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ABSTRACT

Given a simple request like Put a washed apple in the kitchen fridge, humans can
reason in purely abstract terms by imagining action sequences and scoring their
likelihood of success, prototypicality, and efficiency, all without moving a muscle.
Once we see the kitchen in question, we can update our abstract plans to fit the
scene. Embodied agents require the same abilities, but existing work does not yet
provide the infrastructure necessary for both reasoning abstractly and executing
concretely. We address this limitation by introducing ALFWorld, a simulator that
enables agents to learn abstract, text-based policies in TextWorld (Côté et al., 2018)
and then execute goals from the ALFRED benchmark (Shridhar et al., 2020) in a
rich visual environment. ALFWorld enables the creation of a new BUTLER agent
whose abstract knowledge, learned in TextWorld, corresponds directly to concrete,
visually grounded actions. In turn, as we demonstrate empirically, this fosters
better agent generalization than training only in the visually grounded environment.
BUTLER’s simple, modular design factors the problem to allow researchers to
focus on models for improving every piece of the pipeline (language understanding,
planning, navigation, and visual scene understanding).

1 INTRODUCTION TextWorld Embodied

Welcome!

You are in the middle of the room. 
Looking around you, you see 
a diningtable, a stove, 
a microwave, and a cabinet. 

Your task is to: 
Put a pan on the diningtable. 

> goto the cabinet

You arrive at the cabinet. 
The cabinet is closed.

> open the cabinet

The cabinet is empty.

> goto the stove

You arrive at the stove. Near the 
stove, you see a pan, a pot, 
a bread loaf, a lettuce, 
and a winebottle.

> take the pan from the stove

You take the pan from the stove.

> goto the diningtable

You arrive at the diningtable.

> put the pan on the diningtable
 
You put the pan on the 
diningtable.
  

Figure 1: ALFWorld: Interactive aligned text and
embodied worlds. An example with high-level text
actions (left) and low-level physical actions (right).

Consider helping a friend prepare dinner in an
unfamiliar house: when your friend asks you
to clean and slice an apple for an appetizer,
how would you approach the task? Intuitively,
one could reason abstractly: (1) find an apple
(2) wash the apple in the sink (3) put the clean
apple on the cutting board (4) find a knife
(5) use the knife to slice the apple (6) put the
slices in a bowl. Even in an unfamiliar setting,
abstract reasoning can help accomplish the
goal by leveraging semantic priors. Priors like
locations of objects – apples are commonly
found in the kitchen along with implements
for cleaning and slicing, object affordances
– a sink is useful for washing an apple unlike
a refrigerator, pre-conditions – better to wash
an apple before slicing it, rather than the con-
verse. We hypothesize that, learning to solve
tasks using abstract language, unconstrained
by the particulars of the physical world, en-
ables agents to complete embodied tasks in
novel environments by leveraging the kinds
of semantic priors that are exposed by abstrac-
tion and interaction.
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To test this hypothesis, we have created the novel ALFWorld framework, the first interactive, parallel
environment that aligns text descriptions and commands with physically embodied robotic simulation.
We build ALFWorld by extending two prior works: TextWorld (Côté et al., 2018) - an engine for
interactive text-based games, and ALFRED (Shridhar et al., 2020) - a large scale dataset for vision-
language instruction following in embodied environments. ALFWorld provides two views of the
same underlying world and two modes by which to interact with it: TextWorld, an abstract, text-based
environment, generates textual observations of the world and responds to high-level text actions;
ALFRED, the embodied simulator, renders the world in high-dimensional images and responds to
low-level physical actions as from a robot (Figure 1).1 Unlike prior work on instruction following
(MacMahon et al., 2006; Anderson et al., 2018a), which typically uses a static corpus of cross-modal
expert demonstrations, we argue that aligned parallel environments like ALFWorld offer a distinct
advantage: they allow agents to explore, interact, and learn in the abstract environment of language
before encountering the complexities of the embodied environment.

While fields such as robotic control use simulators like MuJoCo (Todorov et al., 2012) to provide
infinite data through interaction, there has been no analogous mechanism – short of hiring a human
around the clock – for providing linguistic feedback and annotations to an embodied agent. TextWorld
addresses this discrepancy by providing programmatic and aligned linguistic signals during agent
exploration. This facilitates the first work, to our knowledge, in which an embodied agent learns the
meaning of complex multi-step policies, expressed in language, directly through interaction.

Empowered by the ALFWorld framework, we introduce BUTLER (Building Understanding in
Textworld via Language for Embodied Reasoning), an agent that first learns to perform abstract tasks
in TextWorld using Imitation Learning (IL) and then transfers the learned policies to embodied tasks
in ALFRED. When operating in the embodied world, BUTLER leverages the abstract understanding
gained from TextWorld to generate text-based actions; these serve as high-level subgoals that facilitate
physical action generation by a low-level controller. Broadly, we find that BUTLER is capable of
generalizing in a zero-shot manner from TextWorld to unseen embodied tasks and settings. Our
results show that training first in the abstract text-based environment is not only 7× faster, but also
yields better performance than training from scratch in the embodied world. These results lend
credibility to the hypothesis that solving abstract language-based tasks can help build priors that
enable agents to generalize to unfamiliar embodied environments.

Our contributions are as follows:

§ 2 ALFWorld environment: The first parallel interactive text-based and embodied environment.
§ 3 BUTLER architecture: An agent that learns high-level policies in language that transfer to

low-level embodied executions, and whose modular components can be independently upgraded.
§ 4 Generalization: We demonstrate empirically that BUTLER, trained in the abstract text domain,

generalizes better to unseen embodied settings than agents trained from corpora of demonstrations
or from scratch in the embodied world.

2 ALIGNING ALFRED AND TEXTWORLD

Task type # train # seen # unseen
Pick & Place 790 35 24
Examine in Light 308 13 18
Clean & Place 650 27 31
Heat & Place 459 16 23
Cool & Place 533 25 21
Pick Two & Place 813 24 17
All 3,553 140 134

Table 1: Six ALFRED task types
with heldout seen and unseen
evaluation sets.

The ALFRED dataset (Shridhar et al., 2020), set in the THOR
simulator (Kolve et al., 2017), is a benchmark for learning to com-
plete embodied household tasks using natural language instruc-
tions and egocentric visual observations. As shown in Figure 1
(right), ALFRED tasks pose challenging interaction and naviga-
tion problems to an agent in a high-fidelity simulated environment.
Tasks are annotated with a goal description that describes the
objective (e.g., “put a pan on the dining table”). We consider
both template-based and human-annotated goals; further details
on goal specification can be found in Appendix H. Agents observe
the world through high-dimensional pixel images and interact using low-level action primitives:
MOVEAHEAD, ROTATELEFT/RIGHT, LOOKUP/DOWN, PICKUP, PUT, OPEN, CLOSE, and TOGGLEON/OFF.

1Note: Throughout this work, for clarity of exposition, we use ALFRED to refer to both tasks and the
grounded simulation environment, but rendering and physics are provided by THOR (Kolve et al., 2017).
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The ALFRED dataset also includes crowdsourced language instructions like “turn around and walk
over to the microwave” that explain how to complete a goal in a step-by-step manner. We depart from
the ALFRED challenge by omitting these step-by-step instructions and focusing on the more diffcult
problem of using only on goal descriptions specifying what needs to be achieved.

Our aligned ALFWorld framework adopts six ALFRED task-types (Table 1) of various difficulty
levels.2 Tasks involve first finding a particular object, which often requires the agent to open and
search receptacles like drawers or cabinets. Subsequently, all tasks other than Pick & Place require
some interaction with the object such as heating (place object in microwave and start it) or cleaning
(wash object in a sink). To complete the task, the object must be placed in the designated location.

Within each task category there is significant variation: the embodied environment includes 120
rooms (30 kitchens, 30 bedrooms, 30 bathrooms, 30 living rooms), each dynamically populated with
a set of portable objects (e.g., apple, mug), and static receptacles (e.g., microwave, fridge). For
each task type we construct a larger train set, as well as seen and unseen validation evaluation sets:
(1): seen consists of known task instances {task-type, object, receptacle, room} in rooms
seen during training, but with different instantiations of object locations, quantities, and visual
appearances (e.g. two blue pencils on a shelf instead of three red pencils in a drawer seen in training).
(2): unseen consists of new task instances with possibly known object-receptacle pairs, but
always in unseen rooms with different receptacles and scene layouts than in training tasks.

The seen set is designed to measure in-distribution generalization, whereas the unseen set measures
out-of-distribution generalization. The scenes in ALFRED are visually diverse, so even the same
task instance can lead to very distinct tasks, e.g., involving differently colored apples, shaped statues,
or textured cabinets. For this reason, purely vision-based agents such as the unimodal baselines in
Section 5.2 often struggle to generalize to unseen environments and objects.

The TextWorld framework (Côté et al., 2018) procedurally generates text-based environments for
training and evaluating language-based agents. In order to extend TextWorld to create text-based
analogs of each ALFRED scene, we adopt a common latent structure representing the state of the
simulated world. ALFWorld uses PDDL - Planning Domain Definition Language (McDermott et al.,
1998) to describe each scene from ALFRED and to construct an equivalent text game using the
TextWorld engine. The dynamics of each game are defined by the PDDL domain (see Appendix C for
additional details). Textual observations shown in Figure 1 are generated with templates sampled from
a context-sensitive grammar designed for the ALFRED environments. For interaction, TextWorld
environments use the following high-level actions:

goto {recep} take {obj} from {recep} put {obj} in/on {recep}
open {recep} close {recep} toggle {obj}{recep}
clean {obj} with {recep} heat {obj} with {recep} cool {obj} with {recep}

where {obj} and {recep} correspond to objects and receptacles. Note that heat, cool, clean,
and goto are high-level actions that correspond to several low-level embodied actions.

ALFWorld, in summary, is an cross-modal framework featuring a diversity of embodied tasks with
analogous text-based counterparts. Since both components are fully interactive, agents may be trained
in either the language or embodied world and evaluated on heldout test tasks in either modality. We
believe the equivalence between objects and interactions across modalities make ALFWorld an ideal
framework for studying language grounding and cross-modal learning.

3 INTRODUCING BUTLER: AN EMBODIED MULTI-TASK AGENT

We investigate learning in the abstract language modality before generalizing to the embodied
setting. The BUTLER agent uses three components to span the language and embodied modalities:
BUTLER::BRAIN – the abstract text agent, BUTLER::VISION – the language state estimator, and
BUTLER::BODY – the low-level controller. An overview of BUTLER is shown in Figure 2 and each
component is described below.

2To start with, we focus on a subset of the ALFRED dataset for training and evaluation that excludes tasks
involving slicing objects or using portable container (e.g., bowls).
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On the dining table 1,
you see a laptop 1,
a plate 1, a vase 1,
a statue 1, and a statue 2. 
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Looking around you, you see a shelf 1, 
a dining table 1, a sofa 1, a coffeetable 2 ...

 ...
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 “put two plates on the coffeetable”
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Figure 2: BUTLER Agent consists of three modular components. 1) BUTLER::BRAIN: a text agent
pre-trained with the TextWorld engine (indicated by the dashed yellow box) which simulates an
abstract textual equivalent of the embodied world. When subsequently applied to embodied tasks,
it generates high-level actions that guide the controller. 2) BUTLER::VISION: a state estimator that
translates, at each time step, the visual frame vt from the embodied world into a textual observation
ot using a pre-trained Mask R-CNN detector. The generated observation ot, the initial observation
o0, and the task goal g are used by the text agent the to predict the next high-level action at. 3)
BUTLER::BODY: a controller that translates the high-level text action at into a sequence of one or
more low-level embodied actions.

3.1 BUTLER::BRAIN (TEXT AGENT) ∶ o0, ot, g → at

Encoder Aggregator Decoder𝑜𝑡 𝑎𝑡

ℎ𝑡−1

ℎ𝑡

Observation 
Queue

𝑔

𝑜0

Figure 3: BUTLER::BRAIN: The text agent takes
the initial/current observations o0/ot, and goal g to
generate a textual action at token-by-token.

BUTLER::BRAIN is a novel text-based game
agent that generates high-level text actions in
a token-by-token fashion akin to Natural Lan-
guage Generation (NLG) approaches for dia-
logue (Sharma et al., 2017) and summarization
(Gehrmann et al., 2018). An overview of the
agent’s architecture is shown in Figure 3. At
game step t, the encoder takes the initial text ob-
servation o0, current observation ot, and the goal
description g as input and generates a context-
aware representation of the current observable game state. The observation o0 explicitly lists all
the navigable receptacles in the scene, and goal g is sampled from a set of language templates (see
Appendix H). Since the games are partially observable, the agent only has access to the observation
describing the effects of its previous action and its present location. Therefore, we incorporate two
memory mechanisms to imbue the agent with history: (1) a recurrent aggregator, adapted from Yuan
et al. (2018), combines the encoded state with recurrent state ht−1 from the previous game step; (2) an
observation queue feeds in the k most recent, unique textual observations. The decoder generates an
action sentence at token-by-token to interact with the game. The encoder and decoder are based on a
Transformer Seq2Seq model with pointer softmax mechanism (Gulcehre et al., 2016). We leverage
pre-trained BERT embeddings (Sanh et al., 2019), and tie output embeddings with input embeddings
(Press and Wolf, 2016). The agent is trained in an imitation learning setting with DAgger (Ross et al.,
2011) using expert demonstrations. See Appendix A for complete details.

When solving a task, an agent might get stuck at certain states due to various failures (e.g., action is
grammatically incorrect, wrong object name). The observation for a failed action does not contain any
useful feedback, so a fully deterministic actor tends to repeatedly produce the same incorrect action.
To address this problem, during evaluation in both TextWorld and ALFRED, BUTLER::BRAIN uses
Beam Search (Reddy et al., 1977) to generate alternative action sentences in the event of a failed
action. But otherwise greedily picks a sequence of best words for efficiency. Note that Beam Search
is not used to optimize over embodied interactions like prior work (Wang et al., 2019). but rather to
simply improve the generated action sentence during failures.

3.2 BUTLER::VISION (STATE ESTIMATOR) ∶ vt → ot

At test time, agents in the embodied world must operate purely from visual input. To this end,
BUTLER::VISION’s language state estimator functions as a captioning module that translates visual
observations vt into textual descriptions ot. Specifically, we use a pre-trained Mask R-CNN detec-
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tor (He et al., 2017) to identify objects in the visual frame. The detector is trained separately in a
supervised setting with random frames from ALFRED training scenes (see Appendix D). For each
frame vt, the detector generates N detections {(c1,m1), (c2,m2), . . . , (cN ,mN)}, where cn is the
predicted object class, and mn is a pixel-wise object mask. These detections are formatted into a
sentence using a template e.g., On table 1, you see a mug 1, a tomato 1, and a
tomato 2. To handle multiple instances of objects, each object is associated with a class cn and
a number ID e.g., tomato 1. Commands goto, open, and examine generate a list of detections,
whereas all other commands generate affirmative responses if the action succeeds e.g., at: put mug
1 on desk 2→ ot+1: You put mug 1 on desk 2, otherwise produce Nothing happens
to indicate failures or no state-change. See Appendix G for a full list of templates. While this work
presents preliminary results with template-based descriptions, future work could generate more de-
scriptive observations using pre-trained image-captioning models (Johnson et al., 2016), video-action
captioning frameworks (Sun et al., 2019), or scene-graph parsers (Tang et al., 2020).

3.3 BUTLER::BODY (CONTROLLER) ∶ vt, at → {â1, â2, . . . , âL}

The controller translates a high-level text action at into a sequence of L low-level physical actions
{â1, â2, . . . , âL} that are executable in the embodied environment. The controller handles two types
of commands: manipulation and navigation. For manipulation actions, we use the ALFRED API to
interact with the simulator by providing an API action and a pixel-wise mask based on Mask R-CNN
detections mn that was produced during state-estimation. For navigation commands, each episode
is initialized with a pre-built grid-map of the scene, where each receptacle instance is associated
with a receptacle class and an interaction viewpoint (x, y, θ, φ) with x and y representing the 2D
position, θ and φ representing the agent’s yaw rotation and camera tilt. The goto command invokes
an A* planner to find the shortest path between two viewpoints. The planner outputs a sequence of L
displacements in terms of motion primitives: MOVEAHEAD, ROTATERIGHT, ROTATELEFT, LOOKUP,
and LOOKDOWN, which are executed in an open-loop fashion via the ALFRED API. We note that a
given pre-built grid-map of receptacle locations is a strong prior assumption, but future work could
incorporate existing models from the vision-language navigation literature (Anderson et al., 2018a;
Wang et al., 2019) for map-free navigation.

4 EXPERIMENTS

We design experiments to answer the following questions: (1) How important is an interactive
language environment versus a static corpus? (2) Do policies learnt in TextWorld transfer to embodied
environments? (3) Can policies generalize to human-annotated goals? (4) Does pre-training in an
abstract textual environment enable better generalization in the embodied world?

4.1 IMPORTANCE OF INTERACTIVE LANGUAGE

The first question addresses our core hypothesis that training agents in interactive TextWorld environ-
ments leads to better generalization than training agents with a static linguistic corpus. To test this
hypothesis, we use DAgger (Ross et al., 2011) to train the BUTLER::BRAIN agent in TextWorld and
compare it against Seq2Seq, an identical agent trained with Behavior Cloning from an equivalently-
sized corpus of expert demonstrations. The demonstrations come from the same expert policies
and we control the number of episodes to ensure a fair comparison. Table 2 presents results for
agents trained in TextWorld and subsequently evaluated in embodied environments in a zero-shot
manner. The agents are trained independently on individual tasks and also jointly on all six task
types. For each task category, we select the agent with best evaluation performance in TextWorld
(from 8 random seeds); this is done separately for each split: seen and unseen. These best-performing
agents are then evaluated on the heldout seen and unseen embodied ALFRED tasks. For embodied
evaluations, we also report goal-condition success rates, a metric proposed in ALFRED (Shridhar
et al., 2020) to measure partial goal completion.3

3For instance, the task “put a hot potato on the countertop” is composed of three goal-conditions: (1) heating
some object, (2) putting a potato on the countertop, (3) heating a potato and putting it on the countertop. If the
agent manages to put any potato on the countertop, then 1/3 = 0.33 goal-conditions are satisfied, and so on.
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TextWorld Seq2Seq BUTLER BUTLER-ORACLE Human Goals
task-type seen unseen seen unseen seen unseen seen unseen seen unseen
Pick & Place 69 50 28 (28) 17 (17) 30 (30) 24 (24) 53 (53) 31 (31) 20 (20) 10 (10)
Examine in Light 69 39 5 (13) 0 (6) 10 (26) 0 (15) 22 (41) 12 (37) 2 (9) 0 (8)
Clean & Place 67 74 32 (41) 12 (31) 32 (46) 22 (39) 44 (57) 41 (56) 18 (31) 22 (39)
Heat & Place 88 83 10 (29) 12 (33) 17 (38) 16 (39) 60 (66) 60 (72) 8 (29) 5 (30)
Cool & Place 76 91 2 (19) 21 (34) 5 (21) 19 (33) 41 (49) 27 (44) 7 (26) 17 (34)
Pick Two & Place 54 65 12 (23) 0 (26) 15 (33) 8 (30) 32 (42) 29 (44) 6 (16) 0 (6)
All Tasks 40 35 6 (15) 5 (14) 19 (31) 10 (20) 37 (46) 26 (37) 8 (17) 3 (12)

Table 2: Zero-shot Domain Transfer. Left: Success percentages of the best BUTLER::BRAIN agents
evaluated purely in TextWorld. Mid-Left: Success percentages after zero-shot transfer to embodied
environments. Mid-Right: Success percentages of BUTLER with an oracle state-estimator and
controller, an upper-bound. Right: Success percentages of BUTLER with human-annotated goal
descriptions, an additional source of generalization difficulty. All successes are averaged across three
evaluation runs. Goal-condition success rates (Shridhar et al., 2020) are given in parentheses. The
Seq2Seq baseline is trained in TextWorld from pre-recorded expert demonstrations using standard
supervised learning. BUTLER is our main model using the Mask R-CNN detector and A* navigator.
BUTLER-ORACLE uses an oracle state-estimator with ground-truth object detections and an oracle
controller that directly teleports between locations.

Comparing BUTLER to Seq2Seq, we see improved performance on all types of seen tasks and five
of the seven types of unseen tasks, supporting the hypothesis that interactive TextWorld training is
a key component in generalizing to unseen embodied tasks. Interactive language not only allows
agents to explore and build an understanding of successful action patterns, but also to recover from
mistakes. Through trial-and-error the BUTLER agent learns task-guided heuristics, e.g., searching all
the drawers in kitchen to look for a knife. As Table 2 shows, these heuristics are subsequently more
capable of generalizing to the embodied world. More details on TextWorld training and generalization
performance can be found in Section 5.1.

4.2 TRANSFERRING TO EMBODIED TASKS

Since TextWorld is an abstraction of the embodied world, transferring between modalities involves
overcoming domain gaps that are present in the real world but not in TextWorld. For example, the
physical size of objects and receptacles must be respected – while TextWorld will allow certain
objects to be placed inside any receptacle, in the embodied world it might be impossible to put a
larger object into a small receptacle (e.g. a large pot into a microwave).

Subsequently, a TextWorld-trained agent’s ability to solve embodied tasks is hindered by these domain
gaps. So to study the transferability of the text agent in isolation, we introduce BUTLER-ORACLE
in Table 2, an oracle variant of BUTLER which uses perfect state-estimation, object-detection, and
navigation. Despite these advantages, we nevertheless observe a notable drop in performance from
TextWorld to BUTLER-ORACLE. This performance gap results from the domain gaps described
above as well as misdetections from Mask R-CNN and navigation failures caused by collisions.
Future work might address this issue by reducing the domain gap between the two environments, or
performing additional fine-tuning in the embodied setting.

The supplementary video contains qualitative examples of the BUTLER agent solving tasks in unseen
environments. It showcases 3 successes and 1 failure of a TextWorld-only agent trained on All Tasks.
In “put a watch in the safe”, the agent has never seen the ‘watch’-‘safe’ combination as a goal.

4.3 GENERALIZING TO HUMAN-ANNOTATED GOALS

BUTLER is trained with templated language, but in realistic scenarios, goals are often posed with
open-ended natural language. In Table 2, we present Human Goals results of BUTLER evaluated on
human-annotated ALFRED goals, which contain 66 unseen verbs (e.g., ‘wash’, ‘grab’, ‘chill’) and
189 unseen nouns (e.g., ‘rag’, ‘lotion’, ‘disc’; see Appendix H for full list). Surprisingly, we find
non-trivial goal-completion rate indicating that certain categories of task, such as pick and place, are
quite generalizable to human language. While these preliminary results with natural language are
encouraging, we expect future work could augment the templated language with synthetic-to-real
transfer methods (Marzoev et al., 2020) for better generalization.
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4.4 TO PRETRAIN OR NOT TO PRETRAIN IN TEXTWORLD?

Training Strategy train
(succ %)

seen
(succ %)

unseen
(succ %)

train speed
(eps/s)

EMBODIED-ONLY 21.6 33.6 23.1 0.9
TW-ONLY 23.1 27.1 34.3 6.1
HYBRID 11.9 21.4 23.1 0.7

Table 3: Training Strategy Success. Trained on All
Tasks for 50K episodes and evaluated in embodied
scenes using an oracle state-estimator and controller.

Given the domain gap between TextWorld
and the embodied world, Why not elimi-
nate this gap by training from scratch in the
embodied world? To answer this question,
we investigate three training strategies: (i)
EMBODIED-ONLY: pure embodied training,
(ii) TW-ONLY: pure TextWorld training fol-
lowed by zero-shot embodied transfer and
(iii) HYBRID training that switches between the two environments with 75% probability for TextWorld
and 25% for embodied world. Table 3 presents success rates for these agents trained and evaluated
on All Tasks. All evaluations were conducted with an oracle state-estimator and controller. For a
fair comparison, each agent is trained for 50K episodes and the training speed is recorded for each
strategy. We report peak performance for each split.

Results indicate that TW-ONLY generalizes better to unseen environments while EMBODIED-ONLY
quickly overfits to seen environments (even with a perfect object detector and teleport navigator). We
hypothesize that the abstract TextWorld environment allows the agent to focus on quickly learning
tasks without having to deal execution-failures and expert-failures caused by physical constraints
inherent to embodied environments. TextWorld training is also 7× faster4 since it does not require
running a rendering or physics engine like in the embodied setting. See Section F for more quantitative
evaluations on the benefits of training in TextWorld.

5 ABLATIONS

We conduct ablation studies to further investigate: (1) The generalization performance of BUT-
LER::BRAIN within TextWorld environments, (2) The ability of unimodal agents to learn directly
through visual observations or action history, (3) The importance of various hyper-parameters and
modeling choices for the performance of BUTLER::BRAIN.

5.1 GENERALIZATION WITHIN TEXTWORLD

We train and evaluate BUTLER::BRAIN in abstract TextWorld environments spanning the six tasks in
Table 1, as well as All Tasks. Similar to the zero-shot results presented in Section 4.1, the All Tasks
setting shows the extent to which a single policy can learn and generalize on the large set of 3,553
different tasks, but here without having to deal with failures from embodied execution.

We first experimented with training BUTLER::BRAIN through reinforcement learning (RL) where the
agent is rewarded after completing a goal. Due to the infesibility of using candidate commands or
command templates as discussed in Section I, the RL agent had to generate actions token-by-token.
Since the probability of randomly stumbling upon a grammatically correct and contextually valid
action is very low (7.02e-44 for sequence length 10), the RL agent struggled to make any meaningful
progress towards the tasks.

After concluding that current reinforcement learning approaches were not successful on our set of
training tasks, we turned to DAgger (Ross et al., 2011) assisted by a rule-based expert (detailed in
Appendix E). BUTLER::BRAIN is trained for 100K episodes using data collected by interacting with
the set of training games.

Results in Table 4 show (i) Training success rate varies from 16-60% depending on the category
of tasks, illustrating the challenge of solving hundreds to thousands of training tasks within each
category. (ii) Transferring from training to heldout test games typically reduces performance, with
the unseen rooms leading to the largest performance drops. Notable exceptions include heat and cool
tasks where unseen performance exceeds training performance. (iii) Beam search is a key contributor
to test performance; its ablation causes a performance drop of 21% on the seen split of All Tasks. (iv)
Further ablating the DAgger strategy and directly training a Sequence-to-Sequence (Seq2Seq) model

4For a fair comparison, all agents in Table 3 use a batch-size of 10. THOR instances use 100MB×batch-size
of GPU memory for rendering, whereas TextWorld instances are CPU-only and are thus much easier to scale up.
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Pick & Place Examine in
Light

Clean &
Place

Heat &
Place

Cool &
Place

Pick Two &
Place

All Tasks

tn sn un tn sn un tn sn un tn sn un tn sn un tn sn un tn sn un
BUTLER 54 61 46 59 39 22 37 44 39 60 81 74 46 60 100 27 29 24 16 40 37
BUTLERg 54 43 33 59 31 17 37 30 26 60 69 70 46 50 76 27 38 12 16 19 22
Seq2Seq 31 26 8 44 31 11 34 30 42 36 50 30 27 32 33 17 8 6 9 10 9

Table 4: Generalization within TextWorld environments: We independently train BUT-
LER::BRAIN on each type of TextWorld task and evaluate on heldout scenes of the same type.
Respectively, tn/sn/un indicate success rate on train/seen/unseen tasks. All sn and un scores are
computed using the random seeds (from 8 in total) producing the best final training score on each
task type. BUTLER is trained with DAgger and performs beam search during evaluation. Without
beam search, BUTLERg decodes actions greedily and gets stuck repeating failed actions. Further
removing DAgger and training the model in a Seq2Seq fashion leads to worse generalization. Note
that tn scores for BUTLER are lower than sn and un as they were computed without beam search.

with pre-recorded expert demonstrations causes a bigger performance drop of 30% on seen split of
All Tasks. These results suggest that online interaction with the environment, as facilitated by DAgger
learning and beam search, is essential for recovering from mistakes and sub-optimal behavior.

5.2 UNIMODAL BASELINES

Agent seen
(succ %)

unseen
(succ %)

BUTLER 18.8 10.1
VISION (RESNET18) 10.0 6.0
VISION (MCNN-FPN) 11.4 4.5
ACTION-ONLY 0.0 0.0

Table 5: Unimodal Baselines. Trained
on All Tasks with 50K episodes and
evaluated in the embodied environment.

Table 5 presents results for unimodal baseline comparisons
to BUTLER. For all baselines, the action space and con-
troller are fixed, but the state space is substituted with differ-
ent modalities. To study the agents’ capability of learning
a single policy that generalizes across various tasks, we
train and evaluate on All Tasks. In VISION (RESNET18),
the textual observation from the state-estimator is replaced
with ResNet-18 fc7 features (He et al., 2016) from the
visual frame. Similarly, VISION (MCNN-FPN) uses the
pre-trained Mask R-CNN from the state-estimator to extract FPN layer features for the whole image.
ACTION-ONLY acts without any visual or textual feedback. We report peak performance for each
split.

The visual models tend to overfit to seen environments and generalize poorly to unfamiliar envi-
ronments. Operating in text-space allows better transfer of policies without needing to learn state
representations that are robust to visually diverse environments. The zero-performing ACTION-ONLY
baseline indicates that memorizing action sequences is an infeasible strategy for agents.

5.3 MODEL ABLATIONS
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Figure 4: Model ablations on All Tasks. x-axis: 0 to 50k
episodes; y-axis: normalized success from 0 to 75%.

Figure 4 illustrates more factors that affect
the performance of BUTLER::BRAIN. The
three rows of plots show training curves,
evaluation curves in seen and unseen set-
tings, respectively. All experiments were
trained and evaluated on All Tasks with 8
random seeds.

In the first column, we show the effect of
using different observation queue lengths
k as described in Section 3.1, in which
size 0 refers to not providing any obser-
vation information to the agent. In the
second column, we examine the effect of
explicitly keeping the initial observation
o0, which lists all the receptacles in the
scene. Keeping the initial observation o0 facilitates the decoder to generate receptacle words more
accurately for unseen tasks, but may be unnecessary in seen environments. The third column sug-
gests that the recurrent component in our aggregator is helpful in making history-based decisions

8



Published as a conference paper at ICLR 2021

particularly in seen environments where keeping track of object locations is useful. Finally, in the
fourth column, we see that using more training games can lead to better generalizability in both seen
and unseen settings. Fewer training games achieve high training scores by quickly overfitting, which
lead to zero evaluation scores.

6 RELATED WORK

The longstanding goal of grounding language learning in embodied settings (Bisk et al., 2020) has lead
to substantial work on interactive environments. ALFWorld extends that work with fully-interactive
aligned environments that parallel textual interactions with photo-realistic renderings and physical
interactions.

Interactive Text-Only Environments: We build on the work of text-based environments like
TextWorld (Côté et al., 2018) and Jericho (Hausknecht et al., 2020). While these environment
allow for textual interactions, they are not grounded in visual or physical modalities.

Vision and language: While substantial work exists on vision-language representation learning
e.g., MAttNet (Yu et al., 2018b), CMN (Hu et al., 2017), VQA (Antol et al., 2015), CLEVR (Johnson
et al., 2017), ViLBERT (Lu et al., 2019), they lack embodied or sequential decision making.

Embodied Language Learning: To address language learning in embodied domains, a number of
interactive environments have been proposed: BabyAI (Chevalier-Boisvert et al., 2019), Room2Room
(Anderson et al., 2018b), ALFRED (Shridhar et al., 2020), InteractiveQA (Gordon et al., 2018),
EmbodiedQA (Das et al., 2018), and NetHack (Küttler et al., 2020). These environments use language
to communicate instructions, goals, or queries to the agent, but not as a fully-interactive textual
modality.

Language for State and Action Representation: Others have used language for more than just
goal-specification. Schwartz et al. (2019) use language as an intermediate state to learn policies
in VizDoom. Similarly, Narasimhan et al. (2018) and Zhong et al. (2020) use language as an
intermediate representation to transfer policies across different environments. Hu et al. (2019) use a
natural language instructor to command a low-level executor, and Jiang et al. (2019) use language as
an abstraction for hierarchical RL. However these works do not feature an interactive text environment
for pre-training the agent in an abstract textual space. Zhu et al. (2017) use high-level commands
similar to ALFWorld to solve tasks in THOR with IL and RL-finetuning methods, but the policy
only generalizes to a small set of tasks due to the vision-based state representation. Using symbolic
representations for state and action is also an inherent characteristic of works in task-and-motion-
planning (Kaelbling and Lozano-Pérez, 2011; Konidaris et al., 2018) and symbolic planning (Asai
and Fukunaga, 2017).

World Models: The concept of using TextWorld as a “game engine” to represent the world is broadly
related to inverse graphics (Kulkarni et al., 2015) and inverse dynamics (Wu et al., 2017) where
abstract visual or physical models are used for reasoning and future predictions. Similarly, some
results in cognitive science suggest that humans use language as a cheaper alternative to sensorimotor
simulation (Banks et al., 2020; Dove, 2014).

7 CONCLUSION

We introduced ALFWorld, the first interactive text environment with aligned embodied worlds.
ALFWorld allows agents to explore, interact, and learn abstract polices in a textual environment.
Pre-training our novel BUTLER agent in TextWorld, we show zero-shot generalization to embodied
tasks in the ALFRED dataset. The results indicate that reasoning in textual space allows for better
generalization to unseen tasks and also faster training, compared to other modalities like vision.

BUTLER is designed with modular components which can be upgraded in future work. Examples
include the template-based state-estimator and the A* navigator which could be replaced with learned
modules, enabling end-to-end training of the full pipeline. Another avenue of future work is to learn
“textual dynamics models” through environment interactions, akin to vision-based world models (Ha
and Schmidhuber, 2018). Such models would facilitate construction of text-engines for new domains,
without requiring access to symbolic state descriptions like PDDL. Overall, we are excited by the
challenges posed by aligned text and embodied environments for better cross-modal learning.
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A DETAILS OF BUTLER::BRAIN

In this section, we use ot to denote text observation at game step t, g to denote the goal description
provided by a game.

We use L to refer to a linear transformation and Lf means it is followed by a non-linear activation
function f . Brackets [⋅; ⋅] denote vector concatenation, ⊙ denotes element-wise multiplication.

A.1 OBSERVATION QUEUE

As mentioned in Section 3.1, we utilize an observation queue to cache the text observations that
have been seen recently. Since the initial observation o0 describes the high level layout of a room,
including receptacles present in the current game, we it visible to BUTLER::BRAIN at all game steps,
regardless of the length of the observation queue. Specifically, the observation queue has an extra
space storing o0, at any game step, we first concatenate all cached observations in the queue, then
prepend the o0 to form the input to the encoder. We find this helpful because it facilitates the pointer
softmax mechanism in the decoder (described below) by guiding it to point to receptacle words in the
observation. An ablation study on this is provided in Section 5.

A.2 ENCODER

We use a transformer-based encoder, which consists of an embedding layer and a transformer block
(Vaswani et al., 2017). Specifically, embeddings are initialized by pre-trained 768-dimensional BERT
embeddings (Sanh et al., 2019). The embeddings are fixed during training in all settings.

The transformer block consists of a stack of 5 convolutional layers, a self-attention layer, and a 2-layer
MLP with a ReLU non-linear activation function in between. In the block, each convolutional layer
has 64 filters, each kernel’s size is 5. In the self-attention layer, we use a block hidden size H of
64, as well as a single head attention mechanism. Layernorm (Ba et al., 2016) is applied after each
component inside the block. Following standard transformer training, we add positional encodings
into each block’s input.

At every game step t, we use the same encoder to process text observation ot and goal description
g. The resulting representations are hot ∈ RLot×H and hg ∈ RLg×H , where Lot is the number of
tokens in ot, Lg denotes the number of tokens in g, H = 64 is the hidden size.

A.3 AGGREGATOR

We adopt the context-query attention mechanism from the question answering literature (Yu et al.,
2018a) to aggregate the two representations hot and hg .

Specifically, a tri-linear similarity function is used to compute the similarity between each token
in hot with each token in hg. The similarity between i-th token in ho and j-th token in hg is thus
computed by (omitting game step t for simplicity):

Sim(i, j) =W (hoi , hgj , hoi ⊙ hgj), (1)

where W is a trainable parameter in the tri-linear function. By applying the above computation for
each ho and hg pair, we get a similarity matrix S ∈ RLo×Lg .

By computing the softmax of the similarity matrix S along both dimensions (number of tokens in
goal description Lg and number of tokens in observation Lo), we get Sg and So, respectively. The
two representations are then aggregated by:

hog = [ho;P ;ho ⊙ P ;ho ⊙Q],
P = Sgh

⊤
g ,

Q = SgS
⊤
o h
⊤
o ,

(2)

where hog ∈ RLo×4H is the aggregated observation representation.
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Next, a linear transformation projects the aggregated representations to a space with size H = 64:

hog = L
tanh(hog). (3)

To incorporate history, we use a recurrent neural network. Specifically, we use a GRU (Cho et al.,
2014):

hRNN = Mean(hog),
ht = GRU(hRNN, ht−1),

(4)

in which, the mean pooling is performed along the dimension of number of tokens, i.e., hRNN ∈ RH .
ht−1 is the output of the GRU cell at game step t − 1.

A.4 DECODER

Our decoder consists of an embedding layer, a transformer block and a pointer softmax mechanism
(Gulcehre et al., 2016). We first obtain the source representation by concatenating hog and ht,
resulting hsrc ∈ RLo×2H .

Similar to the encoder, the embedding layer is frozen after initializing it with pre-trained BERT
embeddings. The transformer block consists of two attention layers and a 3-layer MLP with ReLU
non-linear activation functions inbetween. The first attention layer computes the self attention of the
input embeddings hself as a contextual encoding for the target tokens. The second attention layer
then computes the attention αi

src ∈ RLo between the source representation hsrc and the i-th token in
hself. The i-th target token is consequently represented by the weighted sum of hsrc, with the weights
α
i
src. This generates a source information-aware target representation h′tgt ∈ RLtgt×H , where Ltgt

denotes the number of tokens in the target sequence. Next, h′tgt is fed into the 3-layer MLP with ReLU
activation functions inbetween, resulting htgt ∈ RLtgt×H . The block hidden size of this transformer is
H = 64.

Taking htgt as input, a linear layer with tanh activation projects the target representation into the same
space as the embeddings (with dimensionality of 768), then the pre-trained embedding matrix E
generates output logits (Press and Wolf, 2016), where the output size is same as the vocabulary size.
The resulting logits are then normalized by a softmax to generate a probability distribution over all
tokens in vocabulary:

pa(yi) = ESoftmax(Ltanh(htgt)), (5)

in which, pa(yi) is the generation (abstractive) probability distribution.

We employ the pointer softmax (Gulcehre et al., 2016) mechanism to switch between generating a
token yi (from a vocabulary) and pointing (to a token in the source text). Specifically, the pointer
softmax module computes a scalar switch si at each generation time-step i and uses it to interpolate
the abstractive distribution pa(yi) over the vocabulary (Equation 5) and the extractive distribution
px(yi) = αi

src over the source text tokens:

p(yi) = si ⋅ pa(yi) + (1 − si) ⋅ px(yi), (6)

where si is conditioned on both the attention-weighted source representation ∑j α
i,j
src ⋅ h

j
src and the

decoder state hitgt:

s
i
= L

sigmoid
1 (tanh(L2(∑

j

α
i,j
src ⋅ h

j
src) + L3(hitgt))). (7)

In which, L1 ∈ RH×1, L2 ∈ R2H×H and L3 ∈ RH×H are linear layers, H = 64.

B TRAINING AND IMPLEMENTATION DETAILS

In this section, we provide hyperparameters and other implementation details.

For all experiments, we use Adam (Kingma and Ba, 2014) as the optimizer. The learning rate is set to
0.001 with a clip gradient norm of 5.

15



Published as a conference paper at ICLR 2021

During training with DAgger, we use a batch size of 10 to collect transitions (tuples of {o0, ot, g, ât})
at each game step t, where ât is the ground-truth action provided by the rule-based expert (see Sec-
tion E). We gather a sequence of transitions from each game episode, and push each sequence into a
replay buffer, which has a capacity of 500K episodes. We set the max number of steps per episode to
be 50. If the agent uses up this budget, the game episode is forced to terminate. We linearly anneal
the fraction of the expert’s assistance from 100% to 1% across a window of 50K episodes.

The agent is updated after every 5 steps of data collection. We sample a batch of 64 data points
from the replay buffer. In the setting with the recurrent aggregator, every sampled data point is a
sequence of 4 consecutive transitions. Following the training strategy used in the recurrent DQN
literature (Hausknecht and Stone, 2015; Yuan et al., 2018), we use the first 2 transitions to estimate
the recurrent states, and the last 2 transitions for updating the model parameters.

BUTLER::BRAIN learns to generate actions token-by-token, where we set the max token length to be
20. The decoder stops generation either when it generates a special end-of-sentence token [EOS], or
hits the token length limit.
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Figure 5: Beam search for recovery actions.

When using the beam search heuristic to recover
from failed actions (see Figure 5), we use a beam
width of 10, and take the top-5 ranked outputs
as candidates. We iterate through the candidates
in the rank order until one of them succeeds.
This heuristic is not always guaranteed to suc-
ceed, however, we find it helpful in most cases.
Note that we do not employ beam search when
we evaluate during the training process for effi-
ciency, e.g., in the seen and unseen curves shown
in Figure 4. We take the best performing check-
points and then apply this heuristic during eval-
uation and report the resulting scores in tables
(e.g., Table 2).

By default unless mentioned otherwise (ablations), we use all available training games in each of
the task types. We use an observation queue length of 5 and use a recurrent aggregator. The model
is trained with DAgger, and during evaluation, we apply the beam search heuristic to produce the
reported scores. All experiment settings in TextWorld are run with 8 random seeds. All text agents
are trained for 50,000 episodes.

C TEXTWORLD ENGINE

Internally, the TextWorld Engine is divided into two main components: a planner and text generator.

Planner TextWorld Engine uses Fast Downward (Helmert, 2006), a domain-independent classical
planning system to maintain and update the current state of the game. A state is represented by a set
of predicates which define the relations between the entities (objects, player, room, etc.) present in
the game. A state can be modified by applying production rules corresponding to the actions listed in
Table 6. All variables, predicates, and rules are defined using the PDDL language.

For instance, here is a simple state representing a player standing next to a microwave which is closed
and contains a mug:

st = at(player,microwave)⊗ in(mug,microwave)
⊗ closed(microwave)⊗ openable(microwave),

where the symbol ⊗ is the linear logic multiplicative conjunction operator. Given that state, a
valid action could be open microwave, which would essentially transform the state by replacing
closed(microwave) with open(microwave).

Text generator The other component of the TextWorld Engine, the text generator, uses a context-
sensitive grammar designed for the ALFRED environments. The grammar consists of text templates
similar to those listed in Table 6. When needed, the engine will sample a template given some context,
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i.e., the current state and the last action. Then, the template gets realized using the predicates found
in the current state.

D MASK R-CNN DETECTOR

We use a Mask R-CNN detector (He et al., 2017) pre-trained on MSCOCO (Lin et al., 2014) and
fine-tune it with additional labels from ALFRED training scenes. To generate additional labels,
we replay the expert demonstrations from ALFRED and record ground-truth image and instance
segmentation pairs from the simulator (THOR) after completing each high-level action e.g., goto,
pickup etc. We generate a dataset of 50K images, and fine-tune the detector for 4 epochs with a batch
size of 8 and a learning rate of 5e-4. The detector recognizes 73 object classes where each class
could vary up to 1-10 instances. Since demonstrations in the kitchen are often longer as they involve
complex sequences like heating, cleaning etc., the labels are slightly skewed towards kitchen objects.
To counter this, we balance the number of images sampled from each room (kitchen, bedroom,
livingroom, bathroom) so the distribution of object categories is uniform across the dataset.

E RULE-BASED EXPERT

To train text agents in an imitation learning (IL) setting, we use a rule-based expert for supervision. A
given task is decomposed into sequence of subgoals (e.g., for heat & place: find the object, pick the
object, find the microwave, heat the object with the microwave, find the receptacle, place the object
in the receptacle), and a closed-loop controller tries to sequentially execute these goals. We note that
while designing rule-based experts for ALFWorld is relatively straightforward, experts operating
directly in embodied settings like the PDDL planner used in ALFRED are prone to failures due to
physical infeasibilities and non-deterministic behavior in physics-based environments.

F BENEFITS OF TRAINING IN TEXTWORLD OVER EMBODIED WORLD

Pre-training in TextWorld offers several benefits over directly training in embodied environments.
Figure 6 presents the performance of an expert (that agents are trained to imitate) across various
environments. The abstract textual space leads to higher goal success rates resulting from successful
navigation and manipulation subroutines. TextWorld agents also do not suffer from object mis-
detections and slow execution speed.

Figure 6: Domain Analysis: The performance of an expert across various environments.
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G OBSERVATION TEMPLATES

The following templates are used by the state-estimator to generate textual observations ot. The
object IDs {obj id} correspond to Mask R-CNN objects detection or ground-truth instance IDs.
The receptacle IDs {recep id} are based on the receptacles listed in the initial observation o0.
Failed actions and actions without any state-changes result in Nothing happens.

Actions Templates

goto

(a) You arrive at {loc id}. On the {recep id},
you see a {obj1 id}, ... and a {objN id}.

(b) You arrive at {loc id}. The {recep id} is closed.
(c) You arrive at {loc id}. The {recep id} is open.
On it, you see a {obj1 id}, ... and a {objN id}.

take You pick up the {obj id} from the {recep id}.

put You put the {obj id} on the {recep id}.

open

(a) You open the {recep id}. In it,
you see a {obj1 id}, ... and a {objN id}.

(b) You open the {recep id}. The {recep id} is empty.

close You close the {recep id}.

toggle You turn the {obj id} on.

heat You heat the {obj id} with the {recep id}.

cool You cool the {obj id} with the {recep id}.

clean You clean the {obj id} with the {recep id}.

inventory
(a) You are carrying: {obj id}.
(b) You are not carrying anything.

examine

(a) On the {recep id}, you see a {obj1 id}, ...
and a {objN id}.

(b) This is a hot/cold/clean {obj}.

Table 6: High-level text actions supported in ALFWorld along with their observation templates.
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H GOAL DESCRIPTIONS

H.1 TEMPLATED GOALS

The goal instructions for training games are generated with following templates. Here obj, recep,
lamp refer to object, receptacle, and lamp classes, respectively, that pertain to a particular task. For
each task, the two corresponding templates are sampled with equal probability.

task-type Templates

Pick & Place
(a) put a {obj} in {recep}.
(b) put some {obj} on {recep}.

Examine in Light
(a) look at {obj} under the {lamp}.
(b) examine the {obj} with the {lamp}.

Clean & Place
(a) put a clean {obj} in {recep}.
(b) clean some {obj} and put it in {recep}.

Heat & Place
(a) put a hot {obj} in {recep}.
(b) heat some {obj} and put it in {recep}.

Cool & Place
(a) put a cool {obj} in {recep}.
(b) cool some {obj} and put it in {recep}.

Pick Two & Place
(a) put two {obj} in {recep}.
(b) find two {obj} and put them {recep}.

Table 7: Task-types and the corresponding goal description templates.

H.2 HUMAN ANNOTATED GOALS

The human goal descriptions used during evaluation contain 66 unseen verbs and 189 unseen nouns
with respect to the templated goal instructions used during training.

Unseen Verbs: acquire, arrange, can, carry, chill, choose, cleaning, clear, cook, cooked, cooled,
dispose, done, drop, end, fill, filled, frying, garbage, gather, go, grab, handled, heated, heating, hold,
holding, inspect, knock, left, lit, lock, microwave, microwaved, move, moving, pick, picking, place,
placed, placing, putting, read, relocate, remove, retrieve, return, rinse, serve, set, soak, stand, standing,
store, take, taken, throw, transfer, turn, turning, use, using, walk, warm, wash, washed.

Unseen Nouns: alarm, area, back, baisin, bar, bars, base, basin, bathroom, beat, bed, bedroom,
bedside, bench, bin, books, bottle, bottles, bottom, box, boxes, bureau, burner, butter, can, canteen,
card, cardboard, cards, cars, cds, cell, chair, chcair, chest, chill, cistern, cleaning, clock, clocks, coffee,
container, containers, control, controllers, controls, cooker, corner, couch, count, counter, cover,
cream, credit, cupboard, dining, disc, discs, dishwasher, disks, dispenser, door, drawers, dresser,
edge, end, floor, food, foot, freezer, game, garbage, gas, glass, glasses, gold, grey, hand, head, holder,
ice, inside, island, item, items, jars, keys, kitchen, knifes, knives, laddle, lamp, lap, left, lid, light,
loaf, location, lotion, machine, magazine, maker, math, metal, microwaves, move, nail, newsletters,
newspapers, night, nightstand, object, ottoman, oven, pans, paper, papers, pepper, phone, piece,
pieces, pillows, place, polish, pot, pullout, pump, rack, rag, recycling, refrigerator, remote, remotes,
right, rinse, roll, rolls, room, safe, salt, scoop, seat, sets, shaker, shakers, shelves, side, sink, sinks,
skillet, soap, soaps, sofa, space, spatulas, sponge, spoon, spot, spout, spray, stand, stool, stove,
supplies, table, tale, tank, television, textbooks, time, tissue, tissues, toaster, top, towel, trash, tray, tv,
vanity, vases, vault, vegetable, wall, wash, washcloth, watches, water, window, wine.

I ACTION CANDIDATES VS ACTION GENERATION

BUTLER::BRAIN generates actions in a token-by-token fashion. Prior text-based agents typically
use a list of candidate commands from the game engine (Adhikari et al., 2020) or populate a list of
command templates (Ammanabrolu and Hausknecht, 2020). We initially trained our agents with
candidate commands from the TextWorld Engine, but they quickly ovefit without learning affordances,
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commonsense, or pre-conditions, and had zero performance on embodied transfer. In the embodied
setting, without access to a TextWorld Engine, it is difficult to generate candidate actions unless a set
of heuristics is handcrafted with strong priors and commonsense knowledge. We also experimented
with populating a list of command templates, but found this to be infeasible as some scenarios
involved 1000s of populated actions per game step.

J ALFRED TASK DESCRIPTIONS

The following descriptions describe the processes involved in each of six task-types:

• Pick & Place (e.g., “put a plate on the coffee table”) - the agent must find an object of the
desired type, pick it up, find the correct location to place it, and put it down there.

• Examine in Light (e.g., “examine a book under the lamp”) - the agent must find an object of
the desired type, locate and turn on a light source with the desired object in-hand.

• Clean & Place (e.g., “clean the knife and put in the drawer”) - the agent must find an object
of the desired type, pick it up, go to a sink or a basin, wash the object by turning on the
faucet, then find the correct location to place it, and put it down there.

• Heat & Place (e.g., “heat a mug and put on the coffee table”) - the agent must find an object
of the desired type, pick it up, go to a microwave, heat the object turning on the microwave,
then find the correct location to place it, and put it down there.

• Cool & Place (e.g., “put a cool bottle on the countertop”) - the agent must find an object of
the desired type, pick it up, go to a fridge, put the object inside the fridge and cool it, then
find the correct location to place it, and put it down there.

• Pick Two & Place (e.g., “put two pencils in the drawer”) - the agent must find an object of
the desired type, pick it up, find the correct location to place it, put it down there, then look
for another object of the desired type, pick it up, return to previous location, and put it down
there with the other object.
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K ALFWORLD TEXT GAME EXAMPLES

Three examples of ALFWorld text game walkthroughs:

You are in the middle of a room. Looking quickly around you, you see a towelholder 1, 
a toilet 1, a bathtubbasin 1, a drawer 4, a handtowelholder 2, a drawer 6, a drawer 1, 
a countertop 1, a sinkbasin 1, a drawer 2, a drawer 3, a toiletpaperhanger 1, a drawer 5, 
a handtowelholder 1, a towelholder 2, a sinkbasin 2, and a garbagecan 1.

Your task is to: put a clean cloth in bathtubbasin.

> go to drawer 5
You arrive at loc 9. The drawer 5 is closed.
> open drawer 5
You open the drawer 5. The drawer 5 is open. In it, you see a candle 1.
> close drawer 5
You close the drawer 5.
> go to countertop 1
You arrive at loc 25. On the countertop 1, you see a cloth 2, a soapbottle 1, a cloth 1, 
and a candle 3.                                                               
> take cloth 1 from countertop 1
You pick up the cloth 1 from the countertop 1.
> go to sinkbasin 1
You arrive at loc 20. On the sinkbasin 1, you see nothing.
> clean cloth 1 with sinkbasin 1
You clean the cloth 1 using the sinkbasin 1.
> go to bathtubbasin 1
You arrive at loc 14. On the bathtubbasin 1, you see a soapbar 1.
> put cloth 1 in/on bathtubbasin 1
You won!

You are in the middle of a room. Looking quickly around you, you see a drawer 15, a drawer 19, 
a drawer 7, a armchair 1, a drawer 3, a drawer 16, a drawer 2, a drawer 17, a sidetable 3, 
a sidetable 5, a drawer 4, a drawer 20, a sofa 1, a drawer 13, a drawer 12, a drawer 9, 
a drawer 21, a sidetable 4, a sidetable 2, a drawer 5, a drawer 11, a drawer 1, a garbagecan 1, 
a dresser 1, a cabinet 1, a drawer 8, a drawer 18, a sidetable 1, a drawer 14, a drawer 6, 
and a drawer 10.

Your task is to: find two remotecontrol and put them in armchair.

> go to sidetable 2
You arrive at loc 34. On the sidetable 2, you see a remotecontrol 1.
> take remotecontrol 1 from sidetable 2
You pick up the remotecontrol 1 from the sidetable 2.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see nothing.
> put remotecontrol 1 in/on armchair 1
You put the remotecontrol 1 in/on the armchair 1.
> go to dresser 1
You arrive at loc 18. On the dresser 1, you see a creditcard 1, a television 1, a laptop 1, 
a book 1, a statue 2, and a cellphone 2.
> go to sidetable 5
You arrive at loc 17. On the sidetable 5, you see a box 1, and a creditcard 2.
> go to sofa 1
You arrive at loc 2. On the sofa 1, you see a newspaper 1, a pillow 1, and a remotecontrol 2.
> take remotecontrol 2 from sofa 1
You pick up the remotecontrol 2 from the sofa 1.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see a remotecontrol 1.
> put remotecontrol 2 in/on armchair 1
You won!

You are in the middle of a room. Looking quickly around you, you see a safe 1, a shelf 4, a drawer 2, 
a bed 1, a drawer 1, a shelf 5, a shelf 2, a sidetable 2, a shelf 3, a drawer 3, a shelf 1, a sidetable 1, 
a desk 1, and a garbagecan 1.

Your task is to: examine the alarmclock with the desklamp.

> go to desk 1
You arrive at loc 8. On the desk 1, you see a pen 1, a bowl 1, a alarmclock 2, a pencil 2, a pencil 3, 
a creditcard 3, a book 1, a alarmclock 3, a keychain 3, and a book 2.
> take alarmclock 2 from desk 1
You pick up the alarmclock 2 from the desk 1.
> go to sidetable 2
You arrive at loc 1. On the sidetable 2, you see a desklamp 1, and a alarmclock 1.
> use desklamp 1
You won!
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