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Abstract

Most of the research on data-driven speech rep-001
resentation learning has focused on raw audios002
in an end-to-end manner, paying little attention003
to their internal phonological or gestural struc-004
ture. This work, investigating the speech repre-005
sentations derived from articulatory kinematics006
signals, uses a neural implementation of convo-007
lutive sparse matrix factorization to decompose008
the articulatory data into interpretable gestures009
and gestural scores. By applying sparse con-010
straints, the gestural scores leverage the dis-011
crete combinatorial properties of phonological012
gestures. Phoneme recognition experiments013
were additionally performed to show that ges-014
tural scores indeed code phonological infor-015
mation successfully. The proposed work thus016
makes a bridge between articulatory phonol-017
ogy and deep neural networks to leverage inter-018
pretable, intelligible, informative, and efficient019
speech representations.020

1 Introduction021

Research on speech representation learning has022

been dominated by deep learning in recent years023

(Latif et al., 2020). The goal of speech representa-024

tion learning is to optimize both the performance025

of the model architectures and the interpretability026

of the learned representations. As there is growing027

demand of real-life applications of speech inter-028

faces (Herff and Schultz, 2016), the performance029

is emphasized to a larger extent, enabling human-030

machine interactions highly accurate and robust.031

Consequently, in most of these works the inter-032

pretability of representations has not been explored033

to an equivalent extent, which is one of the most sig-034

nificant bottlenecks that keeps the speech research035

from going farther. In general, speech representa-036

tions need to be better understood and developed.037

People usually represent speech via audio be-038

cause human perceive speech through hearing and039

audio is cheap to record, collect and process. How-040

ever, speech processing is quite a lot different from041

audio processing. It might not need any evidence to 042

indicate that any information that can be perceived 043

via human can be perceived anywhere from source 044

to destination. Perceiving the speech signal from 045

the source and leveraging how it is produced are 046

the most straightforward way to interpret it. The 047

speech signal is the result of respiratory, phonatory 048

and articulatory processes that generate the per- 049

ceivable acoustic resonances to encode an intended 050

linguistic message (MacNeilage, 2010). In that 051

sense, perceiving the speech signal from articula- 052

tory data is a preferred way to derive interpretable, 053

natural and robust speech representations. 054

The framework of articulatory phonology (Brow- 055

man and Goldstein, 1992) has offered a lawful ap- 056

proach to modeling the relation between phonolog- 057

ical representations as a set of discrete composi- 058

tional units, or gestures, and the variability in time 059

that derives from variation in the activation of the 060

gestures in real-time: the magnitude of their activa- 061

tion, and the temporal intervals of activation as rep- 062

resented in gestural scores. However, the gestures 063

and gestural scores of particular utterances have 064

never been estimated in a completely data-driven 065

manner. (Ramanarayanan et al., 2013) utilized the 066

convolutive sparse non-negative matrix factoriza- 067

tion (CSNMF) to decompose the non-negative ar- 068

ticulatory data into the gestures and gestural scores, 069

both of which are pretty much interpretable. The 070

downsides of such method are that all the train- 071

ing utterances have to be concatenated into a large 072

matrix, resulting in both memory and training ef- 073

ficiency issues. Additionally, such a model is not 074

compatible with the modern deep learning based 075

speech models so that it is challenging to perform 076

end-to-end training on articulatory data. 077

To handle the aforementioned problem, 078

(Smaragdis and Venkataramani, 2017) proposed an 079

auto-encoder based model to replace non-negatve 080

matrix factorization for speech separation task. 081

Inspired by this work, we propose a convolutional 082
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Figure 1: Neural Convolutive Matrix Factorization to Interpret Gestures and Gestural Scores.The panel in the bottom
visualizes four activated gestures in the example utterance for "Five" . The gestures capture the moving patterns of
articulators. Each moving pattern goes from thinner line to thicker line capturing about 200ms.

auto-encoder as the neural implementation of con-083

volutive matrix factorization. Such auto-encoder084

based matrix factorization method is compatible085

with modern deep neural network and the batch-086

wise optimization improves the convergence rate087

to the huge extent. Under such framework, the088

articulatory signal is decomposed into gestures089

and gestural scores which are still interpretable.090

The gestural scores are the learned articulatory091

speech representations and are constrained to be092

sparse. In the last stage, the phoneme recognition093

experiments were performed to show that the094

learned gestural scores are also intelligible and095

consistent in time domain. All the experiments are096

performed using MNGU0 EMA (Electromagnetic097

midsagittal articulography) (Richmond et al.,098

2011) corpus. The intention is that the proposed099

work could bridge the gap between explainable100

articulatory phonology and modern deep neural101

networks to deliver interpretable, intelligible,102

informative, and efficient speech representations.103

2 Proposed Methods104

2.1 Neural Convolutive Sparse Matrix105

Factorization106

Denote EMA data as X ∈ RC×t, where (C,t) is107

(number of channels, segment length). By convo-108

lutive matrix factorization (Ramanarayanan et al.,109

2013): 110

X ≈ ΣT−1
i=0 W (i) · −→H i

(1) 111

W ∈ RT×C×D is gestures and H ∈ RD×t is ges- 112

tural scores, where D is number of gestures and T 113

is the kernel size. −→H i
indicates that i columns of 114

H are shifted to the right. 115

It is observable that Eq. 1 is actually the 1-d 116

convolution with kernel W and input matrix H . By 117

auto-encoder matrix factorization (Smaragdis and 118

Venkataramani, 2017), H should be the hidden rep- 119

resentation derived from the encoder which takes 120

the pseudo-inverse of W as parameters. However, 121

calculating the pseudo-inverse of high dimensional 122

matrix is challenging. We experimentally justified 123

that the encoder can be any types of neural net- 124

works with any number of layers. The proposed 125

neural convolutive sparse matrix factorization is 126

formularized as follows: 127

H = max(f(X), 0) (2) 128
129

X̂ = W ⊙H (3) 130

where f(.) denotes any type of neural network. 131

In the original non-negative matrix factorization 132

problem, all components (X,W,H) have to be non- 133

negative. However, in such neural implementation, 134

only H is required to be non-negative so that the 135

gestures are always additive. There is no constraint 136

for W and X . 137
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2.2 Loss Objectives138

There are a couple of items in the loss function.139

The first one is the reconstruction loss, which is L2140

loss. The second one is sparseness. According to141

(Hoyer, 2004), the sparseness of a vector is defined142

as:143

S(Hi) =

√
n− L1(Hi)

L2(Hi)√
n− 1

(4)144

where Hi is the i-th row of H . L1 and L2 denote L1145

norm and L2 norm respectively. n is the length of146

the vector. The sparseness of gestural score matrix147

is shown as below:148

S(H) =
1

D
ΣD
i=1S(Hi) (5)149

The third term is the entropy of the sparseness,150

denoted as:151

E(H) =
1

D
ΣD
i=1(−S(Hi) log(S(Hi))) (6)152

It should be noticed that the sparseness cannot con-153

trol the number of gestures that are activated. For154

instance, the H matrix with only one gesture acti-155

vated for a long time interval might have the same156

sparsity with the matrix with multiple gestures ac-157

tivated for shorter time intervals. Typically we158

expect that a proper number of gestures should be159

activated. More intuition can be checked in Ap-160

pendix A. We introduce two balanced factors λ1161

and λ2 to limit both sparsity and entropy to a certain162

range. For EMA resynthesis task, the loss function163

is shown in Eq. 7, where EX means the loss is164

computed by taking the average in the mini-batch.165

Lres = EX [||X−X̂||2−λ1S(H)+λ2E(H)] (7)166

For phoneme recognition experiments, CTC167

(Graves et al., 2006) loss LCTC is used. For168

joint resynthesis-phoneme recognition task, the169

loss function is shown as in Eq. 8, where λ3 is170

a balanced factor.171

Ljoint = Lres + λ3LCTC (8)172

3 Experiments173

3.1 Dataset174

MNGU0 EMA (Electromagnetic midsagittal artic-175

ulography) (Richmond et al., 2011) dataset is used176

in this work. There are in total 1263 utterances177

recorded from one single speaker. Details can be178

checked in Appendix B. The Mel-Spectrogram is179

used as acoustic feature with the framing configu- 180

ration of 25ms/16ms and feature dimension of 80. 181

The unaligned phonemes extracted from text tran- 182

scriptions via the CMU pronouncing dictionary1, 183

are used as labels for phoneme recognition task. 184

The train/test split is 8:2, which is the same for all 185

experiments. 186

3.2 Tasks and Evaluation Methods 187

We perform two sets of experiments: (i) EMA 188

Resynthesis. By resynthesizing the EMA data, we 189

extract, visualize and interpret the gestures and ges- 190

tural scores. The reconstruction loss (L2) averaged 191

over all test samples is used to measure the infor- 192

mativeness of gestural scores (Saxe et al., 2019). 193

The sparsity defined in Eq. 5 is used to measure the 194

efficiency of gestural scores. The interpretability 195

of gestures and gestural scores is evaluated by sub- 196

jective analysis. (ii) Phoneme Recognition (PR). 197

PER (Phoneme Error Rate) is used as metric for 198

this task. PR on EMA is performed to measure the 199

intelligibility of EMA data. PER on melspectro- 200

gram is performed to measure the intelligibility gap 201

between articulartory and acoustics data. Lastly, 202

the joint training of EMA resynthesis and phoneme 203

recognition on gestural scores is performed to mea- 204

sure both the intelligibility (Lakhotia et al., 2021) 205

and the consistency of learned sparse speech rep- 206

resentations. Considering that EMA is not able to 207

capture the difference between voiced and voice- 208

less phones, we also relabel the phoneme sequence 209

by assigning the same label to the phonemes with 210

the same articulatory representation in EMA2, and 211

compute PER on new labels. We call the latter 212

metric as PER-V, which is reported for all PR ex- 213

periments. 214

3.3 Model Architectures 215

The overall model backbone is shown in Fig. 1. 216

The encoder takes EMA data X in and outputs 217

the gestural scores H . The decoder takes H in 218

and resynthesizes EMA data X̂ . For independent 219

phoneme recognition or joint resynthesis-CTC ex- 220

periments, the phoneme recognizer takes EMA, 221

melspectrogram or H in and predicts the align- 222

ment. Beamsearch algorithm is used for decoding 223

with beam width of 50 in phoneme recognition task. 224

Details can be checked in Appendix C. 225

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2Specifically,these tuples are expected to have the same

articulatory labels: (p,b,m), (t,d,n), (ch,jh), (f,v), (sh,zh),
(k,g,ng), (s,z), (th,dh)
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3.4 Implementation Details226

For EMA resynthesis experiments, we randomly227

extract a segment with fixed length of 300 frames as228

the input of model for each iteration. For phoneme229

recognition experiments, the full utterance is taken230

as input. The training details can be checked in231

Appendix D. For the loss function in Eq. 7 and232

Eq. 8, we set λ1 = λ2 = 10 and λ3 = 1. For233

resynthesis and resynthesis-CTC experiments, we234

explore different values of number of gestures: 20,235

40, 60 and 80 as ablation studies. The results of236

EMA resynthesis, joint resynthesis-CTC and in-237

dependent PR on EMA and melspectrogram are238

recorded in Table. 1 and Table. 2 respectively. To239

interpret the gestures and gestural scores, a random240

utterance is taken as input ("Five" in this example)241

to the encoder-decoder framework and we visual-242

ize the gestural scores as well as activated gestures,243

as shown in Fig. 1.

Table 1: Resynthesis and Resynthesis-CTC

#gestures 20 40 60 80

Resynthesis
Rec Loss% 27.16 25.17 24.17 22.99

Sparsity(H)% 94.10 94.50 94.17 94.90
Resynthesis-CTC

Rec Loss% 24.70 19.65 18.95 17.72
Sparsity(H)% 92.90 92.54 93.10 92.50

PER % 20.75 14.10 15.44 15.71
PER-V % 16.55 11.02 11.88 12.09

Table 2: PER on EMA and Melspec
Feature EMA Melspec

PER % 13.27 7.54
PER-V % 10.24 6.18

244
3.5 Discussion245

We discuss the results in terms of four aspects of246

the learned gestural scores: (i) Informativeness.247

Lower reconstruction loss shows that the gestural248

scores are more informative. By making the com-249

parison between the input EMA and synthesized250

EMA, we empirically observe that the reconstruc-251

tion loss that is below 40% would not loss too252

much information. As shown in Table. 1, the larger253

the number of gestures, the more informative the254

gestures are. (ii) Intelligibility and Consistency.255

Based on Table. 2, EMA gives higher PER and256

PER-V than melspectrogram because it captures257

the information that is limited and discrete in space.258

PER-V of EMA is lower than PER, which is con- 259

sistent to the fact that EMA is not able to differen- 260

tiate voiced and voiceless phones. Based on Table. 261

1, when number of gestures is 40, both PER and 262

PER-V are comparable to the results obtained from 263

EMA, which shows that gestures scores are intelli- 264

gible and consistent in time dimension. Note that 265

when increasing the number of gestures, the PER 266

is not always decreasing, indicating that the intel- 267

ligibility is not always positive correlated to the 268

informativeness. iii) Efficiency. Based on Table. 1, 269

when number of gestures is 40, the sparsity of ges- 270

tural scores is 0.9254, showing 90% of the space 271

is saved without a heavy degradation of PER. (iv) 272

Interpretability. Subjective evaluation was per- 273

formed. As shown in Fig. 1, when "Five" is taken 274

as input, four gestures(5,8,32,38) are activated with 275

different activation intervals. /F/ is expected to be 276

produced by a raising of the Lower Lip which is 277

here accomplished by gesture 5. The same ges- 278

ture also lowers the the tongue and jaw, which is 279

expected for the beginning of the diphthong /AY/. 280

The fact that this pattern is contributing to both the 281

consonant and the vowel is sensible, as word-initial 282

consonants and the following vowels are known 283

to be initiated at roughly the same time (Goldstein 284

et al., 2006). Gesture 32 is also strongly activated 285

during the time of the beginning of the diphthong 286

and it lowers all of the markers on the lower sur- 287

face, again as expected for the beginning part of the 288

diphthong /AY/. The second part of the diphthong 289

involves raising of the jaw and tongue tip, and this 290

is accomplished here by gesture 8 that is active near 291

the end of the word. Gesture 5 is also engaged at 292

the end of the word that raises the lower lip for the 293

/V/. 294

4 Conclusion 295

This work proposes a neural convolutive sparse ma- 296

trix algorithm which decomposes the EMA data 297

into gestures and gestural scores. The learned rep- 298

resentations a.k.a gestural scores are informative, 299

intelligent, consistent, efficient and interpretable. 300

This method bridges the gap between articulatory 301

phonology and deep learning techniques. Hope- 302

fully the proposed work could become a paradigm 303

that benefits both the downstream explorations 304

that are helpful for patients with vocal cord dis- 305

orders and the explorations in industrial applica- 306

tions towards roboust, controllable and generaliz- 307

able speech synthesis. 308
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Appendices371

A Sparse Entropy Loss372

Fig. 2 gives an intuition of entropy loss. All three373

H matrices have the same sparsity. If the entropy374

is pretty low, only one gesture is activated, which375

leaves many other gestures unused. If the entropy376

is pretty high, some of activated gestures are redun-377

dant, which makes the gestural score less explain-378

able.

(a) Low Entro (b) Medium Entro (c) High Entro
Figure 2: Three types of gestural score matrices with
the same sparsity but different entropy values.

379

B Dataset380

MNGU0 EMA (Electromagnetic midsagittal ar-381

ticulography) (Richmond et al., 2011) dataset is382

used in this work. There are in total 1263 utter-383

ances recorded from one single speaker. During384

the recording, six transducer coils were placed in385

the midsagittal plane at the upper lip, lower lip,386

lower incisors, tongue tip, tongue blade and tongue387

dorsum to record the coordinates (x and y) of their388

positions, and thus each EMA data frame takes 12389

coordinates, as shown in Fig. 1. The sampling rate390

of EMA is 200 Hz.391

C Model Details392

Table 3: Model Configurations
Module Name Block name Configurations*

Encoder
Conv1d_1 (15,64)×1
Conv1d_2 (5,D)×1

Decoder Conv1d_3 (41,C)×1

Phoneme
Recognizer

Conv1d_4 (5,64)×3
Bi-LSTM (256)×3

Linear (128)×2
* For Conv1d Block, it is (kernel size, output channels)×#
of layers. For Bi-LSTM and Linear layers, it is (output
dimension)×# of layers.

The configurations of each module in Fig. 1 are393

shown in Table. 3, where the number of gestures D394

is a hyperparameter and C is 12. For all convolu-395

tional layers, the stride is 1 and paddings are made396

so that the output length keeps the same across lay- 397

ers. Batchnorm1D (Ioffe and Szegedy, 2015) is 398

applied after each convolutional layer. 399

D Training Configuration 400

All experiments were trained on Nvidia Tesla V100 401

GPU. It takes one GPU hour to run a single EMA 402

resynthesis experiment and 5GPU hours to run 403

phoneme recognition as well as resynthesis-CTC 404

experiments. Optimizer is Adam (Kingma and Ba, 405

2014) with the initial learning rate of 1e-3, which is 406

decayed every 5 epoches with a factor of 5. Weight 407

decay is 1e-4. Batchsize is 8. The weights of de- 408

coder (gestures) are initialized by the centers from 409

a kmeans algorithm: Slide the window of size 41 410

with a stride of 1 on EMA kinematics data, concate- 411

nate all 41 vectors into a supervector and perform 412

kmeans on all supervectors. 413
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