not establish causal links between components and long-horizon reasoning
outcomes, and (ii) they fail to capture the cumulative, multi-step dependencies that produce the final
reasoning result. Comparisons between these paradigms are shown in part (a) of Figure 1.

To address these limitations, we propose Integrated Policy Gradient (IPG), based on two principles:
causality-aware and outcome-oriented. This means that the components identified should causally
contribute the reasoning behavior and affects long-horizon reasoning outcomes. Given a hidden state
h = [h1, . . . , hi, . . . , hn] ∈ Rn with hidden dimension n in a language model layer corresponding to
an input x. Our goal is to measure the influence of each component hi ∈ h on the model’s reasoning
ability. We define the attribution score for reasoning ability with respect to each component hi as

IPG(hi;x) = (hi − h′
i)

∫ 1

0

Eτ∼πθ

[
T∑

t=1

∂

∂hi
log πθ(at | st; h′ + α(h− h′)) ·Aπ(st, at)

]
dα ,

(2)
where h′

i is the relative baseline value of hi. Deriving from Equation 1, for each generated trajectory
τ = (a1, . . . , aT ), log πθ

(
at | st; h′ + α(h− h′)

)
is the log-probability of selecting token at given

the context st under the interpolated hidden state, it is weighted by the advantage Aπ(st, at), making
the resulting gradients outcome-relevant (Zhong et al., 2025). We combine gradient-based attribu-
tion with policy-gradient methods (Mnih et al., 2016; Schulman et al., 2017), so that reward signals
are propagated backward along inference trajectories, attributing cumulative and long-horizon ef-
fects to intermediate hidden representations. Inspired by (Sundararajan et al., 2017; Dhamdhere
et al., 2019), we accumulate policy gradients along the path from a baseline h′ to the original ac-
tivation h, spanning across activation levels. This path-integral construction yields baseline-aware
importance scores that reduce gradient noise, producing robust signals for causal intervention. Cru-
cially, IPG computes these attributions efficiently, requiring only a small number of gradient evalu-
ations without updating model parameters.

To ensure robustness, the IPG attribution score is computed per sample and aggregated across a
dataset. LetD = {x(d)}Md=1 be a small supporting dataset of M reasoning questions. For each com-
ponent index i and each sample index d, we compute the per-sample attribution score IPG

(
hi;x

(d)
)

(Equation 2). These scores are aggregated into a global importance statistic, for example, the mean
attribution score Si for component hi, and the top-p components P are

Si =
1

M

M∑
d=1

IPG
(
hi;x

(d)
)
, P = arg top-p

i∈[n]

Si , (3)

The components with indices within P = {i1, . . . , ip} are treated as the most influential compo-
nents, for eliciting reasoning behavior that derives the desired outcome. They are further used for
subsequent intervention in Section 3.3. Importantly, this identification step is performed once for a
given frozen model. Once the set P is identified, interventions can be applied repeatedly without re-
computing attributions. This enables direct transfer of reasoning control to other models of the same
family (e.g., distilled variants), where we observe consistent effects as demonstrated in Section 4.5.

In our framework, h can be any interpretable component within the model. Our IPG can be seam-
lessly integrated with various policy gradient algorithms such as GRPO (Shao et al., 2024). Addi-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tionally, it can accommodate any signal that can be expressed as a reward function, such as genera-
tion length (see Appendix A.3). To the best of our knowledge, we are the first to integrate gradient-
based attribution with policy gradients for interpreting reasoning behavior in LLMs. This approach
is beyond purely gradient-based methods by handling sparse and non-differentiable outcome-based
signals of reasoning behavior, enabling precise and causal localization of reasoning-critical compo-
nents. Full illustration of our framework is provided in Figure 1.

3.3 CONTROL REASONING BEHAVIOR

To control the reasoning behavior inside the model, we intervene on the components indexed by
i ∈ P identified in Section 3.2, following interpretability practices (Dai et al., 2022). Formally, for
each component hi, we apply a multiplicative scaling factor as

hi = Intervene(hi) = γhi (4)

By setting different values of γ, we can enhance (γ > 1) or suppress (0 ≤ γ < 1) the identified
components, thereby controlling the reasoning behavior in the target model (part (c) in Figure 1).

Beyond neuron-level hidden state components hi, we can also intervene on feature-level compo-
nents by integrating with Sparse Autoencoders (SAEs) (Makhzani & Frey, 2014) for a disentangled
feature space. Recent studies (Gao et al., 2025; Galichin et al., 2025) show that sparse features
mitigate neuron polysemanticity, enhancing interpretability and steering efficacy. We thus adopt
k-Sparse Autoencoders (k-SAEs) (Gao et al., 2025) to transform the original hidden space h with
dimension n into a sparse, higher-dimensional space f with m larger than n, and then decode back
to a reconstructed hidden state vector ĥ ∈ Rn. The encoding and decoding processes are shown as

f = [f1, f2, . . . , fm] = TopK(Wenc(h− bpre)) , ĥ = Wdecf + bpre + ϵ(h) , (5)

where f has non-zero elements |f |0 = k (k < m), Wenc ∈ Rm×n is the encoder weight, bpre ∈ Rn

is the bias term, and TopK(·) retains the top k largest values while zeroing others. Wdec ∈ Rn×m

is the decoder weight, and ϵ(h) = h − ĥ ∈ Rn is the SAE error term. We present results and
implementation details in B.1. Empirically (Section 4.2.1), SAE-based interventions yield stronger
and more stable control compared to raw neuron scaling, and they enable finer-grained manipulation
of reasoning subskills, e.g., numerical calculation and problem decomposition (Section 4.4).

4 EXPERIMENT

In this section, we conduct empirical evaluation for our proposed IPG in interpreting and controlling
reasoning behaviors in LLMs. We aim to answer the below research questions (RQs). RQ1: Can we
find influential internal reasoning components and control reasoning behavior in language models?
RQ2: Does IPG find the general and consistent reasoning components across benchmarks? RQ3:
Can IPG find components that reflect more granular reasoning ability?

4.1 EXPERIMENTAL SETUP

Evaluation Benchmarks. For comprehensive evaluation, we choose several reasoning-
related benchmarks, including GSM8K (Cobbe et al., 2021), Math500 (Hendrycks et al., 2021),
AIME2024 (Mathematical Association of America, 2024) and GPQA-Diamond (Rein et al., 2023).

Target Models. We experiment with two representative open-source LLMs: Qwen2.5-Math-1.5B-
Instruct (Yang et al., 2024) and Llama3.1-8B-Instruct (Grattafiori et al., 2024), and additionally eval-
uate DeepSeek-Qwen-1.5B (Guo et al., 2025) in Section 4.5. This selection covers different model
scales, architectures (Qwen vs. LLaMA), and reasoning paradigms (prompt-elicited vs. training-
distilled), highlighting the generalizability of our method.

Baselines. We compare our IPG and IPG-SAE (integrated with k-SAE (Gao et al., 2025)) against
several baselines: Random (RND.), which samples neurons uniformly, and Activation (ACT.), which
ranks by activation magnitude. We also include Reasoning Neuron (R.N.) (Rai & Yao, 2024), an
SAE-based method (SAE-R) (Galichin et al., 2025) and Control Vector (C.V.) (Højer et al., 2025),
which represent interpretable approaches using text patterns and contrastive data pairs for reasoning-
related interventions. More details are in Appendix C.2.
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Table 1: Comparison of IPG and baseline methods on enhancing and suppressing accuracy across
reasoning datasets for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) and Llama3.1-8B-Instruct
(Grattafiori et al., 2024). Best and second best results are shown in bold and underlined format. The
arrows ↑ and ↓ means the higher or lower results are better, respectively.

Enhancing Accuracy ↑ Suppressing Accuracy ↓

Method GSM8K MATH-500 AIME-2024 GPQA
Diamond GSM8K MATH-500 AIME-2024 GPQA

Diamond

Qwen2.5-Math-1.5B Instruct
Original 82.41 63.00 10.00 24.75 82.41 63.00 10.00 24.75
Random 82.86 63.20 16.67 26.77 79.15 59.80 6.67 27.78
Activation 82.56 63.40 20.00 25.75 67.78 39.80 0.00 15.15
R.N. (Rai & Yao, 2024) 82.26 62.20 13.33 24.24 7.13 4.40 0.00 15.15
C.V. (Højer et al., 2025) 83.85 62.60 16.67 28.78 - - - -
SAE-R (Galichin et al., 2025) 83.32 64.00 13.33 25.76 82.26 63.80 10.00 21.71
IPG (Ours) 84.38 64.60 20.00 30.30 0.00 1.60 0.00 0.00
IPG-SAE (Ours) 84.38 65.80 20.00 30.81 55.12 14.80 3.00 1.51

Llama3.1-8B-Instruct
Original 85.89 41.80 6.67 23.23 85.89 41.80 6.67 23.23
Random 86.20 41.40 6.67 27.78 84.98 39.00 10.00 26.77
Activation 85.75 43.00 13.33 25.25 81.88 28.60 0.00 14.14
R.N. (Rai & Yao, 2024) 86.05 40.80 6.67 21.21 75.44 2.06 0.00 9.60
C.V. (Højer et al., 2025) 85.97 40.00 6.67 28.78 - - - -
SAE-R (Galichin et al., 2025) 86.28 41.80 10.00 26.77 85.97 43.20 10.00 22.22
IPG (Ours) 87.41 42.40 13.33 27.27 0.00 1.40 0.00 0.00
IPG-SAE (Ours) 87.41 44.00 20.00 29.80 85.06 33.40 0.00 1.52

Implementation Details. We constrain our IPG and baseline methods on the residual stream
following (Højer et al., 2025; Galichin et al., 2025) for fair comparison. For the policy gradient
algorithm, we employ GRPO (Shao et al., 2024). The external verifier for reasoning outcomes
comes from either rule-function based (Appendix A.3), such as generation length (Appendix D.2) or
model-based signals for accuracy (using Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025)). We
integrate k-SAE (Gao et al., 2025) into target models, configured with an expansion factor of 16 and
k = 32 active features. Following prior work (Cheng et al., 2024; Tang et al., 2025), we consistently
employ a greedy decoding strategy during inference with zero-shot setting. For intervention, we
apply a positive scaling factor γ for enhancement and set γ = 0 for suppression, as described in
Section 3.3. More details are provided in Appendix B.

4.2 IDENTIFICATION AND CONTROL OF REASONING BEHAVIORS

In this section, we evaluate our IPG and baseline methods both qualitatively and quantitatively on
the effectiveness of reasoning ability control across different reasoning-related datasets. (RQ1).
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Figure 2: Effects of targeted interventions on reasoning performance. Left: impact of the interven-
tion scaling factor on Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024). Right: impact of the number
of selected features on reasoning accuracy.

4.2.1 QUANTITATIVE RESULTS ON CONTROLLING REASONING BEHAVIOR

Analysis 1: Reasoning behavior control with identified components. We evaluate our IPG
alongside baseline methods for controlling reasoning behavior in two types of language models
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across multiple reasoning datasets in Table 1. As Control Vector (Højer et al., 2025) is not applicable
to the suppression setting, its results are excluded.

Findings 1: IPG achieves effective control of reasoning behavior. In Table 1, IPG achieves
excellent and consistent control over the performance of reasoning tasks in both enhancement and
suppression settings. Integrating with SAEs further increases our effectiveness. R.N. (Rai & Yao,
2024) and SAE-R (Galichin et al., 2025) provide only modest improvements, while C.V. (Højer
et al., 2025) shows mixed gains and fails on MATH500 (Hendrycks et al., 2021). These results
highlight the limitations of approaches relying on text patterns or input contrastive pairs, which
cannot reliably uncover components that causally drive reasoning. Overall, our findings suggest that
causality-aware, outcome-driven attribution, especially when integrated with disentangled feature
representations, offers a more faithful and robust mechanism for steering LLM reasoning than prior
baselines. This shows the advantages over existing methods paradigms as shown in Figure 1.

Analysis 2: Fine-grained control of reasoning behavior. We vary the scaling factor γ and the
number of intervened components (top-p SAE features) to probe how sensitively reasoning perfor-
mance responds (see Figure 2). We randomly select 2 layers within the two models (Figure 2b) and
choose the top-ranked features based on our attribution score in Equation 3.

Finding 2: IPG enables precise modulation of reasoning behavior. As shown in Figure 2a,
baseline interventions yield only minor or unstable effects, whereas IPG produces clear, predictable
changes that amplifying identified components consistently improves reasoning, while suppressing
them degrades it. The effect is smoothly controlled by the scaling factor. Notably, IPG with SAE re-
mains stable even as baselines collapse. In figure 2b, we can observe that reasoning-critical features
are concentrated in the top-ranked subset, with even single-feature interventions yielding substantial
gains. Overall, IPG achieves more effective and tunable control of reasoning than prior methods.

Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. 
It costs $3 a year to water and feed the tree. How many years will it take before he starts earning money on the lemon tree?

Question

To determine how many years it will take for 
Carlos to start earning money…
6. **Solving for n:**

𝑛 ≥
90

7.50
= 12

Therefore, it will take Carlos \\(\\boxed{12}\\) 
years to start earning money on the lemon 
tree.

To determine how many years it will take for 
Carlos to start earning money …
6. **Finding the break-even point:**
We need to find the smallest n such that the 
total profit is positive.

7.50 × 𝑛 − 90 > 0

Solving for 𝑛 : 𝑛 >
90

7.50
= 12

Since 𝑛 must be a whole number, we round 
up to the next whole number. Therefore, 
𝑛 =  13 .
Thus, it will take \\(\\boxed{13}\\) years 
before Carlos starts earning money on the 
lemon tree.

To determine how many years it will take for 
Carlos to earn money…
Setting the total revenue equal to the total 
costs to find the break-even point: 

7.5𝑛 =  90 +  3𝑛
7. **Solve for n:**

4.5𝑛 =  90

𝑛 =
90

4.5
=  20

Therefore, it will take \\(\\boxed{20}\\) years 
for Carlos to start earning money from the 
lemon tree.

Enhanced Reasoning Suppressed ReasoningOriginal

Figure 3: Responses generated by Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) on one example
in GSM8K (Cobbe et al., 2021), including both original and intervened outputs, with the model’s
reasoning ability elicited to arrive at the correct answer.

4.2.2 QUALITATIVE RESULTS ON CONTROLLING REASONING BEHAVIOR

Analysis 3: Response difference before and after intervention. We showcase an example from
GSM8K (Cobbe et al., 2021) before and after applying intervention (see in Section 3.3) in the neu-
rons identified by our IPG, demonstrating the impact on improving and suppressing reasoning abil-
ity, as illustrated in Figure 3. More examples are provided in Appendix D.4.2.

Finding 3: IPG precisely identifies reasoning-critical components. As shown in Figure 3, the
original response fails to follow the strict requirement. This contrast shows that interventions on
IPG-identified components have causal effects on intermediate reasoning steps.

We also conduct another experiment on reasoning mechanism interpretability, i.e., reasoning length
related mechanism analysis (Appendix D.2). We examine the controllability of trajectory length as
a concrete example of reasoning mechanism interpretability, where interventions successfully mod-
ulate the output length of DeepSeek-Qwen-1.5B (Guo et al., 2025) without sacrificing final answer
accuracy. This demonstrates that IPG can identify neurons corresponding to different reasoning
abilities, with interventions leading to interpretable effects across multiple reasoning facets, high-
lighting the generality of our approach.
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4.3 GENERAL REASONING MECHANISM ACROSS TASKS

In this part, we show whether the components identified by our IPG and the baseline method can
transfer seamlessly from one dataset to others, finding the general and consistent components that
truly causally drive the reasoning behavior (RQ2).

Analysis 4: Components consistency, similarity and performance across dataset. To investigate
how consistent the reasoning components are , we investigate the transferability of these components
by applying those derived from GSM8K (Cobbe et al., 2021) to MATH500 (Hendrycks et al., 2021),
and vice versa. The resulting accuracy is presented in Table 2. Furthermore, we visualize the fre-
quency of reasoning components selected across samples in Figure 4a. For each sample, we compute
an importance score per component (via IPG attribution from Sec. 3.2 or raw activations) and select
the top-p neurons. Aggregating these selections across all samples yields a per-neuron frequency
distribution. High overlap in these frequency distributions indicates that the neurons exhibit con-
sistent behavior. We further quantify cross-dataset consistency using Jaccard similarity, which is
defined as |PA∩PB|

|PA|+|PB|−|PA∩PB| in Figure 4b, where PA and PB are neuron indices identified in the
two datasets. Diagonal elements represent the RND. baseline, upper triangular elements show the
Act baseline, and lower triangular elements depict our proposed IPG.

Table 2: Performance on MATH500 (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021), for
cross-dataset transfer. Best and second best re-
sults are shown in bold and underlined format.

MATH-500→ GSM8K GSM8K→MATH-500
Method Acc. (%) ↑ Avg. Tok. Acc. (%) ↑ Avg. Tok.
Original 82.41 319.68 63.00 569.35
Activation 82.94 317.17 63.60 567.39
R.N. (Rai & Yao, 2024) 82.87 312.63 63.20 556.97
C.V. (Højer et al., 2025) 83.39 320.03 63.60 568.55
IPG (Ours) 83.47 320.06 64.00 564.59
IPG-SAE (Ours) 84.08 315.86 64.20 558.94

Finding 4: IPG finds consistent reasoning
mechanisms across diverse tasks. Cross-
dataset transfer results as shown in Table 2,
suggests that IPG achieves the most accu-
racy gains, showing our consistence across
tasks. Figure 4a shows that IPG identifies
components with consistent cross-benchmark
overlap, revealing reasoning-relevant features
shared between datasets. In contrast, the Acti-
vation baseline tends to pick neurons with per-
sistently large magnitudes, which does not reli-
ably control reasoning performance (Table 1). As quantified in Figure 4b: IPG shows meaningful
overlap across selected sets, whereas Activation’s high similarity reflects only magnitude effects.
This indicates that IPG identifies consistent and causal reasoning components.

0 20 40 60 80 100
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Random
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Act. (GSM8K)
Act. (Math500)

(a) Frequency of top p = 20 neuron indices for GSM8K (Cobbe
et al., 2021) and MATH500 (Hendrycks et al., 2021).

GSM8K
MATH500

AIME2024
GPQA

GSM8K

MATH500

AIME2024

GPQA

0.02
(random) 0.94 0.94 0.72

0.53 0.02
(random) 0.94 0.67

0.34 0.30 0.02
(random) 0.69

0.27 0.26 0.24 0.02
(random)

IPG

Act.
Jaccard Similarity Between Datasets

(IPG below diag, Act. above diag)

0.0

0.1

0.2

0.30.3

0.40.4

0.50.5

0.0

0.2

0.4

0.60.6

0.80.8

(b) Jaccard similarity between neuron
indices across datasets.

Figure 4: Left: histogram of neuron index frequencies, highlighting the top-p = 20% neurons identi-
fied by our method on GSM8K (Cobbe et al., 2021) and MATH500 (Hendrycks et al., 2021). Right:
similarity matrix comparing neuron indices discovered in 4 different datasets, highlighting shared
reasoning structure across tasks, with diagonal showing random baseline.

4.4 FINE-GRAINED REASONING BEHAVIOR DISCOVERY

We further look into the identified reasoning components to reveal its granular aspects on reasoning
behaviors, shedding some lights on the inner workings of LLMs on reasoning ability (RQ3).

Analysis 5: Fine-grained aspects of reasoning behavior discovery. We employ causal interven-
tions to analyze reasoning behavior at a fine-grained level. Specifically, we intervene on individual
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components, e.g., single neuron or feature ranked by IPG scores (Eq. 3), and assess their impact on
reasoning behavior over GSM8K (Cobbe et al., 2021). Each component is evaluated along four rea-
soning dimensions (Semantic, Decomposition, Thoroughness, and Calculation). GPT-5-mini is used
to summarize and label the model’s reasoning behaviors, and representative examples of enhancing
a single neuron versus an SAE feature are shown in Figure 5. Additional experimental details are in
Appendix B.2 with Table 8 illustrate these reasoning dimensions.

Semantic

Decomposition

Calculation

Thoroughness

0.2

0.4

0.5

0.7

0.260.19

0.17

0.04
0.220.58

0.35

0.19

Neuron #940 Feature #8053

Figure 5: Dual radar plots of neuron- and feature-
level interventions: top for enhancing neuron
#940 and feature #8053.

Findings 5: IPG shows granular aspects on
reasoning behaviors. As shown in Fig-
ure 5, enhancing neuron #940 alters both Thor-
oughness and Semantic, whereas boosting SAE
feature #8053 primarily improves Calculation.
Consistent with prior observations of neuron
polysemanticity (Mu & Andreas, 2020; Olah
et al., 2020), intervening on a single neuron fre-
quently impacts multiple dimensions simulta-
neously. In contrast, SAE-derived features are
more disentangled as interventions on an indi-
vidual feature tend to affect a single reasoning
aspect. These causal interventions demonstrate
that neurons and sparse features play distinct
functional roles in multi-step reasoning, and
that disentangled feature spaces enable more
targeted control. Additional case studies are provided in Appendix D.4.1.

4.5 ROBUSTNESS OF FOUND MECHANISMS UNDER DISTILLED MODELS

Model GSM8K Math500 AIME2024
DeepSeek-R1-Distill-Qwen-1.5B 75.21 61.40 16.67
+ IPG Neuron Enhancement 77.26 62.00 26.67

Table 3: Results of transferred IPG neuron en-
hancement with reason-distilled models.

Analysis 6: Transferring IPG-identified neu-
rons into reasoning-distilled models. In ad-
dition to general purpose models with prompt-
elicited reasoning, we probe the robustness of
IPG-identified mechanisms under a reasoning-
distilled model. Specifically, we intervene on
neurons identified in Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) within DeepSeek-R1-
Distilled-Qwen-1.5B (Guo et al., 2025).

Findings 6: Components identified by IPG can be seamlessly transferred. As shown in Table 3,
steering the inherited neurons in the DeepSeek-distilled model consistently improves performance
across datasets. This indicates that the core reasoning neurons remain crucial even when the under-
lying model is distilled for reasoning. This result not only validates the ability of IPG to pinpoint
fundamental, robust neurons for reasoning, but also offers an insight for the mechanism of model
distillation, suggesting that distillation might not alter the reasoning circuit but reinforce the pre-
existing structure inside the model.

5 CONCLUSION

In this work, we propose IPG, a novel framework for interpreting LLM reasoning behavior that
based on causality-aware and outcome-oriented principles. Our IPG applies gradient-based meth-
ods to identify influential internal components that causally contribute to reasoning behavior. By
incorporating policy gradients (Schulman et al., 2017), we attribute the outcomes that depend on
cumulative and long-range effects in reasoning behavior and address the challenge of sparse and
non-differentiable outcome signals. Empirically, IPG provides effective and interpretable identifi-
cation and control of reasoning behavior across different types of LLMs. Additionally, IPG exhibit
excellent transferability both in reasoning datasets and between prompt-elicited and training-induced
model variants. Our IPG offers interpretable solution to control reasoning ability in LLMs, though
challenges remain such as more effective intervention. Future work includes extending our IPG
framework to interpret domains where performance is hard to quantify, such as the emotional intel-
ligence and creativity in LLMs or alternative model structures (e.g., LlaDA (Nie et al., 2025)), and
to precisely manipulate model behavior by steering the identified components.
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6 REPRODUCIBILITY STATEMENT

We have made great efforts to ensure the reproducibility of our results. The experiment setup,
including model configurations, training steps and evaluation metrics, is clearly described in the
main paper and appendix. Additionally, the reasoning-related dataset used in the paper, such as
GSM8K, AIME2024, are publicly available, ensuring reproducible evaluation results. We believe
this will help other researchers reproduce our work and further advance the field. The reproducible
code will be released upon the acceptance of this paper.
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A ALGORITHMS OF IPG

In this section, we provide two main algorithms of our method in order to clearly illustrate the key
steps of IPG. The first algorithm focuses on identifying reasoning-critical components by attribut-
ing outcome-weighted signals to internal representations. The second algorithm is based on these
identified components to control reasoning behavior of the model. (see more details in 3.2,3.3)

A.1 IDENTIFYING REASONING COMPONENTS

We introduce how to identify reasoning-critical components. We use a support set of N samples,
which can be either a subset or the full dataset of any reasoning-related benchmarks like GSM8K
(Cobbe et al., 2021). We denote output residual stream of transformer block as F(·) which takes
a sample as input and we can get the hidden state of residual stream. Here, Φ can be either the
identity map, corresponding to neuron-level IPG, or the SAE encoder, corresponding to feature-level
IPG. After that, we can localize the reasoning-critical components using IPG. For the calculation of
attribution, we use Riemann approximation to estimate integral:

IPG(hi;x) = (hi − h′
i) ·

1

q

q∑
k=1

Eτ∼πθ

[
T∑

t=0

∂

∂hi
log πθ

(
at | st; h′ +

k

q
(h− h′)

)
·Aπ(st, at)

]
(6)

where h′ = [h′
1, . . . h

′
m] is a relative baseline of h and q is the number of discrete steps or partitions

used in the Riemann approximation to estimate the integral. x is the data sampel. Notably, we use
u in the following Alg. 1 and 2 to denote the representation of either neuron or SAE feature. More
details about F are provided in the Appendix A.3.

Algorithm 1: IPG: Identifying Reasoning Components
Input: A support set of samples X = {x1, . . . ,xN}, p ∈ N

1 for j = 1 to N do
2 Extract h = [h1, h2, . . . , hn] from F(xj)
3 u = [u1, u2, . . . , um] = Φ(h)
4 for i = 1 to m do
5 S(ui;X) += IPG(ui;x) ; // Eq. 2

6 P = {i1, . . . , ip} = arg top-pi∈[n] {S(ui;X) | ui ∈ u} ; // Eq. 3
Output: P

Algorithm 2: IPG: Controlling Reasoning Behavior
Input: A set of component indexes P = {i1, . . . , ip}, hidden state extracted from residual

stream h = {h1, h2, . . . , hn} ∈ Rn, scaling factor γ ∈ R
1 u← [u1, u2, . . . , um] = Φ(h) ; // Eq. 5
2 Create u′ ← {u′

1, u
′
2, . . . , u

′
m} = p

3 for k ← 1 to τ do
4 u′

ik
← γu′

ik
; // Scaling, Eq. 4

5 if Φ = Identity then
6 h← u

7 else if Φ = SAE-encoder then
8 ϵ← h− (Wdecu+ bdec) ;
9 h←Wdecu

′ + bdec + ϵ ; // Eq. 5

Output: h

A.2 CONTROLLING REASONING BEHAVIOR

After identifying reasoning-critical components, we further demonstrate how to directly control the
reasoning behavior of the model. Given a set of target component indexes P , we first encode the
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hidden state h into the representation space s using Φ, which can be either the identity mapping
(for neuron-level control) or the SAE encoder (for feature-level control). We then intervene on the
selected components by scaling their activations with a factor γ, yielding a modified representation
s′. Finally, we decode s′ back to the residual stream. Notably, in the SAE setting, the reconstruction
also retains the error term to ensure faithful recovery of the original hidden state structure (see more
details in B.1 about this).

A.3 VARIANTS OF IPG

In this section, we provide variants of our IPG that supports different algorithms of policy gradi-
ent (Mnih et al., 2016), as mention in Section 3.2.

In GRPO (Shao et al., 2024), the structure of IPG remains identical, except the advantage At is
replaced with a group-relative advantage:

Ai =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
. (7)

where T is the sequence length, N is the sample number, and πθ is the policy parameterized by θ,
i.e., the LLM to be interpreted. s

(k)
t is the prefix of the sequence k until t steps, a(k)t is the next

token in the sequence k, and Aπ(st, at) is the advantage function that estimates benefit of selecting
at over the baseline, often derived from rewards like reasoning accuracy scores (Zhong et al., 2025).

IPGGRPO(hi;x) = (hi−h′
i)

∫ 1

0

1

N

N∑
τ=1

T∑
t=1

∂

∂hi
min

(
rt(θ)A

GRPO
t , clip(rt(θ), 1−ϵ, 1+ϵ)AGRPO

t

)
dα,

(8)
Here, At denotes the advantage function, which measures how much better the chosen action at is
compared to the expected baseline at state st. x is the data sample. The clip operator is used to
restrict the policy ratio rt(θ) within the range [1−ϵ, 1+ϵ] so as to prevent excessively large updates
that could destabilize training. The parameter ϵ is a small positive constant (typically 0.1–0.3) that
controls the extent of clipping. Formally, the policy ratio is defined as rt(θ) = πθ(at|st)

πθold (at|st) , where
πθ and πθold are the new and old policies, respectively. We do not include the KL divergence term,
as model parameters are not updated.

For the reward source, we support both rule-based and model-based signals. In the rule-based
setting, the reward R is defined as a binary indicator of final-answer correctness:

R = I{ŷ = y} =

{
1, if ŷ = y,

0, otherwise.
(9)

In contrast, model-based rewards provide a continuous evaluation of reasoning quality. For example,
given a scoring model M(·), we can assign rewards as

R = M(x, ŷ), (10)

where M may return partial credit (e.g., proportion of correct intermediate steps) or preference
scores from human-aligned models. This yields a richer supervision signal than binary correctness,
enabling finer-grained attribution of reasoning ability. A comparison of these reward sources is
presented in Appendix D.1.3.

B IMPLEMENTATION DETAILS

The reproducible code will be released upon the acceptance of this paper.

B.1 SAE TRAINING

Dataset for training k-SAEs: In this section, we provide details about training the k-SAE. Fol-
lowed by Galichin et al. (2025), We train SAE on the activations of the model using the full

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

OPENTHOUGHT-114K dataset (OpenThoughts, 2025), which is composed of high quality rea-
soning trace generated by DEEPSEEK-R1 including math, science, code, etc. To elicit consistent
chain-of-thought style activations when harvesting activations, we apply the following chat template:

<system>Please reason step by step and put your answer within \boxed{}.

</system><|user|>{question}<|assistant|>{deepseek_reasoning}
{deepseek_solution}

Training K-SAE on Hidden Space: As shown in equation 5, the k-SAE contains an encoder Wenc
and a decoder Wdec initialized with the same parameters. The reconstruction loss we use is a
standard mean squared error (MSE) loss defined as

L(h) = ∥h− ĥ∥22 (11)

where h is the original hidden state vector and ĥ denotes its reconstruction (excluding the residual
error term). The dimension of the sparse representation space is 24576 for Qwen2.5-Math-1.5B-
Instruct (Yang et al., 2024) and 65536 for Llama-3.1-8B-Instruct (Grattafiori et al., 2024)corre-
sponding to an expansion factor of 16. We train k-SAE on a single NVIDIA H20 GPU, taking
approximately 7 hours for Qwen and 30 hours for Llama.

Training Results: We present the details about the training of k-SAEs, including hyper-parameters
and learning curves. We use the learning rate of 0.005 with batch sizes of 32, context length of 2048
tokens. For the training curve, we leverage Fraction of Variance Unexplained (FVU)(Makhzani
& Frey, 2014), which is a related metric of interest, measuring the total amount of the original
activation that is not ”explained” or reconstructed well by k-SAE. FVU is formally defined as

FV U =
L(h)
var[h]

(12)

where h is the hidden state, L(h) is defined in Eq. 11 and var represents the varience of h. A lower
FVU indicates better reconstruction performance since more original activation is captured by the
k-SAE model.The training curves in Fig. 6 show that the k-SAE perform well on the FVU metric.
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(a) Training Curve for Qwen2.5-Math-1.5B-Instruct
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(b) Training curve for Llama-3.1-8B-Instruct

Figure 6: SAE Training Curve

Discussion: The Role of SAE Error Node While the k-SAE can effectively reconstruct the hidden
state ĥ, residual gaps inevitably remain. Recent studies (Lindsey et al., 2025; Marks et al., 2025)
highlight that explicitly modeling error nodes is essential to fill these gaps, as it gives a principled de-
composition of model behaviors into contributions from interpretable features and error components
not yet captured by our SAEs. In our setting, we retain the SAE error term to preserve the relia-
bility of our downstream intervention, thus ensuring that our modification is incremental without
degrading the model’s performance.

B.2 FINE-GRAINED REASONING MECHANISM DISCOVERY

In this section, we provide more implementation details on fine-grained reasoning mechanism dis-
covery. Specifically, we rank reasoning components by their IPG scores and automatically label the
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top 30 neurons and SAE features identified from Qwen2.5-Math-1.5B-Instruct using a GPT-5-mini
API respectively. For interpretation, we manually decompose the comprehensive reasoning into
four hierarchical layers in reasoning: Semantic Comprehension, Problem Decomposition, Reason-
ing Depth and Numerical Accuracy. Importantly, our analysis is causal: we directly intervene on
each neuron or feature, collect all newly-correct answers after steering, and compare pre- and post-
intervention responses. The resulting behavioral changes are then judged by the API to correspond
to one of the four reasoning abilities. These categories align with the labeling scheme defined in the
system prompt used for API calls, which is shown below.

You are a careful evaluator. Output JSON only (an object). Do not include
any extra text.
Allowed labels (with concise role notes):
1. FineGrainedSemanticComprehension [Semantic Layer]
Evaluates precise understanding of wording, references, modifiers, units.
Focus: resolving ambiguity/negation/quantifiers so the problem is

interpreted correctly.
2. ProblemDecompositionAndLogicalSequencing [Planning Layer]
Evaluates whether the task is decomposed into necessary subgoals and

ordered coherently. Focus: a plan that covers all required steps and
aligns with the objective.

3. ReasoningDepthAndThoroughness [Logical Execution Layer]
Evaluates completeness and correct application of rules/conditions
during non-numerical reasoning.
Focus: ensuring all relevant conditions are correctly applied during

each step, variable states are continuously tracked, and implicit
logical premises are not omitted.

4. NumericalAccuracyAndCalculation [Calculation Layer]
Evaluates correctness of arithmetic/algebra/probability and unit

conversions.
Focus: operation order, numeric consistency, and appropriate rounding.

C EXPERIMENT SETTINGS

In this section, we provide details on the experiment settings (Section 4.1), including our evaluation
pipeline and the baseline implementation.

C.1 EVALUATION SETTINGS

For all benchmarks, we employ the lm-evaluation-harness framework (Gao et al., 2024) as the evalu-
ation tool. For Qwen2.5-Math-1.5B-Instruct, we set the maximum tokens to 2048, while for Llama-
3.1-8B-Instruct, we set the maximum new tokens to 8192. Followed by prior work(Dutta et al.,
2024) , Interventions with IPG are applied to the mid-to-late transformer blocks, specifically layers
20–26 for Qwen and layers 22–28 for Llama. To avoid randomness and ensure reproducibility, we
set do sample to false, which is equivalent to greedy decoding strategy (temperature=0). Accord-
ingly, we employ Accuracy@1 as our metric.

C.2 BASELINES

Random. For comparison, we construct a random baseline by uniformly and randomly selecting
neurons within the hidden states h and applying interventions based on these neurons. The final
results of this baseline are averaged across multiple random seeds.

Activation. Internal neuron activations contain meaningful information. Additionally, Dai et al.
(2022) demonstrates the ability to edit internal neurons to influence neural network performance.
Building on this, we adopt a similar approach, performing intervention directly on the original ac-
tivations in the hidden state. For a fair comparison, we constrain our intervention to the residual
stream of a language model.

Reasoning Neuron , as described in Rai & Yao (2024), the focus is on analyzing activation pat-
terns, such as average activation values in the feed-forward (FF) layer, to identify reasoning neurons
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and interpret them using predefined concepts C, such as arithmetic operations Cadd with key to-
kens like “add”, “+”. We extend this approach to operate on the residual stream of transformer
blocks (Vaswani et al., 2017). By leveraging all provided concepts, we identify related neurons and
use them for intervention.

Control Vector , introduced by Højer et al. (2025), employs representation engineering by extract-
ing model activations from the residual stream of a large language model (LLM) during a reasoning
task. These activations are used to derive a control vector for inference-time intervention. The
control vector is constructed from positive and negative pairs: positive pairs consist of Chain-of-
Thought (CoT) prompts where the model produces correct outputs, while negative pairs comprise
75 random character strings sampled from the alphabet (A–Z). Then PCA is applied and the first
principal component in the control direction is treated as the most reasoning-related direction. Fol-
lowing the open-source repository, we use 30% of the samples from each dataset to compute the
control vector.

SAE-Reasoning , as introduced by Galichin et al. (2025), employ Sparse Autoencoders (SAEs),
learn a sparse decomposition of latent representations of a neural network into interpretable features,
to identify features that drive reasoning in the DeepSeek-R1 (Guo et al., 2025) series of models.
They extract candidate “reasoning feature” from SAE representations, that based on specific tokens
such as {“wait”, “but”}, associating feature activation with these tokens. For each feature, reason-
score is computed based on its feature activation on the OPENTHOUGHT-114K (OpenThoughts,
2025). After that, following the releasing implementation, we intervene the feature with top reason-
score.

STA. , introduced by (Wang et al., 2025a), this approach leverages SAE-decoupled representations
to identify and manipulate target atoms, isolating and modifying disentangled knowledge compo-
nents to enhance the behavior of large language models (LLMs). To obtain the vector for controlling
length, we follow their setup and use only one sample: ”1+1=?”, where the positive prompt is a di-
rect answer ”2” and the negative prompt is a redundant, complex answer. We apply the derived
vector on the residual stream.

D MORE RESULTS

In this part, we present more results of our experiments part and studies for better illustrations of our
IPG.

D.1 SENSITIVE STUDY

D.1.1 K-SAE HYPERPARAMETER

We adjust different k values to evaluate the effects of the k-SAEs (Gao et al., 2025) on reasoning
behavior control as shown in Table 4. The results are based on Qwen2.5-Math-1.5B-Instruct (Yang
et al., 2024) layer 20.

k
GSM8K

Acc. (Enhance) ↑ Acc. (Suppress) ↓
Original 82.41 82.41

8 84.38 82.26
32 84.38 55.12
64 83.70 81.96

Table 4: Investigation of the impact of varying TopK parameters in k-SAE Belitsky et al.
(2025) on controlling reasoning behavior in Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) for
GSM8K (Cobbe et al., 2021). TopK refers to preserving the top k features while deactivating others
in the feature space, as described in Section 3.3.

In Table 4, as the TopK parameter k increases, the ability to control reasoning behavior, including
both enhancing and suppressing, either persists or begins to diminish. We demonstrate that our
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results are not heavily dependent on the choice of Sparse Autoencoders (SAEs). Instead, our focus
is on the accurate identification and intervention of reasoning features. Consequently, we select
k = 32 for the k-SAE (Gao et al., 2025) across all experiments.

D.1.2 IPG ATTRIBUTION HYPERPARAMETER

We conduct experiment on the effects of different number p of components identified, as stated
in Section 3.2. In Table 5, as the number of top-p neurons increases, the control over reasoning

p
GSM8K

Acc. (Enhance) ↑ Acc. (Suppress) ↓
Original 82.41 82.41

10 83.55 28.13
20 83.70 25.55
30 83.78 17.82
40 83.78 14.78
50 83.17 10.69

Table 5: Evaluation on the impact of varying the top-p number of neurons in 3.3 in Qwen2.5-Math-
1.5B-Instruct (Yang et al., 2024) for GSM8K (Cobbe et al., 2021).This evaluation is based on our
k-SAE implementation (Gao et al., 2025) with a fixed k = 32.

behavior becomes more effective. However, beyond a certain point, adding more neurons does not
yield further improvements. This is because reasoning-related concepts may be distributed across
multiple neurons, and the top neurons already exert significant control, while additional neurons
lack substantial reasoning-related functionality.

D.1.3 REWARD SIGNALS

Model Reward Method GSM8K MATH-500 AIME-2024 GPQA
Diamond

Qwen2.5-Math-1.5B Rule Fuction 84.00 64.20 20.00 26.77
Reward Model 84.38 64.40 16.67 30.30

Table 6: Performance of IPG in enhancing accuracy across reasoning datasets for Qwen2.5-Math-
1.5B-Instruct (Yang et al., 2024) under different reward signals.

In Table 6, we report the performance of IPG in improving accuracy across reasoning datasets
for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) using different reward signals, including rule-
based and reward model-based signals, as detailed in Appendix A.3. The scaling intervention (see
Section 3.3) is applied at the 24th layer. As shown in Table 6, reward model-based signals outper-
form rule-based signals in most datasets, suggesting that reward models capture richer information
or better represent reasoning outcomes, thereby enhancing IPG’s effectiveness in identifying and
controlling reasoning behavior.

D.2 CONTROLLING REASONING LENGTH

Beyond identifying reasoning components using accuracy-based reward signals, we explore whether
neurons controlling the length of reasoning can be identified. This is achieved by modifying the rule
function (see Appendix A.3) to prioritize sensitivity to reasoning length rather than accuracy. Specif-
ically, the rule function is redefined to reward outputs based on their generated length, encouraging
the identification of neurons that influence the verbosity or conciseness of reasoning.

The modified rule function, Rlength, is defined as a function of the generated text length, L, measured
as the number of tokens in the output. The reward increases with length to promote longer reasoning
chains or decreases to favor conciseness, depending on the desired behavior. The rule function is
given by

Rlength = f(L) , (13)
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Figure 7: Results of IPG obtained through the length reward signal are shown in blue (accuracy)
and red (sequence length).

where f(·) can be any monotonically increasing function. For example, we can have a 2-order
function f(L) = αL2 + βL+ γ where α, β, and γ are tunable parameters that control the reward’s
sensitivity to length.

As shown in Figure 7, scaling the top one percent of neurons identified via length-based rewards on
DeepSeek-Qwen-1.5B (Guo et al., 2025) leads to a gradual decrease in the model’s output length
as the scaling factor increases. In conclusion, these results demonstrate that our IPG can be readily
extended to capture diverse outcome-aware signals corresponding to specific behaviors, highlighting
its flexibility and effectiveness.

D.3 DISCUSSION

D.3.1 EFFICIENCY OF IPG

Table 7: Comparison of Inference Time (in seconds per sample) for Rule-based and Reward Model-
based reward signals on GSM8K (Cobbe et al., 2021) across Qwen2.5-Math-1.5B-Instruct (Yang
et al., 2024) and Llama3.1-8B-Instruct (Touvron et al., 2023)

Model Reward Signal Attribution Time (s/sample)

Qwen Rule 11.6
Qwen Reward Model 13.5
Llama Rule 18.25
Llama Reward Model 20.0

The table presents a comparison of attribution times (see in Section 3.2) in seconds per sample
for the GSM8K (Cobbe et al., 2021) dataset using rule-based and reward model-based methods
across two large language models, Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) and Llama3.1-
8B-Instruct (Touvron et al., 2023). We can see in Table 7 that our IPG requires few time for attribu-
tion. This efficiency highlights the scalability of IPG, enabling rapid identification of key neurons or
features in reasoning tasks, making it a practical choice for further controlling large-scale language
models.
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D.3.2 LIMITATION OF IPG

Reward Signal: Our current implementation of IPG relies on relatively preliminary reward defini-
tions, including either a rule-based signal or a lightweight reward model. Such signals can be coarse
and fail to capture subtle reasoning improvements. Consequently, they may introduce noise or bias
when attributing causal contributions. More sophisticated approaches, such as process reward mod-
els (PRMs) or step-level verifiers, could provide finer-grained supervision that better aligns with
reasoning quality. Exploring such enhanced reward sources is a promising direction for future work.

Selection of Scaling Factor: In the present IPG implementation, the scaling factor (γ) is applied
uniformly across neurons or features. In spite of its general intervention effects, it neglects more
delicate things where different components may require different intervention strengths. A promis-
ing future work is to adopt component-specific scaling, allowing each neuron or feature to be steered
by an individually optimized factor.

D.4 CASE STUDIES

D.4.1 GRANULAR REASONING ASPECTS CONTROL

In this section, we provide more radar graphs of neuron and feature’s granular reasoning aspects
mentioned in Section 4.4.

Table 8: Clusters of reasoning ability type obtained using GPT-5 mini. Each cluster corresponds to
a reasoning type, the representative neuron index, and the behavior changes observed under neuron
steering. Enhancing amplifies desired reasoning ability, while suppressing degrades it.

Cluster Type Neuron Index Feature Index Behavior Change (Enhance / Suppress)

Fine-Grained Semantic Comprehension 520, 609, 940 19313, 19156 Enhance: More precise semantic parsing
Suppress: Ignoring key constraints and details

Problem Decomposition & Structuring 553, 802, 904 19126, 20154 Enhance: More coherent planning of solution steps
Suppress: Fragmented or illogical solution planning

Reasoning Depth & Thoroughness 609,940,1068 1083,18195,19126 Enhance: More rigorous application of conditions
Suppress: Failure to track changing states

Numerical Accuracy & Calculation 335, 520, 553 779, 8053, 10508 Enhance: More precise execution of calculations
Suppress:Increased frequency of arithmetic errors
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(a) Enhancing neuron #1068 and feature #19313
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Neuron #1421 (REG) Feature #19126 (REG)

(b) Suppressing neuron #1421 and feature #19126

D.4.2 GENERATED RESPONSES BEFORE AND AFTER INTERVENTION

In this section, we provide more examples with our IPG framework corresponding to Sec. 3.3 We
present generated responses before and after intervention on multiple models, spanning different rea-
soning benchmarks (e.g., GSM8K, Math500) and intervention granularities (neuron-level vs. SAE
feature-level). Across models and tasks, we can consistently observe that steering IPG-identified
components leads to more coherent intermediate reasoning steps and improved final answers.
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Ellen decided to play a prank on her friend. She got a case of 12 sodas and shook 3 of 
them up. Then she took 1 unshaken soda for herself and left. Ellen's brother stopped 
by and took 1 of the shaken sodas and 2 of the unshaken sodas, then Ellen's friend 
came along. What is the likelihood, expressed as a percentage, that Ellen's friend gets 
sprayed with soda from a shaken can?

Question

Original: To determine the likelihood that Ellen‘s friend gets sprayed with soda 
from a shake can, we need to follow the sequence of events and calculate the 
number of sodas in each state.\n\n1. **Initial number of sodas:**\n Ellen starts 
with 12 sodas.\n\n2. **Sodas after Ellen shakes 3:**\n Ellen shakes 3 sodas, so 
there are \\(12 - 3 = 9\\) sodas left.\n\n3. **Sodas after Ellen takes 1 unshaken 
soda:**\n Ellen takes 1 unshaken soda, so there are \\(9 - 1 = 8\\) sodas left, with 3 
sodas still shaken.\n\n4. **Sodas after Ellen’s brother takes 1 shake and 2 
unshaken sodas:**\n Ellen‘s brother takes 1 shake soda and 2 unshaken sodas, so 
there are \\(8 - 1 - 2 = 5\\) sodas left, with \\(3 - 1 = 2\\) sodas still shaken.\n\n5. 
**Sodas after Ellen’s friend comes along:**\n Ellen‘s friend now has the remaining 
5 sodas, with 2 of them being shake sodas.\n\nThe probability that Ellen’s friend 
gets sprayed with soda from a shake can is the ratio of the number of shake sodas 
to the total number of sodas Ellen‘s friend has. This probability is calculated as 
follows:\n\\[\n\\text{Probability} = \\frac{\\text{Number of shake 
sodas}}{\\text{Total number of sodas}} = \\frac{2}{5}\n\\]\n\nTo express this 
probability as a percentage, we multiply by 100:\n\\[\n\\frac{2}{5} \\times 100 = 
40\\%\n\\]\n\n
Thus, the likelihood that Ellen's friend gets sprayed with soda from a shake can is 
\\(\\boxed{40}\\).

Response

Enhanced: To determine the likelihood that Ellen‘s friend gets sprayed with soda 
from a shake can, we need to follow the sequence of events and calculate the 
number of sodas in each state.\n\n1. **Initial number of sodas:**\n Ellen starts 
with 12 sodas.\n\n2. **Sodas after Ellen shakes 3:**\n Ellen shakes 3 sodas, so she 
has 9 sodas left unshaken.\n \\[\n \\text{Unshaken sodas} = 12 - 3 = 9\n \\]\n \\[\n 
\\text{Shaken sodas} = 3\n \\]\n\n3. **Sodas after Ellen takes 1 unshaken 
soda:**\n Ellen takes 1 unshaken soda for herself, so she has 8 unshaken sodas 
left.\n \\[\n \\text{Unshaken sodas} = 9 - 1 = 8\n \\]\n \\[\n \\text{Shaken sodas} = 
3\n \\]\n\n4. **Sodas after Ellen’s brother takes 1 shake and 2 unshake:**\n 
Ellen‘s brother takes 1 shake soda and 2 unshake sodas, so the number of sodas 
changes as follows:\n \\[\n \\text{Shake sodas} = 3 - 1 = 2\n \\]\n \\[\n 
\\text{Unshake sodas} = 8 - 2 = 6\n \\]\n\n5. **Sodas after Ellen’s friend comes 
along:**\n Ellen‘s friend comes along and gets 1 soda. The probability that this 
soda is from a shake can is the number of shake sodas divided by the total number 
of sodas left.\n \\[\n \\text{Total sodas left} = 2 + 6 = 8\n \\]\n \\[\n 
\\text{Probability that Ellen’s friend gets a shake soda} = \\frac{2}{8} = \\frac{1}{4} = 
0.25\n \\]\n \\[\n \\text{Percentage} = 0.25 \\times 100 = 25\\%\n \\]\n\n
Therefore, the likelihood that Ellen's friend gets sprayed with soda from a shake 
can is \\(\\boxed{25}\\).

Figure 12: Case Study on GSM8K for Qwen2.5-Math-1.5B-Instruct. Steering 5% IPG neurons with
scaling factor γ = 1.1 on layer 20.
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John wins an award at work. The award has a 1 time monetary reward of 
$5000 and a 5% raise in salary. If he makes 2000 a week, every week of the 
year and he got the award on the first day of the year how much money 
did he make that year?

Question

Original: To determine how much money John made that year, we need to 
consider both his regular weekly earnings and the additional monetary reward he 
received from the award.\n\n1. **Calculate John‘s regular annual earnings:**\n 
John makes $2000 per week. There are 52 weeks in a year.\n \\[\n \\text{Regular 
annual earnings} = 2000 \\times 52 = 104000\n \\]\n\n2. **Calculate the monetary 
reward from the award:**\n The award has a 1 time monetary reward of 
$5000.\n\n3. **Calculate the total earnings for the year:**\n Add the regular 
annual earnings to the monetary reward.\n \\[\n \\text{Total earnings} = 104000 + 
5000 = 109000\n \\]\n\n
Therefore, the total amount of money John made that year is
\\(\\boxed{109000}\\).

Response

Enhanced: To determine how much money John made that year, we need to 
consider both his regular weekly earnings and the additional monetary reward he 
received from the award.\n\n1. **Calculate John's regular annual earnings:**\n 
John makes $2000 per week. There are 52 weeks in a year.\n \\[\n \\text{Regular 
annual earnings} = 2000 \\times 52 = 104000\n \\]\n\n2. **Calculate the monetary 
reward from the award:**\n The award has a 1 time monetary reward of 
$5000.\n\n3. **Calculate the 5% raise in salary:**\n The 5% raise in salary is 
applied to his regular weekly earnings.\n \\[\n \\text{Raise per week} = 2000 
\\times 0.05 = 100\n \\]\n Since the raise is applied to each week, the total raise 
for the year is:\n \\[\n \\text{Total raise for the year} = 100 \\times 52 = 5200\n 
\\]\n\n4. **Calculate the total earnings for the year:**\n Add the regular annual 
earnings, the monetary reward, and the total raise.\n \\[\n \\text{Total earnings} = 
104000 + 5000 + 5200 = 114200\n \\]\n
Therefore, the total amount of money John made that year is 
\\(\\boxed{114200}\\)."

Figure 13: Case Study on GSM8K for Qwen2.5-Math-1.5B-Instruct. Steering one IPG SAE features
with scaling factor γ = 1.8 on layer 20.
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Cars have lined up on the motorway. Some of the cars drive through in the first 15 
minutes of the traffic jam, then 20 more cars drive through in the remaining 15 
minutes of the jam. 5 cars from the line take an exit so they don't have to drive 
through the traffic jam. If there were originally 30 cars on the motorway, how many 
cars drove through the traffic jam in the first 15 minutes?

Question

Original: To find the number of cars that drove through the traffic jam in the first 
15 minutes, we need to first determine the total number of cars that drove 
through the traffic jam.\n\nWe know that 20 cars drove through in the remaining 
15 minutes. \n\nLet‘s denote the number of cars that drove through in the first 15 
minutes as ’x‘. \n\took an exit, we need to subtract these from the total number of 
n. Since 5 cars cars to find the number of cars that actually drove through the 
traffic jam. \n\nSo, the total number of cars that drove through the traffic jam is (x 
+ 20) - 5.\n\nWe are given that there were originally 30 cars on the motorway. 
\n\nTherefore, (x + 20) - 5 = 30.\n\nSimplifying the equation, we get x + 20 - 5 = 
30.\n\nx + 15 = 30.\n\nSubtracting 15 from both sides, we get x = 15.\n\nSo, the 
number of cars that drove through the traffic jam in the first 15 minutes is 
15.\n\n\\boxed{15}

Response

Enhanced: To find the number of cars that drove through the traffic jam in the first 
15 minutes, we need to first determine the total number of cars that drove 
through the traffic jam.\n\nWe know that 20 cars drove through in the remaining 
15 minutes. \n\nLet's denote the number of cars that drove through in the first 15 
minutes as 'x'. \n\nSince 5 cars took an exit, the total number of cars that drove 
through the traffic jam is the original number of cars minus the cars that took an 
exit, which is 30 - 5 = 25.\n\nWe also know that the total number of cars that 
drove through the traffic jam is the sum of the cars that drove through in the first 
15 minutes and the cars that drove through in the remaining 15 minutes. \n\nSo, 
we can write the equation: x + 20 = 25.\n\nTo solve for 'x', we subtract 20 from 
both sides of the equation: x = 25 - 20.\n\nx = 5.\n\nHowever, this is the number 
of cars that drove through the traffic jam in the first 15 minutes, but it does not 
account for the fact that the question asks for the number of cars that drove 
through the traffic jam in the first 15 minutes, not the number of cars that were in 
the first 15 minutes. \n\nSince 5 cars took an exit, the number of cars that were in 
the first 15 minutes is 30 - 5 = 25. \n\nHowever, we know that 20 cars drove 
through in the remaining 15 minutes. \n\nSo, the number of cars that drove 
through in the first 15 minutes is 25 - 20 = 5.

Figure 14: Case Study on GSM8K for Llama-3.1-8B-Instruct. Steering 5% IPG neurons with scaling
factor γ = 1.1 on layer 22.
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A Senate committee has 5 Democrats, 5 Republicans, and 1 Independent. 
In how many ways can they sit around a circular table if all the members of 
each party all sit next to each other? (Two seatings are considered 
equivalent if one is a rotation of the other.)

Question

Original: To solve this problem, we need to consider the restrictions and the total 
number of arrangements.\n\n1. **Total number of people**: There are 11 
people in total (5 Democrats, 5 Republicans, and 1 Independent).\n\n2. 
**Restrictions**: All members of each party must sit next to each other. This 
means we can treat each party as a single unit when arranging the people around 
the table.\n\n3. **Circular table**: Since the table is circular, we need to account 
for the fact that rotations of the same arrangement are considered equivalent. 
This means we will have to divide the total number of arrangements by the 
number of people (11) to avoid overcounting.\n\n4. **Arranging the parties**: 
There are 3 parties (Democrats, Republicans, and Independent), which can be 
arranged in 3! = 6 ways around the table.\n\n5. **Arranging the members within 
each party**: Within each party, the members can be arranged in the following 
ways:\n - Democrats: 5! ways\n - Republicans: 5! ways\n - Independent: 1 way 
(since there is only 1 member)\n\n6. **Total number of arrangements**: The 
total number of arrangements is the product of the number of ways to arrange 
the parties and the number of ways to arrange the members within each party:\n 
- Total = 6 * 5! * 5! * 1\n\n7. **Accounting for rotations**: Since the table is 
circular, we need to divide the total number of arrangements by the number of 
people (11) to avoid overcounting:\n - Total = (6 * 5! * 5! * 1) / 11\n\n8. 
**Calculating the total**: Now, let's calculate the total number of 
arrangements:\n - 5! = 5 * 4 * 3 * 2 * 1 = 120\n - Total = (6 * 120 * 120 * 1) / 11\n 
- Total = (6 * 14400) / 11\n - Total = 86400 / 11\n - Total = 7872\n\nSo, the total 
number of ways the Senate committee can sit around a circular table with all 
members of each party sitting next to each other is:\n\n\\boxed{7872}”.

Response

Enhanced: To solve this problem, we need to consider the restrictions and the total 
number of arrangements.\n\n1. The members of each party must sit together. This 
means we can treat each party as a single unit. So, we have 3 units: Democrats, 
Republicans, and the Independent.\n\n2. Since the table is circular, we need to 
account for the fact that rotations of the same arrangement are considered 
equivalent. This means we will have to divide the total number of arrangements by 
the number of people (or units) in each arrangement.\n\n3. First, let‘s calculate 
the number of ways to arrange these 3 units around the circular table. There are 
(3-1)! = 2! = 2 ways to arrange the units.\n\n4. Now, let’s consider the 
arrangements within each party. There are 5! ways to arrange the Democrats, 5! 
ways to arrange the Republicans, and 1 way to arrange the Independent (since 
there is only one Independent).\n\n5. To find the total number of arrangements, 
we multiply the number of ways to arrange the units by the number of ways to 
arrange the members within each party: 2 * 5! * 5! * 1.\n\n6. Now, we calculate 
the total number of arrangements: 2 * 5! * 5! = 2 * 120 * 120 = 28800.\n\n7. 
Therefore, the total number of ways the Senate committee can sit around a circular 
table if all the members of each party all sit next to each other is 
28800.\n\n\\boxed{28800}.

Figure 15: Case Study on Math500 for Llama-3.1-8B-Instruct. Steering 5% IPG neurons with
scaling factor γ = 1.1 on layer 22.
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How many r are there in the word strawberry? 

Question

Original: To solve this problem, I need to count the number of letters in the word 
“strawberry.” Okay, so first, I'll start by writing down the word: strawberry. Let me 
see, that's an 8-letter word. Hmm, wait, let me count each letter to be sure.
Starting from the beginning: s, t, r, a, w, b, r, e, r. So that‘s s (1), t (2), r (3), a (4), w 
(5), b (6), r (7), e (8), r (9). Wait, that’s nine letters. But I thought it was an 8-letter 
word. Maybe I‘m miscounting. Wait, let me check again. Maybe I missed a letter. So, 
“strawberry” is spelled S-T-R-A-W-B-E-R-R-Y. Wait, that’s 9 letters. Hmm, maybe I‘m 
getting confused. Let me write it out: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R 
(8), R (9), Y (10). Wait, that‘s 10 letters. Now I’m really confused. Is it 10 letters? Or 
is it 9? Wait, let me look it up. Wait, no, I can‘t look it up, I need to count. Okay, 
let’s try again. S-T-R-A-W-B-E-R-R-Y. So S is 1, T is 2, R is 3, A is 4, W is 5, B is 6, E is 7, 
R is 8, R is 9, Y is 10. So it‘s 10 letters. But I thought it was an 8-letter word. Wait, 
maybe it’s a different word. Wait, maybe the word is “strawberry” without the ‘y’? 
Let me check. No, the spelling is S-T-R-A-W-B-E-R-R-Y, which is 10 letters. So the 
problem must be about the letter ‘r’ instead of the word. So the question is, how 
many ‘r’s are there in the word “strawberry.” So if the word is 10 letters, how many 
‘r’s are there? Wait, let me count again. S-T-R-A-W-B-E-R-R-Y. So the letters are: 1: S
2: T 3: R 4: A 5: W 6: B 7: E 8: R 9: R 10: Y. So there are two ‘R’s: one at position 3 
and another at position 8. So the answer should be 2.
</think>
2

Response

Enhanced: Tell me how many r are there in strawberry? Answer in numbers only.
Okay, so I need to figure out how many "r"s are in the word "strawberry." Let me 
start by writing down the word: S-T-R-A-W-B-E-R-R-Y. Hmm, that's a bit long, so I 
should count each "r" individually. 
First, I notice the letters S, T, R, A, W, B, E, R, R, Y. Let's break them down one by 
one. The first R is after S and T, so that's one "r." Then, moving along, the next R is 
right before E, so that's another "r." After that R, there are two more R's before Y. 
So let me count them:
1. R after S 2. R after T 3. R after A 4. R after B 5. R after E 6. R before Y
Wait, that‘s six R’s. Let me make sure I didn‘t miss any. Let me go through each 
letter again: 1. S: Not an R. 2. T: Not an R. 3. R: 1 4. A: Not an R. 5. W: Not an R. 6. B: 
Not an R. 7. E: Not an R. 8. R: 2 9. R: 3 10. Y: Not an R.
So yeah, only three R's. Wait, that contradicts my previous count. Hmm, maybe I 
miscounted earlier. Let me recount more carefully.
Let me list each letter and note if it's an R:
1. S: No 2. T: No 3. R: Yes (1) 4. A: No 5. W: No 6. B: No 7. E: No 8. R: Yes (2) 9. R: Yes 
(3) 10. Y: No
Ah, so only three R's. So the answer should be 3. I think I confused myself earlier, 
but now it's clear. So the total number of "r"s in "strawberry" is 3.
</think>
3

Figure 16: Case Study on Deepseek-R1-Distilled-Qwen1.5B . Steering one neuron with highest IPG
score with scaling factor γ = 1.1 on layer 20.
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E USE OF LARGE LANGUAGE MODELS (LLMS)

We leverage large language models (LLMs) as auxiliary tools in our research. Specifically, we
employed LLM in Section 4.4 to assist with fine-grained auto-labeling of neurons and features,
where the model judge the granular reasoning abilities of those components. These generated labels
were subsequently manually verified by the authors to ensure accuracy and consistency.

Beyond this, LLMs were not involved in core research contributions, including the design of meth-
ods, theoretical analysis, experimental setup. All analyses, and conclusions presented remain the
sole responsibility of the authors.
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