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Abstract

Most of the research on data-driven speech rep-
resentation learning has focused on raw audios
in an end-to-end manner, paying little attention
to their internal phonological or gestural struc-
ture. This work, investigating the speech repre-
sentations derived from articulatory kinematics
signals, uses a neural implementation of convo-
lutive sparse matrix factorization to decompose
the articulatory data into interpretable gestures
and gestural scores. By applying sparse con-
straints, the gestural scores leverage the dis-
crete combinatorial properties of phonological
gestures. Phoneme recognition experiments
were additionally performed to show that ges-
tural scores indeed code phonological infor-
mation successfully. The proposed work thus
makes a bridge between articulatory phonol-
ogy and deep neural networks to leverage inter-
pretable, intelligible, informative, and efficient
speech representations.

1 Introduction

Research on speech representation learning has
been dominated by deep learning in recent years
(Latif et al., 2020). The goal of speech representa-
tion learning is to optimize both the performance
of the model architectures and the interpretability
of the learned representations. As there is growing
demand of real-life applications of speech inter-
faces (Herff and Schultz, 2016), the performance
is emphasized to a larger extent, enabling human-
machine interactions highly accurate and robust.
Consequently, in most of these works the inter-
pretability of representations has not been explored
to an equivalent extent, which is one of the most sig-
nificant bottlenecks that keeps the speech research
from going farther. In general, speech representa-
tions need to be better understood and developed.
People usually represent speech via audio be-
cause human perceive speech through hearing and
audio is cheap to record, collect and process. How-
ever, speech processing is quite a lot different from

audio processing. It might not need any evidence to
indicate that any information that can be perceived
via human can be perceived anywhere from source
to destination. Perceiving the speech signal from
the source and leveraging how it is produced are
the most straightforward way to interpret it. The
speech signal is the result of respiratory, phonatory
and articulatory processes that generate the per-
ceivable acoustic resonances to encode an intended
linguistic message (MacNeilage, 2010). In that
sense, perceiving the speech signal from articula-
tory data is a preferred way to derive interpretable,
natural and robust speech representations.

The framework of articulatory phonology (Brow-
man and Goldstein, 1992) has offered a lawful ap-
proach to modeling the relation between phonolog-
ical representations as a set of discrete composi-
tional units, or gestures, and the variability in time
that derives from variation in the activation of the
gestures in real-time: the magnitude of their activa-
tion, and the temporal intervals of activation as rep-
resented in gestural scores. However, the gestures
and gestural scores of particular utterances have
never been estimated in a completely data-driven
manner. (Ramanarayanan et al., 2013) utilized the
convolutive sparse non-negative matrix factoriza-
tion (CSNMF) to decompose the non-negative ar-
ticulatory data into the gestures and gestural scores,
both of which are pretty much interpretable. The
downsides of such method are that all the train-
ing utterances have to be concatenated into a large
matrix, resulting in both memory and training ef-
ficiency issues. Additionally, such a model is not
compatible with the modern deep learning based
speech models so that it is challenging to perform
end-to-end training on articulatory data.

To handle the aforementioned problem,
(Smaragdis and Venkataramani, 2017) proposed an
auto-encoder based model to replace non-negatve
matrix factorization for speech separation task.
Inspired by this work, we propose a convolutional
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Figure 1: Neural Convolutive Matrix Factorization to Interpret Gestures and Gestural Scores.The panel in the bottom
visualizes four activated gestures in the example utterance for "Five” . The gestures capture the moving patterns of
articulators. Each moving pattern goes from thinner line to thicker line capturing about 200ms.

auto-encoder as the neural implementation of con-
volutive matrix factorization. Such auto-encoder
based matrix factorization method is compatible
with modern deep neural network and the batch-
wise optimization improves the convergence rate
to the huge extent. Under such framework, the
articulatory signal is decomposed into gestures
and gestural scores which are still interpretable.
The gestural scores are the learned articulatory
speech representations and are constrained to be
sparse. In the last stage, the phoneme recognition
experiments were performed to show that the
learned gestural scores are also intelligible and
consistent in time domain. All the experiments are
performed using MNGUO EMA (Electromagnetic
midsagittal articulography) (Richmond et al.,
2011) corpus. The intention is that the proposed
work could bridge the gap between explainable
articulatory phonology and modern deep neural
networks to deliver interpretable, intelligible,
informative, and efficient speech representations.

2 Proposed Methods

2.1 Neural Convolutive Sparse Matrix
Factorization

Denote EMA data as X € R*?, where (C,p) is
(number of channels, segment length). By convo-
lutive matrix factorization (Ramanarayanan et al.,

2013): '

X~ ST 'wiy - H' (1)
W e RT*CXD is gestures and H € RP*t is ges-
tural scores, where D is number of gestures and T’

is the kernel size. H ' indicates that ¢ columns of
H are shifted to the right.

It is observable that Eq. 1 is actually the 1-d
convolution with kernel W and input matrix H. By
auto-encoder matrix factorization (Smaragdis and
Venkataramani, 2017), H should be the hidden rep-
resentation derived from the encoder which takes
the pseudo-inverse of W as parameters. However,
calculating the pseudo-inverse of high dimensional
matrix is challenging. We experimentally justified
that the encoder can be any types of neural net-
works with any number of layers. The proposed
neural convolutive sparse matrix factorization is
formularized as follows:

H = maz(f(X),0) )
X=WoH (3)

where f(.) denotes any type of neural network.
In the original non-negative matrix factorization
problem, all components (X, W, H) have to be non-
negative. However, in such neural implementation,
only H is required to be non-negative so that the
gestures are always additive. There is no constraint
for W and X.

® Tongue Dorsum (TD)



2.2 Loss Objectives

There are a couple of items in the loss function.
The first one is the reconstruction loss, which is L2
loss. The second one is sparseness. According to
(Hoyer, 2004), the sparseness of a vector is defined

as: La(ED
VI~ Ty
vn—1
where H; is the i-th row of H. L1 and Ly denote Ly
norm and Ly norm respectively. n is the length of

the vector. The sparseness of gestural score matrix
is shown as below:

S(H;) = )

1
S(H) = 532, S(H)) 5)

The third term is the entropy of the sparseness,
denoted as:

1

E(H) =

S22 (=S(Hy)log(S(H:)))  (6)
It should be noticed that the sparseness cannot con-
trol the number of gestures that are activated. For
instance, the H matrix with only one gesture acti-
vated for a long time interval might have the same
sparsity with the matrix with multiple gestures ac-
tivated for shorter time intervals. Typically we
expect that a proper number of gestures should be
activated. More intuition can be checked in Ap-
pendix A. We introduce two balanced factors A;
and A to limit both sparsity and entropy to a certain
range. For EMA resynthesis task, the loss function
is shown in Eq. 7, where Ex means the loss is
computed by taking the average in the mini-batch.

Lyes = EXH|X_XH2_)\15(H)+)‘2E(H)] (7)

For phoneme recognition experiments, CTC
(Graves et al., 2006) loss Lorc is used. For
joint resynthesis-phoneme recognition task, the
loss function is shown as in Eq. 8, where A3 is
a balanced factor.

Ljoint = Lres + ASLCTC’ (8)

3 Experiments

3.1 Dataset

MNGUO EMA (Electromagnetic midsagittal artic-
ulography) (Richmond et al., 2011) dataset is used
in this work. There are in total 1263 utterances
recorded from one single speaker. Details can be
checked in Appendix B. The Mel-Spectrogram is

used as acoustic feature with the framing configu-
ration of 25ms/16ms and feature dimension of 80.
The unaligned phonemes extracted from text tran-
scriptions via the CMU pronouncing dictionary',
are used as labels for phoneme recognition task.
The train/test split is 8:2, which is the same for all
experiments.

3.2 Tasks and Evaluation Methods

We perform two sets of experiments: (i) EMA
Resynthesis. By resynthesizing the EMA data, we
extract, visualize and interpret the gestures and ges-
tural scores. The reconstruction loss (L2) averaged
over all test samples is used to measure the infor-
mativeness of gestural scores (Saxe et al., 2019).
The sparsity defined in Eq. 5 is used to measure the
efficiency of gestural scores. The interpretability
of gestures and gestural scores is evaluated by sub-
jective analysis. (ii) Phoneme Recognition (PR).
PER (Phoneme Error Rate) is used as metric for
this task. PR on EMA is performed to measure the
intelligibility of EMA data. PER on melspectro-
gram is performed to measure the intelligibility gap
between articulartory and acoustics data. Lastly,
the joint training of EMA resynthesis and phoneme
recognition on gestural scores is performed to mea-
sure both the intelligibility (Lakhotia et al., 2021)
and the consistency of learned sparse speech rep-
resentations. Considering that EMA is not able to
capture the difference between voiced and voice-
less phones, we also relabel the phoneme sequence
by assigning the same label to the phonemes with
the same articulatory representation in EMA?, and
compute PER on new labels. We call the latter
metric as PER-V, which is reported for all PR ex-
periments.

3.3 Model Architectures

The overall model backbone is shown in Fig. 1.
The encoder takes EMA data X in and outputs
the gestural scores H. The decoder takes H in
and resynthesizes EMA data X. For independent
phoneme recognition or joint resynthesis-CTC ex-
periments, the phoneme recognizer takes EMA,
melspectrogram or H in and predicts the align-
ment. Beamsearch algorithm is used for decoding
with beam width of 50 in phoneme recognition task.
Details can be checked in Appendix C.

"http://www.speech.cs.cmu.edu/cgi-bin/cmudict

ZSpecifically,these tuples are expected to have the same
articulatory labels: (p,b,m), (t,d,n), (ch,jh), (f,v), (sh,zh),
(k.g.ng), (5.2), (th,dh)



3.4 Implementation Details

For EMA resynthesis experiments, we randomly
extract a segment with fixed length of 300 frames as
the input of model for each iteration. For phoneme
recognition experiments, the full utterance is taken
as input. The training details can be checked in
Appendix D. For the loss function in Eq. 7 and
Eq. 8, weset \] = Ao = 10 and A3 = 1. For
resynthesis and resynthesis-CTC experiments, we
explore different values of number of gestures: 20,
40, 60 and 80 as ablation studies. The results of
EMA resynthesis, joint resynthesis-CTC and in-
dependent PR on EMA and melspectrogram are
recorded in Table. 1 and Table. 2 respectively. To
interpret the gestures and gestural scores, a random
utterance is taken as input ("Five" in this example)
to the encoder-decoder framework and we visual-
ize the gestural scores as well as activated gestures,
as shown in Fig. 1.

Table 1: Resynthesis and Resynthesis-CTC

H #gestures 20 40 60 80 H
H Resynthesis H
Rec Loss%  27.16 25.17 24.17 22.99
Sparsity(H)% 94.10 94.50 94.17 94.90
Resynthesis-CTC
Rec Loss% 2470 19.65 18.95 17.72
Sparsity(H)% 92.90 92.54 93.10 92.50
PER % 20.75 14.10 1544 15.71
PER-V % 16.55 11.02 11.88 12.09

Table 2: PER on EMA and Melspec

H Feature = EMA Melspec H
PER % 13.27 7.54
PER-V % 10.24 6.18

3.5 Discussion

We discuss the results in terms of four aspects of
the learned gestural scores: (i) Informativeness.
Lower reconstruction loss shows that the gestural
scores are more informative. By making the com-
parison between the input EMA and synthesized
EMA, we empirically observe that the reconstruc-
tion loss that is below 40% would not loss too
much information. As shown in Table. 1, the larger
the number of gestures, the more informative the
gestures are. (ii) Intelligibility and Consistency.
Based on Table. 2, EMA gives higher PER and
PER-V than melspectrogram because it captures
the information that is limited and discrete in space.

PER-V of EMA is lower than PER, which is con-
sistent to the fact that EMA is not able to differen-
tiate voiced and voiceless phones. Based on Table.
1, when number of gestures is 40, both PER and
PER-V are comparable to the results obtained from
EMA, which shows that gestures scores are intelli-
gible and consistent in time dimension. Note that
when increasing the number of gestures, the PER
is not always decreasing, indicating that the intel-
ligibility is not always positive correlated to the
informativeness. iii) Efficiency. Based on Table. 1,
when number of gestures is 40, the sparsity of ges-
tural scores is 0.9254, showing 90% of the space
is saved without a heavy degradation of PER. (iv)
Interpretability. Subjective evaluation was per-
formed. As shown in Fig. 1, when "Five" is taken
as input, four gestures(5,8,32,38) are activated with
different activation intervals. /F/ is expected to be
produced by a raising of the Lower Lip which is
here accomplished by gesture 5. The same ges-
ture also lowers the the tongue and jaw, which is
expected for the beginning of the diphthong /AY/.
The fact that this pattern is contributing to both the
consonant and the vowel is sensible, as word-initial
consonants and the following vowels are known
to be initiated at roughly the same time (Goldstein
et al., 2006). Gesture 32 is also strongly activated
during the time of the beginning of the diphthong
and it lowers all of the markers on the lower sur-
face, again as expected for the beginning part of the
diphthong /AY/. The second part of the diphthong
involves raising of the jaw and tongue tip, and this
is accomplished here by gesture 8 that is active near
the end of the word. Gesture 5 is also engaged at
the end of the word that raises the lower lip for the
/VI.

4 Conclusion

This work proposes a neural convolutive sparse ma-
trix algorithm which decomposes the EMA data
into gestures and gestural scores. The learned rep-
resentations a.k.a gestural scores are informative,
intelligent, consistent, efficient and interpretable.
This method bridges the gap between articulatory
phonology and deep learning techniques. Hope-
fully the proposed work could become a paradigm
that benefits both the downstream explorations
that are helpful for patients with vocal cord dis-
orders and the explorations in industrial applica-
tions towards roboust, controllable and generaliz-
able speech synthesis.
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Appendices
A Sparse Entropy Loss

Fig. 2 gives an intuition of entropy loss. All three
H matrices have the same sparsity. If the entropy
is pretty low, only one gesture is activated, which
leaves many other gestures unused. If the entropy
is pretty high, some of activated gestures are redun-
dant, which makes the gestural score less explain-
able.

(a) Low Entro  (b) Medium Entro  (c) High Entro
Figure 2: Three types of gestural score matrices with
the same sparsity but different entropy values.

B Dataset

MNGUO EMA (Electromagnetic midsagittal ar-
ticulography) (Richmond et al., 2011) dataset is
used in this work. There are in total 1263 utter-
ances recorded from one single speaker. During
the recording, six transducer coils were placed in
the midsagittal plane at the upper lip, lower lip,
lower incisors, tongue tip, tongue blade and tongue
dorsum to record the coordinates (x and y) of their
positions, and thus each EMA data frame takes 12
coordinates, as shown in Fig. 1. The sampling rate
of EMA is 200 Hz.

C Model Details

Table 3: Model Configurations

Module Name Block name Configurations*
Convld_1 (15,64)x1
Encoder Convld_2 (5.D)x1
Decoder Convld_3 “41,0)x1
Convld_4 (5,64)x3
gégf)leﬁier Bi-LSTM (256)x3
& Linear (128)x2

* For Convld Block, it is (kernel size, output channels)x#
of layers. For Bi-LSTM and Linear layers, it is (output
dimension) x# of layers.

The configurations of each module in Fig. 1 are
shown in Table. 3, where the number of gestures D
is a hyperparameter and C' is 12. For all convolu-
tional layers, the stride is 1 and paddings are made

so that the output length keeps the same across lay-
ers. Batchnorm1D (loffe and Szegedy, 2015) is
applied after each convolutional layer.

D Training Configuration

All experiments were trained on Nvidia Tesla V100
GPU. It takes one GPU hour to run a single EMA
resynthesis experiment and SGPU hours to run
phoneme recognition as well as resynthesis-CTC
experiments. Optimizer is Adam (Kingma and Ba,
2014) with the initial learning rate of 1e-3, which is
decayed every 5 epoches with a factor of 5. Weight
decay is le-4. Batchsize is 8. The weights of de-
coder (gestures) are initialized by the centers from
a kmeans algorithm: Slide the window of size 41
with a stride of 1 on EMA kinematics data, concate-
nate all 41 vectors into a supervector and perform
kmeans on all supervectors.



