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ABSTRACT

Recent advances in large language model (LLM) compression have predominantly
focused on pruning and low-rank factorization, leaving weight sharing—despite
its success in classical neural network compression—largely unexplored. We in-
troduce LAYERDECOMPOSE, a novel framework that reduces parameter redun-
dancy by sharing a core weight matrix across transformer layers and augmenting
each layer with lightweight, low-rank adapters. Unlike prior SVD- and pruning-
based methods, our joint optimization of shared weights and residual adapters
achieves a 30% model size reduction while retaining 89% of the original perfor-
mance on seven standard benchmarks. Experiments on LLaMA and other mod-
els demonstrate that LAYERDECOMPOSE consistently outperforms state-of-the-
art baselines. These results highlight the promise of combining weight sharing
with low-rank adaptation for efficient, scalable LLM deployment. 1
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Figure 1: Schematic overview of the proposed approach. Within a group of size g weights of each
type (e.g. up and down projections in MLP) are shared between transformer blocks, but have a
unique low-rank residuals and scaling, which are optimized to match the original weights. This
decomposition is also applied to the self attention layer, omitted for brevity.

1 INTRODUCTION

Transformers underpin virtually every state-of-the-art large language model (LLM) today, delivering
remarkable capabilities in tasks ranging from question answering and commonsense reasoning to
code generation and dialogue. As model capacities have grown—from millions to hundreds of
billions of parameters—the computational and memory demands for both training and inference
have skyrocketed. Such scaling presents a formidable barrier to deploying these models in real-
world settings, especially on resource-constrained hardware or at low latency. To bridge this gap, a
rich body of work has explored post-training compression techniques—quantization, pruning, and
low-rank factorization—that reduce model size and accelerate inference while striving to preserve
performance.

Quantization methods Lin et al. (2024); Frantar et al. (2022) map high-precision weights to lower-bit
representations, offering dramatic memory savings but often requiring hardware support for efficient
low-bit arithmetic. Unstructured pruning Frantar & Alistarh (2023); Li et al. (2023) discards individ-
ual parameters based on some importance criterion, yet its resulting sparsity patterns can be difficult
to exploit without specialized sparse-compute kernels. Structured pruning Zhang et al. (2024); Wei

1Code for reproducing all experiments will be released upon acceptance.
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Ratio Method OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA AVG RP (%)

0 % Uncompressed 0.44 0.79 0.76 0.70 0.73 0.46 0.27 0.59 100.0

20 %

SVD-LLM V2 0.32 0.75 0.52 0.70 0.72 0.29 0.24 0.51 85.2
Basis Sharing 0.28 0.71 0.46 0.66 0.66 0.36 0.25 0.48 81.4
LLM-Pruner 0.39 0.76 0.68 0.64 0.52 0.38 0.24 0.52 87.0
LAYERDECOMPOSE (ours) 0.40 0.77 0.71 0.69 0.65 0.37 0.25 0.55 92.3

30 %

SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
Basis Sharing 0.27 0.68 0.40 0.63 0.63 0.30 0.24 0.45 75.9
LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
LAYERDECOMPOSE (ours) 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

50 %

SVD-LLM 0.16 0.55 0.27 0.50 0.28 0.22 0.21 0.31 52.7
Basis Sharing 0.18 0.58 0.31 0.57 0.42 0.23 0.22 0.36 60.4
LLM-Pruner 0.35 0.66 0.45 0.54 0.41 0.30 0.23 0.42 70.6
LAYERDECOMPOSE (ours) 0.33 0.68 0.49 0.59 0.47 0.26 0.21 0.43 73.2

Table 1: Accuracy of LLaMA-7B after various compression ratios on seven benchmarks. AVG is the
mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline.
Best compressed results are in bold.

et al. (2024) removes entire neurons or attention heads to maintain dense linear algebra, but ag-
gressiveness can quickly degrade model quality. Low-rank adaptation approaches—exemplified by
LoRA and its variants—reparameterize pretrained weights with rank-constrained updates, reducing
fine-tuning cost but typically leaving the bulk of the original dense weights intact. Each of these
strategies trades off ease of deployment, hardware compatibility, and final model accuracy.

In contrast to the extensive exploration of pruning and low-rank methods, weight sharing—one of
the oldest and most general compression ideas in neural networks—has received surprisingly lit-
tle attention for LLMs. Classic works such as the Universal Transformer Dehghani et al. (2019)
and ALBERT Lan et al. (2020) have shown that sharing the same parameters across all layers can
dramatically cut model size with only a modest hit to accuracy, yet naively tying weights across
dozens of transformer blocks often yields unsatisfactory performance. A more nuanced form of
weight sharing, combined with layer-specific lightweight adaptations, promises to balance redun-
dancy elimination with expressive power, but has not been systematically studied in the context of
large pretrained transformers.

In this paper, we introduce LAYERDECOMPOSE, a novel compression framework that leverages
weight sharing across groups of transformer layers together with low-rank residual adapters and
scaling to reduce parameter redundancy. Our core observation is that key transformer blocks express
similar linear transformations up to permutation invariances. By learning a single shared “base”
weight matrix for each group of layers and modeling inter-layer differences via trainable low-rank
adapters, LAYERDECOMPOSE achieves up to 30% reduction in model size while retaining over
89% of original performance on seven standard benchmarks. Crucially, we jointly optimize both
the shared weights and the residual factors in a two-stage procedure—closed-form initialization via
truncated SVD followed by gradient-based refinement.

Contributions. Our main contributions are:

• We propose a hybrid weight-sharing and low-rank decomposition that represents a group
of m corresponding linear layers with a single shared matrix W plus layer-specific residual
factors {AiBi}mi=1 and scaling vectors {aibi}mi=1, reducing parameters from mn2 to n2 +
2m(nr + 1) with minimal extra compute.

• We characterize and exploit permutation invariances in both MLP and self-attention mod-
ules, using assignment solvers to optimally permute and align layer weights before decom-
position, thereby lowering reconstruction error.

• We validate LAYERDECOMPOSE on LLaMA-7B and three additional 7B-parameter mod-
els, showing that it consistently outperforms state-of-the-art SVD- and pruning-based base-
lines, retaining nearly 89% of uncompressed performance at 30% size reduction across
seven diverse benchmarks.
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2 PRELIMINARIES

2.1 LOW-RANK ADAPTATION

LoRA Hu et al. (2022) replaces the standard linear layer Y = XW + b with
Y = X(W +AB) + b = XW +XAB + b, (1)

where rank(AB) < rank(W ). This reparameterization permits fine-tuning only the low-rank ma-
trices A and B, greatly reducing memory usage. Subsequent works have explored modified ini-
tializations Meng et al. (2024), alternative reparameterizations Liu et al. (2024b); Kopiczko et al.
(2024); Lingam et al. (2024); Liu et al. (2024a), and revised optimization strategies Hayou et al.
(2024); Zhang et al. (2023).

2.2 SVD-BASED MODEL COMPRESSION

Large language models require a significant amount of memory and computational power to operate.
To reduce these resource demands, various model compression techniques have been developed.
One approach to reducing the parameter count is to factorize the weight matrix W ∈ Rm×n into
a product of two matrices with fewer total parameters, AB, where A,BT ∈ Rm×ñ and ñ < n,
while striving to retain as much model performance as possible. A substantial body of work applies
Singular Value Decomposition (SVD) to address this problem.

An early work Winata et al. (2019) applies SVD for the LSTM cell and explores the effectiveness
on different NLP tasks. FWSVD Hsu et al. (2022) utilizes Fisher information to assign importance
weights to the model parameters. However, computing the Fisher information matrix involves com-
putationally expensive gradient calculations. To mitigate these costs, ASVD Yuan et al. (2023) pro-
poses an activation-aware decomposition method, which incorporates the distribution of activations
into the weight decomposition process. In this approach, the scaling matrix is designed based on
the distribution patterns observed across input activation channels. SVD-LLM Wang et al. (2025c)
extends this idea further by whitening the input matrix to reduce its impact on SVD truncation, with
proven guarantees of achieving an optimal theoretical truncation loss. Unlike previous works, Gao
et al. (2024b) developed an approach to automatically allocate various ranks to different layers using
a differential hypernetwork. SVD-LLM V2 Wang et al. (2025b) adapts this idea and truncate ranks
based on the loss function value.

2.3 WEIGHT SHARING IN NEURAL NETWORKS

One fundamental application of weight sharing in language models is embedding weight tying,
where the input and output embeddings share the same weight matrix Press & Wolf (2017); Raffel
et al. (2020). Another significant aspect is weight sharing across layers in deep networks. Instead
of assigning each layer its own parameters, a common set of weights is employed across multiple
layers, thereby reducing redundancy and lowering the overall parameter count.

This concept was initially explored in the Universal Transformer Dehghani et al. (2019), which
introduced a recurrent inductive bias into the Transformer by reusing the same layer weights at every
depth. ALBERT Lan et al. (2020) further demonstrated that full weight sharing in BERT Devlin
et al. (2019) results in only a minor reduction in accuracy while achieving faster training, enhanced
memory efficiency, and improved regularization.

More recent work has investigated weight-sharing strategies tailored for resource-constrained envi-
ronments. For example, Subformer Reid et al. (2021) and MobileLLM Liu et al. (2024c) explore
various methods for sharing transformer blocks to optimize performance on mobile devices. Simi-
larly, Residualformer Xie et al. (2023) employs LoRA reparameterization with shared base weights
to train speech recognition models from scratch, whereas our focus is on compressing existing pre-
trained models. Basis Sharing Wang et al. (2025a) concatenates the weights of a pretrained model,
applies SVD, and shares the resulting basis vectors across layers. Bae et al. (2024); Mikaelyan
et al. (2025) likewise decompose each layer into a shared base plus low-rank deltas, yet LAYERDE-
COMPOSE goes further by (i) adding per-channel scaling to curb magnitude drift, (ii) introducing
a permutation-aware alignment that solves two LSAPs to reorder QK, VO and MLP channels,
(iii) employing an alternating closed-form initialisation to shorten healing, and (iv) validating on
models up to 13B parameters, underscoring scalability.
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3 METHOD

3.1 LAYER DECOMPOSITION

Transformers consist of a stack of identical layers, each containing self-attention and MLP sub-
modules. Both submodules are composed of linear transformations whose parameters are stored in
weight matrices.

Figure 1 illustrates our approach. Let G be a set of m corresponding linear layers (for example, the
“up” projections of the MLP in layers 17 through 23). For each layer i ∈ G, the original computation
is

Y = XWi + bi.

We replace this with a scaled shared base weight W plus a low-rank residual for each layer i ∈ G:

Y = XDai
WDbi + XAiBi + bi,

where Dai = diag(ai) and Dai = diag(bi) are diagonal matrices used to scale rows and columns of
the shared base matrix W similar to Wen et al. (2020). Omitting biases for simplicity, if W ∈ Rn×n,
|G| = m, ai, bi ∈ Rn and each Ai, B

T
i ∈ Rn×r with r < n, then the total parameters drop from

mn2 to n2 + m · 2(nr + 1), at the cost of a small extra compute for the adapters.

To initialize W, {Ai, Bi}, we minimize the Frobenius-norm reconstruction loss

L(W,A,B) =
∑
i∈G

∥∥Wi − (W +AiBi)
∥∥
F
=

∑
i∈G

∥∥(Wi −W )−AiBi

∥∥
F
.

This loss can be viewed as seeking a rank-r approximation of each difference Wi −W . Hence, by
the Eckart–Young–Mirsky theorem Eckart & Young (1936), for a fixed base W the optimal low-rank
factors (Ai, Bi) are given by the truncated SVD of (Wi −W ). Conversely, when {Ai, Bi} are held
fixed, the optimal shared weight is simply the element-wise mean

W =
1

|G|
∑
i∈G

(
Wi −AiBi

)
.

After initializing via these two closed-form updates, we initialize scaling vectors as ai = bi = 1
and perform a final joint refinement of W and all {Ai, Bi, Dai

, Dbi} using Adam Diederik (2014)
by minimizing the loss

L(W,A,B, a, b) =
∑
i∈G

∥∥(Wi −Dai
WDbi)−AiBi

∥∥
F
. (2)

The full procedure is outlined in Algorithm 1.

3.2 TRANSFORMER PERMUTATION INVARIANCE

Permutation invariance in transformer modules allows multiple weight configurations to produce
identical outputs by appropriately reordering intermediate dimensions.

Multi-Layer Perceptron A gated transformer MLP block computes

y = Wd

(
σ(Wg x) ⊙ Wu x

)
,

where σ is applied element-wise. By permuting the intermediate hidden dimensions via an n × n
permutation matrix P (and its inverse PT ), one can rearrange the rows of Wg and Wu without
affecting the final output. Concretely, we exploit PTP = I as follows:

y = Wd P
T
(
σ
(
P Wg x

)
⊙ P Wu x

)
= Wd P

T
(
P σ(Wg x) ⊙ Wu x

)
= Wd

(
σ(Wg x) ⊙ Wu x

)
since PT (P σ(Wgx)) = σ(Wgx). Hence one can absorb P into the weights by defining

W ′
u = P Wu, W ′

g = P Wg, W ′
d = Wd P

T ,

yielding the same output y. Because there are n! permutation matrices of size n, this gives n!
equivalent MLP configurations.

4
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Algorithm 1 Alternating Shared W Optimization

Require: Weight group {Wi}i∈G, rank r, alternation steps T , Adam steps Tadam
Ensure: Optimal shared weight W , low-rank factors {Ai, Bi}i∈G, scaling vectors {ai, bi}i∈G

W ← 1
m

∑
i∈G Wi ▷ W initialization

for each i ∈ G do ▷ Ai, Bi initialization
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
for t = 1 to T do ▷ Alternating optimization

W ← 1
m

∑
i∈G(Wi −AiBi)

for each i ∈ G do
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
end for
a, b← 1 ▷ Scaling initialization
for t = 1 to Tadam do ▷ Adam Optimization

Compute L(W,A,B, a, b) as in Eq. 2
Update W, {Ai, Bi, ai, bi} via Adam

end for

Query and Key Projections In self-attention, the query and key projections satisfy a similar in-
variance: permuting their shared intermediate dimensions does not alter the attention scores. Recall

Q = XWQ, K = XWK , V = XWV .

and
Attn(Q,K, V ) = softmax

(
QKT

)
V.

Inserting a permutation P with PTP = I into the score computation gives

softmax(QKT ) = softmax
(
(XWQ)(XWK)T

)
= softmax

(
XWQ P PT WT

K XT
)
.

so that defining
W ′

Q = WQ P, W ′
K = PT WK

leaves softmax(QKT ) unchanged.

Value and Output projections Previously, we showed that permuting the dimensions of Q and
K does not alter the attention score matrix. A similar invariance holds for the Value and subsequent
Output projections.

In multi-head self-attention, for each head i = 1, . . . , h we define

V (i) = XW
(i)
V , H(i) = softmax

(
Q(i)(K(i))T

)
V (i), (3)

where W
(i)
V ∈ Rd×dv is the value-projection for head i. We then concatenate the head outputs and

apply the final output projection:

Y =
[
H(1), . . . ,H(h)

]
WO, WO ∈ R(h dv)×d.

Any permutation of the h head-blocks and of the dv channels within each head can be absorbed into
the weight matrices {W (i)

V } and WO. Concretely, let

Pblocks ∈ {0, 1}(h dv)×(h dv), P
(i)
intra ∈ {0, 1}

dv×dv (i = 1, . . . , h), (4)

and form

P = Pblocks

( h⊕
i=1

P
(i)
intra

)
, (5)

where
⊕

denotes the block-diagonal direct sum (so the ith diagonal block is P (i)
intra). If we collect

all the per-head projections into

WV =
[
W

(1)
V , . . . ,W

(h)
V

]
∈ Rd×(h dv), H =

[
H(1), . . . ,H(h)

]
, (6)

5
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then one checks
Y = HWO = softmax(QKT )V WO

= softmax(QKT ) (XWV P PT )WO

= softmax(QKT ) (XW ′
V )W

′
O

(7)

with
W ′

V := WV P, W ′
O := PT WO,

and PTP = I guarantees the same output. Since there are h! ways to permute the head-blocks
and (dv!)

h ways to permute channels within each head, the total number of distinct permutations of
(WV ,WO) yielding identical outputs is h!× (dv!)

h.

3.2.1 FINDING OPTIMAL PERMUTATIONS

We leverage these permutation symmetries to reorder layer weights so that they align more closely
within each group. Formally, for two weight matrices Wi and Wj , we seek

P = arg min
P∈Sn

∥∥Wi − P Wj

∥∥
F
,

where Sn is the set of n × n permutation matrices. Here, P minimizes the difference between an
anchor weight and another weight in the group.

We perform this procedure separately for three components: the MLP block, the Query–Key (QK)
projections, and the Value–Output (VO) projections. Note that for QK we restrict intra-head permu-
tations to the identity (Pintra = I)—permuting channels would conflict with RoPE embeddings Su
et al. (2021)—and only reorder entire heads.

MLP block Compute a cost matrix D ∈ Rn×n whose (i, j) entry is

Dij = ∥WA
u [i, :]−WB

u [j, :]∥22 + ∥WA
g [i, :]−WB

g [j, :]∥22 + ∥WA
d [:, i]−WB

d [:, j]∥22 , (8)
where Wu, Wg , and Wd denote the up-projection, gate, and down-projection weight matrices. Each
Dij aggregates via sum the squared ℓ2 distances between row i of one layer and row j of another for
Wu and Wg , plus the column differences in Wd. We formulate the search for the optimal permutation
as a linear sum assignment problem (LSAP) Burkard & Cela (1999) and solve it with an efficient
solver Crouse (2016) to obtain the optimal permutation P .

QK and VO projections Here the permutation must respect the block structure of h attention
heads, so channels cannot be exchanged across heads. We use a two-stage approach:

1. Intra-head alignment: For each pair of corresponding heads, find the best channel permu-
tation P

(i)
intra by solving an LSAP on the per-head weight differences.

2. Inter-head alignment: Compute aggregated costs between entire heads using the intra-
head-aligned weights, then solve a second LSAP to determine the head-reordering permu-
tation Pblocks.

Finally, we combine these into a block-diagonal permutation as in Eq. 5, which aligns both head
order and internal channels while preserving the attention outputs.

3.3 HEALING WITH DISTILLATION

Because our weight-sharing and low-rank decomposition substantially alter the original parameters,
a dedicated “healing” step is required to recover performance. Following Muralidharan et al. (2024),
we apply both logit-level and hidden-state distillation Hinton et al. (2015); Sanh et al. (2019) to
encourage the compressed model to mimic the teacher’s behavior while reducing reliance on the
specific healing dataset.

Concretely, we augment the standard language modeling loss LLM with two distillation terms:

L = LLM + αKL
(
p ∥ pteacher

)
+ βMSE

(
h, hteacher

)
, (9)

where - KL(p ∥ pteacher) is the Kullback–Leibler divergence between the student’s output distribution
p and the teacher’s distribution pteacher, MSE(h, hteacher) is the mean squared error between their
hidden-state activations, and α, β weight these distillation terms relative to LLM .

6
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4 EXPERIMENTS

4.1 HOW TO CHOOSE GROUPS?

To apply our decomposition, we must partition the L transformer layers into groups that will share
the same base weight matrix. A natural baseline is to form consecutive groups of fixed size, but
ideally we would group layers whose weights are most alike so as to minimize the reconstruction
loss in Eq. 2.

We first measured pairwise Frobenius distances

d(Li, Lj) = ∥Wi −Wj∥F
between corresponding weight matrices across layers. Figure 2 shows both the distance matrix and
its histogram for the MLP up-projection weights of LLaMA. The heat-map reveals no clear block
structure, and the histogram is tightly centered around its mean, indicating that all layers are roughly
equally dissimilar.
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Figure 2: Pairwise Frobenius distance matrix and histogram for the MLP up-projection weights in
LLaMA. The lack of visible structure and the narrow distribution of distances suggest that fixed-size
consecutive grouping is as reasonable as any clustering based on these metrics.

Given the limitations of a purely weight-space metric, we next define a functional similarity mea-
sure:

ρ(Li, Lj) = d
(
Li(Xi), Lj(Xi)

)
, (10)

where Li and Lj denote the ith and jth layers, Xi is the actual input to Li collected during a forward
pass, and d(x, y) = ∥x − y∥22. This quantity captures how closely layer j can mimic layer i on its
native inputs. Note that ρ is not symmetric in general.

Figure 3 shows the resulting similarity matrix for the MLP blocks in LLaMA. We observe a banded
structure along the diagonal, indicating that adjacent layers produce more similar outputs. Fur-
thermore, the first half of the network exhibits larger approximation errors than the second half.
Motivated by these observations and for implementation simplicity, we form groups of consecutive
layers for weight sharing in this work.

4.2 OPTIMAL PARAMETER BUDGET ALLOCATION

Even with consecutive grouping, our framework has three key hyperparameters under a fixed pa-
rameter budget: the span of affected layers, the size of each group, and the adapter rank. With a
fixed parameter budget, one can either apply strong compression to a few layers or perform milder
compression across a larger number of layers.

To identify which regions of the network tolerate compression best, we first compressed a single
block of ten consecutive layers at a time. Figure 4 shows that compressing the earliest or latest
layers incurs large perplexity increases, whereas targeting the final third of layers yields the smallest
degradation. These findings corroborate prior analyses of layer sensitivity Gromov et al. (2025);
Men et al. (2024); Wang et al. (2024).
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Figure 3: Functional similarity matrix for MLP
blocks in the LLaMA model, where each entry
(i, j) is given by ρ(Li, Lj). Lower values along
the diagonal indicate that nearby layers are more
functionally similar.

0 3 6 9 12 15 18 21

First Affected Layer Index

102

103

104

P
er

p
le

x
it
y

Figure 4: Perplexity after decomposition (be-
fore healing) for a single group of 10 layers.
Each x-value denotes the index of the first layer
in the compressed block (e.g., 19 covers layers
19–29).

We then performed an exhaustive search over hyperparameters under a fixed budget. For a 30%
compression of LLaMA-7B (4.7 B parameters), we fixed the final layer at index 30 and varied the
starting layer and group size. Given each choice of start and group, we computed the adapter rank to
exactly match the remaining parameter budget (see appendix B for more details). One clear trend is
that applying milder compression over a wider range of layers—using larger residual ranks—yields
better perplexity than more aggressive compression on a smaller subset of layers.

4.3 MAIN RESULTS

We first evaluate the effectiveness of LAYERDECOMPOSE on LLaMA-7B Touvron et al. (2023a).
Compression ratios from 20–50 % are compared against three state-of-the-art baselines. SVD-
LLM (Wang et al., 2025c;b) compresses weights via singular-value decomposition combined with
a whitening transform and is the strongest published SVD variant to date. LLM-Pruner (Ma et al.,
2023) performs gradient-based structured pruning, while Basis Sharing (Wang et al., 2025a) con-
catenates layer weights, applies SVD to the joint matrix, and shares the resulting basis vectors across
the group. All baselines, like our method, apply a post-compression healing phase; hyper-parameters
and further details appear in Appendix A.

We retain the original evaluation protocol of LM-Evaluation-Harness Gao et al. (2024a) and re-
port accuracy on seven benchmarks covering question-answering and commonsense reasoning:
OpenBookQA (OBQA) Mihaylov et al. (2018), PIQA Bisk et al. (2020), HellaSwag Zellers et al.
(2019), WinoGrande Sakaguchi et al. (2019), ARC-Easy and ARC-Challenge Clark et al. (2018),
and MathQA Valentino et al. (2024). In addition to absolute accuracy, we compute Relative Per-
formance (RP), the ratio of a compressed model’s average accuracy to that of the uncompressed
model.

Table 1 demonstrates that LAYERDECOMPOSE achieves the highest average accuracy and relative
performance, retaining approximately 89% of the uncompressed model’s quality while matching or
surpassing each baseline. These findings underscore the effectiveness of weight sharing in com-
pressing large language models.

To test generality, we apply the same 30 % compression to three other 7B-parameter models—Qwen-
7B (Bai et al., 2023), DeepSeek-7B (DeepSeek-AI et al., 2024), and OLMo-7B (Groeneveld et al.,
2024). Results appear in Table 2.

To further assess scalability, we compress the 13B-parameter LLaMA-2 model (Touvron et al.,
2023b). Table 3 shows that LAYERDECOMPOSE retains 94.6 % of baseline performance at 20 %
compression and 89.6 % at 30 %. The higher RP compared with the 7B case indicates that larger
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Model AVG RP (%)

Qwen-7B 0.50 83.0
DeepSeek-7B 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative
performance (RP) of LAYERDECOMPOSE on
additional 7B models under 30% compres-
sion.

Compression AVG RP (%)

0 % 0.62 100.0
20 % 0.59 94.6
30 % 0.56 89.6
50 % 0.42 67.3

Table 3: Average accuracy (AVG) and relative
performance (RP) of LAYERDECOMPOSE on
LLaMA-2-13B at various compression ratios.

models contain more redundancy and therefore benefit even more from our shared-adapter decom-
position.

4.4 ABLATION STUDIES

Effect of scaling and permutations. To reduce reconstruction error, we augment the
shared–adapter decomposition with (i) per-channel scaling vectors and (ii) permutations that align
weight dimensions before factorization. Figure 5 shows that each modification yields a consis-
tent improvement: introducing scaling lowers the loss across all tested ranks, and adding pre-
decomposition permutations yields the lowest reconstruction error overall.

Effect of distillation during healing. We next evaluate how knowledge distillation influences the
healing phase that follows decomposition. Table 4 reports perplexity on a held-out C4 subset (i) im-
mediately after decomposition, (ii) after language-model (LM) fine-tuning alone, and (iii) after LM
fine-tuning augmented with logit- and hidden-state distillation. Distillation provides an additional
perplexity reduction of approximately 4%, confirming its value for recovering performance.
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Figure 5: Normalized reconstruction loss as a
function of adapter rank for three configurations:
the vanilla decomposition (Baseline), decomposi-
tion with scaling vectors (Scaling), and decom-
position with both scaling and pre-decomposition
permutations (Permuted). Lower is better.

Stage Perplexity
After decomposition 21.66
Healed w/o distill. 10.50
Healed w/ distill. 10.08

Table 4: Perplexity on C4 at three stages
of healing. Distillation consistently im-
proves the healed model.

5 CONCLUSION

We introduced LAYERDECOMPOSE, a compression framework that represents blocks of consecu-
tive transformer weights with a single shared matrix plus lightweight, layer-specific adapters and
scaling vectors. By formalizing permutation invariances in both MLP and self-attention compo-
nents, we revealed a vast family of equivalent weight configurations and leveraged these symmetries
to further reduce redundancy. Empirical results on LLaMA-7B and three additional 7B and 13B-
parameter models show that our weight-sharing approach matches or exceeds state-of-the-art SVD-
and pruning-based compression baselines across diverse benchmarks. We believe that our findings
will inspire further exploration of weight sharing as a systematic strategy for efficient LLM com-
pression and scaling.
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REPRODUCIBILITY STATEMENT

We have described our proposed algorithm in detail in Section 3, including closed-form initializa-
tion, alternating optimization, and the healing procedure with distillation. Key equations and Algo-
rithm 1 provide the necessary steps for reproducing our method. Hyperparameter settings, training
details, and datasets are specified in Section 4 and Appendix A, with additional derivations and rank
computation formulas in Appendix B. Figures 2–7 visualize grouping heuristics, sensitivity analy-
ses, and ablation studies to support reproducibility. Code for implementing LAYERDECOMPOSE,
along with scripts to replicate all experiments, will be released upon acceptance.
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A HEALING DETAILS AND HYPERPARAMETERS

An exhaustive search over compression configurations for the LLaMA-7B model on a
subset of the development dataset revealed that the optimal perplexity is achieved using
the groups [[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21], [22,
23, 24, 25], [26, 27, 28, 29]] with a residual rank of r = 649.

We apply healing on the C4 train corpus Raffel et al. (2020) for 100,000 iterations with an effective
batch size of 8, truncating all sequences to a maximum length of 1,024 tokens. The weights for the
distillation loss (Eq. 9) are set to α = 0.05 and β = 0.2.
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Figure 6: Perplexity after decomposition for various compression configurations. Each line corre-
sponds to a different group of layers. Slight compression over a broader layer span—with higher
adapter rank—yields better perplexity than aggressive compression on a smaller subset.

For optimisation we use Adam Diederik (2014) with learning rate 5e-5, cosine annealing schedule
with 500 warmup steps and weight decay 0.01.

Experiments were conducted using 2 NVIDIA A100 GPUs and took approximately 14 hours includ-
ing evaluation for the 7B models.
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Figure 7: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the
distance matrix for one layer type.

B RANK COMPUTATION

During the exhaustive search with fixed hyperparameters, the adapter rank could be computed in a
single way as follows:

r =
PB −

(
Pnb + (LT − LA) · Pl +G · Pl

)
LA · (dI + dO)

, (11)

where:

• r is the adapter rank,

• PB is the fixed total parameter budget,

• Pnb denotes the number of parameters that are not subject to compression (e.g. embedding
and LM head layers),

• LT is the total number of layers in the model,

• LA is the number of affected layers, i.e. selected for compression,

• Pl represents the number of parameters in one layer,

• G is the number of groups within the affected layers,

• dI and dO are the sum of input and output dimensions of a layer, respectively.

Figure 6 presents the results of this exhaustive search. The performance varies substantially across
configurations. One clear trend is that applying milder compression over a wider range of lay-
ers—using larger residual ranks—yields better perplexity than more aggressive compression on a
smaller subset of layers.

C EXTRA WEIGHT DISTANCES

Pairwise Frobenius distances for all layer types in a transformer(LLaMA-7B) are depicted on the
Fig. 7. Later layers tend to be less similar.
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D LLM USAGE

Large language models were used only for minor editorial polishing of text and code autocomple-
tion during implementation. They did not contribute to research ideation, experimental design, or
substantive writing.
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