
Handling Missing Data in Decision Trees: A Probabilistic Approach

Pasha Khosravi 1 Antonio Vergari 1 YooJung Choi 1 Yitao Liang 1 Guy Van den Broeck 1

Abstract
Decision trees are a popular family of models
due to their attractive properties such as inter-
pretability and ability to handle heterogeneous
data. Concurrently, missing data is a prevalent
occurrence that hinders performance of machine
learning models. As such, handling missing data
in decision trees is a well studied problem. In
this paper, we tackle this problem by taking a
probabilistic approach. At deployment time, we
use tractable density estimators to compute the
“expected prediction” of our models. At learning
time, we fine-tune parameters of already learned
trees by minimizing their “expected prediction
loss” w.r.t. our density estimators. We provide
brief experiments showcasing effectiveness of our
methods compared to few baselines.

1. Introduction
Decision trees for classification and regression tasks have a
long history in ML and AI (Quinlan, 1986; Breiman et al.,
1984). Despite the remarkable successes of deep learning
and the enormous attention it attracts, trees and forests are
still the preferred off-the-shelf model when in need of robust
and interpretable learning on scarce data that is possibly
heterogeneous (mixed continuous-discrete) in nature and
featuring missing values (Chen & Guestrin, 2016; Devos
et al., 2019; Prokhorenkova et al., 2018).

In this work we specifically focus on the last property, noting
that while trees are widely regarded as flawlessly handling
missing values, there is no unique way to properly deal with
missingness in trees when it comes to tree induction from
data (learning time) or reasoning about partial configurations
of the world (deployment time).

Numerous strategies and approaches have been explored
in the literature in this regard (Saar-Tsechansky & Provost,

1Department of Computer Science, University of Cali-
fornia Los Angeles. Correspondence to: Pasha Khosravi
<pashak@cs.ucla.edu>.

Presented at the first Workshop on the Art of Learning with Missing
Values (Artemiss) hosted by the 37 th International Conference on
Machine Learning (ICML). Copyright 2020 by the author(s).

2007; Gavankar & Sawarkar, 2015; Twala et al., 2008).
However, most of these are heuristics in nature (Twala et al.,
2008), tailored towards some specific tree induction algo-
rithm (Chen & Guestrin, 2016; Prokhorenkova et al., 2018),
or make strong distributional assumptions about the data,
such as the feature distribution factorizing completely (e.g.,
mean, median imputation (Rubin, 1976)) or according to the
tree structure (Quinlan, 1993). As many works have com-
pared the most prominent ones in empirical studies (Batista
& Monard, 2003; Saar-Tsechansky & Provost, 2007), there
is no clear winner and ultimately, the adoption of a particu-
lar strategy in practice boils down to its availability in the
ML libraries employed.

In this work, we tackle handling missing data in trees at
both learning and deployment time from a principled proba-
bilistic perspective. We propose to decouple tree induction
from learning the joint feature distribution, and we lever-
age tractable density estimators to flexibly and accurately
model it. Then we exploit tractable marginal inference to
efficiently compute the expected predictions (Khosravi et al.,
2019a) of tree models. In essence, the expected prediction
of a tree given a sample with missing values can be thought
of as implicitly imputing all possible completions at once,
reweighting each complete sample by its probability. In
such a way, we can improve the performances of already
learned trees, e.g., by XGBoost (Chen & Guestrin, 2016),
by making their predictions robust under missing data at
deployment time.

Moreover, we show how expected predictions can also
be leveraged to deal with missing data at learning time
by efficiently training trees over the expected version of
commonly-used training losses (e.g., MSE). As our pre-
liminary experiments suggest, this probabilistic perspec-
tive delivers better performances than common imputation
schemes or default ways to deal with missing data in popular
decision tree implementations. Lastly, this opens several in-
teresting research venues such as to devise probabilistically
principled tree structure induction and robustness against
different kinds of missingness mechanisms.

2. Background
We use uppercase letters (X) for random variables (RVs)
and lowercase letters (x) for their assignments. Analogously,

Handling Missing Data in Decision Trees: A Probabilistic Approach

we denote sets of RVs in bold uppercase (X) and their
assignments in bold lowercase (x). We denote the set of
all possible assignments to X as X . We denote a partial
assignment to RVs Xo ⊂ X as xo and a possible completion
to it as xm, that is, an assignment to RVs Xm = X \Xo.

Decision trees Given a set of input RVs X (features) and
an RV Y (target) having values in Y , a decision tree fΘ

is a parameterized mapping fΘ : X → Y characterized
by a pair (T ,Θ) where T is a rooted tree structure and
Θ = {θ`}`∈leaves(T) is a set of parameters equipped to the
leaves of T . Every non-leaf node n in T , also called a
decision node, is labeled by an RV Xn ∈ X. For a decision
node n the set of k outgoing edges {(n, j)}kj=1 partitions
Xn, the set of values of RV Xn, into a set of k disjoint sets
X 1
n ∪ . . . ∪ X kn = Xn, and defines a set of corresponding

decision tests {Jxn ∈ X jnK}kj=1. A decision path path(`) is
a collection of adjacent edges from the root of T to leaf `.
Given the above, the mapping encoded in a decision tree
(T ,Θ) can be written as:

fΘ(x) =
∑

`∈leaves(T)

θ` I`(x) (1)

where I`(x) is an indicator function that is equal to 1 if
x “reaches” leaf ` and 0 otherwise; formally, I`(x) =∏

(n,j)∈path(`)Jxn ∈ X jnK, where xn is the assignment for
RV Xn in x. The parameters attached to the leaves in T
here represent a hard prediction, i.e., θ` = y` for some
value y` ∈ Y associated to leaf `. Our derivations will also
hold when fΘ encodes a soft predictor, e.g. for C-class
classification, fΘ : X → [0, 1]C . In that case, we consider
a parameter vector θ` for each leaf ` comprising C condi-
tional probabilities θi` = p(Y = i | x) for i = 1, . . . , C.

In the following, we will assume RVs X to be discrete. This
is to simplify notation and does not hinder generality: our
derivations can be easily extended to mixed discrete and
continuous RVs by replacing summations to integrations
when needed. Note that in the discrete case, a decision node
n labeled by RV Xn having k different states, i.e., Xn =
{1, . . . k}, will define k decision tests for one assignment
xn will be Jxn = jK for j = 1, . . . , k.

Decision forests Single tree models are aggregated in
ensembles called forests (Breiman, 1996). One of the most
common way to build a forest of R trees is to put them in a
weighted additive ensemble of the form

FΘ(x) =

R∑
r=1

ωrfΘr (x). (2)

This is the case for ensembling techniques like bag-
ging (Breiman, 1996), random forests (Breiman, 2001) and
gradient boosting (Friedman, 2001).

Decision trees for missing data Several ways have been
explored to deal with missing values for decision trees both

at training and inference (test) time (Saar-Tsechansky &
Provost, 2007). One of the most common approaches goes
under the name of predictive value imputation (PVI) and
resorts to replacing missing values before performing infer-
ence or tree induction. Among the simplest treatments to
missing values in PVI, mean, median and mode imputations
are practical and cheap common techniques (Rubin, 1976;
Breiman, 2001); however, they make strong distributional
assumptions like total independence of the feature RVs.
More sophisticated (and expensive) PVI techniques cast im-
putation as prediction from observed features. Among these
are multiple imputation with chained equations (MICE) (Bu-
uren & Groothuis-Oudshoorn, 2010) and the use of surro-
gate splits as popularized by CART (Breiman et al., 1984).

Somehow analogous to PVI methods, the missing value
treatment done by XGBoost (Chen & Guestrin, 2016) learns
to predict which branch to take for a missing feature at in-
ference time by improving some gain criterion on observed
data for that feature. While this approach has been proven
successful in many real-world scenarios with missing data,
it requires data to be missing at learning time and it may
overfit to the missingness pattern observed.

Unlike above imputation schemes, the approach introduced
in C4.5 (Quinlan, 1993) replaces imputation with reweight-
ing the prediction associated to one instance by the product
of the probabilities of the missing RVs in it. While C4.5
is more distribution aware, these probabilities acting as
weights are only empirical estimates from the training data,
and reweighting is limited only to the missing attributes
appearing in a path. This assumes that the true distribution
over X factorizes exactly as the tree structure, which is
hardly the case since the tree structure is induced to mini-
mize some predictive loss over Y .

Several empirical studies showed evidence that there is
no clear winner among the aforementioned approaches
under different distributional and missingness assump-
tions (Batista & Monard, 2003; Saar-Tsechansky & Provost,
2007). In practice, the adoption of a particular strategy is de-
pendent on the specific tree learning or inference algorithm
selected, and on the availability of its implemented routines.
We introduce in the next section a principled probabilistic
and tree-agnostic way of treating missing values at deploy-
ment time and extend it to deal with missingness at learning
time in Section 4.

3. Expected Predictions of Decision Trees
From a probabilistic perspective, we would like a missing
value treatment to be aware of the full distribution over RVs
X without committing to restrictive distributional assump-
tions. If we have access to the joint distribution p(X), then
clearly the best way to deal with missing values at inference

Handling Missing Data in Decision Trees: A Probabilistic Approach

time would be to impute all possible completions at once,
weighting them by their probabilities according to p(X),
thereby generalizing both C4.5 and PVI treatments. This is
what the expected prediction estimator delivers.

Definition 1 (Expected prediction). Given a predictive
model fΘ : X → Y , a distribution p(X) over features X
and a partial assignment xo for RVs Xo ⊂ X, the expected
prediction of f w.r.t. p is:

Exm∼p(Xm|xo) [fΘ(xo,xm)] (3)

where Xm = X \Xo and fΘ(xo,xm) = fΘ(x).

Computing expected predictions is theoretically appealing
also because the delivered estimator is consistent under
both MCAR and MAR missingness mechanisms, if f has
been trained on complete data and is Bayes optimal (Josse
et al., 2019). As one would expect, however, computing
Equation 3 exactly for arbitrary pairs of f and p is NP-
hard (Khosravi et al., 2019b). Recently, (Khosravi et al.,
2019a) identified a class of expressive density estimators p
and accurate predictive models f that allows for polytime
computation of the expected predictions of the latter w.r.t.
the former. Specifically, probabilistic circuits (PCs) (Choi
et al., 2020) with certain structural restrictions can be used
as tractable density estimators to compute the expected pre-
dictions exactly for regression and to approximate them
for classification, from simple models such as linear and
logistic regression to their generalization as circuits (Liang
& Van den Broeck, 2019). Here we extend those results
to compute expected predictions for both classification and
regression trees exactly and efficiently under milder distribu-
tional assumptions for p.

Proposition 1 (Expected predictions for decision trees).
Given a decision tree (T ,Θ) encoding fΘ(x), a distribution
p(X), and a partial assignment xo, the expected prediction
of f w.r.t. p can be computed as follows:

Exm∼p(Xm|xo) [fΘ(xo,xm)] =
1

p(xo)

∑
`∈leaves(T)

θ`·p`(xo)

(4)
where p`(x

o) = p(xpath(`),xo) and xpath(`) is the as-
signment to the RVs in path(`) that evaluates I`(x′) =∏

(n,j)∈path(`)Jx
′
n = jK to 1.

We refer to Appendix A for detailed derivations. Note that
we can readily extend Equation 4 to forests of trees (cf.
Equation 2) by linearity of expectations.

As the proposition suggests, we can tractably compute the
exact expected predictions of a decision tree if the number
of its leaves is polynomial in the input size and we can com-
pute p`(xo) in polytime for each leaf `. The first condition
generally holds in practice, as trees have low-depth to avoid
overfitting, especially in forests, while the second one can be

easily satisfied by employing a probabilistic model guaran-
teeing tractable marginalization, as we need to marginalize
over the RVs not in path(`). Among suitable candidates
are Gaussian distributions and their mixtures for continuous
data, and smooth and decomposable PCs (Choi et al., 2020)
which are deep versions of classical mixture models. We
employ PCs in our experiments as they are potentially more
expressive than shallow mixtures and can seamlessly model
mixed discrete-continuous distributions.

4. Expected Parameter Learning of Trees
Expected predictions provide a principled way to deal with
missing values at inference time. In the following, we extend
them to learn the parameters Θ of a predictive model from
incomplete data as to minimize a the expectation of a certain
loss w.r.t. a generative model at hand. We call this learning
scenario, expected loss minimization.
Definition 2 (Expected loss minimization). Given a dataset
Dtrain over X × Y containing missing values for RVs X,
a density estimator pΦ(X) trained on Dtrain by maximum
likelihood, and a per-sample loss function l, we want to find
the set of parameters Θ of the predictive model fΘ : X → Y
that minimizes the expected loss L(Θ) defined as follows:

L(Θ;Dtrain) =
1

|Dtrain|
∑

xo,y∈Dtrain

EpΦ(Xm|xo)

[
l(y, fΘ(x))

]
Again, we harness the ability of the density estimator pΦ

to accurately model the distribution over RVs X and to
minimize the loss over fΘ as if it were trained on all possible
completions for a partial configuration xo.

For commonly used per-sample losses, the optimal set of
parameters for single decision trees can be efficiently and
independently computed in closed form. This is for instance
the case for the L2 loss, also known as mean squared error
(MSE), defined as lMSE(y, fΘ(x)) := (y − fΘ(x))2, which
we will use in our experiments.
Proposition 2 (Expected parameters of MSE loss). Given a
decision tree structure T and a training set Dtrain, the set of
parameters Θ = {θ`}`∈leaves(T) that minimizes LMSE, the
expected prediction loss for MSE, can be found by

θ∗` =

∑
xo,y∈Dtrain

y · p`(xo)/p(xo)∑
xo,y∈Dtrain

p`(xo)/p(xo)

for each leaf ` ∈ leaves(T).

The above equation for optimal leaf parameters can be ex-
tended to forests of trees where each tree is learned inde-
pendently, e.g., via bagging. For other scenarios involving
forests such as boosting refer to Appendix B.

Furthermore, a regularization term may be added to the
expected loss to counter overfitting in a regression scenario,

Handling Missing Data in Decision Trees: A Probabilistic Approach

Figure 1. Average test RMSE (y-axis, the lower, the better) on the Insurance data for different percentages of missing values (x-axis)
when missingness is only at deployment time for a forest of 5 trees (left) or both at learning and deployment time for a single tree learned
with XGBoost (right). For each experiment setting, we repeat 10 times and report the average error and their standard deviation.

e.g., by penalizing the leaf parameter magnitude; this still
yields close-form solutions (see Appendix A). Next, we
will show the effect of tree parameter learning via expected
losses on some tree structures that have been induced by
popular algorithms such as XGBoost (Chen & Guestrin,
2016); that is, we will fine tune their parameters to optimality
given their structures and a tractable density estimator for
p(X). Investigating how to blend expected loss learning in
classical top-down tree induction schemes is an interesting
venue we are currently exploring.

5. Experiments
In this section, we provide preliminary experiments to an-
swer the following questions: (Q1) Do expected predictions
at deployment time improve predictions over common tech-
niques to deal with missingness for trees? (Q2) Does ex-
pected loss minimization improve predictions when missing
values are present also at learning time?

Setup We employ the Insurance dataset, in which we
want to predict the yearly medical insurance costs of a pa-
tient based their personal data.1 We consider two scenarios,
when data is missing only at deployment time or also at
learning time. In both cases, we assume data to be MCAR:
given complete data, we make each feature be missing with
probability π ∈ {0.1, 0.2, . . . , 0.9} each for 10 independent
trials. For each setting, we learn a probabilistic circuit pΦ

on the training data as well as a decision tree or forest using
the ubiquitous XGBoost.

Methods For XGBoost we employ the default parameters.
As a simple baseline we use median imputation, estimat-
ing the per-feature imputations on the observed portion of
the training set. We employ expected predictions over the
trees learned by XGBoost for dealing with missing data at
deployment time. Lastly, we use expected loss to fine-tune

1Refer to Appendix C for more information about the dataset.

the XGBoost trees and use them for expected predictions at
deployment time, which we denote as ”ExpLoss + Expected
Prediction”. We measure performance by the average test
root mean squared error (RMSE).

Missing only at deployment time Figure 1(left) summa-
rizes our results for Q1. Expected prediction outperforms
XGBoost and median imputation. Notably, the reason XG-
Boost performs poorly is that it has not seen any missing
values at learning time, in which case the “default” branch it
uses in case of missing values always points to the first child.
Additionally, median imputation makes the strong assump-
tion that all the features are fully independent, which would
explain why expected prediction using PCs does better.

Missing during both learning and deployment Fig-
ure 1 summarizes our results for Q2. In this scenario, ex-
pected predictions perform on par, up to π = 0.4, with the
way XGBoost treats missing values at deployment time gen-
erated from the same missingness mechanism it has been
trained on. However, both methods are significantly outper-
formed by fine-tuning the tree parameters by the expected
loss minimization. We leave for future work to investigate
what happens with missingness mechanisms that differ at
learning and deployment time, or when we adopt other en-
sembling techniques such as bagging and random forests.

6. Conclusion
In this work, we introduced expected predictions and ex-
pected loss minimization for decision trees and forests as
a principled probabilistic way to handle missing data both
at training and deployment time, while being agnostic to
the tree structure or the way it has been learned. We are
currently investigating how to exploit this methodology
to extend tree induction schemes under different missing
value mechanisms and derive consistency guarantees for the
learned estimators.

Handling Missing Data in Decision Trees: A Probabilistic Approach

Acknowledgments
This work is partially supported by NSF grants #IIS-
1943641, #IIS-1633857, #CCF-1837129, DARPA XAI
grant #N66001-17-2-4032, UCLA Samueli Fellowship, and
gifts from Intel and Facebook Research. The authors would
like to thank Steven Holtzen for initial discussions about
expected prediction for decision trees.

References
Batista, G. E. and Monard, M. C. An analysis of four

missing data treatment methods for supervised learning.
Applied artificial intelligence, 17(5-6):519–533, 2003.

Breiman, L. Bagging predictors. Machine learning, 24(2):
123–140, 1996.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and regression trees. CRC press, 1984.

Buuren, S. v. and Groothuis-Oudshoorn, K. mice: Multi-
variate imputation by chained equations in r. Journal of
statistical software, pp. 1–68, 2010.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’16. Association for Computing Machinery,
2016.

Choi, Y., Vergari, A., and Van den Broeck, G. Lecture
notes: Probabilistic circuits: Representation and infer-
ence, 2020. URL http://starai.cs.ucla.edu/
papers/LecNoAAAI20.pdf.

Devos, L., Meert, W., and Davis, J. Fast gradient boosting
decision trees with bit-level data structures. Proceedings
of ECML PKDD, Springer, 2019.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Gavankar, S. and Sawarkar, S. Decision tree: Review of
techniques for missing values at training, testing and
compatibility. In 2015 3rd International Conference on
Artificial Intelligence, Modelling and Simulation (AIMS),
pp. 122–126. IEEE, 2015.

Josse, J., Prost, N., Scornet, E., and Varoquaux, G. On the
consistency of supervised learning with missing values.
arXiv preprint arXiv:1902.06931, 2019.

Khosravi, P., Choi, Y., Liang, Y., Vergari, A., and Van den
Broeck, G. On tractable computation of expected pre-
dictions. In Advances in Neural Information Processing
Systems, pp. 11167–11178, 2019a.

Khosravi, P., Liang, Y., Choi, Y., and Van den Broeck, G.
What to expect of classifiers? reasoning about logistic
regression with missing features. In Proceedings of the
28th International Joint Conference on Artificial Intelli-
gence (IJCAI), aug 2019b. URL http://starai.cs.
ucla.edu/papers/KhosraviIJCAI19.pdf.

Liang, Y. and Van den Broeck, G. Learning logistic circuits.
In Proceedings of the 33rd Conference on Artificial Intel-
ligence (AAAI), jan 2019. URL http://starai.cs.
ucla.edu/papers/LiangAAAI19.pdf.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categori-
cal features. In Advances in neural information process-
ing systems, pp. 6638–6648, 2018.

Quinlan, J. R. Induction of decision trees. Machine Learning
Journal, 1(1):81–106, 1986.

Quinlan, J. R. C4. 5: programs for machine learning. Else-
vier, 1993.

Rozenholc, Y., Mildenberger, T., and Gather, U. Combining
regular and irregular histograms by penalized likelihood.
Computational Statistics & Data Analysis, 54(12):3313–
3323, 2010.

Rubin, D. B. Inference and missing data. Biometrika, 63(3):
581–592, 1976.

Saar-Tsechansky, M. and Provost, F. Handling missing
values when applying classification models. Journal of
machine learning research, 8(Jul):1623–1657, 2007.

Twala, B., Jones, M., and Hand, D. J. Good methods for
coping with missing data in decision trees. Pattern Recog-
nition Letters, 29(7):950–956, 2008.

http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
http://starai.cs.ucla.edu/papers/KhosraviIJCAI19.pdf
http://starai.cs.ucla.edu/papers/KhosraviIJCAI19.pdf
http://starai.cs.ucla.edu/papers/LiangAAAI19.pdf
http://starai.cs.ucla.edu/papers/LiangAAAI19.pdf

Handling Missing Data in Decision Trees: A Probabilistic Approach

A. Proofs
Proposition 1 (Expected predictions for decision trees).
Given a decision tree (T ,Θ) encoding fΘ(x), a distribution
p(X), and a partial assignment xo, the expected prediction
of f w.r.t. p can be computed as follows:

Exm∼p(Xm|xo) [fΘ(xo,xm)] =
1

p(xo)

∑
`∈leaves(T)

θ`·p`(xo)

where p`(x
o) = p(xpath(`),xo) and xpath(`) is the as-

signment to the RVs in path(`) that evaluates I`(x′) =∏
(n,j)∈path(`)Jx

′
n = jK to 1.

Proof. Let Xpath(`) be the set of RVs appearing in the deci-
sion nodes in path path(`). Then the following holds:

Exm∼p(Xm|xo) [fΘ(xo,xm)]

=
1

p(xo)
Exm∼p(Xm,xo) [fΘ(xo,xm)]

=
1

p(xo)
Exm∼p(Xm,xo)

 ∑
`∈leaves(T)

θ`I`(x)


=

1

p(xo)

∑
`∈leaves(T)

θ` Exm∼p(Xm,xo) [I`(x)]

=
1

p(xo)

∑
`∈leaves(T)

θ` Exm∼p(Xm,xo)

 ∏
(n,j)∈path(`)

Jxn = jK


=

1

p(xo)

∑
`∈leaves(T)

θ` p(x
path(`),xo)

Before proving Proposition 2, let us first introduce a useful
lemma.

Lemma 1 (Expected squared predictions). Given a decision
tree structure (T ,Θ) encoding fΘ(x), a distribution p(X)
and a partial assignment xo the expected squared prediction
of f w.r.t. p can be computed as follows:

Epφ(Xm|xo)

[
f2

Θ(x)
]

=
1

p(xo)

∑
`∈leaves(T)

θ2
`p`(x

o).

Proof.

Epφ(Xm|xo)

[
f2

Θ(x)
]

=
1

p(xo)
Epφ(Xm,xo)

[
f2

Θ(x)
]

=
1

p(xo)
Epφ(Xm,xo)

[(∑
`∈leaves(T)

θ`I`(x)
)2]

=
1

p(xo)
Epφ(Xm,xo)

[∑
`∈leaves(T)

θ2
`I`(x)

]
(5)

=
1

p(xo)

∑
`∈leaves(T)

θ2
` · Epφ(Xm,xo)

[
I`(x)

]
=

1

p(xo)

∑
`∈leaves(T)

θ2
` · p`(xo). (6)

where Eq. 5 follows from the fact that I`(x) · I`′(x) = 0
iff ` 6= `′ and from the idempotence of indicator functions
(I2
j (x) = Ij(x)), whereas Eq. 6 follows the proof of Propo-

sition 1.

Proposition 2 (Expected parameters of MSE loss). Given a
decision tree structure T and a training set Dtrain, the set of
parameters Θ = {θ`}`∈leaves(T) that minimizes LMSE, the
expected prediction loss for MSE, can be found by

θ∗` =

∑
xo,y∈Dtrain

y · p`(xo)/p(xo)∑
xo,y∈Dtrain

p`(xo)/p(xo)

for each leaf ` ∈ leaves(T).

Proof. First, the expected MSE loss can be expressed as the
following:

LMSE(Θ;Dtrain)

=
1

|Dtrain|
∑

xo,y∈Dtrain

Epφ(Xm|xo)

[
(y − fΘ(x))2

]
=

1

|Dtrain|
∑

xo,y∈Dtrain

(
y2 − 2yEpφ(Xm|xo)

[
fΘ(x)

]
+ Epφ(Xm|xo)

[
f2

Θ(x)
])
.

To optimize this loss, we consider its partial derivative w.r.t.
a leaf parameter θ`. Using Equation 3 and the fact that
gradient is a linear operator, we have:

∂Epφ(Xm|xo)

[
fΘ(x)

]
∂θ`

=
p`(x

o)

p(xo)
.

Similarly, the partial derivative of expected squared predic-
tion in Lemma 1 is:

∂Epφ(Xm|xo)

[
f2

Θ(x)
]

∂θ`
=

2θ`p`(x
o)

p(xo)
.

Therefore, the partial derivative of expected MSE loss w.r.t.
a leaf parameter θ` can be computed as follows:

∂LMSE

∂θ`

=
1

|Dtrain|
∑

xo,y∈Dtrain

(
− 2y

∂Epφ(Xm|xo)

[
fΘ(x)

]
∂θ`

Handling Missing Data in Decision Trees: A Probabilistic Approach

+
∂Epφ(Xm|xo)

[
f2

Θ(x)
]

∂θ`

)
=

1

|Dtrain|
∑

xo,y∈Dtrain

(
− 2y

p`(x
o)

p(xo)
+

2θ`p`(x
o)

p(xo)

)
.

Then its gradient w.r.t. the parameter vector θ =
[θ`1 , . . . , θ`L], with L = |leaves(T)|, can be written in ma-
trix notation as:

∇θL =
2

|Dtrain|
∑

xo,y∈Dtrain

 (θ`1 − y) p`1(xo)/p(xo)
...

(θ`L − y) p`L(xo)/p(xo)


Hence, by setting∇θL = 0 we can easily retrieve that the
optimal parameter vector is:

θ∗ =


∑

xo,y∈Dtrain
y·p`1 (xo)/p(xo)∑

xo,y∈Dtrain
p`1 (xo)/p(xo)

...∑
xo,y∈Dtrain

y·p`L (xo)/p(xo)∑
xo,y∈Dtrain

p`L (xo)/p(xo)


Regularization. During parameter learning, it is com-
mon to also add a regularization term to the total loss
to reduce overfitting. In our case, we use regularizer
L2(Θ) = ||Θ||2 =

∑
i θ

2
i . Now, we want to minimize

the following loss:

L = LMSE + λL2 (7)

Where λ is the regularization hyperparamter. By repeating
the steps from above we can easily see that the parameters
that minimize L are:

θ∗ =


∑

xo,y∈Dtrain
y·p`1 (xo)/p(xo)

λ+
∑

xo,y∈Dtrain
p`1 (xo)/p(xo)

...∑
xo,y∈Dtrain

y·p`L (xo)/p(xo)

λ+
∑

xo,y∈Dtrain
p`L (xo)/p(xo)



B. Expected Parameters Beyond Single Trees
In this section, we extend the expected parameter tuning to
beyond single tree models. The learning scenarios include
forests, bagging, random forests, and gradient tree boosting.

B.1. Forests

In this section, instead of a single tree fθ, we are given a
forest FΘ, and want to minimize the following loss instead:

LForest(Θ;D) =
1

|D|
∑

xo,y∈D
EpΦ(Xm|xo)

[
l(y, FΘ(x))

]

Proposition 3 (Expected parameters of forests MSE loss).
Given the training set Dtrain, and given the Forest Fθ, the
set of parameters Θ that minimizes LForest can be found
by solving for Θ in the following linear system of equations:

M ×Θ = B (8)

where M is k × k matrix, Θ and B are k × 1 vectors.

M [i, j] =
∑

xo,y∈Dtrain

p`i,`j (x
o)/p(xo)

B[i] =
∑

xo,y∈Dtrain

y · p`i(xo)/p(xo)

Θ[i] = θi

Note that, we usually learn forest, tree by tree and do not
have all the tree structures initially, and also above algo-
rithm grows quadratic to number of total leaves which is
less desirable. As a result, we also want to explore other
scenarios such as bagging or boosting.

B.2. Bagging and Random Forests

In both Bagging of trees and Random forests, we learn
our trees independently and average their predictions, we
can also do the expected parameter tuning for each tree
independently, w.r.t. a generative model learned on the
boostrap sample of the training dataset on which the tree
has been induced.

B.3. Gradient Tree Boosting

In this section, we adapt gradient tree boosting in the ex-
pected prediction framework. Before moving on to boosting
of trees, we introduce Lemma 2, which computes the ex-
pected prediction of two trees multiplied.

Lemma 2 (Expected tree times tree). Given two trees
fΘ(x), and f ′Θ(x), a distribution p(X) and a partial as-
signment xo the expected squared prediction of f(x) · f ′(x)
w.r.t. p can be computed as follows:

Epφ(Xm|xo)

[
fθ · f ′θ

]
=

∑
`∈leaves(f)

∑
j∈leaves(f ′) θ`θjp`,j(x

o)

p(xo)

where p`,j(xo) = p(xpath(`),xpath(j),xo).

Proof. The proof similarly follows from proof of Lemma 1.
The main difference is that in I`(x) · I`′(x) the leaves ` and
`′ are from two different trees so its not necessarily equal to
0, so we can not cancel those terms.

Note that Lemma 2 result can be easily extended to multi-
plying two forests.

Handling Missing Data in Decision Trees: A Probabilistic Approach

During gradient tree boosting we learn our forest in a addi-
tive manner. At each step, given the already learned forest
F we add a new tree fθ that minimizes sum of losses of the
form l

(
y, F (x) + fθ(x)

)
. We adapt this with the expected

prediction framework as follows:

Definition 3 (Boosting expected loss minimization). In ad-
dition to definition 2, we are also given a fixed forest F , we
want to find the set of parameters Θ of the tree such that fΘ

minimizes the expected loss LBoost defined as follows:

LBoost(Θ;D) =
1

|D|
∑

xo,y∈D
EpΦ(Xm|xo)

[
l
(
y, F (x)+fΘ(x)

)]
Proposition 4 (Expected parameters of Boosted MSE loss).
Given the training set Dtrain, and given the Forest F and
the new tree structures fΘ, the set of parameters Θ that
minimizes LBoost can be found by

θ∗` =

∑
xo,y∈Dtrain

y · p`(xo)−
∑
j∈leaves(F) θjp`,j(x

o)

p(xo)∑
xo,y∈Dtrain

p`(x
o)

p(xo)

C. More Experiment Info

Table 1. Statistics about the datasets used in the experiments.

DATASET TRAIN VALID TEST FEATURES

INSURANCE 936 187 215 36

Description of the datasets In the INSURANCE 2 dataset,
the goal is to predict yearly medical insurance costs of pa-
tients given other attributes such as age, gender, and whether
they smoke or not.

Preprocessing Steps We preserve the original test, and
train splits if present for each dataset. Additionally, we
merge any given validation set with the test set.

The probabilistic circuit learning implementation that we
use does not support continuous features yet, so we perform
discretization of the continuous features as follows. First,
we try to automatically detect the optimal number of (irregu-
lar) bins through adaptive binning by employing a penalized
likelihood scheme as in (Rozenholc et al., 2010). If the
number of the bins found in this way exceeds ten, instead
we employ an equal-width binning scheme capping the bin
number to ten. Once the data is discrete, we employ one-hot
encoding.

2https://www.kaggle.com/mirichoi0218/insurance

Other Settings For XGBoost, we use “reg:squarederror”
which corresponds to MSE loss. Max depth is set to 5, and
we use regularization λ = 1 where applicable.

When learning XGBoost trees from missing values, some
of the leaves become only reachable if a certain feature is
missing, and never reachable with fully observed data. We
ignore those leaves in our expected prediction framework.

