
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAYERDECOMPOSE: EXPLORING WEIGHT SHARING
FOR LARGE LANGUAGE MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language model (LLM) compression have predominantly
focused on pruning and low-rank factorization, leaving weight sharing—despite
its success in classical neural network compression—largely unexplored. We in-
troduce LAYERDECOMPOSE, a novel framework that reduces parameter redun-
dancy by sharing a core weight matrix across transformer layers and augmenting
each layer with lightweight, low-rank adapters. Unlike prior SVD- and pruning-
based methods, our joint optimization of shared weights and residual adapters
achieves a 30% model size reduction while retaining 89% of the original perfor-
mance on seven standard benchmarks. Experiments on LLaMA and other mod-
els demonstrate that LAYERDECOMPOSE consistently outperforms state-of-the-
art baselines. These results highlight the promise of combining weight sharing
with low-rank adaptation for efficient, scalable LLM deployment. 1

BiupAiupS
el
f-
At
te
nt
io
n

BidownAidown Bi+1upAi+1upS
el
f-
At
te
nt
io
n

Bi+1downAi+1down

..
.

Bi+gupAi+gupS
el
f-
At
te
nt
io
n

Bi+gdownAi+gdown

..
.

MLPi MLPi+1 MLPi+g

Wupai
up

bi
up Wup

ai
+
1 u

p

bi
+
1 u

p

Wup
ai
+
g u

p

bi
+
g u

p

Wdown

ai
do

w
n

bi
do

w
n

Wdown

ai
+
1 d

ow
n

bi
+
1 d
ow

n

Wdown

ai
+
g d

ow
n

bi
+
g d
ow

n

..
.

Figure 1: Schematic overview of the proposed approach. Within a group of size g weights of each
type (e.g. up and down projections in MLP) are shared between transformer blocks, but have a
unique low-rank residuals and scaling, which are optimized to match the original weights. This
decomposition is also applied to the self attention layer, omitted for brevity.

1 INTRODUCTION

Transformers underpin virtually every state-of-the-art large language model (LLM) today, delivering
remarkable capabilities in tasks ranging from question answering and commonsense reasoning to
code generation and dialogue. As model capacities have grown—from millions to hundreds of
billions of parameters—the computational and memory demands for both training and inference
have skyrocketed. Such scaling presents a formidable barrier to deploying these models in real-
world settings, especially on resource-constrained hardware or at low latency. To bridge this gap, a
rich body of work has explored post-training compression techniques—quantization, pruning, and
low-rank factorization—that reduce model size and accelerate inference while striving to preserve
performance.

Quantization methods Lin et al. (2024); Frantar et al. (2022) map high-precision weights to lower-bit
representations, offering dramatic memory savings but often requiring hardware support for efficient
low-bit arithmetic. Unstructured pruning Frantar & Alistarh (2023); Li et al. (2023) discards individ-
ual parameters based on some importance criterion, yet its resulting sparsity patterns can be difficult
to exploit without specialized sparse-compute kernels. Structured pruning Zhang et al. (2024); Wei

1Code for reproducing all experiments will be released upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ratio Method OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA AVG RP (%)

0 % Uncompressed 0.44 0.79 0.76 0.70 0.73 0.46 0.27 0.59 100.0

20 %

SVD-LLM V2 0.32 0.75 0.52 0.70 0.72 0.29 0.24 0.51 85.2
Basis Sharing 0.28 0.71 0.46 0.66 0.66 0.36 0.25 0.48 81.4
LLM-Pruner 0.39 0.76 0.68 0.64 0.52 0.38 0.24 0.52 87.0
LAYERDECOMPOSE (ours) 0.40 0.77 0.71 0.69 0.65 0.37 0.25 0.55 92.3

30 %

SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
Basis Sharing 0.27 0.68 0.40 0.63 0.63 0.30 0.24 0.45 75.9
LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
LAYERDECOMPOSE (ours) 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

50 %

SVD-LLM 0.16 0.55 0.27 0.50 0.28 0.22 0.21 0.31 52.7
Basis Sharing 0.18 0.58 0.31 0.57 0.42 0.23 0.22 0.36 60.4
LLM-Pruner 0.35 0.66 0.45 0.54 0.41 0.30 0.23 0.42 70.6
LAYERDECOMPOSE (ours) 0.33 0.68 0.49 0.59 0.47 0.26 0.21 0.43 73.2

Table 1: Accuracy of LLaMA-7B after various compression ratios on seven benchmarks. AVG is the
mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline.
Best compressed results are in bold.

et al. (2024) removes entire neurons or attention heads to maintain dense linear algebra, but ag-
gressiveness can quickly degrade model quality. Low-rank adaptation approaches—exemplified by
LoRA and its variants—reparameterize pretrained weights with rank-constrained updates, reducing
fine-tuning cost but typically leaving the bulk of the original dense weights intact. Each of these
strategies trades off ease of deployment, hardware compatibility, and final model accuracy.

In contrast to the extensive exploration of pruning and low-rank methods, weight sharing—one of
the oldest and most general compression ideas in neural networks—has received surprisingly lit-
tle attention for LLMs. Classic works such as the Universal Transformer Dehghani et al. (2019)
and ALBERT Lan et al. (2020) have shown that sharing the same parameters across all layers can
dramatically cut model size with only a modest hit to accuracy, yet naively tying weights across
dozens of transformer blocks often yields unsatisfactory performance. A more nuanced form of
weight sharing, combined with layer-specific lightweight adaptations, promises to balance redun-
dancy elimination with expressive power, but has not been systematically studied in the context of
large pretrained transformers.

In this paper, we introduce LAYERDECOMPOSE, a novel compression framework that leverages
weight sharing across groups of transformer layers together with low-rank residual adapters and
scaling to reduce parameter redundancy. Our core observation is that key transformer blocks express
similar linear transformations up to permutation invariances. By learning a single shared “base”
weight matrix for each group of layers and modeling inter-layer differences via trainable low-rank
adapters, LAYERDECOMPOSE achieves up to 30% reduction in model size while retaining over
89% of original performance on seven standard benchmarks. Crucially, we jointly optimize both
the shared weights and the residual factors in a two-stage procedure—closed-form initialization via
truncated SVD followed by gradient-based refinement.

Contributions. Our main contributions are:

• We propose a hybrid weight-sharing and low-rank decomposition that represents a group
of m corresponding linear layers with a single shared matrix W plus layer-specific residual
factors {AiBi}mi=1 and scaling vectors {aibi}mi=1, reducing parameters from mn2 to n2 +
2m(nr + 1) with minimal extra compute.

• We characterize and exploit permutation invariances in both MLP and self-attention mod-
ules, using assignment solvers to optimally permute and align layer weights before decom-
position, thereby lowering reconstruction error.

• We validate LAYERDECOMPOSE on LLaMA-7B and three additional 7B-parameter mod-
els, showing that it consistently outperforms state-of-the-art SVD- and pruning-based base-
lines, retaining nearly 89% of uncompressed performance at 30% size reduction across
seven diverse benchmarks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 LOW-RANK ADAPTATION

LoRA Hu et al. (2022) replaces the standard linear layer Y = XW + b with
Y = X(W +AB) + b = XW +XAB + b, (1)

where rank(AB) < rank(W). This reparameterization permits fine-tuning only the low-rank ma-
trices A and B, greatly reducing memory usage. Subsequent works have explored modified ini-
tializations Meng et al. (2024), alternative reparameterizations Liu et al. (2024b); Kopiczko et al.
(2024); Lingam et al. (2024); Liu et al. (2024a), and revised optimization strategies Hayou et al.
(2024); Zhang et al. (2023).

2.2 SVD-BASED MODEL COMPRESSION

Large language models require a significant amount of memory and computational power to operate.
To reduce these resource demands, various model compression techniques have been developed.
One approach to reducing the parameter count is to factorize the weight matrix W ∈ Rm×n into
a product of two matrices with fewer total parameters, AB, where A,BT ∈ Rm×ñ and ñ < n,
while striving to retain as much model performance as possible. A substantial body of work applies
Singular Value Decomposition (SVD) to address this problem.

An early work Winata et al. (2019) applies SVD for the LSTM cell and explores the effectiveness
on different NLP tasks. FWSVD Hsu et al. (2022) utilizes Fisher information to assign importance
weights to the model parameters. However, computing the Fisher information matrix involves com-
putationally expensive gradient calculations. To mitigate these costs, ASVD Yuan et al. (2023) pro-
poses an activation-aware decomposition method, which incorporates the distribution of activations
into the weight decomposition process. In this approach, the scaling matrix is designed based on
the distribution patterns observed across input activation channels. SVD-LLM Wang et al. (2025c)
extends this idea further by whitening the input matrix to reduce its impact on SVD truncation, with
proven guarantees of achieving an optimal theoretical truncation loss. Unlike previous works, Gao
et al. (2024b) developed an approach to automatically allocate various ranks to different layers using
a differential hypernetwork. SVD-LLM V2 Wang et al. (2025b) adapts this idea and truncate ranks
based on the loss function value.

2.3 WEIGHT SHARING IN NEURAL NETWORKS

One fundamental application of weight sharing in language models is embedding weight tying,
where the input and output embeddings share the same weight matrix Press & Wolf (2017); Raffel
et al. (2020). Another significant aspect is weight sharing across layers in deep networks. Instead
of assigning each layer its own parameters, a common set of weights is employed across multiple
layers, thereby reducing redundancy and lowering the overall parameter count.

This concept was initially explored in the Universal Transformer Dehghani et al. (2019), which
introduced a recurrent inductive bias into the Transformer by reusing the same layer weights at every
depth. ALBERT Lan et al. (2020) further demonstrated that full weight sharing in BERT Devlin
et al. (2019) results in only a minor reduction in accuracy while achieving faster training, enhanced
memory efficiency, and improved regularization.

More recent work has investigated weight-sharing strategies tailored for resource-constrained envi-
ronments. For example, Subformer Reid et al. (2021) and MobileLLM Liu et al. (2024c) explore
various methods for sharing transformer blocks to optimize performance on mobile devices. Simi-
larly, Residualformer Xie et al. (2023) employs LoRA reparameterization with shared base weights
to train speech recognition models from scratch, whereas our focus is on compressing existing pre-
trained models. Basis Sharing Wang et al. (2025a) concatenates the weights of a pretrained model,
applies SVD, and shares the resulting basis vectors across layers. Bae et al. (2024); Mikaelyan
et al. (2025) likewise decompose each layer into a shared base plus low-rank deltas, yet LAYERDE-
COMPOSE goes further by (i) adding per-channel scaling to curb magnitude drift, (ii) introducing
a permutation-aware alignment that solves two LSAPs to reorder QK, VO and MLP channels,
(iii) employing an alternating closed-form initialisation to shorten healing, and (iv) validating on
models up to 13B parameters, underscoring scalability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

3.1 LAYER DECOMPOSITION

Transformers consist of a stack of identical layers, each containing self-attention and MLP sub-
modules. Both submodules are composed of linear transformations whose parameters are stored in
weight matrices.

Figure 1 illustrates our approach. Let G be a set of m corresponding linear layers (for example, the
“up” projections of the MLP in layers 17 through 23). For each layer i ∈ G, the original computation
is

Y = XWi + bi.

We replace this with a scaled shared base weight W plus a low-rank residual for each layer i ∈ G:

Y = XDai
WDbi + XAiBi + bi,

where Dai = diag(ai) and Dai = diag(bi) are diagonal matrices used to scale rows and columns of
the shared base matrix W similar to Wen et al. (2020). Omitting biases for simplicity, if W ∈ Rn×n,
|G| = m, ai, bi ∈ Rn and each Ai, B

T
i ∈ Rn×r with r < n, then the total parameters drop from

mn2 to n2 + m · 2(nr + 1), at the cost of a small extra compute for the adapters.

To initialize W, {Ai, Bi}, we minimize the Frobenius-norm reconstruction loss

L(W,A,B) =
∑
i∈G

∥∥Wi − (W +AiBi)
∥∥
F
=

∑
i∈G

∥∥(Wi −W)−AiBi

∥∥
F
.

This loss can be viewed as seeking a rank-r approximation of each difference Wi −W . Hence, by
the Eckart–Young–Mirsky theorem Eckart & Young (1936), for a fixed base W the optimal low-rank
factors (Ai, Bi) are given by the truncated SVD of (Wi −W). Conversely, when {Ai, Bi} are held
fixed, the optimal shared weight is simply the element-wise mean

W =
1

|G|
∑
i∈G

(
Wi −AiBi

)
.

After initializing via these two closed-form updates, we initialize scaling vectors as ai = bi = 1
and perform a final joint refinement of W and all {Ai, Bi, Dai

, Dbi} using Adam Diederik (2014)
by minimizing the loss

L(W,A,B, a, b) =
∑
i∈G

∥∥(Wi −Dai
WDbi)−AiBi

∥∥
F
. (2)

The full procedure is outlined in Algorithm 1.

3.2 TRANSFORMER PERMUTATION INVARIANCE

Permutation invariance in transformer modules allows multiple weight configurations to produce
identical outputs by appropriately reordering intermediate dimensions.

Multi-Layer Perceptron A gated transformer MLP block computes

y = Wd

(
σ(Wg x) ⊙ Wu x

)
,

where σ is applied element-wise. By permuting the intermediate hidden dimensions via an n × n
permutation matrix P (and its inverse PT), one can rearrange the rows of Wg and Wu without
affecting the final output. Concretely, we exploit PTP = I as follows:

y = Wd P
T
(
σ
(
P Wg x

)
⊙ P Wu x

)
= Wd P

T
(
P σ(Wg x) ⊙ Wu x

)
= Wd

(
σ(Wg x) ⊙ Wu x

)
since PT (P σ(Wgx)) = σ(Wgx). Hence one can absorb P into the weights by defining

W ′
u = P Wu, W ′

g = P Wg, W ′
d = Wd P

T ,

yielding the same output y. Because there are n! permutation matrices of size n, this gives n!
equivalent MLP configurations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Alternating Shared W Optimization

Require: Weight group {Wi}i∈G, rank r, alternation steps T , Adam steps Tadam
Ensure: Optimal shared weight W , low-rank factors {Ai, Bi}i∈G, scaling vectors {ai, bi}i∈G

W ← 1
m

∑
i∈G Wi ▷ W initialization

for each i ∈ G do ▷ Ai, Bi initialization
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
for t = 1 to T do ▷ Alternating optimization

W ← 1
m

∑
i∈G(Wi −AiBi)

for each i ∈ G do
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
end for
a, b← 1 ▷ Scaling initialization
for t = 1 to Tadam do ▷ Adam Optimization

Compute L(W,A,B, a, b) as in Eq. 2
Update W, {Ai, Bi, ai, bi} via Adam

end for

Query and Key Projections In self-attention, the query and key projections satisfy a similar in-
variance: permuting their shared intermediate dimensions does not alter the attention scores. Recall

Q = XWQ, K = XWK , V = XWV .

and
Attn(Q,K, V) = softmax

(
QKT

)
V.

Inserting a permutation P with PTP = I into the score computation gives

softmax(QKT) = softmax
(
(XWQ)(XWK)T

)
= softmax

(
XWQ P PT WT

K XT
)
.

so that defining
W ′

Q = WQ P, W ′
K = PT WK

leaves softmax(QKT) unchanged.

Value and Output projections Previously, we showed that permuting the dimensions of Q and
K does not alter the attention score matrix. A similar invariance holds for the Value and subsequent
Output projections.

In multi-head self-attention, for each head i = 1, . . . , h we define

V (i) = XW
(i)
V , H(i) = softmax

(
Q(i)(K(i))T

)
V (i), (3)

where W
(i)
V ∈ Rd×dv is the value-projection for head i. We then concatenate the head outputs and

apply the final output projection:

Y =
[
H(1), . . . ,H(h)

]
WO, WO ∈ R(h dv)×d.

Any permutation of the h head-blocks and of the dv channels within each head can be absorbed into
the weight matrices {W (i)

V } and WO. Concretely, let

Pblocks ∈ {0, 1}(h dv)×(h dv), P
(i)
intra ∈ {0, 1}

dv×dv (i = 1, . . . , h), (4)

and form

P = Pblocks

(h⊕
i=1

P
(i)
intra

)
, (5)

where
⊕

denotes the block-diagonal direct sum (so the ith diagonal block is P (i)
intra). If we collect

all the per-head projections into

WV =
[
W

(1)
V , . . . ,W

(h)
V

]
∈ Rd×(h dv), H =

[
H(1), . . . ,H(h)

]
, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

then one checks
Y = HWO = softmax(QKT)V WO

= softmax(QKT) (XWV P PT)WO

= softmax(QKT) (XW ′
V)W

′
O

(7)

with
W ′

V := WV P, W ′
O := PT WO,

and PTP = I guarantees the same output. Since there are h! ways to permute the head-blocks
and (dv!)

h ways to permute channels within each head, the total number of distinct permutations of
(WV ,WO) yielding identical outputs is h!× (dv!)

h.

3.2.1 FINDING OPTIMAL PERMUTATIONS

We leverage these permutation symmetries to reorder layer weights so that they align more closely
within each group. Formally, for two weight matrices Wi and Wj , we seek

P = arg min
P∈Sn

∥∥Wi − P Wj

∥∥
F
,

where Sn is the set of n × n permutation matrices. Here, P minimizes the difference between an
anchor weight and another weight in the group.

We perform this procedure separately for three components: the MLP block, the Query–Key (QK)
projections, and the Value–Output (VO) projections. Note that for QK we restrict intra-head permu-
tations to the identity (Pintra = I)—permuting channels would conflict with RoPE embeddings Su
et al. (2021)—and only reorder entire heads.

MLP block Compute a cost matrix D ∈ Rn×n whose (i, j) entry is

Dij = ∥WA
u [i, :]−WB

u [j, :]∥22 + ∥WA
g [i, :]−WB

g [j, :]∥22 + ∥WA
d [:, i]−WB

d [:, j]∥22 , (8)
where Wu, Wg , and Wd denote the up-projection, gate, and down-projection weight matrices. Each
Dij aggregates via sum the squared ℓ2 distances between row i of one layer and row j of another for
Wu and Wg , plus the column differences in Wd. We formulate the search for the optimal permutation
as a linear sum assignment problem (LSAP) Burkard & Cela (1999) and solve it with an efficient
solver Crouse (2016) to obtain the optimal permutation P .

QK and VO projections Here the permutation must respect the block structure of h attention
heads, so channels cannot be exchanged across heads. We use a two-stage approach:

1. Intra-head alignment: For each pair of corresponding heads, find the best channel permu-
tation P

(i)
intra by solving an LSAP on the per-head weight differences.

2. Inter-head alignment: Compute aggregated costs between entire heads using the intra-
head-aligned weights, then solve a second LSAP to determine the head-reordering permu-
tation Pblocks.

Finally, we combine these into a block-diagonal permutation as in Eq. 5, which aligns both head
order and internal channels while preserving the attention outputs.

3.3 HEALING WITH DISTILLATION

Because our weight-sharing and low-rank decomposition substantially alter the original parameters,
a dedicated “healing” step is required to recover performance. Following Muralidharan et al. (2024),
we apply both logit-level and hidden-state distillation Hinton et al. (2015); Sanh et al. (2019) to
encourage the compressed model to mimic the teacher’s behavior while reducing reliance on the
specific healing dataset.

Concretely, we augment the standard language modeling loss LLM with two distillation terms:

L = LLM + αKL
(
p ∥ pteacher

)
+ βMSE

(
h, hteacher

)
, (9)

where - KL(p ∥ pteacher) is the Kullback–Leibler divergence between the student’s output distribution
p and the teacher’s distribution pteacher, MSE(h, hteacher) is the mean squared error between their
hidden-state activations, and α, β weight these distillation terms relative to LLM .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 HOW TO CHOOSE GROUPS?

To apply our decomposition, we must partition the L transformer layers into groups that will share
the same base weight matrix. A natural baseline is to form consecutive groups of fixed size, but
ideally we would group layers whose weights are most alike so as to minimize the reconstruction
loss in Eq. 2.

We first measured pairwise Frobenius distances

d(Li, Lj) = ∥Wi −Wj∥F
between corresponding weight matrices across layers. Figure 2 shows both the distance matrix and
its histogram for the MLP up-projection weights of LLaMA. The heat-map reveals no clear block
structure, and the histogram is tightly centered around its mean, indicating that all layers are roughly
equally dissimilar.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layer index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

La
ye

r
in

de
x

1.0459

0.8525

×10 3

0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050

Distance value ×10 3

0

20

40

60

80

100

120

C
ou

nt

Figure 2: Pairwise Frobenius distance matrix and histogram for the MLP up-projection weights in
LLaMA. The lack of visible structure and the narrow distribution of distances suggest that fixed-size
consecutive grouping is as reasonable as any clustering based on these metrics.

Given the limitations of a purely weight-space metric, we next define a functional similarity mea-
sure:

ρ(Li, Lj) = d
(
Li(Xi), Lj(Xi)

)
, (10)

where Li and Lj denote the ith and jth layers, Xi is the actual input to Li collected during a forward
pass, and d(x, y) = ∥x − y∥22. This quantity captures how closely layer j can mimic layer i on its
native inputs. Note that ρ is not symmetric in general.

Figure 3 shows the resulting similarity matrix for the MLP blocks in LLaMA. We observe a banded
structure along the diagonal, indicating that adjacent layers produce more similar outputs. Fur-
thermore, the first half of the network exhibits larger approximation errors than the second half.
Motivated by these observations and for implementation simplicity, we form groups of consecutive
layers for weight sharing in this work.

4.2 OPTIMAL PARAMETER BUDGET ALLOCATION

Even with consecutive grouping, our framework has three key hyperparameters under a fixed pa-
rameter budget: the span of affected layers, the size of each group, and the adapter rank. With a
fixed parameter budget, one can either apply strong compression to a few layers or perform milder
compression across a larger number of layers.

To identify which regions of the network tolerate compression best, we first compressed a single
block of ten consecutive layers at a time. Figure 4 shows that compressing the earliest or latest
layers incurs large perplexity increases, whereas targeting the final third of layers yields the smallest
degradation. These findings corroborate prior analyses of layer sensitivity Gromov et al. (2025);
Men et al. (2024); Wang et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

j, applied layer index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

i,
or

ig
in

al
 la

ye
r

in
de

x

0.2670

0.0678

Figure 3: Functional similarity matrix for MLP
blocks in the LLaMA model, where each entry
(i, j) is given by ρ(Li, Lj). Lower values along
the diagonal indicate that nearby layers are more
functionally similar.

0 3 6 9 12 15 18 21

First Affected Layer Index

102

103

104

P
er

p
le

x
it
y

Figure 4: Perplexity after decomposition (be-
fore healing) for a single group of 10 layers.
Each x-value denotes the index of the first layer
in the compressed block (e.g., 19 covers layers
19–29).

We then performed an exhaustive search over hyperparameters under a fixed budget. For a 30%
compression of LLaMA-7B (4.7 B parameters), we fixed the final layer at index 30 and varied the
starting layer and group size. Given each choice of start and group, we computed the adapter rank to
exactly match the remaining parameter budget (see appendix B for more details). One clear trend is
that applying milder compression over a wider range of layers—using larger residual ranks—yields
better perplexity than more aggressive compression on a smaller subset of layers.

4.3 MAIN RESULTS

We first evaluate the effectiveness of LAYERDECOMPOSE on LLaMA-7B Touvron et al. (2023a).
Compression ratios from 20–50 % are compared against three state-of-the-art baselines. SVD-
LLM (Wang et al., 2025c;b) compresses weights via singular-value decomposition combined with
a whitening transform and is the strongest published SVD variant to date. LLM-Pruner (Ma et al.,
2023) performs gradient-based structured pruning, while Basis Sharing (Wang et al., 2025a) con-
catenates layer weights, applies SVD to the joint matrix, and shares the resulting basis vectors across
the group. All baselines, like our method, apply a post-compression healing phase; hyper-parameters
and further details appear in Appendix A.

We retain the original evaluation protocol of LM-Evaluation-Harness Gao et al. (2024a) and re-
port accuracy on seven benchmarks covering question-answering and commonsense reasoning:
OpenBookQA (OBQA) Mihaylov et al. (2018), PIQA Bisk et al. (2020), HellaSwag Zellers et al.
(2019), WinoGrande Sakaguchi et al. (2019), ARC-Easy and ARC-Challenge Clark et al. (2018),
and MathQA Valentino et al. (2024). In addition to absolute accuracy, we compute Relative Per-
formance (RP), the ratio of a compressed model’s average accuracy to that of the uncompressed
model.

Table 1 demonstrates that LAYERDECOMPOSE achieves the highest average accuracy and relative
performance, retaining approximately 89% of the uncompressed model’s quality while matching or
surpassing each baseline. These findings underscore the effectiveness of weight sharing in com-
pressing large language models.

To test generality, we apply the same 30 % compression to three other 7B-parameter models—Qwen-
7B (Bai et al., 2023), DeepSeek-7B (DeepSeek-AI et al., 2024), and OLMo-7B (Groeneveld et al.,
2024). Results appear in Table 2.

To further assess scalability, we compress the 13B-parameter LLaMA-2 model (Touvron et al.,
2023b). Table 3 shows that LAYERDECOMPOSE retains 94.6 % of baseline performance at 20 %
compression and 89.6 % at 30 %. The higher RP compared with the 7B case indicates that larger

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model AVG RP (%)

Qwen-7B 0.50 83.0
DeepSeek-7B 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative
performance (RP) of LAYERDECOMPOSE on
additional 7B models under 30% compres-
sion.

Compression AVG RP (%)

0 % 0.62 100.0
20 % 0.59 94.6
30 % 0.56 89.6
50 % 0.42 67.3

Table 3: Average accuracy (AVG) and relative
performance (RP) of LAYERDECOMPOSE on
LLaMA-2-13B at various compression ratios.

models contain more redundancy and therefore benefit even more from our shared-adapter decom-
position.

4.4 ABLATION STUDIES

Effect of scaling and permutations. To reduce reconstruction error, we augment the
shared–adapter decomposition with (i) per-channel scaling vectors and (ii) permutations that align
weight dimensions before factorization. Figure 5 shows that each modification yields a consis-
tent improvement: introducing scaling lowers the loss across all tested ranks, and adding pre-
decomposition permutations yields the lowest reconstruction error overall.

Effect of distillation during healing. We next evaluate how knowledge distillation influences the
healing phase that follows decomposition. Table 4 reports perplexity on a held-out C4 subset (i) im-
mediately after decomposition, (ii) after language-model (LM) fine-tuning alone, and (iii) after LM
fine-tuning augmented with logit- and hidden-state distillation. Distillation provides an additional
perplexity reduction of approximately 4%, confirming its value for recovering performance.

50 100 150 200 250 300 350 400

Rank

0.8

0.9

1.0

R
ec

on
st

ru
ct

io
n
 L

os
s Baseline

Scaling

Permuted

Figure 5: Normalized reconstruction loss as a
function of adapter rank for three configurations:
the vanilla decomposition (Baseline), decomposi-
tion with scaling vectors (Scaling), and decom-
position with both scaling and pre-decomposition
permutations (Permuted). Lower is better.

Stage Perplexity
After decomposition 21.66
Healed w/o distill. 10.50
Healed w/ distill. 10.08

Table 4: Perplexity on C4 at three stages
of healing. Distillation consistently im-
proves the healed model.

5 CONCLUSION

We introduced LAYERDECOMPOSE, a compression framework that represents blocks of consecu-
tive transformer weights with a single shared matrix plus lightweight, layer-specific adapters and
scaling vectors. By formalizing permutation invariances in both MLP and self-attention compo-
nents, we revealed a vast family of equivalent weight configurations and leveraged these symmetries
to further reduce redundancy. Empirical results on LLaMA-7B and three additional 7B and 13B-
parameter models show that our weight-sharing approach matches or exceeds state-of-the-art SVD-
and pruning-based compression baselines across diverse benchmarks. We believe that our findings
will inspire further exploration of weight sharing as a systematic strategy for efficient LLM com-
pression and scaling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have described our proposed algorithm in detail in Section 3, including closed-form initializa-
tion, alternating optimization, and the healing procedure with distillation. Key equations and Algo-
rithm 1 provide the necessary steps for reproducing our method. Hyperparameter settings, training
details, and datasets are specified in Section 4 and Appendix A, with additional derivations and rank
computation formulas in Appendix B. Figures 2–7 visualize grouping heuristics, sensitivity analy-
ses, and ablation studies to support reproducibility. Code for implementing LAYERDECOMPOSE,
along with scripts to replicate all experiments, will be released upon acceptance.

REFERENCES

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Re-
laxed recursive transformers: Effective parameter sharing with layer-wise lora. International
Conference on Learning Representations, 2024. doi: 10.48550/arXiv.2410.20672.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:
2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Rainer E Burkard and Eranda Cela. Linear assignment problems and extensions. In Handbook of
combinatorial optimization: Supplement volume A, pp. 75–149. Springer, 1999.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

David F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016. doi: 10.1109/TAES.2016.140952.

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi
Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu,
Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun
Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu,
Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren,
Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang
Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu,
R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng
Zou. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv: 2401.02954, 2024.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of

10

https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936. doi: 10.1007/BF02288367.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv: 2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024a. URL https://zenodo.org/records/12608602.

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Adaptive rank selec-
tions for low-rank approximation of language models. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 227–241, Mexico City, Mexico, June 2024b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.13. URL https://aclanthology.org/2024.
naacl-long.13/.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Au-
thur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crys-
tal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh
Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15789–15809,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers, 2025. URL https://arxiv.org/abs/
2403.17887.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv: 2402.12354, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv: 1503.02531, 2015.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=uPv9Y3gmAI5.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

11

https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://zenodo.org/records/12608602
https://aclanthology.org/2024.naacl-long.13/
https://aclanthology.org/2024.naacl-long.13/
https://aclanthology.org/2024.acl-long.841/
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=NjNfLdxr3A.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
H1eA7AEtvS.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. The lazy neuron phenomenon:
On emergence of activation sparsity in transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
TJ2nxciYCk-.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joy-
deep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. arXiv preprint arXiv: 2405.19597, 2024.

Shih-Yang Liu, Maksim Khadkevich, Nai Chit Fung, Charbel Sakr, Chao-Han Huck Yang, Chien-
Yi Wang, Saurav Muralidharan, Hongxu Yin, Kwang-Ting Cheng, Jan Kautz, Yu-Chiang Frank
Wang, Pavlo Molchanov, and Min-Hung Chen. Eora: Training-free compensation for compressed
llm with eigenspace low-rank approximation. arXiv preprint arXiv: 2410.21271, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024b. URL https://openreview.net/forum?id=3d5CIRG1n2.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yun-
yang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases.
International Conference on Machine Learning, 2024c.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv: 2403.03853, 2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and sin-
gular vectors adaptation of large language models. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Liana Mikaelyan, Ayyoob Imani, Mathew Salvaris, Parth Pathak, and Mohsen Fayyaz. Deltallm:
Compress llms with low-rank deltas between shared weights. arXiv preprint arXiv: 2501.18596,
2025.

12

https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=3d5CIRG1n2
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, Valencia, Spain, April 2017. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight shar-
ing for parameter efficiency in generative transformers. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pp. 4081–4090, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.344.
URL https://aclanthology.org/2021.findings-emnlp.344/.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Neurips, 2019.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding. NEUROCOMPUTING, 2021. doi: 10.1016/j.neucom.2023.127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv: 2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023b.

Marco Valentino, Deborah Ferreira, Mokanarangan Thayaparan, and Andre Freitas (eds.). Proceed-
ings of the 2nd Workshop on Mathematical Natural Language Processing @ LREC-COLING
2024, Torino, Italia, May 2024. ELRA and ICCL. URL https://aclanthology.org/
2024.mathnlp-1.0/.

Jingcun Wang, Yu-Guang Chen, Ing-Chao Lin, Bing Li, and Grace Li Zhang. Basis sharing: Cross-
layer parameter sharing for large language model compression. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025a. URL https://openreview.net/forum?id=gp32jvUquq.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin,
Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models:
A survey. arXiv preprint arXiv: 2402.09748, 2024.

13

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.findings-emnlp.344/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://openreview.net/forum?id=gp32jvUquq

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. SVD-LLM v2: Optimizing
singular value truncation for large language model compression. In Luis Chiruzzo, Alan Ritter,
and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 4287–4296, Albuquerque, New Mexico, April 2025b. Association for Com-
putational Linguistics. ISBN 979-8-89176-189-6. URL https://aclanthology.org/
2025.naacl-long.217/.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression, 2025c. URL https://arxiv.org/
abs/2403.07378.

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Struc-
tured optimal brain pruning for large language models. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 13991–14007, Miami, Florida, USA, November 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.775. URL https:
//aclanthology.org/2024.emnlp-main.775/.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv: 2002.06715, 2020.

Genta Indra Winata, Andrea Madotto, Jamin Shin, Elham J Barezi, and Pascale Fung. On the
effectiveness of low-rank matrix factorization for lstm model compression. arXiv preprint
arXiv:1908.09982, 2019.

Shufang Xie, Huishuai Zhang, Junliang Guo, Xu Tan, Jiang Bian, Hany Hassan Awadalla, Arul
Menezes, Tao Qin, and Rui Yan. Residual: Transformer with dual residual connections. arXiv
preprint arXiv: 2304.14802, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Honghe Zhang, XiaolongShi XiaolongShi, Jingwei Sun, and Guangzhong Sun. Structured prun-
ing for large language models using coupled components elimination and minor fine-tuning. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Com-
putational Linguistics: NAACL 2024, pp. 1–12, Mexico City, Mexico, June 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.1. URL https:
//aclanthology.org/2024.findings-naacl.1/.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv: 2303.10512, 2023.

A HEALING DETAILS AND HYPERPARAMETERS

An exhaustive search over compression configurations for the LLaMA-7B model on a
subset of the development dataset revealed that the optimal perplexity is achieved using
the groups [[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21], [22,
23, 24, 25], [26, 27, 28, 29]] with a residual rank of r = 649.

We apply healing on the C4 train corpus Raffel et al. (2020) for 100,000 iterations with an effective
batch size of 8, truncating all sequences to a maximum length of 1,024 tokens. The weights for the
distillation loss (Eq. 9) are set to α = 0.05 and β = 0.2.

14

https://aclanthology.org/2025.naacl-long.217/
https://aclanthology.org/2025.naacl-long.217/
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://aclanthology.org/2024.emnlp-main.775/
https://aclanthology.org/2024.emnlp-main.775/
https://aclanthology.org/P19-1472/
https://aclanthology.org/2024.findings-naacl.1/
https://aclanthology.org/2024.findings-naacl.1/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

12 15 18 21 24 27

Layer Groups

20

25

30

35

40

45
P

er
p
le

x
it
y

Figure 6: Perplexity after decomposition for various compression configurations. Each line corre-
sponds to a different group of layers. Slight compression over a broader layer span—with higher
adapter rank—yields better perplexity than aggressive compression on a smaller subset.

For optimisation we use Adam Diederik (2014) with learning rate 5e-5, cosine annealing schedule
with 500 warmup steps and weight decay 0.01.

Experiments were conducted using 2 NVIDIA A100 GPUs and took approximately 14 hours includ-
ing evaluation for the 7B models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.q_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.k_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.v_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.o_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.gate_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.up_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.down_proj.weight

1.5

2.0

×10 3

1.5

2.0

2.5
×10 3

0.50

0.75

1.00

1.25
×10 3

0.5

1.0

×10 3

0.8

1.0

×10 3

0.8

1.0

×10 3

0.90

0.95

1.00

×10 3

Figure 7: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the
distance matrix for one layer type.

B RANK COMPUTATION

During the exhaustive search with fixed hyperparameters, the adapter rank could be computed in a
single way as follows:

r =
PB −

(
Pnb + (LT − LA) · Pl +G · Pl

)
LA · (dI + dO)

, (11)

where:

• r is the adapter rank,

• PB is the fixed total parameter budget,

• Pnb denotes the number of parameters that are not subject to compression (e.g. embedding
and LM head layers),

• LT is the total number of layers in the model,

• LA is the number of affected layers, i.e. selected for compression,

• Pl represents the number of parameters in one layer,

• G is the number of groups within the affected layers,

• dI and dO are the sum of input and output dimensions of a layer, respectively.

Figure 6 presents the results of this exhaustive search. The performance varies substantially across
configurations. One clear trend is that applying milder compression over a wider range of lay-
ers—using larger residual ranks—yields better perplexity than more aggressive compression on a
smaller subset of layers.

C EXTRA WEIGHT DISTANCES

Pairwise Frobenius distances for all layer types in a transformer(LLaMA-7B) are depicted on the
Fig. 7. Later layers tend to be less similar.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D LLM USAGE

Large language models were used only for minor editorial polishing of text and code autocomple-
tion during implementation. They did not contribute to research ideation, experimental design, or
substantive writing.

17

	Introduction
	Preliminaries
	Low-Rank Adaptation
	SVD-based Model Compression
	Weight Sharing in Neural Networks

	Method
	Layer decomposition
	Transformer Permutation Invariance
	Finding Optimal Permutations

	Healing with Distillation

	Experiments
	How to Choose Groups?
	Optimal Parameter Budget Allocation
	Main Results
	Ablation Studies

	Conclusion
	Healing Details and Hyperparameters
	Rank Computation
	Extra Weight Distances
	LLM Usage

