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Abstract

The features of self-supervised vision transformers (ViTs) contain strong semantic
and positional information relevant to downstream tasks like object localization and
segmentation. Recent works combine these features with traditional methods like
clustering, graph partitioning or region correlations to achieve impressive baselines
without finetuning or training additional networks. We leverage upsampled features
from ViT networks (e.g DINOv2) in two workflows: in a clustering based approach
for object localization and segmentation, and paired with standard classifiers in
weakly supervised materials segmentation. Both show strong performance on
benchmarks, especially in weakly supervised segmentation where the ViT features
capture complex relationships inaccessible to classical approaches. We expect the
flexibility and generalizability of these features will both speed up and strengthen
materials characterization, from segmentation to property-prediction.

1 Introduction

The rise of ‘foundation models’ - large networks (usually transformers1) trained on vast corpuses
of data - has been a strong theme in machine learning for the past five years2. Initially these were
language models, such as BERT3, T54 or the GPT5,6 series, but has also included some generative
vision models like CLIP7, DALL-E8 or Stable Diffusion9. Foundation models targeting fundamental
vision problems like segmentation and object detection have also been developed, notably Meta’s
Segment Anything Model (SAM)10 and the YOLO series11,12 that display strong zero- or few-shot
performance. The analysis of micrographs is ubiquitous in scientific workflows, for example in the
characterization of crystals in material science or cells in biology. Segmentation (assigning every
pixel/voxel a class) is prerequisite before any such analysis can take place, be it phase quantification,
defect detection or transport simulations. Finding ways to use these models to improve materials
segmentation is therefore of great interest.

One class of vision foundation model that has seen progress recently is the ‘feature foundation model’,
designed to learn “all-purpose visual features”13. These features can then be used in downstream
tasks, usually by freezing the foundation model and training a small ’head’ network to map from the
image features to the specific objective. Examples include DINO14, DINOv213 and I-JEPA15. Like
other foundation models, they are predominantly trained via self-supervised learning. ViTs trained in
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Figure 1: Diagram of our feature upsampling method (left) and its application in unsupervised
downstream vision tasks like object detection, saliency detection and semantic segmentation.

this way capture rich semantic information in their features that convolutional neural networks do
not14,16.

DINO and DINOv2 produce spatialised features, albeit at a resolution limited by the model’s patch
size. These semantically meaningful patch-level features can then be combined with classical
techniques (clustering, spectral methods etc.) in workflows that aim to leverage these features in an
unsupervised manner, i.e, without further training17. Example tasks that can be achieved using these
features unsupervised include (multi-)object detection18–20, saliency detection20,21 and (semantic)
segmentation16,21. These workflows require no labelled training data (unlike, say, training a head
network) and are therefore attractive in domains where labelled training data is scarce and expensive,
like biological, medical or materials imaging22.

In such domains, dense (pixel-level) features are often desirable for tasks like semantic segmentation
or localised property prediction. For example, in materials science, zero-shot semantic segmentation
is often achieved by training a classifier (usually a Random Forest) to map from classical image
features like average local intensity, edge strength and textures to user-drawn labels23–26. The
semantic information offered by ViTs could improve tasks like segmentation where classical image
features fail, but are currently limited by being patch- rather than pixel-level. Work on improving the
feature resolution of these models has been done, including reducing the stride of the convolution in
the model’s patch embedding layer16, training a single forward-pass upsampling filter or fitting an
implicit model for each image27.

In this work we present three main contributions - the first is a novel single-pass method for feature
upsampling that is model agnostic and works without any further training. It works by shifting the
input image a certain number of pixels (less than the patch size) in each direction, computing the
features with a foundation model, resizing the features back to the original image size, shifting in the
opposite direction and averaging. This method is compatible with the strided approach and works for
other invertible transformations like flipping, rotating etc.

The second is an unsupervised segmentation workflow based on clustering these high resolution
feature maps, where the attention density can be used to create a robust foreground/background dis-
tinction, and from that a ‘semantic distance’ between classes in the image can be estimated. Clusters
are agglomeratively merged up to this distance, producing a ‘semantic segmentation’ relative to the
image (and model). This segmentation can then be processed for object detection, saliency detection
or semantic segmentation. A diagram of the feature upsampling and its use in the unsupervised
workflow is presented in Figure 1.

Finally, we integrate these high resolution features into a zero-shot weakly supervised semantic
segmentation app and qualitatively demonstrate its ability to handle both pixel-level and semantic
distinctions when applied to a case study of cell nuclei segmentation and a series of industrially-
relevant materials - namely, battery cathodes, alloys, oxide layers and organic crystals.
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2 Background

Vision transformers

Vision Transformers extend the token sequence-modelling of language transformers to images by
breaking an image into (non-overlapping) embedded patches with a convolutional layer with given
kernel size (commonly 8, 16 or 32 pixels) and stride equal to kernel size28. These patches are given
a positional encoding relative to their position in the image (i.e, raster-order28 or sinusoidal29) and
then treated as tokens in the transformer as normal. It is common to append a non-spatial class token
(called the [CLS] token) to the sequence to capture global information.

The number of patch tokens, n, increases quadratically as the edge length of the square image
increases, or patch size decreases. Given the attention mechanism of transformers is O(n2)1 this
represents a sharp quartic scaling to achieve higher resolution. It is therefore common to train these
networks at a large patch size, say 16 pixels, which limits the resolution of extracted features - not
usually a problem for natural images but has implications when handling micrographs of materials,
which often have pixel-level features.

Self-supervised feature learning

Self-supervised representation learning with transformers on large datasets has proven both popular
and successful in Natural Language Processing (NLP), learning by mapping between transformations
of an input text sequence - like causal token masking for GPT5 or single-token masking for BERT3.

A direct analogue to this approach for ViTs is the Masked Autoencoder (MAE), which learns by
reconstructing an image with around 70% of the input patches masked; it works in different modalities
and as part of wider feature learning setups15,30–33. Other approaches view self-supervised learning
as a self-distillation problem, employing a student-teacher framework to learn patch-level features
from either varying local/global view of an image, or distillation token or in combination with
masked token modelling. Examples of these approaches are DINO14, DEiT34 and iBot35. The most
recent feature foundation model is DINOv213, which showed strong performance across various
benchmarks.

It has been shown features of supervised models are more discriminative (and therefore less flexible)
than those of self-supervised models, and that self-supervised ViTs learn semantic information
that comparable CNNs do not14,34,36. Different self-supervised training schemes result in different
features: the features of MAE-trained ViTs are better at separating instances of the same object
whereas DINO-trained ViTs are better at semantic separation37.

These feature models tend to use the same ViT architecture, varying the training data and objective.
The ViT architecture tends to come in varying sizes: (S)mall, (B)ase, (L)arge, (H)uge and (G)iant,
each with increasing parameter counts and hidden dimension output. They also have varying patch
size, usually 16 but sometimes 14 or 8. We will use the notation model-size-patch, i.e DINO-S-16,
in the following sections.

Feature upsampling

Standard interpolation approaches (bilinear, bicubic, nearest-neighbour) can be used to upsample
patch-level features but risks blurring or missing high-resolution details. For ViTs, reducing the stride
of the patch embedding layer (creating overlapping patches)16 can increase the feature resolution, but
this increases the number of input patches and therefore causes the time and memory scaling problem
discussed in Section S5. It can also cause blurring and at very small strides (1 or 2) cause numerical
errors.

FeatUp27 presented two approaches for general feature upsampling: a learned Joint Bilateral Upsam-
pling (JBU)38 filter which operates in a single forward pass and an implict model that is fitted to
each image. A feature upsampler and downsampler are trained simultaneously to predict the change
in features after small transformations of the input image. The JBU filter is fast, though sometimes
produces blurry feature maps and the implicit approach produces very sharp features but requires
training for each image.
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Unsupervised feature adaption: object localization and segmentation

Various methods have been proposed for applying unsupervised image features to different tasks -
most leveraging DINO as their featuriser17. LOST19 detects objects by finding patches correlated to
a given ‘seed’ patch. MOST18 performs entropy-based box analysis on the patch feature correlations
to detect foreground objects.

Other approaches use clustering, usually to cluster features into classes (and later superclasses) for
semantic segmentation16,39. Spectral methods have also been used, either decomposing images via
eigenvectors of the Laplacian of the feature affinity matrix21, or graph/spectral clustering of the
features37,40, or a graph-cut approach20,41. The memory cost of these methods scales prohibitively as
the number of tokens (and therefore graph size) increases.

Each of these applications needs some heuristic for separating foreground and background classes,
be it thresholding attention14, number of pixels touching the edges of the image37 or assuming the
largest class to be the background19. They also must contend with the limited resolution of the patch
features, improving them by changing the model stride16, fusing additional colour information21,
using a Bilateral Solver (BS)41 or Conditional Random Field (CRF)16 or training a model on their
workflow’s pseudo-labels (‘self-training’).

Weakly supervised segmentation for materials

Weakly- or semi-supervised segmentation in computer science is a wide field with a variety of models,
including CNNs, generative adversarial networks (GANs) and transformers42–45. Materials science
is a field that spans a range of materials and length scales, and that often has limited access to
computational hardware or large quantities of data. As such, cheap methods that generalise well on
new data are preferable. Tools like Weka23, ilastik24 and napari-apoc25 train a random forest to map
from classical image features (Gaussian, Sobel, Hessian, Difference of Gaussians, Laplacian, etc.,
filters) to user-drawn labels. These features are computed for every pixel over a range of scales, so
are full resolution, though are limited in the complexity of the relationships they can express (relative
to a neural network).

As the featurisation only happens once and it is quick to train a random forest, users can add new labels
in an active learning style46, correcting wrong or uncertain outputs to improve the segmentation23,24.
Once the classifier is trained, it can be applied to new examples without the user needing to add labels
(i.e, in an automated analysis workflow).

3 Method

3.1 Increasing feature resolution

Our method for upsampling features is simple. Starting with a set of invertible transformations,
T = {t1, t2, ...} , an input image I ∈ Rh×w×3, we compute the set IT = {t(I) | t ∈ T }. We feed this set
(sequentially or as a batch) into our model G(x; θ), which takes input x and has (frozen) weights θ. It
has a patch size P and hidden dimension D so produces a set of features FT = {G(i) | i ∈ IT }.

Each f ∈ FT has dimensions f ∈ R(h/P)×(w/P)×D and so we nearest-neighbour resize each f back to
the original image dimensions to get F′T with elements f ′ ∈ Rh×w×D. Next we apply each inverse
transformation in T−1 = {t−1

1 , t
−1
2 , ...} to F′T to get F′. Finally we average over the t in F′T to get

F ∈ Rh×w×D, our upsampled features for I.

As a concrete example, consider T = {t1, t2, ...} to be the set of pixel-shift operators for each direction
in a Moore neighbourhood for distances {d | 0 < d < P/2; d ∈ Z}. When we compute the features of
these shifted inputs, some of the spatial information from pixel p will spill into neighbouring patches,
such that when the features are resized and the inverse transformation (i.e, the shift in the opposite
direction) applied, the information is ‘put back in the right place’ at pixel p.

This method extends to other transformations, including rotations and flips (useful for averaging
away positional information) and arbitrary combinations thereof; this is realised via partial functions.
We also extract high-resolution attention maps from the model at the same time in a similar manner.
Similar to FeatUp, this approach upsamples the features by gaining new information from querying
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the model with transformations of the input - in FeatUp this information is encoded in a network
(learned upsampling kernel or implict), in ours it is in a single forward pass.

There are several advantages: this method is model agnostic (assuming they use spatialised features),
requires no additional training and works with the strided approach discussed in Section 2. The
memory and time cost is linear with the number of transforms T (see Section S5) if batched; for
sequential processing the memory cost is constant (relative to the memory and time costs of the
strided method). Examples of the feature resolution can be seen in Sections 4.1 and S2. Limitations
are discussed in Section S6. Discussion on the impact of these transformations, as well as the number
needed for a given stride is available in Section S9.

3.2 Unsupervised segmentation workflow

These high-resolution features can then be used directly (i.e, without including additional colour
information or self-training networks) in unsupervised downstream tasks. Our approach is to produce
a ‘Class-Agnostic Segmentation’ (CAS)47 - drawing parallels to class-agnostic object detection - using
only the information available in the features, and from that perform tasks like object localization,
saliency detection and semantic segmentation. A full diagram of the workflow is shown in Figure 1.

We begin by clustering the high-resolution features into C = 80 clusters using k-means clustering.
To generate a foreground/background distinction we measure the ‘attention density’, ρA, which
is the attention per unit area of the [CLS] token in a cluster. Clusters with ρA > ρ̄A are deemed
foreground clusters. The use of ρA is to create a well-separated distribution over the clusters, where
background clusters are large and have low attention, so have a small resulting ρA. Not relying on
the ‘largest class/cluster = background’19 or ‘most border pixels = background’37 heuristics allows
more flexibility on what is counted as foreground. This is especially useful when moving away from
natural images towards less centralised, more homogeneous micrographs.

We then measure the cosine distance between each foreground and background cluster taking the
modal distance as the ‘semantic distance’, a measure of inter-class distance in feature space for the
image I. That this semantic distance merging will produce a good segmentation assumes that the
distance between a class in the foreground and a different one in the background is similar enough to
the distance between two different classes in the foreground (i.e, a bike vs. the woods and the rider vs.
the bike).

Agglomerative merging with complete linkage is then used to merge clusters that have a distance less
than the semantic distance, producing a rough CAS map of the image. This can be refined with a
CRF48 to ameliorate the blurring problem. Multiplying the semantic distance by a scalar factor λ
allows control of the granularity of the merging - varied between 0.95 and 1.1 during experiments.
Combining the CAS map and attention information enables various downstream tasks: like object
detection by drawing bounding boxes around unconnected regions in each class or saliency detection
via attention density of the CAS map.

Like the feature upsampling, this approach works per-image, for any model, and without extra training.
We note that whilst FeatUp could be used for upsampling the features, it does not upsample the model
attention maps at the same time, which are needed for the foreground/background separation.

3.3 Weakly supervised segmentation

Following existing work in the materials imaging community which train a random forest classi-
fier23–26 to map from classical image features to user labels, we train a logistic regression classifier
to map from our upsampled pixel-wise features from ViT models to user labels. These user labels
are from ‘paint-brush’ style annotation, (see Figure 3 for an example) so may be sparse. Each
D-dimensional vector that describes a (labelled) pixel is used alongside its associated label as a
training example for the classifier.

Logisitic regression was chosen for its simplicity and regularizability relative to random forests. We
use a random forest classifier for the classical features to ensure similarity to existing schemes23–26

and because it showed the best performance.
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Figure 2: Feature resolution comparisons on two example images from VOC07 for different upsam-
pling methods for DINO-S-8 features. FeatUp (JBU) is able to produce sharp edges for some objects
but can blur others or miss fine details i.e, the cups in the top image. Our method can capture such
details, though the blurring introduced by using strided approach causes softer boundaries. Note the
FeatUp featurizer was DINOv2-S-14.

4 Results & discussion

4.1 Qualitative comparisons of features

We compare the 3-component PCA of our upsampled features for DINO-S-8 qualitatively to the
original low-resolution features, the result of setting the model stride to 4 and FeatUp in Figure 2,
noting an increase in resolution for fine-details and faithfulness to the original features. It should also
be noted this approach works alongside the strided approach, and that the improvement from using
our approach is relatively modest.

Further comparisons are available in Figure S1. Like FeatUp, our approach works across all models
that produce spatialised features, this can be seen in Figure S2. We discuss limitations, including
blurring and boundary effects in Figure S7. In each comparison we compare to FeatUp’s fast, single-
forward pass JBU approach as it is most similar to the aims of our approach - their implicit approach
would produce higher-resolution features but would take far longer.

Following FeatUp we perform small-object retrieval27 in Figure S4 - searching for the most similar
point in a target image to a query point in another image where both images have been featurised with
our upsampling approach. A good match indicates the features are high-resolution and semantically
relevant (i.e, they are useful in downstream tasks). We add more keypoints to their image and track
their matches, finding good agreement. When comparing to FeatUp (JBU), we find our feature
similarities are better localised to the relevant objects (i.e., the traffic cones). A comparison using
DINO-S-8 and showing the full target image is available in Figure S5.

4.2 Quantitative feature comparisons via linear probes

To demonstrate the effectiveness of the learned features of DINOv2, a series of linear probes were
trained to perform dense tasks like semantic segmentation and depth estimation given bilinear
upsamplings of the patch features. Assuming our method produces faithful and useful upsamplings,
these linear probes should still be directly applicable to them and produce similar (if not better) results.
The results of these linear probes applied to our features for semantic segmentation on VOC201249 is
reported in Table S1. There is a performance drop from applying the probe to the features produced
by our method, this aligns with FeatUp27’s findings for the strided method of higher resolution but
noisier segmentation maps.
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4.3 Unsupervised segmentation experiments

Method VOC07 VOC12

DINO14,17 0.458 0.462
LOST19 0.620 0.640
Melas-Kyriazi et al.21 0.627 0.664
MOST et al. (multi)18 0.748 0.774
Ours 0.554 0.572
Ours (multi) 0.718 0.725

Table 1: CorLoc on VOC07 & VOC12 for various
unsupervised object detection schemes. ‘Multi’
refers to methods which produce multiple object
bounding box predictions. Other values quoted
from17,18,21 - we chose not to include methods
which used a further self-training step.

Method CUB DUTS

OneGAN50 0.555 -
Voynov et al.51 0.683 0.498
Melas-Kyriazi et al.21 0.769 0.514
MOST18 - 0.538
Deep Cut40 0.777 0.560
simSAM52 0.770 0.582
TokenCut20 0.795 0.624

Ours 0.785 0.654

Table 2: IoU of foreground ob-
ject segmentation across the CUBS &
DUTS datasets. Other values quoted
from17,18,21,52

4.3.1 Object localization

For unsupervised object detection we simply take a bounding box around each connected component
of each foreground class in the CAS map discussed in Section 3.2. A class is a foreground class if its
attention density is higher than the mean attention density - similar to the definition of foreground
clusters. Our approach will occasionally decompose an object into multiple parts (i.e, head/body,
car/doors, etc.) - to ameliorate this we introduce a ‘superbox’ around the largest connected component
of all foreground classes. If this superbox has more than an 80% intersection over union (IoU) with
another box, we retain only the other box.

We then apply this approach to VOC0753 and VOC1249, standard unsupervised object detection
benchmarks, reporting the results in Table 1. The success metric is ‘CorLoc’ - the percentage of
images where at least one of the predicted boxes has a greater than 50% IoU with at least one of
the ground truth boxes. We report two results: the CorLoc when only using the superbox (single
object detection) and when using all predicted foreground boxes (multi-object detection). Our method
shows comparable performance to state-of-the-art in both single- and multi- object detection.

4.3.2 Foreground object segmentation

For foreground object segmentation (also called ‘saliency detection’) we use the same approach as in
Sections 3.2 and 4.3.1, producing a binary segmentation where all the foreground classes are counted
as foreground, the rest as background. We apply our approach to two standard benchmark datasets,
CUBS54 and DUTS55, reporting the results in Table 2. Our approach shows good performance on
both datasets, surpassing state-of-the-art on DUTS. The success metric is ‘(mean) Intersection over
Union’ (mIoU) - the area of the overlap between the prediction for the foreground class and ground
truth label, divided by the union of both areas. For multiple classes (i.e, in Section 4.4), this is
averaged over the classes.

4.4 Featuriser for zero-shot weakly supervised segmentation

Following Section 3.3, our aim is to use the richer semantics of these ViT models to perform complex
semantic segmentation tasks; as an example we chose a dataset of 135 Transmission Electron
Microscopy (TEM) micrographs of human T-cells56 with three classes: background, cell, nucleus.
We show an example in Figure 3, where the model using ViT features outperforms the classical
method.

Next we trained classifiers on partial labels across a set of six cells that cover the range of variation in
the dataset, namely varying exposure, presence of background cells and multiple nuclei per cell. We
then apply these trained classifiers to the rest of the (unlabelled) dataset and measure the mIoU for
the three classes (background, nucleus, cell) relative to the ground truth annotations, presenting the

7



Figure 3: Explanation of the weakly supervised segmentation workflow, using an example of nucleic
segmentation of a TEM image of a Jurkat human T-Cell56. Our method using high-resolution ViT
features is able to capture the semantic information (interiority, foreground vs. background) needed
for a good segmentation, compared to the classical image features + random forest approach. This
disparity in feature richness can be seen in their respective feature spaces.

Feature-set mIoU mIoU (+CRF)

Classical 0.404 0.439
FeatUp (JBU) 0.795 0.816

Ours (DINO-S-8) 0.776 0.803
Ours (DINOv2-S-14) 0.797 0.827
Ours (Hybrid) 0.809 0.842

Table 3: mIoU of the three classes across the T-cell dataset for classifiers trained on the same set of
labels with different pixel-features. Classifiers trained with upsampled ViT features (FeatUp, DINO-,
hybrid) perform far better than when trained on classical features.

results in Table 3 and some example predictions on unseen data in Figure 4. The stride of the ViT
model was set to 4. The labels and cells used to train the classifiers are available in Figure S12.

We note a CRF48 was used to improve the segmentations for the case study, results without a CRF can
be found in Section S8. Also included in Section S8 are more example segmentations on unlabelled
cells, both with and without a CRF. Our method using the DINOv2 features shows markedly better
performance across the dataset than the standard classical features + random forest approach. We
attribute this to the richer feature space allowing concepts like interiority and foreground/background
distinction to be expressed.

Despite the success of the CRF in correcting the (somewhat) blurry segmentations from the upsampled
features for large phases like the cell or nucleus, we found it tended to remove small tertiary phases
(i.e, the organelles of the cell). This is a problem in materials science, where small, high frequency
features like hairline cracks in battery materials are of great interest.

To ameliorate this problem we experiment with concatenating the classical and DINOv2 features
before training the classifier, in order to improve the accuracy on small, complex phases. We call this
the “hybrid” approach, and present the results in Figure 5 for three micrographs, again with the same
set of labels and noting that a CRF was not used in these examples.

The first micrograph is from a high resolution Scanning Electron Microscope (SEM) image of lithium
nickel manganese cobalt oxide cathode57,58 - the ViT features are able to distinguish between in-plane
(light grey, flat) and out-of-plane (light grey, textured) active material (AM) present due to the
‘pore-back’ effect57,58. The ViT features also admit the distinction between voids inside an AM
particle and the out-of-plane AM (which have similar textures).
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Figure 4: Predictions of the trained classifiers using classical or hybrid features on unlabelled
examples from the cell dataset. The hybrid features produce good segmentations, demonstrating their
ability to generalise well. Note a CRF was used for the hybrid cells and not for the classical.

The second micrograph is a silicon carbide environmental barrier coating59, where the goal is to
segment the thermally-grown oxide layer in the middle. Similar to the cells example, the classical
features struggle to separate the phases, which have similar greyscale intensity. The last micrograph
is a Reflected Light Microscope (RFM) image of “cast iron with magnesium induced spheroidised
graphite”60 - the hybrid features can distinguish between the interior graphite and occasionally
similar-looking iron. Two further examples of the segmentation of a nickel superalloy micrograph59

and an X-ray Computed Tomography (XCT) slice of α- and β-polymorphs of glutamic acid are
available in Figure S11.

We note that these experiments were performed using the default Weka feature set23; choosing a
set more suited to the problem may improve performance, though this represents significant trial-
and-error. Discussion of the the limitations can be found in Section S6, focusing on the practical
implications of using these features in a materials context.

5 Conclusion

To conclude, we have demonstrated a novel single-forward pass upsampling technique for features of
vision transformers, like DINOv2. This was then applied to perform unsupervised object detection
and segmentation, achieving strong results compared to baselines. One potential use for this unsu-
pervised workflow is generating high-quality semantic region proposals for interactive segmentation
datasets10,61.

Finally, we demonstrated the use of these upsampled features in weakly supervised materials segmen-
tation, where they capture complex relationships that the current classical approaches are unable to
express and achieve highly accurate segmentations. We expect that the ability to perform well across
different materials, instruments and imaging conditions mean that the use of deep ViT features will
greatly improve and expedite automated materials characterization.

There are many avenues for future work: improving the resolution and speed of feature extraction,
utilizing the features in novel setups (i.e, defect detection/classification) or using them for spatialised
property prediction (regression) tasks.
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Figure 5: Application of classical, DINOv2 and classical + DINOv2 (hybrid) features for weakly
supervised segmentation of materials such as NMC cathodes57,58, SiC oxide layers59 and cast iron
alloys60. The hybrid scheme is able to combine the strong semantic features of DINOv2 with the
high-resolution classical features for good segmentations of complex tertiary and quaternary phases.
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Supplementary

S1 Linear probe evaluation

Method Pascal VOC
Bilinear 0.806
FeatUp (JBU) 0.825
Ours 0.701

Table S1: Drop-in performance when applying a linear classifier trained on bilinear-upsampled
DINOv2-S-14 features to FeatUp upsampled features and features upsampled using our method
(strided + shift transforms).

S2 Further resolution comparisons

Figure S1: Cross-method comparison of feature upsampling methods on square crops of images from
the BSD300 dataset. The model used for the all upsamplings except ‘FeatUp (JBU)’ was DINO-S-8
- ‘FeatUp (JBU)’ did not have a pretrained checkpoint for this resolution, so DINO-S-16 was used
instead. The input image size was (384, 384).
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Figure S2: Cross-model comparison of our upsampling method on square crops of images from the
BSD300 dataset with shift and flip transforms applied and a stride of 4. The input image size was
(224, 224), the training resolution of ViT-S and DEiT-S. Note the DINO models can be applied to
arbitrary resolutions, and improve as the image size increases. DINOv2 suffers the worst blurring,
possibly because its patch size of 14 is not a multiple of the stride.

S3 Averaging positional effects

Figure S3: Demonstrating the positional effects present when striding DINOv2 features in (a) a
Scanning Electron Microscope (SEM) image of a solid-oxide fuel cell and (b) a photo of a dog.
These can be ameliorated by including flip transformations during the upsampling process, which
can be used in conjunction with shift transforms at the cost of computing Nshift × Nflip feature maps,
allowing the features to express more semantic information when displayed in a 3-component PCA.
The input image size was (518, 518). Note there is still a center-image bias for the SOFC even after
flip transforms have been applied.
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S4 Small object retrieval and keypoint matching

Figure S4: Small object retrieval (red cross) and keypoint matching (coloured dots) for various feature
upsampling methods with DINOv2-S-14, stride 7. Following FeatUp, we compute high-resolution
features for a query and target image, then find the most similar point in the target image to a given
query point (and additional keypoints). The colourmap indicates similarity to the query point, red for
similiarity, blue for dissimilarity. We note our similarities are more localised than FeatUp’s (JBU).

Figure S5: Small object retrieval and other keypoint matching with DINO-S-8 with stride 4. The
similarity maps for the the query point (cross) are sharper than with DINOv2-S-14 (Figure S4), but
emphasise colour information more i.e, the cone is similar to the orange kerb and car and the stop
signpost keypoint is matched to the red and white road sign rather than the background signpost.
Using our approach gives a slightly more accurate retrieval than just using strided features.
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S5 Practical considerations

Figure S6: Memory and time usage of various upsampling methods as function of square image
length for DINOv2-S-14. We fix the stride for both strided and our methods to be 4 and use shift
transforms with a distance of 2 and in an 8-neighbourhood for a total of 17 transformations. ‘Batch’
refers to computing the features of the transformed image batch in one forward pass, ‘Sequential’ to
computing them one at a time. We note JBU has a harsher memory scaling as image length increases
but far better time scaling. We achieve this better memory scaling than the expected n2 via memory
efficient attention62, which can be added post-hoc into any existing ViT network and admits

√
n

memory cost with n tokens (though still an n2 time cost). If the stride were to be increased beyond 4,
the memory cost would exceed JBU, though this is undesirable due to numerical errors encountered
at low strides/high upsampling factors. Float16 precision was used for both measurements; note for
image length l, n ∝ l2. Values measured on an NVIDIA RTX A6000.

S6 Limitations

Figure S7: We highlight the limitations of our feature upsampling with two example images, the
most major being the blurring caused by reducing the stride of the patch embedding layer - this is
most evident around the plant pot’s edges when compared to FeatUp’s JBU. Comparing our approach
applied to DINO-S-8 vs DINOv2-S-14 shows that the resolution is best improved by using models
with a smaller patch size, which relies on the group training the feature model; FeatUp does not suffer
this problem. One minor problem is edge effects caused by using pixel-shifts with wrap boundary
conditions - this causes information from opposite sides of the image to mix, albeit for a small (< 4)
number of pixels. Another problem is the increasing time-cost as a function of image resolution (see
Figure S6), which can prove prohibitive for real-time applications in domains with high-resolution
images, like materials science.
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The primary limitation of our feature upsampling method is the blurring introduced by the striding
(see Figure S7), which limits the resolution of the later downstream tasks. There are also practical
problems with decreasing the model stride (and therefore increasing the number of tokens, n):
although the memory cost does not scale n2 thanks to memory-efficient attention62, the time-cost still
scales with n2 (i.e, N4

pixels). See Figure S6 for more discussion. Materials science frequently handles
high resolution volumetric data - reducing the featurisation time is important to ensure these data can
be processed.

The unsupervised segmentation workflow tends to decompose large foreground objects into parts
(head/body, etc.) and treat those as separate classes. This could be improved by merging the features
of individual pixels (rather than clusters), but this would be expensive computationally.

The resolution problems and time-cost of generating the high-resolution features limit the applicability
of the method in user-facing weakly supervised materials segmentation. Furthermore, it is possible
for the classifiers to overfit to positional information present in the deep features - this requires
additional homogeneous labelling to overcome or some augmentations to reduce their importance, see
Supplementary Section S3. Empirically, combining classical and deep features can make the trained
classifiers ‘brittle’, i.e, less sensitive to semantic information and therefore worse at generalizing.

Figure S8: Examples of failure modes in the unsupervised segmentation workflow. First row: over-
decomposition of foreground object into legs and body - this can be improved by increasing the
merging threshold distance, but can also merge more unrelated classes. Second row: merging of
unrelated classes i.e, the shadow of an object and the object. Third and fourth row: over-merging
objects close in space i.e, the rider and the horse/bike.
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S7 Unsupervised segmentation examples

Figure S9: Examples of the unsupervised segmentation workflow applied to a natural scale image and
an SEM of mesoporous KIT-6 silica63, showing how the unsupervised semantic map and attention
densities can be used for object detection and localization.

Figure S10: Example predictions of foreground objects and their segmentation using the unsupervised
workflow. The background class (i.e, the one with the lowest attention density) is show in blue.
Note the blurring in the first image - this is more frequent in uncluttered scenes and worse at lower
resolutions.
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S8 Weakly supervised segmentation

Figure S11: Further examples of weakly supervised segmentation of materials. The first is a slice
from an X-ray Computed Tomography (XCT) of glutamic acid64, displaying two crystal polymorphs:
the larger, blocky α-polymorph and the smaller, needle-like β-polymorph64. The classical features
are unable to distinguish between the two phases, struggling to delineate between edges of a large
α block and the β needles, whilst the DINOv2 features succeed but are blurred. The combination
of the two produces a good segmentation of both phases - this ability to classify using structural
information (rather than focussing on pixel-value) is useful in distinguishing between polymorphs
for characterization techniques that have elemental contrast (like XCT or SEM), as the polymorphs
will have similar pixel-values†. The second micrograph is a Scanning Electron Microscopy (SEM)
image of a nickel-based superalloy59 with three phases: a large, connected matrix phase, secondary
precipitates (large blobs) and tertiary precipitates (small blobs). Again, we find that the hybrid
approach produces a better segmentation, especially of the third phase.
† Phase contrast for polymorphs will be similar in XCT assuming the polymorphs have similar densities and

SEM assuming similar depth and that the shape is not so different that edge effects become important.

Figure S12: The labels and cells used to train each classifiers in the case study. Classfiers are trained
to map from image features (be they classical, from a high-resolution ViT or a combination thereof)
to the user-drawn labels, then applied to the unlabelled feature vectors, both of the cells here and the
rest of the 129 unlabelled cells in the dataset. Note all cells (train + test) were resized from (1024,
1024) to (518, 518) during training and segmentation.
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Figure S13: Example segmentations from applying classifiers trained on various feature-sets to
unlabelled examples in the T-cell dataset. We note the upsampled ViT features produce segmentations
that much more closely align with the ground truth, able to ignore other cluttered cells, handle the
presence of multiple nuclei and varying exposure. These predictions have had a CRF applied.
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Figure S14: The same predictions as in Figure S13 without a CRF applied.

S9 Transformations

Based on experiments and shown in Figure S15, for a ViT model with stride S , we found the best range
of distances for the shift transforms to be [1, S/2]. When combined with the flip transforms this gives
4 (flips) × 8 (directions) × S/2 = 32S transformations. Usually S = 4 so the number of transforms
was 64. This could be reduced by using a 4-neighbourhood rather than an 8-neighbourhood, at the
cost of slightly reduced performance. Although 4 flip transforms were used (no flip, flip vertical, no
flip, flip horizontal), three would also work (no flip, flip vertical, flip horizontal).
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For the object detection and localization studies, a stride of 4 was used, as were the shifts [1, 2] as
well as flip transforms. Flip transforms were useful to average out positional information to decrease
the semantic distance between instances of the same class on different sides of the image.

For the cell segmentation case study, a stride of 4 was used as well as the shifts [1, 2]. No flip
transforms were used, positional information was useful in this case to identify the central cell.

For the weakly supervised segmentation examples, a stride of 4 was used, as were the shifts [1, 2] as
well as flip transforms (materials segmentation is a more homogenous problem).

Feature-set mIoU
DINO-S-8 (no shift) 0.7446
DINOv2-S-14 (no shift) 0.7915

DINO-S-8 (shift 1, 2) 0.7764
DINOv2-S-14 (shift 1, 2) 0.7974

Table S2: Performance on the cell TEM dataset for ViT features (stride 4, no CRF) without and with
shift transforms applied - the performance gain is modest for DINOv2 and more marked for DINO.

Feature-set mIoU
DINOv2-S-14 (no transforms) 0.638
DINOv2-S-14 (flip, no shift) 0.6465
DINOv2-S-14 (no flip, shift) 0.6477

DINOv2-S-14 (flips, shift 1, 2) 0.654

Table S3: Performance on DUTs foreground object segmentation as a function of transforms applied

Figure S15: Visualisation of the impact of adding more shift transforms on the feature resolution for
different ViTs with stride 4 - we note past shifts 1, 2 (i.e, stride / 2) we see little, if any, improvement.
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