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Abstract

Feature Transformation (FT) crafts new features from original ones via mathemati-
cal operations to enhance dataset expressiveness for downstream models. However,
existing FT methods exhibit critical limitations: discrete search struggles with
enormous combinatorial spaces, impeding practical use; and continuous search,
being highly sensitive to initialization and step sizes, often becomes trapped in
local optima, restricting global exploration. To overcome these limitations, DIFFT
redefines FT as a reward-guided generative task. It first learns a compact and
expressive latent space for feature sets using a Variational Auto-Encoder (VAE). A
Latent Diffusion Model (LDM) then navigates this space to generate high-quality
feature embeddings, its trajectory guided by a performance evaluator towards
task-specific optima. This synthesis of global distribution learning (from LDM)
and targeted optimization (reward guidance) produces potent embeddings, which
a novel semi-autoregressive decoder efficiently converts into structured, discrete
features, preserving intra-feature dependencies while allowing parallel inter-feature
generation. Extensive experiments on 14 benchmark datasets show DIFFT consis-
tently outperforms state-of-the-art baselines in predictive accuracy and robustness,
with significantly lower training and inference times. Our code and data are publicly
available at https://github.com/NanxuGong/DIFFT

1 Introduction

In real-world practices, raw data features often contain imperfections and complex interdependencies
that hinder model performance. To address the challenges, Feature Transformation (FT) has been
widely used, because it can reconstruct distance measures, reshape discriminative patterns, and
enhance data AI readiness (structural, predictive, interaction, and expression levels). Given a raw
feature set Fraw = [f1, f2, . . . , fn] and an operator setO (e.g., log, +, ∗), feature transformation aims
to apply mathematical operations to original features and construct a better feature set, for instance,
[f1 ∗ f2, log f3, f4 + f5]. In this paper, we study the FT problem that aims to apply mathematical
operations to cross original features and create a better feature set.

In prior literature, manual transformation heavily relies on domain knowledge with limited general-
ization. Discrete search methods explore feature-operator combinations using reinforcement learning,
evolutionary algorithms, and genetic programming [6, 29, 26, 7]. However, these approaches suffer
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Figure 1: Motivation example. Discrete search methods explore various feature combinations
directly, but are often challenged by the sheer scale of the resulting combinatorial space. Continuous
search methods, on the other hand, iteratively refine solutions from initial or current points, yet
frequently converge to local optima. In contrast, our proposed reward-guided generation paradigm,
by leveraging the global sampling ability of diffusion models, aims to discover solutions closer to the
global optimum.

from the large combinatorial discrete search space. With the rise of GenAI and the concept of
any modality as language tokens, researchers see feature sets as token sequences. For instance, a
transformed feature set [f1 ∗f2, log f3, f4+f5] can be represented by a postfix expression: “f1 f2 ∗,
f3 log, f4 f5 +” to reduce sequence length and ambiguity. FT therefore is reduced into a GenAI task:
learning to generate a task-optimal feature token sequence given tasking data. Existing solutions
follow an embedding-search-generation paradigm [27, 31, 28]: i) learning feature token sequence
embeddings; ii) gradient ascent of optimal feature set embeddings; iii) autoregressive decoding of
identified embeddings into transformed tables. The key idea is gradient search of optimal feature set
embedding in a continuous embedding space, instead of search in the large discrete space.

Although the continuous search paradigm of generative FT introduces computational benefits, there
are two major challenges. First, the continuous gradient search can get stuck in a local optima and is
sensitive to initialization and search boundaries, leading to low robustness. A question that triggers
our curiosity is: how can we better learn a generalized representation space describing all high or
low-performance feature transformations on tasking data? Second, autoregressive decoding assumes
that two consecutive features in a sequence are dependent, and, thus, considers redundant contexts
and long attentions and is time-costly. For instance, while the tokens in one transformed feature
f1 ∗ f3 are interdependent, f1 ∗ f3 is not dependent on another transformed feature log(f3). Another
interesting question is: how can we enhance generative efficiency without compromising feature
transformation embedding decoding quality? Thus, we need a new learning paradigm that goes
beyond the continuous search paradigm in a static embedding space.

The Opportunity. As one of the generative frameworks, diffusion models learn the data distribution
by training on a forward noising process that incrementally adds noise to input data and a reverse
denoising process that reconstructs the data step-by-step, in order to capture the probability landscape
of the data. Once trained, the reverse diffusion process can be guided—either conditionally or through
optimization cues—to sample the most probable or desirable data points from the learned distribution
in a generative fashion. This offers a compelling alternative to continuous gradient search.

Our Insights: an integrated reward-guided diffusion and hierarchical decoding paradigm.
We formulate generative FT as a diffusion generation task, instead of a gradient search task. To
overcome the limitations of gradient search, our first insight is optimization as reward-guided
diffusion generation. The idea is to leverage forward diffusion and reverse diffusion to learn the
global and generalizable distribution of feature set embedding space, then leverage reward (gradient
from a performance evaluator) to guide the feature set embedding generation towards performance
maximization. The reward guidance is interpreted as aligning diffusion trajectories with reward
optimization paths to combine global distribution with local refinement. To overcome the limitations
of autoregressive decoding, we propose a hierarchical semi-autoregressive decoding method. We
divide a feature token sequence into multiple chunks (e.g., “f1 f2 ∗, f3 log, f4 f5 +” has 3 chunks),
each of which is one transformed feature (e.g., “f1 f2 ∗” is one feature). We adopt a hierarchical
strategy to firstly predict how many feature chunks to generate and then autoregress the token
sequence of each chunk. This can enable parallel decoding to improve efficiency of decoding a
feature token sequence for transformation. Collectively, these insights allow us to frame FT not as
a search problem within a discrete or continuous space, but as a guided generative task. Figure 1
visually encapsulates this paradigm shift. It contrasts our diffusion-based generation approach with
prior discrete and continuous search methodologies, highlighting how leveraging the global sampling
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Figure 2: Framework overview. The framework consists of three key components: 1) a VAE that
encodes feature sequences into latent embeddings via a semi-autoregressive decoder; 2) a LDM
trained to model the distribution of effective embeddings conditioned on tabular semantics; and 3) a
reward-guided sampling process that leverages gradients from a performance evaluator to steer the
generation of high-quality feature embeddings, which are then decoded into final feature sets.

capabilities of diffusion and reward guidance can overcome the inherent limitations of large search
spaces and local optima that challenged previous techniques.

Summary of Proposed Approach. Inspired by these insights, we propose a Reward-Guided Diffu-
sion Framework for Semi-Autoregressive Generative FT (DIFFT). Our method includes a Variational
Auto-Encoder (VAE) that learns compact embeddings of feature token sequences, an evaluator net-
work that guides the sampling process during inference in reverse diffusion, and a Latent Diffusion
Model (LDM) that generates task-optimal feature set embeddings within the learned latent space.
In particular, given tasking data, we explore and collect the performance of different transformed
feature sets (represented by feature token sequences) as training data. The VAE encoder is trained to
encode these feature token sequences into embedding vectors, while the VAE decoder predicts the
number of features in the output feature token sequence, then autoregresses each transformed feature
in a step-by-step manner. After training the VAE, the feature token sequence embedding vectors
of training data are exploited to learn the LDM as a denoising generative model in the embedding
space. After training the LDM, we extract gradient information from the evaluator that estimates the
performance of feature set sequence embeddings to guide the reverse denoising diffusion to generate
(a.k.a, sample) task-optimal feature token sequence embeddings. Finally, we use the VAE decoder to
decode the task-optimal embedding into a transformed feature set to augment input data.

Our Contributions. 1) We tackle FT as a GenAI task and develop an integrated reward-guided
diffusion and hierarchical decoding paradigm. 2) We convert task-optimal FT search as evaluator-
steered reverse diffusion, in which diffusion models learn feature set embedding distribution, then
conduct generative sampling of the desirable embedding. 3) We design a semi-autoregressive
decoding strategy (i.e., predicting feature number then generating token sequence of each feature) to
parallelize decoding and advance efficiency.

2 Diffusion Feature Transformation

2.1 Framework Overview

Figure 2 shows that our method has three core components: (1) a Variational Auto-Encoder for
feature knowledge learning; (2) a Latent Diffusion Model for embedding generation; and (3) a
reward-guided sampling mechanism for performance-aware feature transformation. In step 1, we
construct a VAE with an encoder that maps discrete feature sequences into a compact latent space, and
a semi-autoregressive decoder that reconstructs each feature sequence by first predicting the number
of features and then generating each feature autoregressively. Additionally, we train a performance
evaluator to predict the utility of latent embeddings for downstream tasks. In step 2, we use the VAE
encoder to obtain latent representations of training feature sets and train an LDM as a denoising
generative model to capture the distribution of effective embeddings. In step 3, during inference,
we incorporate the evaluator’s gradients into the denoising process, guiding the diffusion model to
generate embeddings that are optimized for downstream performance. The generated embeddings are
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then decoded via the semi-autoregressive decoder to produce high-quality feature sets. We provide
more information on important concepts in Appendix A.

2.2 Embedding: Learning the Embedding Space of Feature Sets on Tasking Data

We construct a representation learning model (i.e., a variational probabilistic autoencoder structure)
to encode discrete feature token sequences into embedding vectors in a compact and informative
embedding space, and a feature utility evaluator to predict the performance of a feature set given the
corresponding feature token sequence embedding. Figure 2(A) shows our model includes an encoder,
an evaluator, and a decoder.

Step 1: Transformer-based Seq2Vec Encoder. Given a discrete feature token sequence F =
{f1, f2, . . . , fT }, the encoder Eϕ(·) encodes the feature sequence into a latent vector z, which is
sampled from a latent distribution qϕ(z|F) = N (µ, σ2). To reshape the distribution of the latent
space into Gaussian, we impose a KL divergence to measure and minimize the distance between the
embedding space posterior distribution and a standard Gaussian prior:

LKL = KL(qϕ(z|F)∥p(z)). (1)

Step 2: Hierarchical Decoder with Position Embedding. The decoder is to generate a feature
sequence from a given latent vector z. When the decoder’s input is the decoder’s output embedding,
the task is reduced to reconstruct the original feature set. Unlike natural languages, a feature set,
although tokenized as a feature token sequence, has no current-past feature dependencies. For
instance, in the feature sequence f1 + f2, f2/f3, the second feature token segmentation f2/f3 is not
dependent on the first feature token segmentation f1 + f2. Only the token sequence within a single
feature segmentation (e.g., f1 + f2) exhibits sequential dependencies. We name a tokenized feature
set as a compositional sequence.

To model the compositional sequence structure, we propose a hierarchical decoder that adopts a
two-level (inter-feature and intra-feature) generation strategy. Specifically, at the inter-feature level,
the decoder predicts how many features we should generate as a feature set, which is modeled as
a categorical distribution using the embedding of the feature set. Formally, let T be the number of
features, pθ denote the decoder’s conditional probability distribution parameterized by θ, the feature
size prediction is trained by minimizing a standard cross-entropy loss:

Lcot = − log pθ(T |z). (2)

After predicting the size of the feature set to decode, the decoder independently generates each
feature in parallel. At the intra-feature level, the decoder autoregressively generates each feature
token segmentation starting with a special token of “BOS”. Formally, let f (k)

t be the k-th token of the
t-th feature, Lt is the total token number of ft. The feature token sequence reconstruction is learned
by optimizing a token-level cross-entropy loss over all the predicted features:

Lrec = −
T∑
t=1

Lt∑
k=1

log pθ(f
(k)
t |f

(<k)
t , z). (3)

Step 3: Incorporating The Evaluator. To incorporate performance guidance, we construct a
lightweight regression evaluator to predict the downstream task performance of a feature set, based
on the feature set’s embedding. Formally, Rψ(·) is a regression function, y is the real downstream
task performance of a feature set. The evaluator is trained by minimizing a mean squared error loss:

Leva = ∥Rψ(z)− y∥2 , (4)

Solving the Optimization Problem. The encoder-decoder-evaluator structure is trained end-to-end
by jointly optimizing the losses of Gaussian regularization, feature set size prediction, feature set
reconstruction, and feature set performance evaluation:

L = Lrec + αLcot + βLeva + γLKL, (5)

where α, β, and γ are the weights of corresponding loss terms.

Finally, after the encoder, decoder, and evaluator are trained, the encoder can create a continuous
embedding space to map various transformed feature sets on a specific dataset into embedding vectors,
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thus laying a foundation for the diffusion model to learn and generalize the distributions from these
embedding vectors; the evaluator can provide performance-optimal directions to enable diffusion
models to sample (a.k.a., generate) the best transformed feature set embedding from the distribution
via maximized likelihood estimation; the decoder, if well trained, can decode the best transformed
feature set embedding into a feature token sequence.

2.3 Distribution: Diffusion Model of Probabilistic Feature Embedding Space

After completing the embedding step, we utilize the learned encoder to project various feature token
sequences (i.e., potential feature transformations) into embedding vectors. The embedding vectors
of potential feature transformations can be seen as samples that jointly form a distribution about
how feature performances are probabilistically spread across various feature set embeddings. This
provides a new probabilistic angle: if we can describe the distribution of feature set embeddings over
performance, we can identify the best feature transformation plan for a dataset by generating the mean
feature set embedding with the highest probability from the distribution. The Latent Diffusion Model
(LDM) exhibits the ability to learn distributions from noisy and limited data in reverse diffusion and
generate performant samples from the distribution. This ability provides great potential for us to
derive the distribution of feature set embeddings and identify the best feature set transformation. We
next introduce the feature set embedding diffusion model.

Leveraging Feature Sets as Attributed Graphs and Graph Embedding for Diffusion Condition-
ing. To steer diffusion generation, we condition the diffusion process on an external representation
that captures distributional semantics of the original raw dataset to transform. Specifically, we convert
a feature token sequence into a tabular modality, by applying the feature token sequence to the raw
data matrix, resulting in a transformed table. Based on the transformed table, we construct a feature-
feature attributed graph, where nodes are features (columns) and edge weights are feature-feature
similarities to represent tabular feature space topology, interaction, and semantics. We then exploit a
Graph Convolutional Network (GCN) to learn an embedding of this graph. In this way, a feature token
sequence, corresponding to its transformed table and feature-feature interaction graph, is associated
with a graph embedding vector. After that, we leverage this graph embedding as a conditioning signal
during both training and sampling. Such conditioning strategy allows the diffusion model to generate
embedding vectors aligned with the structure, topology, and semantics of the targeted tasking dataset
to transform, enabling coherent and meaningful feature generation. Appendix B provides details
about the diffusion condition acquisition.

Learning Feature Transformation Diffusion Model. Because we regard a transformed feature set
as a feature token sequence, not an image, we choose a Transformer-based denoiser [33], instead of
the conventional UNet architecture. Our diffusion model includes a Transformer-encoder of L blocks
that apply sequentially to the current latent state zt. For the ℓ-th block, we compute

h(ℓ,1) = SA
(
AdaLNt(h

(ℓ−1))
)
, (6)

h(ℓ,2) = CA
(
AdaLNt(h

(ℓ,1)), c
)
, (7)

h(ℓ) = FFN
(
h(ℓ,2)

)
, (8)

where SA is self-attention over latent tokens, CA cross-attends to the condition embedding c,
and FFN is a two-layer feed-forward network. The timestep t enters through the AdaLayerNorm
modulation [21], and the condition c = MLPcond(g) is obtained by passing the tabular embedding
g through slight MLPs. The network predicts the noise ϵθ(zt, t, c) and is trained with the standard
latent diffusion loss LLDM = E

[
∥ϵ−ϵθ(zt, t, c)∥22

]
. Appendix D.4 details the training of the diffusion

model.

2.4 Optimization as Generative Sampling: Reward-guided Optimal Feature Set Embedding
Generation

Given a target reward a that indicates a high utility of features to generate, we follow the gradient-
steered sampler of RCGDM [32] to consider the latent z as Gaussian and develop our reverse process.
At each denoising step, we first evaluate ∇z log pt(y = a | z) ≈ − 1

σ2 ∇z

[
1
2 (Rψ(z)− a)2

]
, where

Rψ is the pretrained evaluator and σ2 is a hyper-parameter. The DDIM update [22] then becomes

zt−1 =
√
αt−1

(
zt −

1− αt√
1− ᾱt

[
ϵθ(zt, t, c)− λ∇z

(
1
2 (Rψ(zt)− a)2

)])
+

√
1− αt−1 ηt, (9)
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with λ = 1/σ2 controlling the strength of reward guidance and ηt ∼ N (0, I) the optional stochastic-
ity. Note that we do not apply classifier-free guidance [10] in our model, since the reward guidance
we employ shares the same fundamental principle as classifier-based guidance, which is approxi-
mating the conditional score ∇logpt(xt | y) [5]. Upon completion, the final latent ẑ0 is decoded
by the semi-autoregressive decoder to yield a feature set that is syntactically valid and empirically
high-reward.

2.5 Hierarchical Decoding: Semi-autoregressive Feature Set Reconstruction from Optimal
Embedding

After the reverse process samples or generates the optimal high-reward feature set embedding from
the embedding distribution, we leverage the learned decoder to decode the optimal embedding into a
feature token sequence, in order to obtain a new transformation. The hierarchical decoding includes
two steps: 1) predict feature size; 2) autoregress the token sequence of each feature chunk. Formally,
the decoder first predicts the number of features T :

T ∼ pθ(T | ẑ0).

For each feature chunk ft, the decoder generates its token sequence in an autoregressive manner:

f
(k)
t ∼ pθ(f

(k)
t | f (<k)

t , ẑ0), k = 1, . . . , Lt.

This semi-autoregressive decoding strategy enables parallel generation across feature chunks while
maintaining autoregressive modeling within each feature, balancing efficiency and generation quality.

3 Experiments

We conduct extensive experiments on public datasets to evaluate the effectiveness, efficiency, and
robustness of our method. The experiments are organized to answer the following research questions:
RQ1: Does the proposed method perform better than the baselines? RQ2: Do reward-guided
diffusion and semi-autoregressive generation contribute to the overall effectiveness and efficiency
of the framework? RQ3: Is the proposed method efficient compared with baselines? RQ4: Is the
proposed method robust when collaborating with different downstream ML models? RQ5: How
does guidance strength in generation affect performance?

3.1 Experimental Setup

We collect 14 public datasets from LibSVM, UCIrvine, and OpenML to conduct experiments. The
datasets are classified into two predictive tasks: classification and regression. We employ random
forest as the default downstream model and use F-1 score and 1- relative absolute error (RAE) to
measure the performance of classification task and regression task respectively. We compare the
proposed method with 10 widely-used algorithms: RDG, PCA [18], LDA [3], ERG, AFAT [11], NFS
[4], TTG [15], GRFG [26], MOAT [27], ELLM [6]. More details about datasets and baselines can be
found in Appendix D.

To comprehensively evaluate the effectiveness of each component, we introduce four ablation variants
of DIFFT: 1) AR employs a fully autoregressive generation strategy in the VAE decoder, replacing our
semi-autoregressive design; 2) NAR adopts a fully non-autoregressive decoder to assess the importance
of intra-feature dependency modeling; 3) NoR removes reward guidance during diffusion to examine
the role of performance-aware optimization; 4) CS eliminates the diffusion model and instead applies
a conventional continuous search method in the latent space to validate the effectiveness of the
diffusion model.

3.2 Overall Comparison (RQ1)

Table 1 reports the performance across 14 benchmark datasets. DIFFT consistently achieves the
best results on all datasets, demonstrating strong effectiveness and robustness across a wide range
of tasks. For example, on Messidor Features, DIFFT achieves an accuracy of 0.757, substantially
higher than the second-best method ELLM with 0.699. On Openml_618, DIFFT reaches 0.632,
outperforming MOAT with 0.477 and other baselines by a significant margin. This performance
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Table 1: Overall comparison. We conduct experiments on 14 datasets to explore the performance of
the proposed method. The best results for each dataset are highlighted in bold, and the second-best
results are underlined.

Dataset RDG PCA LDA ERG AFAT NFS TTG GRFG MOAT ELLM DIFFT

SpectF 0.760 0.709 0.665 0.792 0.792 0.760 0.776 0.796 0.848 0.837 0.877
SVMGuide3 0.789 0.676 0.635 0.764 0.795 0.785 0.766 0.804 0.821 0.826 0.866

German Credit 0.657 0.679 0.597 0.711 0.639 0.677 0.680 0.722 0.738 0.741 0.747
Messidor Features 0.686 0.672 0.463 0.602 0.634 0.649 0.626 0.694 0.644 0.699 0.757

SpamBase 0.921 0.816 0.885 0.923 0.920 0.925 0.921 0.928 0.930 0.928 0.931
Ap-omentum-ovary 0.849 0.736 0.696 0.830 0.845 0.845 0.830 0.830 0.849 0.849 0.885

Ionosphere 0.898 0.928 0.743 0.914 0.899 0.899 0.927 0.928 0.928 0.942 0.971

Openml_586 0.532 0.205 0.061 0.542 0.549 0.553 0.551 0.550 0.607 0.611 0.647
Openml_589 0.509 0.222 0.033 0.502 0.507 0.503 0.503 0.590 0.510 0.595 0.615
Openml_607 0.521 0.106 -0.040 0.518 0.513 0.518 0.518 0.524 0.521 0.550 0.561
Openml_616 0.120 -0.083 -0.174 0.193 0.163 0.166 0.161 0.166 0.162 0.329 0.335
Openml_618 0.425 0.141 0.030 0.470 0.473 0.473 0.472 0.472 0.477 0.476 0.632
Openml_620 0.502 0.138 -0.045 0.501 0.520 0.507 0.515 0.528 0.510 0.550 0.592
Openml_637 0.136 -0.052 -0.141 0.152 0.162 0.146 0.145 0.153 0.161 0.254 0.291

is primarily driven by two key components: the latent diffusion model, which enables global
exploration of the embedding space to discover high-quality feature representations, and the semi-
autoregressive decoder, which efficiently reconstructs complex feature structures with high fidelity.
Compared to MOAT, the representative continuous search-based method, DIFFT offers significantly
better stability and generalization. Although MOAT occasionally produces competitive results, its
performance fluctuates considerably across datasets and drops sharply on more challenging tasks
such as Openml_616, where it reaches only 0.162 compared to 0.335 achieved by DIFFT. In contrast,
DIFFT performs consistently well, benefiting from its generative formulation and reward-guided
sampling strategy. By avoiding local search and leveraging global, performance-aware generation,
DIFFT delivers more reliable and superior feature transformations across diverse tasks.

3.3 Ablation Study (RQ2)

Table 2: Performance of variant models and DIFFT
on 2 datasets.

Dataset
Variants

DIFFT
NAR AR NoR CS

SVMGuide3 0.840 0.856 0.831 0.830 0.866
Openml_586 0.641 0.638 0.623 0.610 0.647

To investigate the contribution of each compo-
nent in DIFFT, we design variant models: 1)
NAR and AR, which examine the impact of the
semi-autoregressive decoder by replacing it with
fully non-autoregressive and fully autoregres-
sive alternatives, respectively; 2) NoR, which
removes reward guidance during the diffusion
process to evaluate its effect on performance op-
timization; and 3) CS, which replaces the diffu-
sion model with a traditional continuous search
approach to assess the necessity of diffusion-based generation. We conduct ablation study on two
datasets to validate the effectiveness of the components. More details can be found in Appendix D.5.

Reward-Guided Diffusion. As shown in Table 2, both NoR and CS suffer from significant per-
formance drops compared to the full model. For example, on the SVMGuide3 dataset, removing
reward signals (NoR) reduces the accuracy from 0.866 to 0.831, while replacing diffusion with
continuous search (CS) causes an even greater decline to 0.830. This highlights the critical role of
reward guidance and the diffusion mechanism in driving feature generation toward high-performing
regions of the latent space. Interestingly, even without reward guidance, NoR still outperforms the
continuous search-based variant CS on the two datasets. This suggests that in the absence of a
carefully constructed latent space and an informative initialization, continuous search methods often
fail to explore effectively and are prone to suboptimal solutions. In contrast, by modeling global
structure and semantics, our diffusion model provides a more robust foundation for feature embedding
generation.
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Semi-Autoregressive Generation. The results in Table 2 also demonstrate the effectiveness of
the proposed semi-autoregressive (SAR) decoder. Compared with both AR and NAR variants, SAR
achieves superior performance across datasets. For example, on SVMGuide3, the SAR decoder
achieves an accuracy of 0.866, surpassing both the fully autoregressive model with 0.856 and the
non-autoregressive variant with 0.840. This improvement demonstrates that SAR effectively balances
dependency modeling and generation efficiency. By generating each feature independently while
preserving intra-feature autoregression, SAR captures fine-grained dependencies within individual
features, while avoiding redundant coupling across features that are semantically unrelated. This
selective dependency modeling enables the decoder to allocate attention more efficiently, resulting in
more stable and interpretable feature generation.
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Figure 3: Time analysis of generating 2000 tokens
using different methods.

To further analyze efficiency, Figure 3 explores
the decoding time of SAR decoders under dif-
ferent configurations to generate 2000 tokens.
We vary the number of features and the length
of each feature such that the total token count
remains constant (i.e., number × length). The
results show that SAR consistently achieves sig-
nificantly lower decoding time than AR, regard-
less of the configuration. Although decoding
time slightly increases with longer features, our
method maintains high efficiency by paralleliz-
ing feature generation.

3.4 Time Complexity Analysis (RQ3)

Table 3: Comparison of per-epoch training time and per-inference pass time (in seconds) between
DIFFT and MOAT across different datasets. DIFFT (D) and DIFFT (V) denote the per-epoch training
time of the diffusion model and VAE, respectively, while inference time refers to the duration of one
complete inference pass.

Dataset Feature # Training Time (s) Inference Time (s)

DIFFT (D) DIFFT (V) DIFFT MOAT DIFFT MOAT

Messidor Features 19 2.65 4.36 7.01 83.9 0.16 0.53
Openml_589 25 2.85 5.02 7.87 110.9 0.21 0.68
Ionosphere 34 3.33 5.35 8.68 170.1 0.23 1.03
Openml_618 50 4.74 7.45 12.19 200.9 0.25 1.18
Ap_omentum_ovary 10936 7.78 11.86 19.64 524.4 0.43 2.33

We compare the training and inference efficiency of DIFFT and MOAT to evaluate the computational
characteristics of the two generative feature transformation methods. Table 3 reports the per-epoch
training time and per-instance inference time for both methods. For DIFFT, we separately record the
training time of the VAE (denoted as DIFFT (V)) and the diffusion model (denoted as DIFFT (D)).
DIFFT requires significantly less time to train per epoch compared to MOAT. For example, on the
large-scale Ap_omentum_ovary dataset with over 10,000 features, DIFFT completes one training
epoch in 19.64 seconds, while MOAT takes more than 500 seconds. This efficiency gain is largely
attributed to architectural differences: DIFFT adopts a Transformer-based backbone, which supports
efficient parallel computation and faster convergence, whereas MOAT relies on an LSTM-based
model with sequential processing and limited scalability. Inference speed further highlights the
efficiency of our approach. DIFFT generates a feature set in no more than 0.43 seconds on all datasets,
whereas MOAT takes up to 2.33 seconds in some cases. This leads to a speedup of more than 5 times,
mainly due to the semi-autoregressive decoding strategy that allows parallel feature-level generation
while maintaining high generation quality. These results demonstrate that DIFFT offers not only
strong performance but also substantial advantages in training and inference efficiency.

3.5 Robustness Check (RQ4)
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Table 4: Robustness check. We employ different
downstream ML model to investiagte the robust-
ness of our method.

Method DT KNN LR SVC RF

GRFG 0.752 0.764 0.816 0.813 0.796
MOAT 0.873 0.843 0.835 0.836 0.848
ELLM 0.865 0.842 0.846 0.841 0.837

DIFFT 0.894 0.861 0.864 0.877 0.877

To evaluate the robustness of DIFFT across dif-
ferent learning scenarios, we apply five repre-
sentative downstream machine learning models
on the SpectF dataset, including Decision Tree
(DT), k-Nearest Neighbors (KNN), Logistic Re-
gression (LR), Support Vector Classifier (SVC),
and Random Forest (RF). Table 4 reports the
performance of DIFFT compared with the top
three baselines. We observe that DIFFT con-
sistently achieves the best performance across
all downstream models, demonstrating strong
robustness to variations in model architectures
and learning biases. In contrast, ELLM performs reasonably well on some models but fails to achieve
competitive results on RF, indicating limited generalization. Similarly, MOAT performs poorly when
paired with SVC, suggesting sensitivity to the characteristics of the downstream learner. These
findings highlight the robustness of DIFFT in optimizing feature transformation across diverse tasks.
DIFFT generates task-specific features that align with the objective of the target model, enabling
consistent improvements in predictive performance across a wide range of learning scenarios.

3.6 Guidance Strength Analysis (RQ5)

Table 5: Performance under different guidance strength λ settings.

Dataset 0 10 25 50 100 200 400

SVMGuide3 0.831 0.857 0.867 0.874 0.871 0.860 0.860
Openml_616 0.237 0.262 0.232 0.278 0.324 0.302 0.170

To investigate the effect of the reward-guided strength λ on the generation performance, we conduct
experiments on two datasets, with λ ranging from 0 to 400. The results are summarized in Table
5. For SVMGuide3, we observe a clear improvement as λ increases from 0 to 50, where the
performance peaks at 0.874. This demonstrates that moderate guidance helps the diffusion process
align more effectively with the reward objective. However, when λ becomes too large (e.g., ≥
100), the performance slightly decreases, suggesting that excessive guidance may overconstrain the
generation, leading to reduced sample diversity and potential overfitting to the reward signal. For
Openml_616, the trend is less monotonic but shows a similar pattern overall. The performance
improves gradually and achieves its highest value (0.324) at λ = 100, followed by a decline when
λ increases further. The larger variability across λ values implies that this dataset may be more
sensitive to the balance between reward alignment and generative flexibility. Overall, these results
indicate that moderate guidance strength (around λ = 50–100) yields the best trade-off between
reward optimization and sample diversity. Too weak guidance fails to leverage the reward signal
effectively, while too strong guidance can hinder the generative capacity of the diffusion model.

4 Related Work

4.1 Feature Transformation

Feature transformation aims to identify a new feature space by transforming the original features
using mathematical operations. The existing methods are mainly two-fold: 1) discrete space search
methods. These methods aim to search for the optimal feature set in the discrete feature combination
space. DFS [13] transforms all original features and selects useful ones. Genetic programming
is applied for feature transformation search [24]. GRFG [26] develops three agents to generate
features and leverages reinforcement learning to improve the search strategy. ELLM [6] employs
few-shot prompting LLM to generate new feature sets. 2) continuous space search methods. MOAT
[27] embeds feature sets into continuous space and utilizes the gradient-ascent method to explore
the embedding space. NEAT [30] extends the continuous space feature transformation search to
unsupervised conditions.
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4.2 Diffusion Model

Diffusion models have emerged as a dominant paradigm in generative modeling, offering superior
sample quality and training stability compared to traditional approaches such as GANs and VAEs.
Their fundamental design involves a forward noising process and a learned reverse process that
enables high-fidelity generation across modalities. Conditional variants of diffusion models, which
incorporate task-specific signals such as class labels, text prompts, or reward functions, have further
extended their applicability to controlled generation tasks in vision, language, and reinforcement
learning. Recent applications span a diverse range of domains, including text-to-image synthesis
[2], trajectory planning in reinforcement learning [12, 1], and protein or molecule design in life
sciences [8]. Beyond applications, a growing line of theoretical research has addressed key questions
around score function learning, sample complexity, and optimization guarantees, especially in high-
dimensional and structured settings [19]. Recent works also reinterpret conditional diffusion models
as flexible samplers for solving black-box optimization problems, where solution quality is guided by
reward-driven conditioning [17]. Despite the growing empirical success, theoretical analysis remains
an open frontier, particularly regarding guidance strength and generalization under distribution shifts.

4.3 Semi-Autoregressive Model

To achieve a better trade-off between decoding speed and output quality, semi-autoregressive gen-
eration (SAR) has been proposed as a hybrid decoding paradigm that blends the strengths of both
autoregressive (AR) and non-autoregressive (NAR) models. Early work by Wang et al. introduced the
semi-autoregressive Transformer, which generates tokens in chunks—producing multiple tokens in
parallel within each group, while maintaining an autoregressive dependency across groups [25]. This
design allows for partial parallelization while preserving sufficient contextual dependency to mitigate
issues such as repetition or omission in NAR outputs. Building upon this, the Insertion Transformer
supports flexible generation orders by allowing insertions at arbitrary positions, offering a more
dynamic decoding process [23]. Other efforts, such as the DisCo Transformer [14], further relax
strict left-to-right generation by enabling token predictions conditioned on arbitrary subsets of other
tokens. Additionally, RecoverSAT [20] introduces a segment-wise decoding strategy where each
segment is generated non-autoregressively, while the tokens within segments follow an autoregressive
pattern. These semi-autoregressive frameworks consistently demonstrate a superior balance between
latency and accuracy compared to fully NAR models, making them attractive choices in time-sensitive
applications.

5 Conclusion Remarks

In this paper, we propose DIFFT, a novel framework that formulates feature transformation as
a reward-guided generative process. Departing from traditional search-based paradigms, DIFFT
integrates a latent diffusion model with a semi-autoregressive decoder to generate high-quality,
task-specific feature sets in a performance-aware manner. Our hierarchical decoding strategy enables
efficient and expressive feature reconstruction, while the reward-guided sampling process aligns the
generative trajectory with downstream objectives. Extensive experiments on a diverse collection of
tabular datasets demonstrate that DIFFT consistently outperforms existing feature transformation
and selection methods in terms of predictive performance, robustness across downstream models,
and computational efficiency. Our ablation studies further validate the contributions of each module,
including the semi-autoregressive decoding and reward-driven diffusion. These results highlight the
effectiveness and adaptability of DIFFT as a scalable solution for feature engineering in modern
machine learning pipelines.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly conclude our contributions and scope in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We illustrate the limitations of DIFFT in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

13



Justification: We analyze the experimental results and elucidate the underlying reasons for
the observed outcomes.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the source code, datasets, and detailed experimental settings to
ensure the full reproducibility of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Both the code and datasets used in this study are publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details can be found in our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report results from a single run of each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental environment is described in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are cited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We organize our code and data well in the link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t have research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t have research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 4: Comparison of continuous search method and optimized generation method.

Feature Transformation. Given a raw feature set Fraw = [f1, f2, . . . , fn] and an operator set O
(e.g., log, +, ∗), feature transformation aims to apply mathematical operations to original features and
construct a better feature set, for instance, [f1∗f2, log f3, f4+f5]. These transformed features reveal
informative interactions and nonlinear relationships that improve downstream task performance.

Feature Sets as Language Token Sequences. A feature set can be described in a language token
modality. For example, given a transformed feature set [f1 ∗ f2, log f3, f4 + f5], we use a token
sequence “f1 ∗ f2, log f3, f4 + f5” to represent it in a compact and generative-friendly form. To
reduce sequence length and ambiguity, we adopt the postfix notion: “f1 f2 ∗, f3 log, f4 f5 +”.

Generative Feature Transformation and the Continuous Search Paradigm. Classic feature
engineering relies on manual selection or discrete search over massive possible combinations. With
the success of generative AI and everything as tokens, researchers regard a feature set as a token
sequence, and formulates feature transformation as a sequential generation task: given X and y,
generate a new feature token sequence (i.e., a new transformed feature set) that reconfiguring the
data that the model sees to align model behavior with prediction targets. The major methodological
paradigm under the generative formulation is continuous search that consists of three steps: 1) embed
feature token sequence into a continuous embedding space; 2) apply gradient ascent to discover better
embedding of feature transformations; 3) decode identified embedding to a new table. Building on
this idea, we propose a novel reward-guided generation framework that goes beyond searching within
a static embedding space: instead, it directly generates and refines feature representations through
a performance-aware generative process. This enables dynamic, goal-oriented exploration of the
transformation space, as summarized in Figure 4.

Latent Diffusion Model. Diffusion models [22, 21] synthesize data by learning to reverse a gradual
noising process that turns a clean sample into Gaussian noise. Let z0 be a latent drawn from the data
distribution. The forward (noising) process adds variance-preserving Gaussian noise for T steps

q(zt | zt−1) = N
(
zt;

√
1− βt zt−1, βtI

)
, t = 1, . . . , T,

with a predefined schedule {βt}Tt=1. A neural network ϵθ is trained to approximate the reverse
(denoising) transitions by predicting the added noise:

LDM = Et,z0,ϵ
[∥∥ϵ− ϵθ(zt, t)

∥∥2
2

]
, zt =

√
ᾱt z0 +

√
1− ᾱt ϵ, ᾱt =

t∏
s=1

(1− βs).

In latent diffusion, data are first compressed with an auto-encoder (Enc,Dec) into a perceptually
aligned latent space, and the diffusion process operates entirely on these low-dimensional latents.
Compared with pixel-/token-space diffusion, LDMs (i) drastically reduce memory and computation,
(ii) facilitate conditioning on vector-space signals, and (iii) retain high-fidelity details because
decoding starts from semantically rich latents instead of raw noise. During inference, one samples
zT ∼ N (0, I) and applies the learned reverse transitions to obtain a clean latent ẑ0, which is mapped
back to the data domain by Dec(ẑ0). Importantly, each denoising step is differentiable, so external
gradients—e.g., from a reward or performance predictor—can be injected to steer the trajectory
toward regions that maximize downstream objectives.

B Condition Acquisition

To provide a compact and informative conditioning signal for the diffusion model, we extract a
table-level embedding that summarizes the structure of the transformed tabular data. The feature
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sequence is interpreted as a table, where each column corresponds to a transformed feature. This table
structure captures both individual feature characteristics and inter-feature statistical dependencies.

We adopt a GCN-based encoder ϕ to generate the table embedding. Specifically, each feature is
regarded as a node in a fully connected feature correlation graph with self-loops. The adjacency
matrix Â encodes the pairwise correlations, and the node input features form the matrix H(0). We
apply a simplified Graph Convolutional Network [16] using symmetric normalization:

f(H(l), A) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
(10)

where Â is the adjacency matrix with self-loops, D̂ is the degree matrix, W (l) is the trainable weight
matrix at layer l, and σ is a non-linear activation function. After GCN, we obtain contextualized
embeddings for all features. These are aggregated via average pooling to obtain a table-level
embedding:

et =
1

n

n∑
i=1

hi (11)

where hi denotes the final embedding of the i-th feature. The resulting et is then used as the condition
input to the diffusion model during both training and generation, enabling it to guide the feature
generation process based on the global structure of the table.

C Training Data Collection

Generative feature transformation requires a diverse and high-quality training dataset to construct a
meaningful embedding space. However, traditional manual data collection is often inefficient and
lacks scalability. To address this challenge, we design a reinforcement learning (RL)-based data
collector that automatically explores and generates effective feature transformations, inspired by
recent advances in automated feature engineering [6, 26].

The proposed RL-based data collector simulates feature transformation trajectories and consists of
the following components:

• 1) Agents: A multi-agent system is employed, comprising:

– Head Feature Agent αh: selects the first feature.
– Operation Agent αo: selects an operator from the operator set O.
– Tail Feature Agent αt: selects the second feature.

• 2) Actions: At each time step t, the three agents collaboratively generate a new feature as:

ft = αh(t)⊕ αo(t)⊕ αt(t) (12)

where ⊕ denotes the operator applied to the selected feature pair.

• 3) State Representation: The state St = Rep(Xt) is defined as a 49-dimensional vector
summarizing the current feature space. It includes seven descriptive statistics (count,
standard deviation, min, max, and first/second/third quartiles) computed column-wise and
then aggregated row-wise, capturing both global and local characteristics.

• 4) Reward Function: The reward is defined as the performance improvement of the
downstream model after adding ft:

R(t) = yt − yt−1 (13)

where yt and yt−1 denote the performance metrics before and after the transformation,
respectively.

The agents are trained to maximize the cumulative reward by minimizing the mean squared error in
the Bellman equation, thereby learning transformation policies that consistently benefit downstream
performance.
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Algorithm 1 RL-based Data Collection Procedure

1: Input: Initial feature set X0, operator set O, downstream model
2: for each episode i = 1 to N do
3: Initialize feature space X0 and state S0

4: for each step t = 1 to T do
5: Select features: fh ← αh(St−1), ft ← αt(St−1)
6: Select operator: op← αo(St−1)
7: Generate new feature: ft = fh ⊕op ft
8: Update feature set: Xt = Xt−1 ∪ {ft}
9: Evaluate performance: yt ← downstream model performance on Xt

10: Compute reward: R(t) = yt − yt−1

11: Update state St ← Rep(Xt)
12: Update agents’ policies using R(t)
13: end for
14: end for
15: Output: Collected high-quality feature set

D Experiments

D.1 Datasets

To comprehensively evaluate the effectiveness and generalizability of our method, we conduct
experiments on 14 benchmark datasets encompassing both classification and regression tasks. These
datasets are sourced from widely used repositories, including UCIrvine, LibSVM, and OpenML. As
summarized in Table 6, the datasets vary significantly in terms of sample size (ranging from 267 to
4601), feature dimensionality (from 19 to 10,936), and task type. This diversity allows us to assess
model robustness across heterogeneous data distributions and application scenarios.

Dataset Source Task Samples Features
SpectF UCIrvine C 267 44

SVMGuide3 LibSVM C 1243 21
German Credit UCIrvine C 1000 24

Messidor Features UCIrvine C 1151 19
SpamBase UCIrvine C 4601 57

Ap-omentum-ovary OpenmlML C 275 10936
Ionosphere UCIrvine C 351 34

Openml_586 OpenmlML R 1000 25
Openml_589 OpenmlML R 1000 25
Openml_607 OpenmlML R 1000 50
Openml_616 OpenmlML R 500 50
Openml_618 OpenmlML R 1000 50
Openml_620 OpenmlML R 1000 25
Openml_637 OpenmlML R 500 50

Table 6: Dataset statistics.

D.2 Baselines

We compare our method with 10 widely-used algorithms: 1) RDG, which randomly generates new
feature transformations; 2) PCA [18], which generates new features based on linear correlations
among original features; 3) LDA [3], which constructs a new feature space through matrix factor-
ization; 4) ERG, which expands the feature space by applying selected operators to each feature,
followed by feature selection; 5) AFAT [11], which repeatedly generates new features and applies
multi-step feature selection; 6) NFS [4], which models the feature transformation process as a
decision-making task and leverages reinforcement learning for optimization; 7) TTG [15], which
formulates feature transformation as a graph search problem and employs reinforcement learning
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to explore it; 8) GRFG [26], which builds a cascading agent architecture and proposes a feature
group crossing strategy to enhance RL-based transformation search; 9) MOAT [27], which adopts a
reinforcement learning-based data collector and explores the optimal feature set in the embedding
space. 10) ELLM [6], which integrates evolutionary algorithm and large language model to iteratively
generate high-quality feature sets.

D.3 Experimental Environment

All experiments are conducted on the Ubuntu 22.04.3 LTS operating system, Intel(R) Core(TM)
i9-13900KF CPU @ 3GHz, and 1 RTX 6000 Ada GPU with 48GB of RAM, using the framework of
Python 3.11.4 and PyTorch 2.0.1.

D.4 Details of Diffusion Model

Our latent diffusion model comprises 8 identical Transformer blocks. To accelerate training and
improve convergence, we adopt the Min-SNR weighting strategy proposed in [9], which emphasizes
learning from informative timesteps during the early training phase. The model is trained for 800
epochs using the standard latent diffusion loss as mentioned in [32]. During inference, we apply
reward guidance with a reward scale set to 100 to enhance the quality of conditional generation. More
design details and hyperparameters can be found in our publicly available code.

D.5 Experimental Results

In this section, we present a more detailed ablation study. Each experiment is conducted five times,
and the average performance is reported in Table 7.

Table 7: Performance of variant models and DIFFT on 8 datasets.

Dataset
Variants

DIFFT
NAR AR NoR CS

SVMGuide3 0.840 0.856 0.831 0.830 0.871
Messidor Features 0.691 0.704 0.722 0.730 0.737
SpectF 0.792 0.823 0.851 0.876 0.881
Ionosphere 0.958 0.956 0.955 0.943 0.963
Openml_586 0.621 0.628 0.623 0.610 0.633
Openml_589 0.510 0.606 0.603 0.561 0.619
Openml_616 0.230 0.302 0.237 0.289 0.324
Openml_618 0.487 0.617 0.623 0.620 0.630

E Limitations

Although DIFFT delivers strong accuracy and robustness, two practical limitations remain. First, its
task-optimal design requires regenerating a tailored feature set for every downstream model; when
hundreds of learners or rapidly changing tasks are involved, the cumulative sampling and decoding
cost can become non-trivial. Second, the current implementation has been validated on tables with
up to roughly 10 K raw features; scaling to ultra-wide domains such as genome-scale assays or
large-scale click logs would place increasing memory and time pressure on the VAE and the diffusion
model. Future work will focus on extending DIFFT to a task-agnostic foundation model for feature
generation.
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