

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERPRETING AND CONTROLLING LLM REASONING THROUGH INTEGRATED POLICY GRADIENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque, raising concerns regarding truthfulness, safety, and controllability in practical applications. Existing interpretability approaches targeting reasoning either rely on human-annotated contrastive pairs to derive control vectors, which limits reliability and generalization, or identify neurons correlated with superficial textual concepts, failing to capture the complexity of reasoning processes. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture causal effects from model internal workings to the reasoning outputs. In this paper, we build on causality-aware and outcome-oriented principles that focus on identifying components that have causal contributions to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model inner workings like neurons, by propagating compound outcome-based signals (e.g., post reasoning accuracy) backward through model inference trajectories. IPG is efficient requiring only a few calls to the standard gradient operator, which uncovers causal structures governing complex reasoning and avoids large manual supervision. Empirical evaluations demonstrate that our approach achieves more precise mechanistic interpretability and enables reliable modulation of reasoning behaviors across diverse reasoning models.

1 INTRODUCTION

Large Language Models (LLMs) have shown outstanding performance in addressing natural language processing (NLP) tasks (Touvron et al., 2023; Brown et al., 2020; Qwen Team, 2024). Beyond simple next-token prediction, modern LLMs now demonstrate sophisticated reasoning abilities, including structured, step-by-step problem solving (Wei et al., 2022; Khot et al., 2023). Despite these advancements, the internal reasoning mechanisms underlying large language models, especially how they represent and encode such capability, remain unclear. This lack of transparency poses challenges for truthfulness, safety, and controllability in reasoning systems (Wang et al., 2025b).

Mechanistic interpretability studies suggest that the internal representation space of LLMs encodes reasoning-related concepts. Existing interpretability approaches for reasoning fall into two categories. The first derives control vectors in the representation space to induce desired behaviors (Højer et al., 2025; Wang et al., 2025a), but these methods heavily rely on well-designed contrastive input pairs, raising uncertainty about whether the target reasoning behaviors are truly elicited and limiting their reliability in coupling behaviors to specific prompts. The second line of work analyzes individual internal components, such as neurons (Stolfo et al., 2023; Rai & Yao, 2024) or sparse features (Galichin et al., 2025), focusing on mediation analysis (Pearl, 2001) on short-term effect, e.g., arithmetic, or on correlations between their activations and text patterns, e.g., reasoning-related tokens. While informative, these prevalent approaches face one or both of the following limitations: (i) *Lack of causality*: correlation-based analyses fail to isolate mechanisms that causally drive reasoning behaviors. (ii) *Limited scope*: they capture only short-term effects of the inner workings, neglecting their cumulative influence across multi-step reasoning (Sui et al., 2025), such as on final task accuracy.

054 We design our approach for mechanistic interpretability of reasoning in LLMs based on two key
 055 principles: *causality-aware* and *outcome-oriented*. The effects of internal components should be
 056 evaluated by their causal contribution to reasoning behaviors, and these contributions should be
 057 measured with respect to the final outcome of reasoning. Since reasoning unfolds over long horizons,
 058 the outcome (e.g., correctness of the final answer) captures the integrated influence of intermediate
 059 steps (Sui et al., 2025). Both principles further enable effective steering of LLM reasoning.

060 Building on these principles, we propose Integrated Policy Gradient (IPG), a novel training-free
 061 framework for interpreting and controlling reasoning in LLMs. IPG first applies gradient-based
 062 attribution to identify influential internal *components* (such as neuron or sparse features) within the
 063 LLM model that causally shape reasoning behavior. However, standard gradient approaches are
 064 limited because reasoning outcomes are typically non-differentiable, e.g., final answer correctness
 065 provided by external verifier (Guo et al., 2025). To address this, IPG incorporates policy gradient
 066 (Mnih et al., 2016; Schulman et al., 2017), which propagates outcome-based reward signals
 067 backward through the entire inference trajectory. This enables attribution of cumulative, long-range
 068 effects, overcoming challenges of sparse and non-differentiable outcome signals. Inspired by Sun-
 069 dararajan et al. (2017); Dhamdhere et al. (2019), IPG further aggregates policy gradients along the
 070 path from a baseline to the observed activation level of each component. This integrated path ac-
 071 cumulation ensures completeness and faithfulness in attributing reasoning behaviors. Importantly,
 072 IPG achieves this efficiently, requiring only a small number of gradient computations without up-
 073 dating model parameters. By eliminating the need for hand-crafted contrastive input pairs and moving
 074 beyond correlation with surface text patterns, IPG provides a principled, causality-aware, and
 075 outcome-oriented approach to mechanistic interpretability of LLM reasoning. Figure 1 illustrates
 076 the paradigms of current methods and our IPG and shows our advantages by the effectiveness of
 077 controlling reasoning behavior.

077 We evaluate the reasoning-related components identified by IPG on two representative open-source
 078 LLMs and demonstrate their superior *control effectiveness* in steering reasoning behaviors. Across
 079 four large-scale reasoning benchmarks, IPG consistently outperforms prior approaches. Moreover,
 080 the identified components exhibit strong *transferability*, results derived from prompt-elicited rea-
 081 soning models (Yang et al., 2024) can be directly applied to training-induced variants (Guo et al.,
 082 2025) within the same model family, eliminating redundant interpretation efforts. Finally, individ-
 083 ual components, such as specific neurons, enable *fine-grained controllability* over distinct aspects of
 084 reasoning, including problem comprehension and task decomposition, underscoring the potential of
 085 IPG for advancing mechanistic interpretability of LLM reasoning.

086 In summary, our work makes three key contributions, [centered on improving the mechanistic un-
 087 derstanding and controllability of reasoning in large language models](#). (i) We introduce Integrated
 088 Policy Gradient (IPG), a novel training-free framework [towards reasoning mechanism](#) that over-
 089 comes the limitations of prior approaches by moving beyond correlation analysis and hand-crafted
 090 contrastive inputs. IPG is both causality-aware and outcome-oriented, attributing reasoning behav-
 091 iors directly to internal components based on long-horizon outcomes. (ii) We demonstrate that IPG
 092 achieves superior control effectiveness, enabling not only reliable steering of reasoning behaviors
 093 but also fine-grained controllability over specific reasoning skills. (iii) We show that the identified
 094 components exhibit strong transferability across model variants, substantially reducing redundant
 095 interpretation efforts. Together, these contributions advance the mechanistic understanding and con-
 096 trollability of reasoning in large language models.

097 2 RELATED WORK

101 **Reasoning in Large Language Models.** Reasoning has become a core capability of Large Lan-
 102 guage Models (LLMs). To improve LLM’s reasoning ability, existing methods primarily include
 103 prompt-elicited (Wei et al., 2022; Khot et al., 2023) and training-induced reasoning. The training-
 104 induced methods involve reinforcement learning (RL) (Guo et al., 2025; OpenAI, 2024; Qwen Team,
 105 2024), optimizing reasoning behaviors with reward signal. Alternatively, other methods utilize su-
 106 pervised fine-tuning, where models are explicitly trained on datasets of reasoning chains (Yue et al.,
 107 2023) or distilled from more powerful reasoning models (Guo et al., 2025). Despite the success in
 108 enabling reasoning capabilities, how these models encode their internal reasoning remains unclear.

Figure 1: Paradigms of interpretability for reasoning in LLMs and comparison results on reasoning datasets. (a) Illustration of the three paradigms, regarding (i) text-pattern methods that associate high activations with special tokens (e.g., “Wait”); (ii) control-vector methods that rely on human-craft contrastive input pairs; and (iii) our proposed Integrated Policy Gradient method. t is the reasoning time step. (b) Intervention procedure of our method: selected components are scaled by a factor γ (see Section 3.3). (c) Average accuracy after steering across reasoning tasks for each paradigm.

Mechanistic Interpretability in Language Models for Reasoning. Mechanistic interpretability seeks to reverse-engineer the computations of language models by examining their internal representations (Bereska & Gavves, 2024). Reasoning, however, requires multi-step and long-horizon internal computation, posing unique challenges for the prevalent MI method (Plaat et al., 2025). Representation space steering aims to control model behavior, by adding vectors derived from contrastive input-output pairs (Højer et al., 2025; Zhu et al., 2025). These methods require carefully annotated contrastive pairs and prompt design, which struggle to ensure the intended target states are truly elicited and makes it challenging to reliably align the reasoning behaviors (Højer et al., 2025). Other work targets concept-specific neurons (Dai et al., 2022; Gurnee et al., 2023; Wang et al., 2022; 2025c), and feature extractions using sparse autoencoders (Gao et al., 2025; Huben et al., 2024). Such methods have also been applied to reasoning-related concepts, including arithmetic (Rai & Yao, 2024) neurons and reason-specific features (Galichin et al., 2025), focusing on correlating activations with surface text patterns (e.g., reasoning tokens like “wait”). Intervention-based methods like Causal Mediation Analysis (CMA) (Stolfo et al., 2023) can identify causal components in reasoning, but they primarily focus on short-term tasks such as simple arithmetic, limiting their applicability to the dynamic, multi-step nature of reasoning. Overall, existing methods do not establish cause relation between target reasoning behavior and components, or struggle to capture cumulative, multi-step influences in reasoning. In contrast, our approach is causality-aware and outcome-oriented, attributing reasoning behavior without relying on human annotations or hand-crafted text patterns.

3 INTEGRATED POLICY GRADIENT (IPG) METHOD

In this section, we introduce IPG, a framework for identifying internal components that causally underlie reasoning in LLMs and for exerting fine-grained control over their reasoning behavior, depicted in part (a) of Figure 1. Using outcome-aware reward signals (Section 3.1), IPG attributes reasoning performance to internal activations via gradient-based attributions (Section 3.2). The selected components are then scaled to modulate reasoning behavior (Section 3.3), enabling interpretable and causal interventions.

3.1 REASONING BEHAVIOR MEASUREMENT

Complex reasoning abilities that unfold over long-horizon inference trajectories have become a central focus in recent language model research (Guo et al., 2025). A key challenge for mechanistic interpretability is to identify internal components that causally drive reasoning behavior, where the final outcome rely on multi-step dependencies across the trajectory.

To this end, we employ gradient-based attribution methods to localize hidden components that cause reasoning outcomes. However, standard gradient approaches are limited in this setting, since reasoning feedback is typically sparse and non-differentiable, and the objective (e.g., final-answer correctness) is often only realized after an entire inference sequence. To overcome this limitation, we integrate policy-gradient methods (Mnih et al., 2016; Schulman et al., 2017), which propagate

162 outcome-aware signals (such as correctness rewards) backward through the trajectory, thereby enabling attribution over long-horizon reasoning effects.
 163

164 To obtain reliable measurements of reasoning behavior, we extend the perspective of policy gradient
 165 (Mnih et al., 2016; Schulman et al., 2017) from parameter space to representation space by
 166 propagating outcome-based signals back to intermediate hidden states \mathbf{h} . Concretely, for a measure
 167 $J(\mathbf{h})$ that assesses reasoning ability, the policy gradient with respect to the hidden state is
 168

$$169 \frac{\partial J(\mathbf{h})}{\partial \mathbf{h}} = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=1}^T \frac{\partial}{\partial \mathbf{h}} \log \pi_\theta(a_t | s_t; \mathbf{h}) \cdot A^\pi(s_t, a_t) \right], \quad (1)$$

172 where $\tau = (a_1, \dots, a_T)$ is a reasoning trajectory following π_θ which is the policy parameterized by
 173 θ , i.e., the LLM to be interpreted. s_t is the prefix tokens and a_t is the next token at the reasoning
 174 time step t . $A^\pi(s_t, a_t)$ is the advantage function estimating the long-horizon benefit of taking action
 175 a_t and s_t . In practice, it can be estimated using GRPO (Shao et al., 2024), that measures the relative
 176 benefit of taking action a_t at state s_t compared to the average. See Appendix A.3 for details. The
 177 targeted hidden representation \mathbf{h} is treated as the variable of interest. The process is depicted in part
 178 (a) of Figure 1.

179 Rather than using policy gradients to update model parameters θ , we compute gradients with re-
 180 spect to \mathbf{h} to obtain attribution signals that reflect the long-horizon impact of internal activations
 181 on reasoning outcomes. These signals form the basis for quantifying their effects on reasoning
 182 performance and selecting components for subsequent causal interventions (Sections 3.2 and 3.3).

183 3.2 REASONING COMPONENTS ATTRIBUTION

185 Next, we attribute outcome-aware reasoning signals to internal hidden components. Prior inter-
 186 pretability methods often rely on contrastive example pairs or hand-crafted input patterns (e.g.,
 187 arithmetic templates) (Højer et al., 2025; Rai & Yao, 2024; Galichin et al., 2025). Such strategies
 188 are limited: (i) they do not establish *causal* links between components and long-horizon reasoning
 189 outcomes, and (ii) they fail to capture the cumulative, multi-step dependencies that produce the final
 190 reasoning result. Comparisons between these paradigms are shown in part (a) of Figure 1.

191 To address these limitations, we propose Integrated Policy Gradient (IPG), based on two principles:
 192 *causality-aware* and *outcome-oriented*. This means that the components identified should causally
 193 contribute the reasoning behavior and affects long-horizon reasoning outcomes. Given a hidden state
 194 $\mathbf{h} = [h_1, \dots, h_i, \dots, h_n] \in \mathbb{R}^n$ with hidden dimension n in a language model layer corresponding to
 195 an input \mathbf{x} . Our goal is to measure the influence of each component $h_i \in \mathbf{h}$ on the model’s reasoning
 196 ability. We define the attribution score for reasoning ability with respect to each component h_i as
 197

$$198 \text{IPG}(h_i; \mathbf{x}) = (h_i - h'_i) \int_0^1 \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=1}^T \frac{\partial}{\partial h_i} \log \pi_\theta(a_t | s_t; h' + \alpha(h - h')) \cdot A^\pi(s_t, a_t) \right] d\alpha, \quad (2)$$

201 where h'_i is the relative baseline value of h_i . Deriving from Equation 1, for each generated trajectory
 202 $\tau = (a_1, \dots, a_T)$, $\log \pi_\theta(a_t | s_t; h' + \alpha(h - h'))$ is the log-probability of selecting token a_t given
 203 the context s_t under the interpolated hidden state, it is weighted by the advantage $A^\pi(s_t, a_t)$, making
 204 the resulting gradients outcome-relevant (Zhong et al., 2025). We combine gradient-based attribu-
 205 tion with policy-gradient methods (Mnih et al., 2016; Schulman et al., 2017), so that reward signals
 206 are propagated backward along inference trajectories, attributing cumulative and long-horizon ef-
 207 fects to intermediate hidden representations. Inspired by (Sundararajan et al., 2017; Dhamdhere
 208 et al., 2019), we accumulate policy gradients along the path from a baseline \mathbf{h}' to the original ac-
 209 tivation \mathbf{h} , spanning across activation levels. This path-integral construction yields baseline-aware
 210 importance scores that reduce gradient noise, producing robust signals for causal intervention. Cru-
 211 cially, IPG computes these attributions efficiently, requiring only a small number of gradient eval-
 212 uations without updating model parameters.

213 To ensure robustness, the IPG attribution score is computed per sample and aggregated across a
 214 dataset. Let $\mathcal{D} = \{\mathbf{x}^{(d)}\}_{d=1}^M$ be a small supporting dataset of M reasoning questions. For each com-
 215 ponent index i and each sample index d , we compute the per-sample attribution score $\text{IPG}(h_i; \mathbf{x}^{(d)})$
 (Equation 2). These scores are aggregated into a global importance statistic, for example, the mean

216 attribution score S_i for component h_i , and the top- p components \mathbf{P} are
 217

$$218 \quad S_i = \frac{1}{M} \sum_{d=1}^M \text{IPG}(h_i; \mathbf{x}^{(d)}), \quad \mathbf{P} = \arg \max_{i \in [n]} S_i, \quad (3)$$

221 The components with indices within $\mathbf{P} = \{i_1, \dots, i_p\}$ are treated as the most influential components,
 222 for eliciting reasoning behavior that derives the desired outcome. They are further used for
 223 subsequent intervention in Section 3.3. Importantly, this identification step is performed *once* for a
 224 given frozen model. Once the set \mathbf{P} is identified, interventions can be applied repeatedly without re-
 225 computing attributions. This enables direct transfer of reasoning control to other models of the same
 226 family (e.g., distilled variants), where we observe consistent effects as demonstrated in Section 4.5.
 227 In addition, we provide sensitivity analysis of the number M in Appendix D.1.2. We conclude
 228 that even with a relative small M , our IPG can accurately select the component that causally drive
 229 reasoning ability, which shows the data efficiency of our method.

230 In our framework, \mathbf{h} can be any interpretable component within the model. Our IPG can be seam-
 231 lessly integrated with various policy gradient algorithms such as GRPO (Shao et al., 2024). Addi-
 232 tionally, it can accommodate any signal that can be expressed as a reward function, such as genera-
 233 tion length (see Appendix A.3). To the best of our knowledge, we are the first to integrate gradient-
 234 based attribution with policy gradients for interpreting reasoning behavior in LLMs. This approach
 235 is beyond purely gradient-based methods by handling sparse and non-differentiable outcome-based
 236 signals of reasoning behavior, enabling precise and causal localization of reasoning-critical compo-
 237 nents. Full illustration of our framework is provided in Figure 1.

238 3.3 CONTROL REASONING BEHAVIOR

240 To control the reasoning behavior inside the model, we intervene on the components indexed by
 241 $i \in \mathbf{P}$ identified in Section 3.2, following interpretability practices (Dai et al., 2022). Formally, for
 242 each component h_i , we apply a multiplicative scaling factor as
 243

$$244 \quad h_i = \text{Intervene}(h_i) = \gamma h_i \quad (4)$$

245 By setting different values of γ , we can enhance ($\gamma > 1$) or suppress ($0 \leq \gamma < 1$) the identified
 246 components, thereby controlling the reasoning behavior in the target model (part (c) in Figure 1).

247 Beyond neuron-level hidden state components h_i , we can also intervene on feature-level compo-
 248 nents by integrating with Sparse Autoencoders (SAEs) (Makhzani & Frey, 2014) for a disentangled
 249 feature space. Recent studies (Gao et al., 2025; Galichin et al., 2025) show that sparse features
 250 mitigate neuron polysemy, enhancing interpretability and steering efficacy. We thus adopt
 251 k-Sparse Autoencoders (k-SAEs) (Gao et al., 2025) to transform the original hidden space \mathbf{h} with
 252 dimension n into a sparse, higher-dimensional space \mathbf{f} with m larger than n , and then decode back
 253 to a reconstructed hidden state vector $\hat{\mathbf{h}} \in \mathbb{R}^n$. The encoding and decoding processes are shown as
 254

$$255 \quad \mathbf{f} = [f_1, f_2, \dots, f_m] = \text{TopK}(\mathbf{W}_{\text{enc}}(\mathbf{h} - \mathbf{b}_{\text{pre}})), \quad \hat{\mathbf{h}} = \mathbf{W}_{\text{dec}}\mathbf{f} + \mathbf{b}_{\text{pre}} + \epsilon(\mathbf{h}), \quad (5)$$

256 where \mathbf{f} has non-zero elements $|\mathbf{f}|_0 = k$ ($k < m$), $\mathbf{W}_{\text{enc}} \in \mathbb{R}^{m \times n}$ is the encoder weight, $\mathbf{b}_{\text{pre}} \in \mathbb{R}^n$
 257 is the bias term, and $\text{TopK}(\cdot)$ retains the top k largest values while zeroing others. $\mathbf{W}_{\text{dec}} \in \mathbb{R}^{n \times m}$
 258 is the decoder weight, and $\epsilon(\mathbf{h}) = \mathbf{h} - \hat{\mathbf{h}} \in \mathbb{R}^n$ is the SAE error term. We present results and
 259 implementation details in B.1. Empirically (Section 4.2.1), SAE-based interventions yield stronger
 260 and more stable control compared to raw neuron scaling, and they enable finer-grained manipulation
 261 of reasoning subskills, e.g., numerical calculation and problem decomposition (Section 4.4).

263 4 EXPERIMENT

266 In this section, we conduct empirical evaluation for our proposed IPG in interpreting and controlling
 267 reasoning behaviors in LLMs. We aim to answer the below research questions (RQs). **RQ1:** Can we
 268 find influential internal reasoning components and control reasoning behavior in language models?
 269 **RQ2:** Does IPG find the general and consistent reasoning components across benchmarks? **RQ3:**
 Can IPG find components that reflect more granular reasoning ability?

270
 271 Table 1: Comparison of IPG and baseline methods on enhancing and suppressing accuracy across
 272 reasoning datasets for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) and Llama3.1-8B-Instruct
 273 (Grattafiori et al., 2024). Best and second best results are shown in **bold** and underlined format. The
 274 arrows \uparrow and \downarrow means the higher or lower results are better, respectively.

Method	Enhancing Accuracy \uparrow				Suppressing Accuracy \downarrow			
	GSM8K	MATH-500	AIME-2024	GPQA Diamond	GSM8K	MATH-500	AIME-2024	GPQA Diamond
Qwen2.5-Math-1.5B Instruct								
Original	82.41	63.00	10.00	24.75	82.41	63.00	10.00	24.75
Random	82.86	63.20	<u>16.67</u>	26.77	79.15	59.80	6.67	27.78
Activation	82.56	63.40	20.00	25.75	67.78	39.80	0.00	15.15
R.N. (Rai & Yao, 2024)	82.26	62.20	13.33	24.24	<u>7.13</u>	<u>4.40</u>	0.00	15.15
C.V. (Højer et al., 2025)	<u>83.85</u>	62.60	<u>16.67</u>	28.78	-	-	-	-
SAE-R (Galichin et al., 2025)	83.32	64.00	13.33	25.76	82.26	63.80	10.00	21.71
IPG (Ours)	84.38	<u>64.60</u>	20.00	<u>30.30</u>	0.00	1.60	0.00	0.00
IPG-SAE (Ours)	84.38	65.80	20.00	30.81	55.12	14.80	<u>3.00</u>	<u>1.51</u>
Llama3.1-8B-Instruct								
Original	85.89	41.80	6.67	23.23	85.89	41.80	6.67	23.23
Random	86.20	41.40	<u>6.67</u>	27.78	84.98	39.00	<u>10.00</u>	26.77
Activation	85.75	<u>43.00</u>	<u>13.33</u>	25.25	81.88	28.60	0.00	14.14
R.N. (Rai & Yao, 2024)	86.05	40.80	6.67	21.21	75.44	2.06	0.00	9.60
C.V. (Højer et al., 2025)	85.97	40.00	6.67	<u>28.78</u>	-	-	-	-
SAE-R (Galichin et al., 2025)	86.28	41.80	<u>10.00</u>	26.77	85.97	43.20	10.00	22.22
IPG (Ours)	87.41	42.40	<u>13.33</u>	27.27	0.00	1.40	0.00	0.00
IPG-SAE (Ours)	87.41	44.00	20.00	29.80	85.06	33.40	0.00	<u>1.52</u>

290 291 4.1 EXPERIMENTAL SETUP 292

293
 294 **Evaluation Benchmarks.** For comprehensive evaluation, we choose several reasoning-
 295 related benchmarks, including GSM8K (Cobbe et al., 2021), Math500 (Hendrycks et al., 2021),
 296 AIME2024 (Mathematical Association of America, 2024) and GPQA-Diamond (Rein et al., 2023).

297
 298 **Target Models.** We experiment with two representative open-source LLMs: Qwen2.5-Math-1.5B-
 299 Instruct (Yang et al., 2024) and Llama3.1-8B-Instruct (Grattafiori et al., 2024), and additionally eval-
 300 uate DeepSeek-Qwen-1.5B (Guo et al., 2025) in Section 4.5. This selection covers different model
 301 scales, architectures (Qwen vs. LLaMA), and reasoning paradigms (prompt-elicited vs. training-
 302 distilled), highlighting the generalizability of our method.

303
 304 **Baselines.** We compare our IPG and IPG-SAE (integrated with k-SAE (Gao et al., 2025)) against
 305 several baselines: *Random* (RND.), which samples neurons uniformly, and *Activation* (ACT.), which
 306 ranks by activation magnitude. We also include *Reasoning Neuron* (R.N.) (Rai & Yao, 2024), an
 307 SAE-based method (SAE-R) (Galichin et al., 2025) and *Control Vector* (C.V.) (Højer et al., 2025),
 308 which represent interpretable approaches using text patterns and contrastive data pairs for reasoning-
 309 related interventions. More details are in Appendix C.2.

310
 311 **Implementation Details.** We constrain our IPG and baseline methods on the residual stream
 312 following (Højer et al., 2025; Galichin et al., 2025) for fair comparison. For the policy gradient
 313 algorithm, we employ GRPO (Shao et al., 2024). The external verifier for reasoning outcomes
 314 comes from either rule-function based (Appendix A.3), such as generation length (Appendix D.2)
 315 or model-based signals for accuracy (using Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025)).
 316 We integrate k-SAE (Gao et al., 2025) into target models, configured with an expansion factor of
 317 16 and $k = 32$ active features. Following prior work (Cheng et al., 2024; Tang et al., 2025), we
 318 consistently employ a greedy decoding strategy during inference with zero-shot setting. **For the**
 319 **baseline h'_i mentioned in Equation 2, we choose zero value, i.e. $h'_i = 0$ for all $i \in [n]$, where n is the**
 320 **hidden dimension. We also provide sensitive analysis of choice of baseline in Appendix D.1.4.** For
 321 intervention, we apply a positive scaling factor γ for enhancement and set $\gamma = 0$ for suppression, as
 322 described in Section 3.3. More details are provided in Appendix B.

323 4.2 IDENTIFICATION AND CONTROL OF REASONING BEHAVIORS 324

325
 326 In this section, we evaluate our IPG and baseline methods both qualitatively and quantitatively on
 327 the effectiveness of reasoning ability control across different reasoning-related datasets. **(RQ1)**

Figure 2: Effects of targeted interventions on reasoning performance. Left: impact of the intervention scaling factor on Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024). Right: impact of the number of selected features on reasoning accuracy.

4.2.1 QUANTITATIVE RESULTS ON CONTROLLING REASONING BEHAVIOR

Analysis 1: Reasoning behavior control with identified components. We evaluate our IPG alongside baseline methods for controlling reasoning behavior in two types of language models across multiple reasoning datasets in Table 1. As Control Vector (Højer et al., 2025) is not applicable to the suppression setting, its results are excluded.

Findings 1: IPG achieves effective control of reasoning behavior. In Table 1, IPG achieves excellent and consistent control over the performance of reasoning tasks in both enhancement and suppression settings. Integrating with SAEs further increases our effectiveness. R.N. (Rai & Yao, 2024) and SAE-R (Galichin et al., 2025) provide only modest improvements, while C.V. (Højer et al., 2025) shows mixed gains and fails on MATH500 (Hendrycks et al., 2021). These results highlight the limitations of approaches relying on text patterns or input contrastive pairs, which cannot reliably uncover components that causally drive reasoning. Overall, our findings suggest that causality-aware, outcome-driven attribution, especially when integrated with disentangled feature representations, offers a more faithful and robust mechanism for steering LLM reasoning than prior baselines. This shows the advantages over existing methods paradigms as shown in Figure 1.

Analysis 2: Fine-grained control of reasoning behavior. We vary the scaling factor γ and the number of intervened components (top- p SAE features) to probe how sensitively reasoning performance responds (see Figure 2). We randomly select 2 layers within the two models (Figure 2b) and choose the top-ranked features based on our attribution score in Equation 3.

Finding 2: IPG enables precise modulation of reasoning behavior. As shown in Figure 2a, baseline interventions yield only minor or unstable effects, whereas IPG produces clear, predictable changes that amplifying identified components consistently improves reasoning, while suppressing them degrades it. The effect is smoothly controlled by the scaling factor. Notably, IPG with SAE remains stable even as baselines collapse. In figure 2b, we can observe that reasoning-critical features are concentrated in the top-ranked subset, with even single-feature interventions yielding substantial gains. Overall, IPG achieves more effective and tunable control of reasoning than prior methods.

4.2.2 QUALITATIVE RESULTS ON CONTROLLING REASONING BEHAVIOR

Analysis 3: Response difference before and after intervention. We showcase an example from GSM8K (Cobbe et al., 2021) before and after applying intervention (see in Section 3.3) in the neurons identified by our IPG, demonstrating the impact on improving and suppressing reasoning ability, as illustrated in Figure 3. More examples are provided in Appendix D.4.2.

Finding 3: IPG precisely identifies reasoning-critical components. As shown in Figure 3, the original response fails to follow the strict requirement. The contrast shows that interventions on IPG-identified components have causal effects on intermediate reasoning steps. For the suppressing setting, the model can not even get the equation correct. This demonstrates that IPG does not merely push the model toward a correct final output, it also improves the internal reasoning trajectory,

Figure 3: Responses generated by Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) on one example in GSM8K (Cobbe et al., 2021), including both original and intervened outputs, with the model’s reasoning ability elicited to arrive at the correct answer.

We also conduct another experiment on reasoning mechanism interpretability, i.e., reasoning length related mechanism analysis (Figure 5). We examine the controllability of trajectory length as a concrete example of reasoning mechanism interpretability, where interventions successfully modulate the output length of DeepSeek-Qwen-1.5B (Guo et al., 2025) without sacrificing final answer accuracy. This demonstrates that IPG can identify neurons corresponding to different reasoning abilities, with interventions leading to interpretable effects across multiple reasoning facets, highlighting the generality of our approach.

(a) Frequency of top $p = 20$ neuron indices for GSM8K (Cobbe et al., 2021) and MATH500 (Hendrycks et al., 2021).

(b) Jaccard similarity between neuron indices across datasets.

Figure 4: Left: histogram of neuron index frequencies, highlighting the top- $p = 20\%$ neurons identified by our method on GSM8K (Cobbe et al., 2021) and MATH500 (Hendrycks et al., 2021). Right: similarity matrix comparing neuron indices discovered in 4 different datasets, highlighting shared reasoning structure across tasks, with diagonal showing random baseline.

4.3 GENERAL REASONING MECHANISM ACROSS TASKS

In this part, we show whether the components identified by our IPG and the baseline method can transfer seamlessly from one dataset to others, finding the general and consistent components that truly causally drive the reasoning behavior (**RQ2**).

Analysis 4: Components consistency, similarity and performance across dataset. To investigate how consistent the reasoning components are, we investigate the transferability of these components by applying those derived from GSM8K (Cobbe et al., 2021) to MATH500 (Hendrycks et al., 2021), and vice versa. The resulting accuracy is presented in Table 2. Furthermore, we visualize the frequency of reasoning components selected across samples in Figure 4a. For each sample, we compute an importance score per component (via IPG attribution from Sec. 3.2 or raw activations) and select the top- p neurons. Aggregating these selections across all samples yields a per-neuron frequency distribution. High overlap in these frequency distributions indicates that the neurons exhibit consistent behavior. We further quantify cross-dataset consistency using Jaccard similarity, which is

Figure 5: Length control in GSM8K (Cobbe et al., 2021) for DeepSeek-R1-Distilled-Qwen-1.5B (Guo et al., 2025). IPG precisely identifies neurons that is related with reasoning length, suggested by effective control while maintaining high accuracy.

defined as $\frac{|P_A \cap P_B|}{|P_A| + |P_B| - |P_A \cap P_B|}$ in Figure 4b, where P_A and P_B are neuron indices identified in the two datasets. Diagonal elements represent the RND. baseline, upper triangular elements show the Act baseline, and lower triangular elements depict our proposed IPG.

Finding 4: IPG finds consistent reasoning mechanisms across diverse tasks. Cross-dataset transfer results as shown in Table 2, suggests that IPG achieves the most accuracy gains, showing our consistence across tasks. By comparing with existing interpretability baseline methods (details in Section 4.1), we conclude that our IPG accurately identified the inherent reasoning components, demonstrating stronger cross-benchmark generalization. Figure 4a shows that IPG identifies components with consistent cross-benchmark overlap, revealing reasoning-relevant features shared between datasets. In contrast, the Activation baseline tends to pick neurons with persistently large magnitudes, which does not reliably control reasoning performance, suggested by the inferior and unstable accuracy in Table 1. As quantified in Figure 4b: IPG shows moderate, not extreme overlap across selected sets, whereas Activation’s high similarity reflects only magnitude-driven bias. Given that these reasoning benchmarks share underlying skills but diverge considerably in difficulty, the moderate Jaccard similarity is expected. This suggests that we successfully capture general, transferable reasoning components while retaining the benchmark-specific adaptability.

4.4 FINE-GRAINED REASONING BEHAVIOR DISCOVERY

We further look into the identified reasoning components to reveal its granular aspects on reasoning behaviors, shedding some lights on the inner workings of LLMs on reasoning ability (**RQ3**).

Analysis 5: Fine-grained aspects of reasoning behavior discovery. We employ causal interventions to analyze reasoning behavior at a fine-grained level. Specifically, we intervene on individual components, e.g., single neuron or feature ranked by IPG scores (Eq. 3), and assess their impact on reasoning behavior over GSM8K (Cobbe et al., 2021). Each component is evaluated along four reasoning dimensions (*Semantic*, *Decomposition*, *Thoroughness*, and *Calculation*). GPT-5-mini is used to summarize and label the model’s reasoning behaviors, and representative examples of enhancing a single neuron versus an SAE feature are shown in Figure 6. Additional experimental details are in Appendix B.2 with Table 10 illustrate these reasoning dimensions.

486
 487 **Findings 5: IPG shows granular aspects on reasoning**
 488 **behaviors.** As shown in Figure 6, enhancing neuron
 489 #940 alters both *Thoroughness* and *Semantic*, whereas
 490 boosting SAE feature #8053 primarily improves *Calculation*. Consistent with prior observations of neuron poly-
 491 semanticity (Mu & Andreas, 2020; Olah et al., 2020),
 492 intervening on a single neuron frequently impacts multiple
 493 dimensions simultaneously. In contrast, SAE-derived
 494 features are more disentangled as interventions on an
 495 individual feature tend to affect a single reasoning aspect.
 496 These causal interventions demonstrate that neurons and
 497 sparse features play distinct functional roles in multi-step
 498 reasoning, and that disentangled feature spaces enable
 499 more targeted control. Additional case studies are pro-
 500 vided in Appendix D.4.1.

501 4.5 ROBUSTNESS OF FOUND MECHANISMS UNDER DISTILLED MODELS

502
 503 **Analysis 6: Transferring IPG-identified neurons into reasoning-distilled models.** In addition to
 504 general purpose models with prompt-elicited reasoning, we probe the robustness of IPG-identified
 505 mechanisms under a reasoning-distilled model. Specifically, we intervene on neurons identified in
 506 Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) within DeepSeek-R1-Distilled-Qwen-1.5B (Guo
 507 et al., 2025).

508 **Findings 6: Components identified by IPG**
 509 **can be seamlessly transferred.** As shown
 510 in Table 3, steering the inherited neurons in
 511 the DeepSeek-distilled model consistently im-
 512 proves performance across datasets. This in-
 513 dicates that the core reasoning neurons remain
 514 crucial even when the underlying model is dis-
 515 tilled for reasoning. This result not only validates the ability of IPG to pinpoint fundamental, robust
 516 neurons for reasoning, but also offers an insight for the mechanism of model distillation, suggesting
 517 that distillation might [strengthen the key reasoning-related components that are already present in the base model, rather than reshaping the internal reasoning structure](#).

519 5 CONCLUSION

521 In this work, we propose IPG, a novel framework for interpreting LLM reasoning behavior that
 522 based on causality-aware and outcome-oriented principles. Our IPG applies gradient-based meth-
 523 ods to identify influential internal components that causally contribute to reasoning behavior. By
 524 incorporating policy gradients (Schulman et al., 2017), we attribute the outcomes that depend on
 525 cumulative and long-range effects in reasoning behavior and address the challenge of sparse and
 526 non-differentiable outcome signals. Empirically, IPG provides effective and interpretable identifi-
 527 cation and control of reasoning behavior across different types of LLMs. Additionally, IPG exhibit
 528 excellent transferability both in reasoning datasets and between prompt-elicited and training-induced
 529 model variants. Our IPG offers interpretable solution to control reasoning ability in LLMs, though
 530 challenges remain such as more effective intervention. Future work includes extending our IPG
 531 framework to interpret domains where performance is hard to quantify, such as the emotional intel-
 532 ligence and creativity in LLMs or alternative model structures (e.g., LlaDA (Nie et al., 2025)), and
 533 to precisely manipulate model behavior by steering the identified components.

534 6 REPRODUCIBILITY STATEMENT

535 We have made great efforts to ensure the reproducibility of our results. The experiment setup,
 536 including model configurations, training steps and evaluation [datasets](#), metrics, is clearly described
 537 in the main paper and appendix. We believe this will help other researchers reproduce our work and
 538 further advance the field. The reproducible code will be released upon the acceptance of this paper.

539 Figure 6: Dual radar plots of neuron-
 540 and feature-level interventions: top for
 541 enhancing neuron #940 and feature #8053.

Model	GSM8K	Math500	AIME2024
DeepSeek-R1-Distill-Qwen-1.5B	75.21	61.40	16.67
+ IPG Neuron Enhancement	77.26	62.00	26.67

542 Table 3: Results of transferred IPG neuron en-
 543 hancement with reason-distilled models.

540 REFERENCES
541

542 Max Belitsky, Dawid J. Kopiczko, Michael Dorkenwald, M. Jehanzeb Mirza, Cees G. M. Snoek,
543 and Yuki M. Asano. Kv cache steering for inducing reasoning in small language models. *arXiv
544 preprint arXiv:2507.08799*, 2025.

545 Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. *Transac-
546 tions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=ePUVetPKu6>. Survey Certification, Expert Certification.

547 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
548 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
549 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
550 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
551 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
552 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the
553 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook,
554 NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

555 Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, Hongzhi Zhang, Fuzheng Zhang, Di Zhang, Kun Gai,
556 and Ji-Rong Wen. Small agent can also rock! empowering small language models as hallucination
557 detector, 2024. URL <https://arxiv.org/abs/2406.11277>.

558 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
559 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
560 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

561 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
562 in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
563 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
564 1: Long Papers)*, pp. 8493–8502, Dublin, Ireland, May 2022. Association for Computational
565 Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL [https://aclanthology.org/2022.acl-long.581/](https://aclanthology.org/2022.acl-long.581).

566 Kedar Dhamdhare, Mukund Sundararajan, and Qiqi Yan. How important is a neuron. In *Inter-
567 national Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=SylKoo0cKm>.

568 Subhabrata Dutta, Joykirat Singh, Soumen Chakrabarti, and Tanmoy Chakraborty. How to think
569 step-by-step: A mechanistic understanding of chain-of-thought reasoning. *Transactions on Ma-
570 chine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=uHLDkQVtyC>.

571 Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y. Rogov, Elena
572 Tutubalina, and Ivan Oseledets. I have covered all the bases here: Interpreting reasoning features
573 in large language models via sparse autoencoders, 2025. URL <https://arxiv.org/abs/2503.18878>.

574 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
575 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
576 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
577 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
578 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

579 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
580 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-
581 national Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

582 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
583 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,

594 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 595 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 596 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 597 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 598 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 599 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 600 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 601 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 602 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 603 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 604 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 605 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 606 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 607 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
 608 Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junting Jia, Kalyan Vasuden Alwala, Karthik
 609 Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 610 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

611 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 612 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 613 ment learning. *Nature*, 645(8081):633–638, 2025.

614 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Berts-
 615 mas. Finding neurons in a haystack: Case studies with sparse probing. *Transactions on Machine
 616 Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=JYs1R9IMJr>.

617 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 618 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
 619 URL <https://arxiv.org/abs/2103.03874>.

620 Bertram Højer, Oliver Simon Jarvis, and Stefan Heinrich. Improving reasoning performance in
 621 large language models via representation engineering. In *The Thirteenth International Confer-
 622 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IssPhpUsKt>.

623 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 624 autoencoders find highly interpretable features in language models. In *The Twelfth International
 625 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.

626 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
 627 Sabharwal. Decomposed prompting: A modular approach for solving complex tasks, 2023. URL
 628 <https://arxiv.org/abs/2210.02406>.

629 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 630 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
 631 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
 632 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
 633 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of
 634 a large language model. Transformer Circuits Blog, March 27 2025. Anthropic; <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

635 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
 636 Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling preference
 637 data curation via human-ai synergy, 2025. URL <https://arxiv.org/abs/2507.01352>.

638 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. In *International Conference on Learn-
 639 ing Representations*, 2014.

640 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 641 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.

648 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=I4e82CIDxv>.
649
650

651 Mathematical Association of America. American invitational mathematics examination (aime) 2024. https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination, 2024.
652
653

654 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
655 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
656 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.
657

658 Jesse Mu and Jacob Andreas. Compositional explanations of neurons. *CoRR*, abs/2006.14032, 2020.
659 URL <https://arxiv.org/abs/2006.14032>.
660

661 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, JUN ZHOU, Yankai Lin,
662 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. In *ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*, 2025. URL
663 <https://openreview.net/forum?id=wz161tIUj6>.
664

665 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
666 Zoom in: An introduction to circuits. *Distill*, 5(3), 2020. doi: 10.23915/distill.00024.001. URL
667 <https://distill.pub/2020/circuits/zoom-in/>. Open Access.
668

669 OpenAI. Learning to reason with llms. <https://openai.com/index/learning-to-reason-with-llms/>, 2024. Accessed: 2025-09-05.
670

671 OpenThoughts. Open thoughts. <https://open-thoughts.ai>, 2025. Accessed: 2025-09-24.
672

673 Judea Pearl. Direct and indirect effects. In *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence*, UAI’01, pp. 411–420, San Francisco, CA, USA, 2001. Morgan
674 Kaufmann Publishers Inc. ISBN 1558608001.
675

676 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki Van Stein, and Thomas Back. Multi-
677 step reasoning with large language models, a survey. *ACM Comput. Surv.*, November 2025. ISSN
678 0360-0300. doi: 10.1145/3774896. URL <https://doi.org/10.1145/3774896>. Just
679 Accepted.
680

681 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Hugging Face, 2024.
682

683 Daking Rai and Ziyu Yao. An investigation of neuron activation as a unified lens to explain
684 chain-of-thought eliciting arithmetic reasoning of LLMs. In Lun-Wei Ku, Andre Martins, and
685 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
686 putational Linguistics (Volume 1: Long Papers)*, pp. 7174–7193, Bangkok, Thailand, August
687 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.387. URL
688 <https://aclanthology.org/2024.acl-long.387/>.
689

690 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
691 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
692 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.
693

694 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
695 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
696

697 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
698 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
699 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
700

701 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
702 metic reasoning in language models using causal mediation analysis. In *The 2023 Conference
703 on Empirical Methods in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=aB3Hwh4UzP>.
704

702 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 703 Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
 704 on efficient reasoning for large language models. *Transactions on Machine Learning Research*,
 705 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=HvoG8SxggZ>.

706 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 707 *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pp. 3319–
 708 3328, 2017.

710 Xinyu Tang, Xiaolei Wang, Zhihao Lv, Yingqian Min, Wayne Xin Zhao, Binbin Hu, Ziqi Liu,
 711 and Zhiqiang Zhang. Unlocking general long chain-of-thought reasoning capabilities of large
 712 language models via representation engineering, 2025. URL <https://arxiv.org/abs/2503.11314>.

714 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 715 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 716 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

717 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 718 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 719 *mation Processing Systems*, 2017.

720 Mengru Wang, Ziwen Xu, Shengyu Mao, Shumin Deng, Zhaopeng Tu, Huajun Chen, and Ningyu
 721 Zhang. Beyond prompt engineering: Robust behavior control in LLMs via steering target atoms.
 722 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 723 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-*
 724 *ume 1: Long Papers)*, pp. 23381–23399, Vienna, Austria, July 2025a. Association for Compu-
 725 *tational Linguistics*. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1139. URL
 726 <https://aclanthology.org/2025.acl-long.1139/>.

727 Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding
 728 skill neurons in pre-trained transformer-based language models. In Yoav Goldberg, Zornitsa
 729 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in*
 730 *Natural Language Processing*, pp. 11132–11152, Abu Dhabi, United Arab Emirates, December
 731 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.765. URL
 732 <https://aclanthology.org/2022.emnlp-main.765/>.

733 Yanbo Wang, Yongcan Yu, Jian Liang, and Ran He. A comprehensive survey on trustworthiness in
 734 reasoning with large language models. *arXiv preprint arXiv:2509.03871*, 2025b.

736 Yifan Wang, Yifei Liu, Yingdong Shi, Changming Li, Anqi Pang, Sibei Yang, Jingyi Yu, and Kan
 737 Ren. Discovering influential neuron path in vision transformers. In *The Thirteenth Interna-*
 738 *tional Conference on Learning Representations*, 2025c. URL <https://openreview.net/forum?id=WQQyJbr5Lh>.

740 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 741 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 742 models. In *Proceedings of the 36th International Conference on Neural Information Processing*
 743 *Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

744 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 745 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 746 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 747 pert model via self-improvement, 2024. URL <https://arxiv.org/abs/2409.12122>.

748 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 749 Mammoth: Building math generalist models through hybrid instruction tuning, 2023. URL
 750 <https://arxiv.org/abs/2309.05653>.

751 Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
 752 Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applica-
 753 tions, challenges, and future. *arXiv preprint arXiv:2504.12328*, 2025.

755 Rongyi Zhu, Yuhui Wang, Tanqiu Jiang, Jiacheng Liang, and Ting Wang. Self-improving model
 steering. *arXiv preprint arXiv:2507.08967*, 2025.

756 **A ALGORITHMS OF IPG**
757758 In this section, we provide two main algorithms of our method in order to clearly illustrate the key
759 steps of IPG. The first algorithm focuses on *identifying reasoning-critical components* by attribut-
760 ing outcome-weighted signals to internal representations. The second algorithm is based on these
761 identified components to *control reasoning behavior* of the model. (see more details in 3.2,3.3)
762763 **A.1 IDENTIFYING REASONING COMPONENTS**
764765 We introduce how to identify reasoning-critical components. We use a support set of \mathbb{N} samples,
766 which can be either a subset or the full dataset of any reasoning-related benchmarks like GSM8K
767 (Cobbe et al., 2021). We denote output residual stream of transformer block as $\mathcal{F}(\cdot)$ which takes
768 a sample as input and we can get the hidden state of residual stream. Here, Φ can be either the
769 identity map, corresponding to neuron-level IPG, or the SAE encoder, corresponding to feature-level
770 IPG. After that, we can localize the reasoning-critical components using IPG. For the calculation of
771 attribution, we use Riemann approximation to estimate integral:
772

773
$$IPG(h_i; \mathbf{x}) = (h_i - h'_i) \cdot \frac{1}{q} \sum_{k=1}^q \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^T \frac{\partial}{\partial h_i} \log \pi_\theta \left(a_t \mid s_t; h' + \frac{k}{q}(h - h') \right) \cdot A^\pi(s_t, a_t) \right] \quad (6)$$

774

775 where $\mathbf{h}' = [h'_1, \dots, h'_m]$ is a relative baseline of \mathbf{h} and q is the number of discrete steps or partitions
776 used in the Riemann approximation to estimate the integral. \mathbf{x} is the data sample. Notably, we use
777 \mathbf{u} in the following Alg. 1 and 2 to denote the representation of either neuron or SAE feature. More
778 details about F are provided in the Appendix A.3.
779780 **Algorithm 1: IPG: Identifying Reasoning Components**
781782 **Input:** A support set of samples $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, $p \in \mathbb{N}$ 783 1 **for** $j = 1$ **to** N **do**
784 2 Extract $\mathbf{h} = [h_1, h_2, \dots, h_n]$ from $\mathcal{F}(\mathbf{x}_j)$
785 3 $\mathbf{u} = [u_1, u_2, \dots, u_m] = \Phi(\mathbf{h})$
786 4 **for** $i = 1$ **to** m **do**
787 5 $S(u_i; X) += IPG(u_i; \mathbf{x})$; // Eq. 2
788 6 $\mathbf{P} = \{i_1, \dots, i_p\} = \arg \max_{i \in [n]} \{S(u_i; X) \mid u_i \in \mathbf{u}\}$; // Eq. 3
789 **Output:** \mathbf{P} 792 **Algorithm 2: IPG: Controlling Reasoning Behavior**
793794 **Input:** A set of component indexes $P = \{i_1, \dots, i_p\}$, hidden state extracted from residual
795 stream $\mathbf{h} = [h_1, h_2, \dots, h_n] \in \mathbb{R}^n$, scaling factor $\gamma \in \mathbb{R}$ 796 1 $\mathbf{u} \leftarrow [u_1, u_2, \dots, u_m] = \Phi(\mathbf{h})$; // Eq. 5
797 2 Create $\mathbf{u}' \leftarrow \{u'_1, u'_2, \dots, u'_m\} = \mathbf{p}$
798 3 **for** $k \leftarrow 1$ **to** τ **do**
799 4 $u'_{i_k} \leftarrow \gamma u'_{i_k}$; // Scaling, Eq. 4
800 5 **if** $\Phi = \text{Identity}$ **then**
801 6 $\mathbf{h} \leftarrow \mathbf{u}$
802 7 **else if** $\Phi = \text{SAE-encoder}$ **then**
803 8 $\epsilon \leftarrow \mathbf{h} - (\mathbf{W}_{\text{dec}} \mathbf{u} + \mathbf{b}_{\text{dec}})$;
804 9 $\mathbf{h} \leftarrow \mathbf{W}_{\text{dec}} \mathbf{u}' + \mathbf{b}_{\text{dec}} + \epsilon$; // Eq. 5
805 **Output:** \mathbf{h} 806 **A.2 CONTROLLING REASONING BEHAVIOR**
807808 After identifying reasoning-critical components, we further demonstrate how to directly control the
809 reasoning behavior of the model. Given a set of target component indexes P , we first encode the

hidden state \mathbf{h} into the representation space \mathbf{s} using Φ , which can be either the identity mapping (for neuron-level control) or the SAE encoder (for feature-level control). We then intervene on the selected components by scaling their activations with a factor γ , yielding a modified representation \mathbf{s}' . Finally, we decode \mathbf{s}' back to the residual stream. Notably, in the SAE setting, the reconstruction also retains the error term to ensure faithful recovery of the original hidden state structure (see more details in B.1 about this).

A.3 VARIANTS OF IPG

In this section, we provide variants of our IPG that supports different algorithms of policy gradient (Mnih et al., 2016), as mention in Section 3.2.

In GRPO (Shao et al., 2024), the structure of IPG remains identical, except the advantage A_t is replaced with a group-relative advantage:

$$A_t = \frac{r_t - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}. \quad (7)$$

where T is the sequence length, N is the sample number, and π_θ is the policy parameterized by θ , i.e., the LLM to be interpreted. r_t is the reward at step t . $s_t^{(k)}$ is the prefix of the sequence k until t steps, $a_t^{(k)}$ is the next token in the sequence k , and $A^\pi(s_t, a_t)$ is the advantage function that estimates benefit of selecting a_t over the baseline, often derived from rewards like reasoning accuracy scores (Zhong et al., 2025).

$$\text{IPG}^{\text{GRPO}}(h_i; \mathbf{x}) = (h_i - h'_i) \int_0^1 \frac{1}{N} \sum_{\tau=1}^N \sum_{t=1}^T \frac{\partial}{\partial h_i} \log \pi_\theta(a_t | s_t; h' + \alpha(h - h')) A_t^{\text{GRPO}} d\alpha, \quad (8)$$

Here, A_t denotes the advantage function, which measures how much better the chosen action a_t is compared to the expected baseline at state s_t . \mathbf{x} is the data sample. **As we can see in Equation 8, our IPG can be seamlessly integrated with diverse policy gradient algorithms by integrating their advantage calculation.**

For the reward source, we support both **rule-based** and **model-based** signals. In the rule-based setting, the reward r is defined as a binary indicator of final-answer correctness:

$$r = \mathbb{I}\{\hat{y} = y\} = \begin{cases} 1, & \text{if } \hat{y} = y, \\ 0, & \text{otherwise.} \end{cases} \quad (9)$$

In contrast, model-based rewards provide a continuous evaluation of reasoning quality. For example, given a scoring model $M(\cdot)$, we can assign rewards as

$$r = M(x, \hat{y}), \quad (10)$$

where M may return partial credit (e.g., proportion of correct intermediate steps) or preference scores from human-aligned models. This yields a richer supervision signal than binary correctness, enabling finer-grained attribution of reasoning ability. A comparison of these reward sources is presented in Appendix D.1.3.

B IMPLEMENTATION DETAILS

The reproducible code will be released upon the acceptance of this paper.

B.1 SAE TRAINING

Dataset for training k-SAEs: In this section, we provide details about training the k-SAE. Followed by Galichin et al. (2025), We train SAE on the activations of the model using the full *OPENTHOUGHT-114K* dataset (OpenThoughts, 2025), which is composed of high quality reasoning trace generated by DEEPSEEK-R1 including math, science, code, etc. To elicit consistent chain-of-thought style activations when harvesting activations, we apply the following chat template:

```

864
865 <system>Please reason step by step and put your answer within \boxed{}.
866
867 </system><|user|>{question}<|assistant|>{deepseek_reasoning}
868 {deepseek_solution}

```

Training K-SAE on Hidden Space: As shown in equation 5, the k-SAE contains an encoder \mathbf{W}_{enc} and a decoder \mathbf{W}_{dec} initialized with the same parameters. The reconstruction loss we use is a standard mean squared error (MSE) loss defined as

$$\mathcal{L}(\mathbf{h}) = \|\mathbf{h} - \hat{\mathbf{h}}\|_2^2 \quad (11)$$

where \mathbf{h} is the original hidden state vector and $\hat{\mathbf{h}}$ denotes its reconstruction (excluding the residual error term). The dimension of the sparse representation space is 24576 for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) and 65536 for Llama-3.1-8B-Instruct (Grattafiori et al., 2024) corresponding to an expansion factor of 16. We train k-SAE on a single NVIDIA H20 GPU, taking approximately 7 hours for Qwen and 30 hours for Llama.

Training Results: We present the details about the training of k-SAEs, including hyper-parameters and learning curves. We use the learning rate of 0.005 with batch sizes of 32, context length of 2048 tokens. For the training curve, we leverage Fraction of Variance Unexplained (FVU)(Makhzani & Frey, 2014), which is a related metric of interest, measuring the total amount of the original activation that is not "explained" or reconstructed well by k-SAE. FVU is formally defined as

$$FVU = \frac{\mathcal{L}(\mathbf{h})}{\text{var}[\mathbf{h}]} \quad (12)$$

where \mathbf{h} is the hidden state, $\mathcal{L}(\mathbf{h})$ is defined in Eq. 11 and var represents the variance of \mathbf{h} . A lower FVU indicates better reconstruction performance since more original activation is captured by the k-SAE model. The training curves in Fig. 7 show that the k-SAE perform well on the FVU metric.

Figure 7: SAE Training Curve

Discussion: The Role of SAE Error Node While the k-SAE can effectively reconstruct the hidden state $\hat{\mathbf{h}}$, residual gaps inevitably remain. Recent studies (Lindsey et al., 2025; Marks et al., 2025) highlight that explicitly modeling error nodes is essential to fill these gaps, as it gives a principled decomposition of model behaviors into contributions from interpretable features and error components not yet captured by our SAEs. In our setting, we retain the SAE error term to preserve the reliability of our downstream intervention, thus ensuring that our modification is incremental without degrading the model's performance.

B.2 FINE-GRAINED REASONING MECHANISM DISCOVERY

In this section, we provide more implementation details on fine-grained reasoning mechanism discovery. Specifically, we rank reasoning components by their IPG scores and automatically label the top 30 neurons and SAE features identified from Qwen2.5-Math-1.5B-Instruct using a GPT-5-mini API respectively. For interpretation, we manually decompose the comprehensive reasoning into

918 four hierarchical layers in reasoning: *Semantic Comprehension*, *Problem Decomposition*, *Reasoning Depth* and *Numerical Accuracy*. Importantly, our analysis is causal: we directly intervene on
 919 each neuron or feature, collect all newly-correct answers after steering, and compare pre- and post-
 920 intervention responses. The resulting behavioral changes are then judged by the API to correspond
 921 to one of the four reasoning abilities. These categories align with the labeling scheme defined in the
 922 system prompt used for API calls, which is shown below.
 923

```

 924 You are a careful evaluator. Output JSON only (an object). Do not include
 925 any extra text.
 926 Allowed labels (with concise role notes):
 927 1. FineGrainedSemanticComprehension [Semantic Layer]
 928 Evaluates precise understanding of wording, references, modifiers, units.
 929 Focus: resolving ambiguity/negation/quantifiers so the problem is
 930 interpreted correctly.
 931 2. ProblemDecompositionAndLogicalSequencing [Planning Layer]
 932 Evaluates whether the task is decomposed into necessary subgoals and
 933 ordered coherently. Focus: a plan that covers all required steps and
 934 aligns with the objective.
 935 3. ReasoningDepthAndThoroughness [Logical Execution Layer]
 936 Evaluates completeness and correct application of rules/conditions
 937 during non-numerical reasoning.
 938 Focus: ensuring all relevant conditions are correctly applied during
 939 each step, variable states are continuously tracked, and implicit
 940 logical premises are not omitted.
 941 4. NumericalAccuracyAndCalculation [Calculation Layer]
 942 Evaluates correctness of arithmetic/algebra/probability and unit
 943 conversions.
 944 Focus: operation order, numeric consistency, and appropriate rounding.
 945
 946
 947
 948
 949
 950
```

C EXPERIMENT SETTINGS

946 In this section, we provide details on the experiment settings (Section 4.1), including our evaluation
 947 pipeline and the baseline implementation.
 948

C.1 EVALUATION SETTINGS

949 For all benchmarks, we employ the lm-evaluation-harness framework (Gao et al., 2024) as the evalua-
 950 tion tool. For Qwen2.5-Math-1.5B-Instruct, we set the maximum tokens to 2048, while for Llama-
 951 3.1-8B-Instruct, we set the maximum new tokens to 8192. Followed by prior work(Dutta et al.,
 952 2024) , Interventions with IPG are applied to the mid-to-late transformer blocks, specifically layers
 953 20–26 for Qwen and layers 22–28 for Llama. To avoid randomness and ensure reproducibility, we
 954 set do_sample to false, which is equivalent to greedy decoding strategy (temperature=0). Accord-
 955 ingly, we employ Accuracy@1 as our metric.
 956

C.2 BASELINES

957 **Random.** For comparison, we construct a random baseline by uniformly and randomly selecting
 958 neurons within the hidden states h and applying interventions based on these neurons. The final
 959 results of this baseline are averaged across multiple random seeds.
 960

961 **Activation.** Internal neuron activations contain meaningful information. Additionally, Dai et al.
 962 (2022) demonstrates the ability to edit internal neurons to influence neural network performance.
 963 Building on this, we adopt a similar approach, performing intervention directly on the original ac-
 964 tivations in the hidden state. For a fair comparison, we constrain our intervention to the residual
 965 stream of a language model.
 966

967 **Reasoning Neuron** , as described in Rai & Yao (2024), the focus is on analyzing activation pat-
 968 terns, such as average activation values in the feed-forward (FF) layer, to identify reasoning neurons
 969

972 and interpret them using predefined concepts C , such as arithmetic operations C_{add} with key tokens like “add”, “+”. We extend this approach to operate on the residual stream of transformer
 973 blocks (Vaswani et al., 2017). By leveraging all provided concepts, we identify related neurons and
 974 use them for intervention.
 975

976 **Control Vector** , introduced by Højer et al. (2025), employs representation engineering by extracting
 977 model activations from the residual stream of a large language model (LLM) during a reasoning
 978 task. These activations are used to derive a control vector for inference-time intervention. The
 979 control vector is constructed from positive and negative pairs: positive pairs consist of Chain-of-
 980 Thought (CoT) prompts where the model produces correct outputs, while negative pairs comprise
 981 75 random character strings sampled from the alphabet (A–Z). Then PCA is applied and the first
 982 principal component in the control direction is treated as the most reasoning-related direction. Fol-
 983 lowing the open-source repository, we use 30% of the samples from each dataset to compute the
 984 control vector.
 985

986 **SAE-Reasoning** , as introduced by Galichin et al. (2025), employ Sparse Autoencoders (SAEs),
 987 learn a sparse decomposition of latent representations of a neural network into interpretable features,
 988 to identify features that drive reasoning in the DeepSeek-R1 (Guo et al., 2025) series of models.
 989 They extract candidate “reasoning feature” from SAE representations, that based on specific tokens
 990 such as {“wait”, “but”}, associating feature activation with these tokens. For each feature, *reason-
 991 score* is computed based on its feature activation on the *OPENTHOUGHT-114K* (OpenThoughts,
 992 2025). After that, following the releasing implementation, we intervene the feature with top *reason-
 993 score*.
 994

995 **STA.** , introduced by (Wang et al., 2025a), this approach leverages SAE-decoupled representations
 996 to identify and manipulate target atoms, isolating and modifying disentangled knowledge compo-
 997 nents to enhance the behavior of large language models (LLMs). To obtain the vector for controlling
 998 length, we follow their setup and use only one sample: “1+1=?”, where the positive prompt is a di-
 999 rect answer “2” and the negative prompt is a redundant, complex answer. We apply the derived
 1000 vector on the residual stream.

1001 D MORE RESULTS

1002 In this part, we present more results of our experiments part and studies for better illustrations of our
 1003 IPG.
 1004

1005 D.1 SENSITIVE STUDY

1006 D.1.1 K-SAE HYPERPARAMETER

1007 We adjust different k values to evaluate the effects of the k-SAEs (Gao et al., 2025) on reasoning
 1008 behavior control as shown in Table 4. The results are based on Qwen2.5-Math-1.5B-Instruct (Yang
 1009 et al., 2024) layer 20.
 1010

k	GSM8K	
	Acc. (Enhance) \uparrow	Acc. (Suppress) \downarrow
Original	82.41	82.41
8	84.38	82.26
32	84.38	55.12
64	83.70	81.96

1011 Table 4: Investigation of the impact of varying TopK parameters in k-SAE Belitsky et al.
 1012 (2025) on controlling reasoning behavior in Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) for
 1013 GSM8K (Cobbe et al., 2021). TopK refers to preserving the top k features while deactivating others
 1014 in the feature space, as described in Section 3.3.
 1015

1016 In Table 4, as the TopK parameter k increases, the ability to control reasoning behavior, including
 1017 both enhancing and suppressing, either persists or begins to diminish. We demonstrate that our
 1018

1026 results are not heavily dependent on the choice of Sparse Autoencoders (SAEs). Instead, our focus
 1027 is on the accurate identification and intervention of reasoning features. Consequently, we select
 1028 $k = 32$ for the k-SAE (Gao et al., 2025) across all experiments.

1030 D.1.2 IPG ATTRIBUTION HYPERPARAMETER

1032 We conduct experiment on the effects of different number p of components identified, as stated
 1033 in Section 3.2. In Table 5, as the number of top- p neurons increases, the control over reasoning
 1034

1035 GSM8K		
1036 p	1037 Acc. (Enhance) \uparrow	1038 Acc. (Suppress) \downarrow
1039 Original	1038 82.41	1039 82.41
1040 10	1041 83.55	1040 28.13
1041 20	1042 83.70	1041 25.55
1042 30	1043 83.78	1042 17.82
1043 40	1044 83.78	1043 14.78
1044 50	1045 83.17	1044 10.69

1043 Table 5: Evaluation on the impact of varying the top- p number of neurons in 3.3 in Qwen2.5-Math-
 1044 1.5B-Instruct (Yang et al., 2024) for GSM8K (Cobbe et al., 2021). This evaluation is based on our
 1045 k-SAE implementation (Gao et al., 2025) with a fixed $k = 32$.

1046 behavior becomes more effective. However, beyond a certain point, adding more neurons does not
 1047 yield further improvements. This is because reasoning-related concepts may be distributed across
 1048 multiple neurons, and the top neurons already exert significant control, while additional neurons
 1049 lack substantial reasoning-related functionality.

1050 We also conduct sensitivity analysis on our choice of batch size M . We perform an ablation on the
 1051 number of samples used to compute the IPG directions, varying it from 1 to 500. All other settings
 1052 follow the main experimental protocol (Table 6): Qwen2.5-Math-1.5B-Instruct (Qwen Team, 2024)
 1053 evaluated on GSM8K (Cobbe et al., 2021) under greedy decoding. “Enhance” reports accuracy
 1054 after strengthening the identified reasoning components (higher is better), while “Suppress” reports
 1055 accuracy after weakening them (lower is better). The original accuracy of the model is 82.41%.

1056 Results are presented in Table 6. When M is very small (≤ 10), the gradient estimates exhibit high
 1057 variance, which degrades component identification and leads to weak performance. As it increases
 1058 to ≥ 20 , variance decreases rapidly, yielding smoother and more reliable gradient signals. This
 1059 stabilizes both enhancement and suppression, with suppression improving dramatically.

1062 D.1.3 REWARD SIGNALS

1063 In Table 7, we report the performance of IPG in improving accuracy across reasoning datasets
 1064 for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) using different reward signals, including rule-
 1065 based and reward model-based signals, as detailed in Appendix A.3. The scaling intervention (see
 1066 Section 3.3) is applied at the 24th layer. As shown in Table 7, reward model-based signals outper-
 1067 form rule-based signals in most datasets, suggesting that reward models capture richer information

1070 GSM8K		
1071 # Samples	1072 Acc. (Enhance) \uparrow	1073 Acc. (Suppress) \downarrow
1074 1	1075 82.79	1074 82.03
1075 10	1076 83.17	1075 79.37
1076 20	1077 83.17	1076 06.52
1077 50	1078 83.54	1077 12.81
1078 100	1079 83.39	1078 12.81
1079 500	1080 83.55	1079 12.05

1080 Table 6: Effect of batch size (# samples used to compute IPG directions) on steering performance.
 1081 Model: Qwen2.5-Math-1.5B-Instruct on GSM8K (Cobbe et al., 2021). Original accuracy: 82.41%.

Model	Reward Method	GSM8K	MATH-500	AIME-2024	GPQA Diamond
Qwen2.5-Math-1.5B	Rule Fuction	84.00	64.20	20.00	26.77
	Reward Model	84.38	64.40	16.67	30.30

Table 7: Performance of IPG in enhancing accuracy across reasoning datasets for Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) under different reward signals.

h'	GSM8K	
	Acc. (Enhance) \uparrow	Acc. (Suppress) \downarrow
Zero vector	84.38	0.00
Mean hidden state	84.45	21.15
Random noise	84.00	78.16

Table 8: Sensitivity analysis on the choice of baseline representation h' . The model is Qwen-Math-2.5-1.5B-Instruct (Qwen Team, 2024) evaluated on GSM8K (Cobbe et al., 2021). Original accuracy before any intervention: 82.41%.

or better represent reasoning outcomes, thereby enhancing IPG’s effectiveness in identifying and controlling reasoning behavior.

D.1.4 BASELINE CHOICE.

To further verify the robustness of IPG, we conduct additional experiments on different choices of the baseline hidden state h' using Qwen-Math-2.5-1.5B-Instruct (Qwen Team, 2024) on the GSM8K (Cobbe et al., 2021) dataset. We report accuracy under greedy decoding as described in Section 4.1. The original accuracy of the model is 82.41%. We compare three baseline strategies: (i) the zero vector, (ii) the mean hidden state computed over the training set, and (iii) random Gaussian noise $\mathcal{N}(0, I)$ as an explicit non-informative reference.

Results are shown in Table 8. Using the zero vector or the mean hidden state yields nearly identical enhancement performance (84.38% and 84.45%, respectively) and both enable almost perfect suppression (0.0% and 21.15%). In contrast, random noise performs considerably worse on suppression (78.16%), confirming that it does not constitute a meaningful baseline representation. These findings demonstrate that IPG is highly robust to the specific choice of h' as long as it represents a reasonable direction; arbitrary noise fails to serve this role effectively.

D.2 CONTROLLING REASONING LENGTH

Beyond identifying reasoning components using accuracy-based reward signals, we explore whether neurons controlling the length of reasoning can be identified. This is achieved by modifying the rule function (see Appendix A.3) to prioritize sensitivity to reasoning length rather than accuracy. Specifically, the rule function is redefined to reward outputs based on their generated length, encouraging the identification of neurons that influence the verbosity or conciseness of reasoning.

The modified rule function, R_{length} , is defined as a function of the generated text length, L , measured as the number of tokens in the output. The reward increases with length to promote longer reasoning chains or decreases to favor conciseness, depending on the desired behavior. The rule function is given by

$$R_{\text{length}} = f(L) , \quad (13)$$

where $f(\cdot)$ can be any monotonically increasing function. For example, we can have a 2-order function $f(L) = \alpha L^2 + \beta L + \gamma$ where α , β , and γ are tunable parameters that control the reward’s sensitivity to length.

As shown in Figure 5 in Section 4.2, scaling the top one percent of neurons identified via length-based rewards on DeepSeek-Qwen-1.5B (Guo et al., 2025) leads to a gradual decrease in the model’s output length as the scaling factor increases. In conclusion, these results demonstrate that our IPG

1134 can be readily extended to capture diverse outcome-aware signals corresponding to specific behav-
 1135 iors, highlighting its flexibility and effectiveness.
 1136

1137 **D.3 DISCUSSION**

1139 **D.3.1 EFFICIENCY OF IPG**

1142 Table 9: Comparison of Inference Time (in seconds per sample) for Rule-based and Reward Model-
 1143 based reward signals on GSM8K (Cobbe et al., 2021) across Qwen2.5-Math-1.5B-Instruct (Yang
 1144 et al., 2024) and Llama3.1-8B-Instruct (Touvron et al., 2023)

Model	Reward Signal	Attribution Time (s/sample)
Qwen	Rule	11.6
Qwen	Reward Model	13.5
Llama	Rule	18.25
Llama	Reward Model	20.0

1153 The table presents a comparison of attribution times (see in Section 3.2) in seconds per sample
 1154 for the GSM8K (Cobbe et al., 2021) dataset using rule-based and reward model-based methods
 1155 across two large language models, Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) and Llama3.1-
 1156 8B-Instruct (Touvron et al., 2023). We can see in Table 9 that our IPG requires few time for attribu-
 1157 tion. This efficiency highlights the scalability of IPG, enabling rapid identification of key neurons or
 1158 features in reasoning tasks, making it a practical choice for further controlling large-scale language
 1159 models.

1160 **D.3.2 LIMITATION OF IPG**

1163 **Reward Signal:** Our current implementation of IPG relies on relatively preliminary reward defini-
 1164 tions, including either a rule-based signal or a lightweight reward model. Such signals can be coarse
 1165 and fail to capture subtle reasoning improvements. Consequently, they may introduce noise or bias
 1166 when attributing causal contributions. More sophisticated approaches, such as process reward mod-
 1167 els (PRMs) or step-level verifiers, could provide finer-grained supervision that better aligns with
 1168 reasoning quality. Exploring such enhanced reward sources is a promising direction for future work.

1169 **Selection of Scaling Factor:** In the present IPG implementation, the scaling factor (γ) is applied
 1170 uniformly across neurons or features. In spite of its general intervention effects, it neglects more
 1171 delicate things where different components may require different intervention strengths. A promis-
 1172 ing future work is to adopt component-specific scaling, allowing each neuron or feature to be steered
 1173 by an individually optimized factor.

1174 **D.4 CASE STUDIES**

1175 **D.4.1 GRANULAR REASONING ASPECTS CONTROL**

1179 In this section, we provide more radar graphs of neuron and feature’s granular reasoning aspects
 1180 mentioned in Section 4.4.

1182 **D.4.2 GENERATED RESPONSES BEFORE AND AFTER INTERVENTION**

1184 In this section, we provide more examples with our IPG framework corresponding to Sec. 3.3. We
 1185 present generated responses before and after intervention on multiple models, spanning different rea-
 1186 soning benchmarks (e.g., GSM8K, Math500) and intervention granularities (neuron-level vs. SAE
 1187 feature-level). Across models and tasks, we can consistently observe that steering IPG-identified
 1188 components leads to more coherent intermediate reasoning steps and improved final answers.

1188
1189
1190
1191

Table 10: Clusters of reasoning ability type obtained using GPT-5 mini. Each cluster corresponds to a reasoning type, the representative neuron index, and the behavior changes observed under neuron steering. Enhancing amplifies desired reasoning ability, while suppressing degrades it.

1192
1193
1194
1195
1196
1197
1198
1199

Cluster Type	Neuron Index	Feature Index	Behavior Change (Enhance / Suppress)
Fine-Grained Semantic Comprehension	520, 609, 940	19313, 19156	<i>Enhance</i> : More precise semantic parsing <i>Suppress</i> : Ignoring key constraints and details
Problem Decomposition & Structuring	553, 802, 904	19126, 20154	<i>Enhance</i> : More coherent planning of solution steps <i>Suppress</i> : Fragmented or illogical solution planning
Reasoning Depth & Thoroughness	609, 940, 1068	1083, 18195, 19126	<i>Enhance</i> : More rigorous application of conditions <i>Suppress</i> : Failure to track changing states
Numerical Accuracy & Calculation	335, 520, 553	779, 8053, 10508	<i>Enhance</i> : More precise execution of calculations <i>Suppress</i> : Increased frequency of arithmetic errors

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

(a) Enhancing neuron #1068 and feature #19313

(b) Suppressing neuron #1421 and feature #19126

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

(a) Enhancing neuron #251 and feature #8053

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(b) Suppressing neuron #335 and feature #779

(a) Enhancing neuron #553 and feature #10508

(b) Suppressing neuron #520 and feature #19126

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

Semantic

(a) Enhancing neuron #553 and feature #10508

(b) Suppressing neuron #520 and feature #779

E USE OF LARGE LANGUAGE MODELS (LLMs)

We leverage large language models (LLMs) as auxiliary tools in our research. Specifically, we employed LLM in Section 4.4 to assist with fine-grained auto-labeling of neurons and features, where the model judge the granular reasoning abilities of those components. These generated labels were subsequently **manually verified** by the authors to ensure accuracy and consistency.

Beyond this, LLMs were not involved in core research contributions, including the design of methods, theoretical analysis, experimental setup. All analyses, and conclusions presented remain the sole responsibility of the authors.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

Question

1302 Ellen decided to play a prank on her friend. She got a case of 12 sodas and shook 3 of
 1303 them up. Then she took 1 unshaken soda for herself and left. Ellen's brother stopped
 1304 by and took 1 of the shaken sodas and 2 of the unshaken sodas, then Ellen's friend
 1305 came along. What is the likelihood, expressed as a percentage, that Ellen's friend gets
 1306 sprayed with soda from a shaken can?

1307

Response

1308 **Original:** To determine the likelihood that Ellen's friend gets sprayed with soda
 1309 from a shake can, we need to follow the sequence of events and calculate the
 1310 number of sodas in each state.
 1311 **Initial number of sodas:** Ellen starts with 12 sodas.
 1312 **Sodas after Ellen shakes 3:** Ellen shakes 3 sodas, so there are $(12 - 3) = 9$ sodas left.
 1313 **Sodas after Ellen takes 1 unshaken soda:** Ellen takes 1 unshaken soda, so there are $(9 - 1) = 8$ sodas left, with 3 sodas still shaken.
 1314 **Sodas after Ellen's brother takes 1 shake and 2 unshaken sodas:** Ellen's brother takes 1 shake soda and 2 unshaken sodas, so there are $(8 - 1 - 2) = 5$ sodas left, with $(3 - 1) = 2$ sodas still shaken.
 1315 **Sodas after Ellen's friend comes along:** Ellen's friend now has the remaining 5 sodas, with 2 of them being shake sodas.
 1316 The probability that Ellen's friend gets sprayed with soda from a shake can is the ratio of the number of shake sodas to the total number of sodas Ellen's friend has. This probability is calculated as follows:
 1317 $\text{Probability} = \frac{\text{Number of shake sodas}}{\text{Total number of sodas}} = \frac{2}{5}$
 1318 To express this probability as a percentage, we multiply by 100:
 1319 $0.4 \times 100 = 40\%$
 1320 **Thus, the likelihood that Ellen's friend gets sprayed with soda from a shake can is**
 1321 $\boxed{40\%}$

1322

1323

1324

1325 **Enhanced:** To determine the likelihood that Ellen's friend gets sprayed with soda
 1326 from a shake can, we need to follow the sequence of events and calculate the
 1327 number of sodas in each state.
 1328 **Initial number of sodas:** Ellen starts with 12 sodas.
 1329 **Sodas after Ellen shakes 3:** Ellen shakes 3 sodas, so she has 9 sodas left unshaken.
 1330 $\text{Unshaken sodas} = 12 - 3 = 9$
 1331 **Shaken sodas:** 3
 1332 **Sodas after Ellen takes 1 unshaken soda:** Ellen takes 1 unshaken soda for herself, so she has 8 unshaken sodas left.
 1333 $\text{Unshaken sodas} = 9 - 1 = 8$
 1334 **Sodas after Ellen's brother takes 1 shake and 2 unshaken sodas:** Ellen's brother takes 1 shake soda and 2 unshaken sodas, so the number of sodas changes as follows:
 1335 $\text{Shake sodas} = 3 - 1 = 2$
 1336 $\text{Unshaken sodas} = 8 - 2 = 6$
 1337 **Sodas after Ellen's friend comes along:** Ellen's friend comes along and gets 1 soda. The probability that this soda is from a shake can is the number of shake sodas divided by the total number of sodas left.
 1338 $\text{Probability that Ellen's friend gets a shake soda} = \frac{2}{8} = \frac{1}{4} = 0.25$
 1339 $\text{Percentage} = 0.25 \times 100 = 25\%$
 1340 **Therefore, the likelihood that Ellen's friend gets sprayed with soda from a shake can is**
 1341 $\boxed{25\%}$

1342

1343

1344

1345 Figure 12: Case Study on GSM8K for Qwen2.5-Math-1.5B-Instruct. Steering 5% IPG neurons with
 1346 scaling factor $\gamma = 1.1$ on layer 20.

1347

1348

1349

1350
1351
1352
1353
1354
1355

Question

1356 John wins an award at work. The award has a 1 time monetary reward of
1357 \$5000 and a 5% raise in salary. If he makes 2000 a week, every week of the
1358 year and he got the award on the first day of the year how much money
1359 did he make that year?

1360
1361

Response

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

Original: To determine how much money John made that year, we need to consider both his regular weekly earnings and the additional monetary reward he received from the award.
1. **Calculate John's regular annual earnings:**
John makes \$2000 per week. There are 52 weeks in a year.
$$\text{Regular annual earnings} = 2000 \times 52 = 104000$$

2. **Calculate the monetary reward from the award:**
The award has a 1 time monetary reward of \$5000.

3. **Calculate the total earnings for the year:**
Add the regular annual earnings to the monetary reward.
$$\text{Total earnings} = 104000 + 5000 = 109000$$

Therefore, the total amount of money John made that year is
$$\boxed{109000}$$

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

Enhanced: To determine how much money John made that year, we need to consider both his regular weekly earnings and the additional monetary reward he received from the award.
1. **Calculate John's regular annual earnings:**
John makes \$2000 per week. There are 52 weeks in a year.
$$\text{Regular annual earnings} = 2000 \times 52 = 104000$$

2. **Calculate the monetary reward from the award:**
The award has a 1 time monetary reward of \$5000.

3. **Calculate the 5% raise in salary:**
The 5% raise in salary is applied to his regular weekly earnings.
$$\text{Raise per week} = 2000 \times 0.05 = 100$$

Since the raise is applied to each week, the total raise for the year is:
$$\text{Total raise for the year} = 100 \times 52 = 5200$$

4. **Calculate the total earnings for the year:**
Add the regular annual earnings, the monetary reward, and the total raise.
$$\text{Total earnings} = 104000 + 5000 + 5200 = 114200$$

Therefore, the total amount of money John made that year is
$$\boxed{114200}$$

1399
1400
1401
1402
1403

Figure 13: Case Study on GSM8K for Qwen2.5-Math-1.5B-Instruct. Steering one IPG SAE features with scaling factor $\gamma = 1.8$ on layer 20.

1404

1405

1406

1407

1408

1409

Question

1410 Cars have lined up on the motorway. Some of the cars drive through in the first 15
 1411 minutes of the traffic jam, then 20 more cars drive through in the remaining 15
 1412 minutes of the jam. 5 cars from the line take an exit so they don't have to drive
 1413 through the traffic jam. If there were originally 30 cars on the motorway, how many
 1414 cars drove through the traffic jam in the first 15 minutes?

1415

Response

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Original: To find the number of cars that drove through the traffic jam in the first 15 minutes, we need to first determine the total number of cars that drove through the traffic jam.
 We know that 20 cars drove through in the remaining 15 minutes. Let's denote the number of cars that drove through in the first 15 minutes as 'x'. took an exit, we need to subtract these from the total number of cars. Since 5 cars took an exit, the total number of cars that drove through the traffic jam is $(x + 20) - 5$. We are given that there were originally 30 cars on the motorway.
 Therefore, $(x + 20) - 5 = 30$. Simplifying the equation, we get $x + 20 - 5 = 30$. $x + 15 = 30$. Subtracting 15 from both sides, we get $x = 15$. So, the number of cars that drove through the traffic jam in the first 15 minutes is 15.

Enhanced: To find the number of cars that drove through the traffic jam in the first 15 minutes, we need to first determine the total number of cars that drove through the traffic jam. We know that 20 cars drove through in the remaining 15 minutes. Let's denote the number of cars that drove through in the first 15 minutes as 'x'. Since 5 cars took an exit, the total number of cars that drove through the traffic jam is the original number of cars minus the cars that took an exit, which is $30 - 5 = 25$. We also know that the total number of cars that drove through the traffic jam is the sum of the cars that drove through in the first 15 minutes and the cars that drove through in the remaining 15 minutes. So, we can write the equation: $x + 20 = 25$. To solve for 'x', we subtract 20 from both sides of the equation: $x = 25 - 20$. However, this is the number of cars that drove through the traffic jam in the first 15 minutes, but it does not account for the fact that the question asks for the number of cars that drove through the traffic jam in the first 15 minutes, not the number of cars that were in the first 15 minutes. Since 5 cars took an exit, the number of cars that were in the first 15 minutes is $30 - 5 = 25$. However, we know that 20 cars drove through in the remaining 15 minutes. So, the number of cars that drove through in the first 15 minutes is $25 - 20 = 5$.

Figure 14: Case Study on GSM8K for Llama-3.1-8B-Instruct. Steering 5% IPG neurons with scaling factor $\gamma = 1.1$ on layer 22.

1458

1459

1460

1461

1462

1463

Question

1464

1465

1466

1467

A Senate committee has 5 Democrats, 5 Republicans, and 1 Independent. In how many ways can they sit around a circular table if all the members of each party all sit next to each other? (Two seatings are considered equivalent if one is a rotation of the other.)

1468

1469

Response

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Original: To solve this problem, we need to consider the restrictions and the total number of arrangements.
 1. **Total number of people**:** There are 11 people in total (5 Democrats, 5 Republicans, and 1 Independent).
 2.

****Restrictions**:** All members of each party must sit next to each other. This means we can treat each party as a single unit when arranging the people around the table.
 3. **Circular table**:** Since the table is circular, we need to account for the fact that rotations of the same arrangement are considered equivalent. This means we will have to divide the total number of arrangements by the number of people (11) to avoid overcounting.

Arranging the parties:** There are 3 parties (Democrats, Republicans, and Independent), which can be arranged in $3! = 6$ ways around the table.
 5. **Arranging the members within each party**:** Within each party, the members can be arranged in the following ways:
 - Democrats: $5!$ ways
 - Republicans: $5!$ ways
 - Independent: 1 way (since there is only 1 member)
 6. **Total number of arrangements**:** The total number of arrangements is the product of the number of ways to arrange the parties and the number of ways to arrange the members within each party:

$$\text{- Total} = 6 * 5! * 5! * 1$$

Accounting for rotations:** Since the table is circular, we need to divide the total number of arrangements by the number of people (11) to avoid overcounting:

$$\text{- Total} = (6 * 5! * 5! * 1) / 11$$

Calculating the total:** Now, let's calculate the total number of arrangements:

$$\text{- Total} = 5 * 4 * 3 * 2 * 1 = 120$$

$$\text{- Total} = (6 * 120 * 120 * 1) / 11$$

$$\text{- Total} = (6 * 14400) / 11$$

$$\text{- Total} = 86400 / 11$$

$$\text{- Total} = 7872$$

So, the total number of ways the Senate committee can sit around a circular table with all members of each party sitting next to each other is: $\boxed{7872}$.

Enhanced: To solve this problem, we need to consider the restrictions and the total number of arrangements.
 1. The members of each party must sit together. This means we can treat each party as a single unit. So, we have 3 units: Democrats, Republicans, and the Independent.
 2. Since the table is circular, we need to account for the fact that rotations of the same arrangement are considered equivalent. This means we will have to divide the total number of arrangements by the number of people (or units) in each arrangement.
 3. First, let's calculate the number of ways to arrange these 3 units around the circular table. There are $(3-1)! = 2! = 2$ ways to arrange the units.
 4. Now, let's consider the arrangements within each party. There are $5!$ ways to arrange the Democrats, $5!$ ways to arrange the Republicans, and 1 way to arrange the Independent (since there is only one Independent).
 5. To find the total number of arrangements, we multiply the number of ways to arrange the units by the number of ways to arrange the members within each party: $2 * 5! * 5! * 1$.
 6. Now, we calculate the total number of arrangements: $2 * 5! * 5! = 2 * 120 * 120 = 28800$.
 Therefore, the total number of ways the Senate committee can sit around a circular table if all the members of each party all sit next to each other is $\boxed{28800}$.

Figure 15: Case Study on Math500 for Llama-3.1-8B-Instruct. Steering 5% IPG neurons with scaling factor $\gamma = 1.1$ on layer 22.

1512

1513

1514

1515

1516

1517

Question

1518

1519

1520

1521

1522

1523

How many r are there in the word strawberry?

Response

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Original: To solve this problem, I need to count the number of letters in the word "strawberry." Okay, so first, I'll start by writing down the word: strawberry. Let me see, that's an 8-letter word. Hmm, wait, let me count each letter to be sure. Starting from the beginning: s, t, r, a, w, b, r, e, r. So that's s (1), t (2), r (3), a (4), w (5), b (6), r (7), e (8), r (9). Wait, that's nine letters. But I thought it was an 8-letter word. Maybe I'm miscounting. Wait, let me check again. Maybe I missed a letter. So, "strawberry" is spelled S-T-R-A-W-B-E-R-R-Y. Wait, that's 9 letters. Hmm, maybe I'm getting confused. Let me write it out: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), Y (10). Wait, that's 10 letters. Now I'm really confused. Is it 10 letters? Or is it 9? Wait, let me look it up. Wait, no, I can't look it up, I need to count. Okay, let's try again. S-T-R-A-W-B-E-R-R-Y. So S is 1, T is 2, R is 3, A is 4, W is 5, B is 6, E is 7, R is 8, R is 9, Y is 10. So it's 10 letters. But I thought it was an 8-letter word. Wait, maybe it's a different word. Wait, maybe the word is "strawberry" without the 'y'? Let me check. No, the spelling is S-T-R-A-W-B-E-R-R-Y, which is 10 letters. So the problem must be about the letter 'r' instead of the word. So the question is, how many 'r's are there in the word "strawberry"? So if the word is 10 letters, how many 'r's are there? Wait, let me count again. S-T-R-A-W-B-E-R-R-Y. **So the letters are: 1:S 2:T 3:R 4:A 5:W 6:B 7:E 8:R 9:Y 10:Y. So there are two 'R's: one at position 3 and another at position 8. So the answer should be 2.**

</think>

2

Enhanced: Tell me how many r are there in strawberry? Answer in numbers only. Okay, so I need to figure out how many "r"s are in the word "strawberry." Let me start by writing down the word: S-T-R-A-W-B-E-R-R-Y. Hmm, that's a bit long, so I should count each "r" individually.

First, I notice the letters S, T, R, A, W, B, E, R, R, Y. Let's break them down one by one. The first R is after S and T, so that's one "r." Then, moving along, the next R is right before E, so that's another "r." After that R, there are two more R's before Y. So let me count them:

1. R after S 2. R after T 3. R after A 4. R after B 5. R after E 6. R before Y

Wait, that's six R's. Let me make sure I didn't miss any. Let me go through each letter again: 1. S: Not an R. 2. T: Not an R. 3. R: 1 4. A: Not an R. 5. W: Not an R. 6. B: Not an R. 7. E: Not an R. 8. R: 2 9. R: 3 10. Y: Not an R.

So yeah, only three R's. Wait, that contradicts my previous count. Hmm, maybe I miscounted earlier. Let me recount more carefully.

Let me list each letter and note if it's an R:

1. S: No 2. T: No 3. R: Yes (1) 4. A: No 5. W: No 6. B: No 7. E: No 8. R: Yes (2) 9. R: Yes (3) 10. Y: No

Ah, so only three R's. So the answer should be 3. I think I confused myself earlier, but now it's clear. So the total number of "r"s in "strawberry" is 3.

</think>

3

Figure 16: Case Study on Deepseek-R1-Distilled-Qwen1.5B . Steering one neuron with highest IPG score with scaling factor $\gamma = 1.1$ on layer 20.