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Abstract

Vision-Language Models (VLMs) have achieved remarkable performance across various
tasks. Unfortunately, due to their multimodal nature, a common jailbreak strategy trans-
forms harmful instructions into visual formats like stylized typography or Al-generated
images to bypass safety alignment. Despite numerous heuristic defenses, little research
has investigated the underlying rationale behind the jailbreak. In this paper, we introduce
an information-theoretic framework to explore the fundamental trade-off between attack
effectiveness and stealthiness. Leveraging Fano’s inequality, we show that an attacker’s
success probability intrinsically relates to the stealthiness of the generated prompts. We
further propose an efficient algorithm to detect non-stealthy jailbreak attacks. Experimen-
tal results highlight the inherent tension between strong attacks and detectability, offering
a formal lower bound on adversarial strategies and potential defense mechanisms.
Content Warning: This paper contains harmful information that is intended to aid the
robustness of generative models.

Keywords: Jailbreak; Vision-Language Models; Information Theory

1. Introduction

The rise of vision-language models (VLMs) (Devlin et al., 2019; Lu et al., 2019; Alayrac
et al., 2022) has transformed the landscape of machine learning, enabling unprecedented
advancements in multimodal reasoning, generative capabilities, and real-world applica-
tions (Chen et al., 2020; Zhang et al., 2021; Li et al., 2020; Bao et al., 2022; Radford
et al., 2021; Su et al., 2020). Unfortunately, their increasing adoption has also exposed
critical vulnerabilities, particularly to jailbreak attacks (Zou et al., 2023; Liu et al., 2024a;
Chao et al., 2025; Mehrotra et al., 2024; Wei et al., 2023; Yong et al., 2023), which threaten
their robustness, safety, and alignment with human values. Please see (Yi et al., 2024; Jin
et al., 2024) for a more comprehensive review.

Jailbreak attacks on VLMs fall into two main types (Wang et al., 2024b). The first,
perturbation-based attacks, involve creating adversarial perturbations to compromise the
alignment of VLMs (Carlini et al., 2023; Niu et al., 2024; Shayegani et al., 2024). The
second, structure-based attacks, focus on converting harmful content into visual forms such
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as stylized typography or Al-generated images to bypass the VLM’s safety alignment (Gong
et al., 2025; Liu et al., 2024b; Li et al., 2024). While both categories pose significant
risks, this paper places a particular emphasis on structure-based attacks. Perturbation-
based attacks are difficult to detect (Tramer, 2022), but they typically manifest as noise-
like alterations, making them more amenable to purification-based defenses (Nie et al.,
2022). In contrast, structure-based attacks fundamentally alter the content’s form, rendering
traditional purification methods ineffective. As a result, detecting and defending against
structure-based attacks presents unique challenges that require novel, specialized approaches
beyond conventional purification.
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Figure 1: Illustration of a structure-based jailbreak attack (Li et al., 2024) and detection
of a suspicious input based on a large intra-entropy gap (our method).

Research in defending structure-based attacks can be grouped into three foundational
approaches: input-centric analysis (Zhao et al., 2025; Wang et al., 2024b), output-centric
monitoring (Pi et al., 2024), and model-internal inspection (Huang et al., 2024b; Jiang
et al., 2025). However, despite these defense mechanisms, a critical yet underexplored
aspect of structure-based attacks lies in their exploitation of statistical anomalies within
image data. Specifically, attackers often embed harmful content by creating regions with
drastically different information densities, a phenomenon we term the “intra-entropy gap.”
This statistical signature, while subtle enough to evade conventional defenses, fundamentally
disrupts the expected information distribution that VLMs rely on for safety alignment.

Figure 1 shows that an image prompt with a large intra-entropy gap, when paired with
benign text, can bypass the alignment safeguards of VLMs. Therefore, we formally ask:
“How does the success probability of a jailbreak fundamentally couple with its
stealthiness?” This question guides the rest of the paper.

Though Cheng et al. (2024) explores the underlying reasons for the effectiveness of
structure-based attacks, the relationship between attack success rates (ASR) and stealth-
iness remains poorly understood, particularly for state-of-the-art VLMs. As a first step,
we adopt an information-theoretic framework to quantify the interplay between stealthiness
and attack success rate. Information theory offers a rigorous foundation to model the un-
certainty and complexity of adversarial inputs, allowing us to derive provable guarantees on
attack and defense limits. Leveraging this framework, we reveal fundamental insights into
this trade-off, providing a theoretical basis for understanding VLM vulnerabilities. While
prior research primarily emphasizes heuristic jailbreak methods, ours is the first work of-
fering a theoretical characterization of the jailbreakability-stealthiness trade-off in VL Ms.
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Building upon this theoretical foundation, our second step develops an entropy-based
detection mechanism for identifying non-stealthy jailbreak attacks in the image modality.
This approach analyzes data randomness and complexity to detect anomalies, achieving
state-of-the-art performance in distinguishing adversarial inputs from benign ones. Our
method demonstrates effectiveness against recent state-of-the-art jailbreak attacks such as
MM-SafetyBench (Liu et al., 2024b) and HADES (Li et al., 2024).

Finally, since our method relies on differences between the highest and lowest entropy
regions within an image, it may produce high false-positive rates in images containing non-
uniform noise or composite regions naturally exhibiting entropy variations. To mitigate this
limitation, we employ multiple hypothesis testing methods from statistics as our third step,
controlling and reducing false positives. This approach balances true and false positive rates
while accounting for inherent variability in image entropy distributions.

Our contributions are threefold:

1. We prove a Fano-based information-theoretic bound that captures the fundamental

success—stealthiness trade-off of VLM jailbreak attacks, illuminating their intrinsic
limits (Theorem 2).

2. We design a state-of-the-art entropy-based detector that markedly lowers the attack-
success rate of non-stealthy image jailbreaks (Table 2).

3. We benchmark multiple testing-correction schemes, quantifying the trade-off between
true and false positive rates within our detection approach (Figure 5).

2. Related Works

Our work builds upon the growing body of research on the safety and robustness of LLMs
and VLMs. Prior work has explored various aspects of this domain, including:
Jailbreaking VLMs Various techniques have been developed for bypassing LLM safety
measures, collectively termed “jailbreaking.” (Zou et al., 2023; Greshake et al., 2023; Huang
et al., 2024a; Yong et al., 2023; Yu et al., 2024a; Liu et al., 2024a; Mehrotra et al., 2024;
Guo et al., 2024; Chao et al., 2024). Recently, the research of jailbreak attacks has been
expanded from LLMs to VLMs, by integrating visual and textual modalities. For example,
FigStep (Gong et al., 2025) and (Cheng et al., 2024) exploit typographic visual prompts
to bypass VLM safety alignment. (Qi et al., 2023) uses a few-shot harmful corpus of 66
derogatory sentences to optimize adversarial examples. BAP (Ying et al., 2024) optimizes
textual and visual prompts for intent-specific jailbreaks. Jailbreak-in-pieces (Shayegani
et al., 2024) is a compositional attack that merges adversarial images with textual prompts
to evade VLM alignment safeguards. In addition, ImgTrojan (Tao et al., 2025), a data poi-
soning attack that can jailbreak VLMs by contaminating one training image with malicious
text prompts, allowing attackers to later bypass safety mechanisms using seemingly benign
images that trigger the harmful instructions. IDEATOR (Wang et al., 2024a) utilizes VLM
to automatically generate multimodal jailbreak attacks against other VLMs.

MM-SafetyBench (Liu et al., 2024b) and HADES (Li et al., 2024) are considered as the
State-of-the-Art (SOTA) jailbreak attacks. In particular, MM-SafetyBench utilizes Stable
Diffusion-generated images combined with typography to deceive VLMs. HADES further
leverages adversarial noises combined with optimized Stable Diffusion-generated images and
typography blending to achieve high attack success rates.
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Defense against Jailbreaks To counter the evolving threat of jailbreaking, researchers
have developed various defense strategies. Initial work focused on LLMs (Xie et al., 2023;
Jain et al., 2023; Robey et al., 2024; Pisano et al., 2024; Phute et al., 2024).

As VLMs have become more prevalent, specialized defenses have emerged to address the
unique challenges posed by multimodal jailbreaking attacks that can be broadly categorized
into several approaches:

Detection-based methods focus on identifying malicious inputs before they can cause
harm. Zhao et al. (2024) demonstrates that logit distributions of the first tokens gen-
erated by vision-language models contain sufficient information to determine whether the
model should respond to potentially inappropriate instructions. Similarly, JailGuard (Zhang
et al., 2025) detects attacks by creating variants of untrusted inputs and analyzing differ-
ences in the target model’s responses to distinguish malicious queries from benign ones. For
perturbation-based attacks specifically, CIDER (Xu et al., 2024) analyzes semantic relation-
ships between malicious queries and adversarial images across different modalities. Recently,
JAILDAM (Nian et al., 2025) introduced a black-box compatible framework for detecting
jailbreak attacks on vision-language models that uses a policy-driven memory bank of un-
safe concepts and test-time adaptation to identify harmful content without requiring access
to model internals or explicit harmful training data.

Model-based defenses take a different approach by modifying or augmenting the target
model itself. MLLM-Protector (Pi et al., 2024) employs a fine-tuned lightweight proxy
model that feeds hidden state representations into a binary classifier to assess response
safety. VLGuard (Zong et al., 2024) introduces a specialized safety instruction-following
dataset for vision-language models. At inference time, IMMUNE (Ghosal et al., 2025) uses
safety reward models and controlled decoding to protect multimodal models from jailbreaks.

Input preprocessing approaches modify potentially harmful content before it reaches the
model. Gou et al. (2024) convert unsafe visual content to text format, enabling the use of
existing safety guardrails designed for language models. AdaShield (Wang et al., 2024b)
provides prompt-based protection against structure-based attacks. For typographic attacks
on CLIP models, Azuma and Matsui (2023) proposes inserting unique tokens before class
names as a preventive measure.

To evaluate these defenses, recent work has introduced specialized metrics, including
the retention score (Li et al., 2025) and the JailBreakV-28K benchmark (Luo et al., 2024)
for assessing vision-language model robustness against jailbreak attacks.

While these defense mechanisms demonstrate practical effectiveness, they are primarily
empirical and heuristic in nature, lacking theoretical foundations to understand the funda-
mental principles governing jailbreak attacks and defenses. To address this gap, we intro-
duce an information-theoretic framework that formally characterizes the inherent trade-off
between attack effectiveness and stealthiness, providing theoretical insights into the funda-
mental limits and optimal strategies for both attackers and defenders.

Multiple hypothesis testing The issue of inflated Type I errors in multiple hypothesis
testing has led to various control strategies. Initially, methods focused on the Family-
Wise Error Rate (FWER), the probability of at least one false positive. The Bonferroni
correction (Dunn, 1961) is a classic approach, though often conservative. (Holm, 1979)
step-down method offered increased power, while (Hochberg, 1988) provided a simpler and
often more powerful step-up alternative for FWER control. A significant shift occurred with
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the introduction of the False Discovery Rate (FDR) by (Benjamini and Hochberg, 1995)
, defined as the expected proportion of false rejections among all rejections. Their BH
procedure, a step-up method, controls FDR under independence or positive dependence
of test statistics and offers substantially more power in many settings. This framework
was later extended by (Benjamini and Yekutieli, 2001) to control FDR under arbitrary
dependence conditions. The development of FDR control has become a cornerstone in
managing multiplicity in large-scale data analysis.

3. Main Result

In this section, we first propose an information-theoretic framework to quantify and analyze
the trade-off between ASR and stealthiness in Section 3.2. Next, we propose an entropy-
based detection mechanism to identify non-stealthy jailbreak attacks in Section 3.4.

3.1. Formal Definition of Stealthiness

We formally define the stealthiness of an input based on the entropy uniformity across its
regions. Intuitively, a stealthy attack maintains consistent entropy levels throughout the
input, making it harder to detect through statistical analysis.

Definition 1 (Stealthiness) Let Ry, Ry C I be two disjoint regions of an 8-bit image I.
Define the entropy gap

AE = |H(Ry) — H(Ry)|, 0<AE <e¢, (1)

where H(-) is the Shannon entropy and ¢ := log 256 is the mazimum possible entropy dif-
ference for 8-bit data.

The stealthiness score of I is

sty =1- 2%, (2

c

so that S(I) € [0,1]: S(I) = 1 indicates a perfectly stealthy input (AE = 0), whereas
S(I) =0 corresponds to the most detectable case (AE = c).
This definition captures the inverse relationship between stealthiness and entropy variations:
inputs with smaller entropy gaps (i.e., more uniform entropy distribution) exhibit higher
stealthiness scores, making them more difficult to detect through entropy-based methods.
3.2. Trade-Off between Jailbreakability and Stealthiness
Using typographic text to jailbreak VLMs is a widely adopted approach, as demonstrated by
MM-SafetyBench (Liu et al., 2024b) and HADES (Li et al., 2024). Cheng et al. (2024) ex-
plore the underlying reasons for the effectiveness of typographic attacks, primarily through
experimental analysis. However, no prior research has examined the trade-off between
jailbreakability and stealthiness. In this work, we address this gap by employing Fano’s in-
equality from an information-theoretic perspective to elucidate the fundamental trade-off.
Theorem 2 encapsulates our key insight.

Before presenting Theorem 2, we outline the setting. Let X be a finite set of jailbreak
responses, with X € X as a chosen response. We define two Markov chains: X — Y] — X
and X — Yy — X. Here, X is a selected response from X. The variables Y7 and Y5 are data
derived from X, with Y] as text data and Y5 as image data. X is the prediction of X, based
on both Y; and Y5. Here, the Markov chain structures X — Y; — X and X — Yo — X
imply that: In the first chain, X depends on X only through the text data Y;. In the second
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chain, X depends on X only through the image data Y3. Thus, X is an estimation of X,
which relies on both the text and image data Y7 and Y5.

For a discrete random variable X with possible outcomes z1,xo,...,x, and corre-

sponding probabilities Pr(X = xz;) = p;, the entropy H(X) is defined as: H(X) =
— > pilogy(p;) is the typical entropy function.
Theorem 2 Suppose X is a random wvariable representing outcomes with finite support
on X. Let X = M(Y1,Y32) be any predictor of X based on observations Yi,Ya, where
M Y1 X Yo — X is a deterministic function. Define the prediction error probability as
P, =Pr(X # X). Then, we have:

H(X|Y1,Y5) -1  H(X) - I(X;Y1,Y5) -1
log | X - log | X|

P. > , (3)

or equivalently (Fano’s Inequality):
H(Ber(Fe)) + Pelog(|X| — 1) > H(X|Y1,Y2), (4)

where H(Ber(P,)) is the binary entropy function —P.log P, — (1 — P.)log(l — P.), and
Ber(P.) refers to a Bernoulli random variable E with Pr(E = 1) = P,.

Interpretation: Theorem 2 reveals the fundamental trade-off: To reduce prediction error
P, (increase jailbreakability), the attacker must increase I(X;Y7,Y3) - the information con-
tent in their attack. However, increasing information content typically creates detectable
patterns, reducing stealthiness as measured by S(I) = 1 — AE/c. Specifically, embedding
more information often leads to non-uniform entropy distributions, increasing AFE and thus
decreasing S([).

Corollary 3 Under the conditions of Theorem 2, suppose we have a constraint on the total
information available from Y1 and Y about X individually, such as [(X;Y1)+1(X;Y2) <C
for some constant C' > 0. Then, to minimize the lower bound on the error probability P;,
one must mazximize the joint mutual information I(X;Y1,Ys) subject to this constraint.

Theorem 4 (Extension - Multi-Stage Prediction) Consider a cascaded prediction sys-
tem where an intermediate representation Z = My (Y1,Y2) is formed, and the final prediction
is X = Ms(Z). Both My and My are deterministic functions. Then the error probability
P, = Pr(X # X) satisfies:

H(XIV,Ys) -1  I(XsY,Yo) —I(X;2)  H(X|Z) -1

P> = 5
2T leglxl T logl®] log ] ®)

The term I(X;Yll,;g‘);((x;Z)

mation loss in the intermediate stage My (i.e., when Z is a "noisier” or less informative
version of (Y1,Ya) with respect to X ).

Summary: Our analysis establishes that effective jailbreaks (low P.) require sufficient
information content, which manifests as detectable entropy variations (high AFE), thereby
reducing stealthiness. This fundamental trade-off, formalized through Fano’s inequality,
explains why highly effective attacks like those in MM-SafetyBench and HADES are inher-
ently non-stealthy. The multi-stage analysis further reveals that information loss at any
processing stage compounds this effect, making the design of both effective and stealthy
attacks particularly challenging.

represents the increase in the error lower bound due to infor-
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Proposition 5 (MI upper bound under a stealthiness constraint) Let Q) C I be a
patch of area fraction o € (0,1) (pizels in Q are i.i.d.). Conditioned on a discrete message
X, pizels in Q follow P, on a d-ary alphabet (e.g., d=256 for 8-bit), and pizels in I \
follow a background Py, independent of X. Consider the partition (R, Ra) = (2,1\ ) and
let AE = ’H(Rl) — H(Rg)‘ be the intra-entropy gap (base-2). Assume full support and a
minimal-mass condition min; Py(i) A min; Py(i) > 8 > 0 for all . If the stealthiness score
is high, i.e., AE < 71 for some T € (0,logd), then

for a non-decreasing function ® that can be chosen as
2

3 (f_l(’i', d))Q, where f~'(7,d) := inf{e € [0,1] : h(e) + elog(d—1) > 7}. (7)

Here h(-) is the binary entropy. In particular, keeping AE small forces I1(X;Y2) to be small
under the given attack model.

o(r, 8,d)

A complete derivation for Theorem 2, the multi-stage extension (Theorem 4) and the Propo-
sition 5 are provided in Appendix D.

3.3. Threat Model

We assume a remote, API-level adversary who can only interact with the target VLM
through query-response exchanges, without any access to internal weights, gradients, or
logits, i.e., a strict black-box setting. The adversary’s goal is to induce at least one policy-
violating response while keeping the inputs visually and semantically harmless enough to
evade prompt-level filters, thereby maximizing stealth and minimizing refusal probability.
We focus on structure-based attacks such as stylized typography, or adversarial Al-generated
images, because noise-oriented purification pipelines are ineffective against them. On the
defender side, we assume only lightweight prompt filters with model weights frozen. Under
this threat model, we theoretically analyze the trade-off between jailbreak success and
stealth, and empirically validate the attack success rate with and without various defenses.

3.4. Detecting Non-Stealthy Jailbreak Attacks
We begin by examining non-stealthy yet highly effective jailbreak attacks, such as MM-
SafetyBench (Liu et al., 2024b) and HADES (Li et al., 2024). Specifically, we propose a
detection algorithm, IEG (Intra-Entropy Gap, Algorithms 1), which leverages entropy-based
gap analysis for image data. It detects attacks by identifying inconsistencies or anomalies
in randomness or complexity across data segments.

IEG divides an image into two non-overlapping regions, Ry and Rs, such that Ry URy =
I, and computes the entropy of each region to measure the randomness or information
density of pixel intensities. Attacks that alter parts of the image (e.g., MM-SafetyBench
or HADES), such as introducing texture changes or artificial elements, are likely to create
an entropy imbalance between Ry and Ro. By calculating the entropy gap—the difference
in entropy between R; and Ro—IEG detects visual anomalies. Despite its simplicity, we
demonstrate the effectiveness of IEG in Section 4 through evaluations on MM-SafetyBench
and HADES.

Implementation Detail. Line 1 of Algorithm 1 can be implemented in various ways.
In image processing, random partitioning into two non-overlapping regions can be achieved
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Algorithm 1: IEG Algorithm (General Form)

Input: Tmage I = {p1,p2,...,pn} with pixel intensities in [0, 255]
Output: Maximum entropy gap AFyax
Initialize: AF,, < O.
for k=1to K do
Randomly partition I into two non-overlapping regions R; and R, such that Ry U Ry =1
Calculate probability P(R;) for region R;
Calculate probability P(Rz) for region Ry
Compute entropy E(R;), where E(R;) = — Z$6[0»255] P(R;)(x)log P(Ry)(x)
Compute entropy E(Rz) similar to E(R;)
Compute entropy gap AE = E(Ry) — E(R2)
if |AE| > |AE,,4;| then
| AEp. <+ AFE
end
return AF, .
end

through several methods. Pixel-based partitioning (Gonzalez, 2009) assigns each pixel ran-
domly to a region, while block-based partitioning (Jain, 1989) divides the image into blocks
for random assignment. Line-based partitioning (Haralick and Shapiro, 1985) splits the im-
age along a random line, and Voronoi partitioning (Tessellations, 1992) assigns pixels based
on proximity to random seed points. While these methods offer flexibility, they can be
computationally expensive for large images. To address this, we adopt rotation partitioning
(Algorithm 2 in Appendix B) for improved computational efficiency. Notably, Algorithm 1
is used to generate a feature (AEpax in Line 1), which is then classified as either benign or
adversarial using a logistic regression classifier in our experiments.

Choice of K. The value of K in Line 1 of Algorithm 1 is initially unspecified. However,

Theorem 6 in Appendix D proves that K = [W—‘ trials are sufficient to achieve proba-

bilistic detection guarantees with confidence 1 — §, assuming that at least an « fraction of
the image area is affected by adversarial modifications.

Limitation. Our detection method primarily addresses MM-SafetyBench or HADES.
While there are still many circumvention techniques that can bypass our detection system,
we are the first effort to address this challenge.

4. Evaluation

4.1. Setup

Datasets. We consider five datasets throughout the experiments. The first is SafeBench
(Gong et al., 2025), comprising 500 harmful instructions across 10 prohibited categories,
based on forbidden topics outlined in both OpenAl and Meta’s LLaMA-2 Usage Policies.
The second dataset is MM-SafetyBench (Liu et al., 2024b), comprising 13 scenarios with
5,040 text-image pairs. The third dataset from Li et al. (2024) contains 750 harmful in-
structions across 5 different scenarios. The fourth and fifth datasets are ImageNet (Deng
et al., 2009) and MM-Vet (Yu et al., 2024b), which serve as natural images in our usage.

Models. We evaluate three widely used open-source VLMs: LLaVA (Liu et al., 2023)
(LLaMA-2-13B-Chat), MiniGPT-4 (Zhu et al., 2023) (Vicuna 13B), and InstructBLIP (Dai
et al., 2023) (Vicuna 13B). We use official weights from their respective repositories.
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Metrics. We evaluate jailbreak detection using two key metrics: the Area Under the Re-
ceiver Operating Characteristic (AUROC) curve and the F1 score. AUROC assesses perfor-
mance across thresholds, quantifying the trade-off between False Positive Rate for natural
samples and True Positive Rate for jailbreak samples. The F1 score balances precision
and recall, providing a measure of binary classification accuracy. For the Attack Success
Rate (ASR), defined as ASR = Number of Successful Attacks/Total Number of Attacks.
evaluation, we use a binary classifier provided by HarmBench (Mazeika et al., 2024).

4.2. Experimental Results on Jailbreak Detection

To evaluate the effectiveness of TEG, we test it on the SOTA jailbreak attacks, MM-
SafetyBench (Liu et al., 2024b) and HADES (Li et al., 2024). As shown in Figure 2,
MM-SafetyBench and HADES are easily distinguishable from the Nature dataset (ran-
domly selecting 150 images from ImageNet). Note that MM-SafetyBench includes more
than 5 categories; however, some contain fewer than 150 images, so we only select 5 cat-
egories with more than 150 images. Furthermore, Table 1 presents the AUROC and F1
scores, showing that both MM-SafetyBench and HADES are easily detected via IEG.

W Nature » | W Nature » i W Nature » H W Nature » | W Nature

- Nature
m— MMSafety
=== Threshold

mm Nature » mm Nature » i W Nature
= MMSafety " = MMSafety “ E = MMSafety
---- Threshold ---- Threshold i ---- Threshold

- Nature
m— MMSafety
=== Threshold

Figure 2: Comparison of stealthiness across 10 histograms. Row 1 illustrates HADES (or-
ange) as easily distinguishable from natural data with a clear separation by thresh-
old (dashed red). Row 2 indicates that MM-Safetybench (brown) lies between
SAW and HADES in distinguishability.

Table 1: Jailbreak detection results via IEG (Algorithm 1).

Scenarios HADES Scenarios MM-SafetyBench
AUROC F1 | AUROC F1
Animal 0.98 0.93 Hate Speech 0.85 0.78
Financial 0.96 0.90 Fraud 0.79 0.71
Privacy 0.99 0.94 | Political Lobbying 0.89 0.77
Self-Harm 0.97 0.92 | Financial Advice 0.81 0.74
Violence 0.98 0.93 Gov Decision 0.96 0.88

4.3. Comparison with other VLM jailbreak defense methods

We compare our method, IEG, with three other defense methods. (1) JailGuard (Zhang
et al., 2025) detects jailbreaks by mutating the input (text or image) and comparing the
model’s responses. We follow the original paper’s most effective configuration the random-
rotation mutator, which turns each image by a random angle between 0 to 180 degrees.
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Because that paper addresses detection only, we add an output module: if JailGuard flags
the input as a jailbreak, the MLLM refuses to answer; otherwise, it processes the un-
touched input. This extension lets us compare ASR reduction fairly with other defenses.
(2) AdaShield (Wang et al., 2024b) involves two versions. The first one is AdaShield-S,
which uses a manually designed fixed prompt, while the second one, AdaShield-A, is an
adaptive defense method. We adopt AdaShield-A because it is more effective as recom-
mended by the authors. It uses an iterative auto-refinement framework where a defender
LLM collaboratively optimizes defense prompts with the target MLLM. When the target
model fails to reject malicious queries, the defender generates improved prompts based
on the failure feedback. This process creates a diverse pool of scenario-specific defense
prompts. During inference, the method retrieves the most suitable defense prompt using
semantic similarity and prepends it to the input query. (3) MLLM-Protector (Pi et al.,
2024), which is a plug-and-play defense system consisting of two components: a lightweight
harm detector that identifies potentially harmful responses, and a response detoxifier that
transforms harmful outputs into safe alternatives.

Table 2 presents a comparison of attack success rates (ASR) across three VLMs, includ-
ing LLaVa, InstructBlip, and MiniGPT4. For each model, we report both the baseline ASR
(“No Defense”) and the post-defense ASR, along with the absolute drop relative to baseline.
The cells shaded in light green highlight the lowest ASR achieved per defense while bolded
drop values indicate the largest reduction in ASR.

Table 2: Post-defense ASR values and drops () across defenses and models. The lowest
post-defense ASR per row is shaded in light green, and the most effective drop is
in bold. The results show that IEG is comparable to AdaShield-A.

Defense Attack LLaVa InstructBlip MiniGPT4
FigStep 0.35 0.15 0.12

No Defense MM-SafetyBench 0.32 0.10 0.22
HADES 0.40 0.24 0.23
FigStep 023 (0.121) 0.01(0.14 1) 0.01 (0.11 })

JailGuard MM-SafetyBench  0.28 (0.04 |)  0.02 (0.08 ])  0.12 (0.10 |)
HADES 0.26 (0.14 1) 013 (0.11])  0.12 (0.11 |)
FigStep 0.04 (0.31 ]) 0.06 (0.09]) 0.02(0.10})

AdaShield-A MM-SafetyBench 0.06 (0.26 |) 0.00 (0.10 |) 0.02 (0.20 |)
HADES 0.00 (0.40 [) 0.08 (0.16 [)  0.02 (0.21 |)
FigStep 0.05 (0.30 1)  0.07 (0.08 1)  0.06 (0.06 |)

MLLM-Protector MM-SafetyBench 0.08 (0.24 |)  0.05 (0.05]) 0.10 (0.12 |)
HADES 0.07 (0.33 1) 0.10 (0.14 )  0.10 (0.13 |)
FigStep 0.10 (0.25 1)  0.06 (0.09 1) 0.03 (0.09 |)

IEG (Ours) MM-SafetyBench  0.05 (0.27 |) 0.00 (0.10 ) 0.02 (0.20 |)
HADES 0.00 (0.40 [) 0.00 (0.24 [) 0.0 (0.23 |)

4.4. Benign-only performance and utility

To quantify utility on non-adversarial inputs, we evaluate IEG on benign samples from
ImageNet, GTSRB, and LSUN Bedroom (50 images each; 150 in total). IEG attains a false
positive rate (FPR) of 6.00% and an overall accuracy of 98.50%, indicating low utility
loss upon deployment (details in Table 3).
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Table 3: TEG on benign inputs.

Dataset (50 each) FPR (%) Accuracy (%)
ImageNet + GTSRB + LSUN Bedroom 6.00 98.50
. @% :Ejﬁjw I I.
(a) Average Performance b) Computation Time ¢) Stability
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Figure 3: Ablation study results of different partitioning strategies across various metrics.

4.5. Ablation Study

Based on the comprehensive ablation study results shown in Figure 3, rotation partition-
ing emerges as the optimal strategy across multiple evaluation criteria. As demonstrated
in Figure 3(a), rotation achieves the highest average maximum entropy gap performance
among all tested methods. Crucially, this superior performance comes with exceptional
computational efficiency, as Figure 3(b) reveals that rotation requires approximately 10x
faster than Voronoi partitioning. The performance-speed trade-off analysis in Figure 3(d)
clearly positions rotation in the ideal upper-left quadrant, combining high effectiveness with
low computational cost. Furthermore, rotation demonstrates consistent performance across
different datasets, as shown in Figure 3(e). While rotation partitioning shows worst sta-
bility in Figure 3(c), and the radar plot in Figure 3(f) shows pixel-based and line-based
methods cover the largest overall polygon, our evaluation weights performance most heav-
ily; consequently, rotation remains the partitioning strategy adopted in Algorithm 2 for
real-world use. The visualizations in Figure 4 further illustrate how rotation effectively
separates harmful content regions, providing both interpretability and detection capability.

(a) Partitioning on FigStep (b) Partitioning on MM-SafetyBench

Figure 4: Visualization of partitioning methods applied to different harmful content.
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P-value Rank Plot: Multiple Testing Corrections
Internal MM-Vet Splicing Experiment
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Figure 5: P-value rank plot.

Figure 5 shows the p-value rank plot for six pairwise comparisons between positive jail-
break datasets (MM-SafetyBench and HADES) and internally spliced MM-Vet negative
samples at three different splice ratios (30%, 40%, and 50%). The plot demonstrates the
critical differences between multiple testing correction methods by ordering raw p-values
from smallest to largest and overlaying correction thresholds. The red dashed line repre-
sents the uncorrected significance level (o = 0.05), while the green dashed line shows the
Benjamini-Hochberg False Discovery Rate (FDR) threshold, which increases linearly with
rank according to the formula p(i7) < (i/m) x . The orange dashed line indicates the highly
conservative Bonferroni Family-Wise Error Rate (FWER) threshold at a/m = 0.0083. The
plot reveals two critical disagreement cases (marked with yellow annotations at p = 0.0044
and p = 0.0072) where different correction methods reach conflicting conclusions. Specifi-
cally, the Benjamini-Hochberg procedure identifies three significant results, while the Bon-
ferroni method identifies only one significant result. These disagreement points fall in the
crucial intermediate range where p-values are small enough to suggest genuine effects but
large enough that conservative corrections may miss them. This visualization effectively
illustrates the fundamental trade-off in multiple testing: FDR methods like Benjamini-
Hochberg offer greater statistical power to detect true effects while controlling the expected
proportion of false discoveries, whereas FWER methods like Bonferroni provide stricter
protection against any false positives but at the cost of potentially missing genuine effects.

5. Conclusion

In this work, we explored the intricate trade-offs between jailbreakability and stealthiness in
Vision-Language Models (VLMs), providing a theoretical framework and practical insights
into the vulnerabilities of these systems. By leveraging entropy-based detection mechanisms,
we demonstrated the effectiveness of identifying non-stealthy jailbreak attacks. While our
detection methods show promise, we acknowledge their limitations in addressing more so-
phisticated attacks and scenarios involving benign noise patterns. We hope this work serves
as a foundation for future research into robust defenses against adversarial attacks, em-
phasizing the need for a deeper understanding of the interplay between stealthiness and
effectiveness in multimodal systems.
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