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Abstract001

Model Editing, also known as knowledge edit-002
ing, is receiving increasing attention in the field003
of Large Language Models (LLMs). How-004
ever, existing model editing approaches pre-005
dominantly focus on knowledge-level or static006
visual domains, overlooking dynamic seman-007
tics. This paper exploratively applies four rep-008
resentative model editing methods (FT, IKE,009
MEND, and SERAC) to Video Large Language010
Models (Vid-LLMs) and introduces the first011
benchmark specifically designed for Vid-LLMs012
editing—VMEB (Vid-LLMs Model Editing013
Benchmark)—systematically extending model014
editing research from static modalities to dy-015
namic video scenarios. In the video paradigm,016
our evaluation dimensions encompass tradi-017
tional metrics including Reliability, Locality,018
and Generality, while also introducing a video-019
specific metric: Robustness. Based on ex-020
perimental results, we analyze the strengths021
and limitations of existing model editing ap-022
proaches, among which MEND demonstrates023
superior performance, and identify new chal-024
lenges and research directions for the future025
development of the model editing field.026

1 Introduction027

Model Editing (Knowledge Editing) has rapidly028

emerged as a popular research direction for adapt-029

ing Large Language Models (LLMs) to the ever-030

evolving real-world knowledge (Zhao et al., 2023;031

Yao et al., 2023; Hernandez et al., 2024; Wang032

et al., 2024a). Early work concentrated on updat-033

ing factual triples, with approaches such as ROME034

(Meng et al., 2022) and MEND (Mitchell et al.,035

2022a) suggesting that targeted parameter interven-036

tions can inject new facts while, to a certain extent,037

preserving unrelated knowledge. More recent stud-038

ies have extended editing to richer downstream039

tasks (Mao et al., 2023; Chen et al., 2024; Li et al.,040

2024c; Wang et al., 2024b; Huang et al., 2024b)041

and to diverse knowledge representations beyond042

Figure 1: Overview of the Vid-LLMs editing task. The
goal is to update the model’s understanding of a specific
video-text input. Red-colored answers indicate subop-
timal outputs that require editing, while green-colored
answers represent correct responses.

simple triples—e.g. events, procedures, and free- 043

form text (Peng et al., 2024; Liu et al., 2024; Deng 044

et al., 2025; Jiang et al., 2025). 045

The paradigm was first transferred to Mul- 046

timodal Large Language Models (MLLMs) by 047

Cheng et al. (2024). Follow-up benchmarks such 048

as VLKEB (Huang et al., 2024a)—which adds 049

the Portability metric—and MMKE-Bench (Du 050

et al., 2024)—which broadens the range of editable 051

knowledge types—have strengthened evaluation 052

protocols for MLLM editing. Nevertheless, these 053

studies focus almost exclusively on static visual 054

inputs, leaving the temporal dimension largely un- 055

explored. 056

Concurrently, Video Large Language Models 057

(Vid-LLMs) have advanced video understanding by 058

harnessing LLMs’ ability to model long sequences 059

with rich temporal structure, enabling sophisticated 060

reasoning over dynamic content (Tang et al., 2024; 061

Fu et al., 2024a; Weng et al., 2024). Extending 062

Model Editing to Vid-LLMs is thus a timely yet 063

non-trivial challenge: edits must account for com- 064

plex motion patterns, higher-level abstractions, and 065

broader temporal generalization. 066

We take the first step toward video-centric Model 067
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Editing by presenting VMEB, the first compre-068

hensive Vid-LLMs Model Editing Benchmark.069

VMEB systematically assesses editing perfor-070

mance in three widely used Vid-LLMs of dif-071

ferent scales—LLaVA-NeXT-Video (7B) (Zhang072

et al., 2024) and Qwen2.5-VL (3B & 7B) (Bai073

et al., 2025). Evaluation covers the existing di-074

mensions (Yao et al., 2023; Cheng et al., 2024)075

of Reliability, Locality, and Generality, while076

introducing video-specific axes that probe Robust-077

ness. We adapt representative editing methods (FT,078

IKE (Zheng et al., 2023), MEND (Mitchell et al.,079

2022a) and SERAC (Mitchell et al., 2022b)) to sev-080

eral Vid-LLMs, emphasizing edits that transcend081

conventional factual updates or static multimodel082

model editing. We hope VMEB will spur further083

research on temporally grounded model editing and084

shed light on how knowledge updates can be effec-085

tively injected, preserved, and generalized within086

dynamic multimodal systems.087

Experimental results demonstrate that the088

MEND method exhibits superior performance089

across all evaluation dimensions, achieving effec-090

tive editing while preserving model integrity. Al-091

though SERAC shows relatively inferior editing092

performance, it causes minimal degradation to the093

model’s original capabilities. In contrast, both FT094

and IKE methodologies inflict significant destruc-095

tive impact on the models. Additionally, video-096

level metrics show a notable decline compared to097

text-level metrics, highlighting a notable gap in cur-098

rent mainstream model editing approaches when099

applied to Vid-LLMs.100

In general, we summarize our contributions as101

follows:102

• First exploration of video-centric Model103

Editing. We take the initial step in extending104

Model Editing research from static modalities105

to Vid-LLMs, framing the unique challenges106

that arise in dynamic settings.107

• VMEB benchmark. We propose VMEB—a108

comprehensive benchmark that rigorously109

evaluates how well existing editing methods110

perform on Vid-LLMs, across both existing111

and video-specific dimensions.112

• Extensive empirical analysis. Through sys-113

tematic experiments, we analyze our settings,114

tasks and performance—providing insights115

that we hope will catalyze further research in116

this emerging area.117

2 Related Work 118

2.1 Video Large Language Models 119

Video Large Language Models (Vid-LLMs) ex- 120

tend Large Language Models (LLMs) to video do- 121

mains, addressing a multitude of video understand- 122

ing tasks such as Video Question Answering (Video 123

QA) and Video Captioning (Tang et al., 2025). 124

Early systems like Flamingo (Alayrac et al., 125

2022) and FrozenBiLM (Yang et al., 2022) paired 126

frozen language backbones with video encoders, 127

delivering strong zero-shot results without task- 128

specific fine-tuning, indicating frozen LMs as ef- 129

fective cores for video–language reasoning. Sub- 130

sequent work shifted to instruction-tuned chat 131

paradigms; models like VideoChat (Li et al., 132

2024a), Video-LLaMA (Zhang et al., 2023), 133

Video-LLaVA (Lin et al., 2024), and Video- 134

ChatGPT (Maaz et al., 2024) use lightweight 135

adapters for spatiotemporal features and align with 136

video-instruction pairs, enabling multi-turn dia- 137

logue on actions, causality, and temporal order. 138

More recent efforts focus on unifying im- 139

age/video understanding and handling long- 140

duration videos. LLaVA-Next-Video (Zhang et al., 141

2024) treats sparse frames as a “long image,” al- 142

lowing a 7B vision–language backbone to inherit 143

image skills and gain temporal reasoning with 144

minimal extra cost. Concurrently, models like 145

MovieChat (Song et al., 2024) address minute- to 146

hour-long clips. Qwen2.5-VL (Bai et al., 2025), by 147

scaling parameters and context with techniques like 148

dynamic-resolution windowing and absolute-time 149

encoding, achieves state-of-the-art grounding on 150

long-video benchmarks while preserving conversa- 151

tional quality. 152

Despite this rapid progress, Vid-LLMs still face 153

challenges. These include fine-grained temporal lo- 154

calisation, multimodal hallucination, and efficient 155

inference for very long sequences. 156

2.2 Model Editing 157

Model (or Knowledge) Editing seeks to inject, 158

revise, or remove specific facts in a pretrained 159

model without exhaustive retraining (Sinitsin et al., 160

2020). Techniques span two axes—intrinsic, which 161

directly alter network parameters, and extrinsic, 162

which operate through prompts or external mem- 163

ory. Recently, growing interests extends the Model 164

Editing to MLLMs. 165

Intrinsic Editing. Intrinsic methods embed 166

new knowledge by modifying a model’s internal 167
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Edit!

 Reliability

Text locality
Q: Who sings the song i 
kissed a girl?

A: Katy Perry.

Video locality Q: On what date is the 
total eclipse supposed 
to occur in the video? 
+[candidates]

A: April 8, 2024.
Locality Dataset

Edit Dataset

Edit Dataset

Video Frames

Generality

Edit Dataset

Rephrased_Q: Who 
ultimately jumped the 
highest in the video? 
+[candidates]

A: Athlete wearing a yellow 
top and green shorts.

Original_Q: Who ultimately 
won the high jump 
competition in the video? 
+[candidates]

Rephrase the 
question!

Robustness

Edit Dataset Perturbation Dataset
Apply random perturbations!
(e.g. Horizontal mirroring)

Q: Who ultimately won 
the high jump 
competition in the video? 
+[candidates]

A: Athlete wearing a 
yellow top and green 
shorts.

Q: Who ultimately won 
the high jump 
competition in the video? 
+[candidates]

A: Athlete wearing a 
yellow top and green 
shorts.

Figure 2: Framework of our Vid-LLMs Editing Tasks

weights or activations. Early fine–tuning delivers168

reliable edits but is computationally heavy and risks169

catastrophic forgetting. Meta-learning approaches170

such as MEND (Mitchell et al., 2022a) and MAL-171

MEN (Tan et al., 2024) introduce lightweight hyper-172

networks that predict parameter deltas conditioned173

on an edit request. Locate-then-edit techniques like174

ROME (Meng et al., 2022) and MEMIT (Meng175

et al., 2023) trace the causal pathway of the tar-176

get fact, then overwrite only the salient compo-177

nents, achieving high locality with minimal collat-178

eral damage.179

Extrinsic Editing. Extrinsic strategies inject180

knowledge via inputs or outputs without chang-181

ing backbone weights. IKE (Zheng et al.,182

2023) uses few-shot prompts to edit via in-183

context learning. Memory-augmented systems,184

such as SERAC (Mitchell et al., 2022b) and185

MeLLo (Zhong et al., 2023), maintain a separate186

store of counterfactual knowledge: SERAC cou-187

ples a gating classifier with an editable side net-188

work, whereas MeLLo refines facts through iter-189

ative prompting, making it suitable for multi-hop190

reasoning. These approaches are computationally 191

light but face context-length and retrieval chal- 192

lenges. 193

Multimodal Editing. The editing paradigm was 194

first transplanted to Multimodal LLMs (MLLMs) 195

by Cheng et al. (2024). VLKEB extends evaluation 196

with a Portability metric, assessing whether visual 197

edits transfer across related contexts (Huang et al., 198

2024a), while MMKE-Bench broadens the spec- 199

trum of edit types to match real-world multimodal 200

diversity (Du et al., 2024). Yet both benchmarks 201

focus on static imagery, overlooking the tempo- 202

ral dynamics intrinsic to video. Recent Vid-LLMs 203

such as Llava-Next-Video and Qwen2.5-VL illus- 204

trate the feasibility of temporal reasoning (Zhang 205

et al., 2024; Bai et al., 2025), but no framework 206

yet measures how well edits persist over time. We 207

bridge this gap with VMEB, the first Vid-LLMs 208

Model Editing Benchmark, which extends clas- 209

sic metrics—Reliability, Locality, and General- 210

ity—with temporal-robustness axes (e.g., frame 211

skipping, speed perturbations), offering a compre- 212

hensive testbed for editing in dynamic multimodal 213
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settings.214

3 Vid-LLMs Editing215

We illustrate the proposed task of Vid-LLMs edit-216

ing in Figure 2. We will introduce the task def-217

inition (§3.1), dataset construction details (§3.2),218

the Vid-LLMs we chose (§3.3), and the editing219

methods (§3.4) we used in the experiments.220

3.1 Task Definition221

We define the mapping yo = f(ve, xe; θ) as the222

inference process of Vid-LLMs parameterized by223

θ, where ve refers to the editing video input, xe224

refers to the editing text prompt input and yo rep-225

resents the original output answer of the model.226

After the model undergoes editing, θ becomes the227

edited parameter θ′, and we want the output to cor-228

respondingly change to ye = f(ve, xe; θ
′).229

To evaluate the effectiveness of model editing,230

we design a dataset Dedit , defined as a quadruple231

(ve, xe, yo, ye). Concurrently, we use M as a nota-232

tion symbol, where the superscript represents the233

scope of the data and the subscript indicates the234

evaluation domain. Drawing inspiration from (Yao235

et al., 2023) and (Huang et al., 2024a), our evalu-236

ation metrics specifically designed for Vid-LLMs237

editing are presented as follows.238

Reliability. To directly verify the effectiveness of239

the model editing method, we define the percentage240

of edited models outputting the target answer as the241

value of the reliability metric1, which is described242

as the following:243

Mrel = E
(ie,xe,yo,ye)∼Dedit

1
{
f
(
ie, xe; θ

′) = ye
}
(1)244

where θ′ refers to the edited parameters.245

Locality. When editing models, we aim for edits246

that are not only effective but also precise. To247

evaluate an editing method’s ability to preserve248

unrelated parts of the model while making targeted249

changes, we introduce the locality metric, which is250

divided into Mt
loc and Mv

loc.251

Mt
loc describes the stability of the foundation252

language model—which serves as the core com-253

ponent of all models—after editing. Recent re-254

search has shown that maintaining language model255

stability during editing is crucial for preserving256

general capabilities while implementing targeted257

1Accuracy is calculated per token, then averaged across all
entries for the final rate.

changes (De Cao et al., 2021; Mitchell et al., 258

2022b). 259

Mv
loc describes the stability of the model’s vi- 260

sual decoding and projection layers after editing. 261

This metric is particularly important in multimodal 262

models where visual understanding must remain 263

intact despite text-based edits (Meng et al., 2022; 264

Yao et al., 2023).They are calculated as follows: 265

Mt
loc = E

(xl,yl)∼Dt
loc

1{f
(
xl; θ

′) = f(xl; θ)} (2) 266

Mv
loc = E

(vl,xl,yl)∼Dv
loc

1
{
f
(
vl, xl; θ

′)
= f(vl, xl; θ)}

(3) 267

where Dt
loc and Dv

loc respectively refers to text- 268

locality and video-locality dataset stated in §3.2.2. 269

xl represents text prompt inputs that are not related 270

to the editing domain.vl represents the video input 271

that is out of scope. while yl represents the model 272

output answers corresponding to xl or xl and vl. 273

Generality. Edited models require good gen- 274

eralization capabilities, which will be evaluated 275

through modifications to questioning methods or 276

grammatical structures. The accuracy rate will be 277

calculated after posing these varied questions, as 278

follows: 279

Mgen = E
(ve,xe,yo,ye)∼Dedit

xr∼N (xe)

1
{
f
(
ve, xr; θ

′) = ye
}

(4) 280

where N (xe) stands for the in-scope text prompt 281

input. xr stands for the rephrased text prompt input 282

according the original text prompt input. 283

Robustness. Robustness is defined as an algo- 284

rithm’s ability to maintain performance and sta- 285

bility when faced with uncertainties such as noise 286

interference, parameter variations, and anomalous 287

conditions. Studies have shown that robustness 288

to visual variations is particularly challenging in 289

edited multimodal models, as minor visual per- 290

turbations can significantly affect model outputs 291

despite maintaining semantic equivalence (Elsayed 292

et al., 2018). In the domain of model editing, we 293

aim for edits to remain effective when the model 294

processes videos perturbed by random noise com- 295

pared to those used during editing. 296

To quantify this capability, we introduce the 297

Mrob metric, which evaluates both the robustness 298
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of the editing method and the generalization capa-299

bility of the edited model. This metric is calculated300

as follows:301

Mrob = E
(ve,xe,yo,ye)∼Dedit

vr∼N (ve)

1
{
f
(
vr, xe; θ

′) = ye
}

(5)302

where N (ve) represents the original editing video,303

while vr represents the new video obtained by ap-304

plying random perturbation processing to the origi-305

nal video.306

3.2 Dataset Construction307

Our dataset, VMEB, represents a fundamental type308

of Edit Video-QA, similar to VQA (Visual Ques-309

tion Answering) (Antol et al., 2015), but extends310

visual information to video understanding. Dataset311

consists of 1580 data entries and their correspond-312

ing videos, with the videos categorized into 14313

distinct subcategories. For detailed classification,314

please refer to figure 3.315

3.2.1 Edit Dataset.316

We began with data selection, choosing videos317

and annotations from the influential video datasets318

MVBench (Li et al., 2024b) and Video-MME (Fu319

et al., 2024b) as our raw data. Medit consists of320

four data components, where we concatenated the321

original questions and options for the videos as322

xe , with the videos serving as ve. We tested323

MVBench and Video-MME using the LLaVA-324

NeXT-Video(7B) model and retained the incor-325

rectly answered responses as yo, which represent326

the original outputs requiring editing, while the327

correct answers for these entries were designated328

as ye. While all entries with correct answers were329

discarded from the dataset.330

3.2.2 Locality Dataset.331

We must evaluate the model’s normal performance332

after editing, therefore we decided to use common-333

sense question-answering from Wikipedia to as-334

sess textual locality. We randomly selected335

1,580 knowledge-based question-answer pairs from336

VLKEB(Huang et al., 2024a), such as ("Where337

does Disney’s Hunchback of Notre Dame take338

place?", "Paris"), as the tuple pairs (xl, yl) in Dt
loc.339

Similarly, for video-level locality, we can query340

the model using existing videos in the dataset to341

evaluate the impact of editing methods on the342

model. For Dv
loc, we reshuffled the dataset using343

a shuffling algorithm and created one-to-one cor- 344

respondences between the shuffled dataset and the 345

original ordered dataset, specifically (ve, xe, ye) 7→ 346

(vl, xl, yl). 347

3.2.3 Generality Dataset. 348

The Definition of Rephrased Questions. For the 349

mapping ye = f(ve, xe; θ), we consider it as the 350

model’s answer to the question xe given the video 351

input ve. We can then define argf(ye, ve; θ) = x, 352

which represents a question x that would yield the 353

answer ye under the same parameters and video 354

input, noting that this x is not unique. The pro- 355

cess of constructing a rephrased question involves 356

designing an xr such that argf(ye, ve; θ) = xr. 357

Specific examples.For model editing, we aim to 358

achieve excellent generalization capabilities. Tak- 359

ing text editing as an example, if we intend to edit 360

("Who is the president of USA now", "Joe Biden", 361

"Donald Trump"), then similarly structured ques- 362

tions with grammatical and structural variations, 363

such as ("Who currently holds the office of the 364

U.S. President", "Joe Biden", "Donald Trump"), 365

should also be successfully edited. To evaluate this 366

generalization capability, we utilized GPT-4O to 367

generate high-quality question restatements, which 368

were subsequently manually reviewed. This review 369

process ensured that the restated questions xr main- 370

tained the same answers as the original questions 371

xe while preserving semantic similarity. 372

3.2.4 Robustness Dataset. 373

Videos, as a type of signal, are frequently sub- 374

ject to noise interference such as disturbances 375

and distortion. We aim for edits represented as 376

(ve, xe, ye) 7→
vr∼N (ve)

(vr, xe, ye) to maintain equiv- 377

alent efficacy. Therefore, we input vr into the 378

model that has undergone editing (ve, xe, ye) to 379

evaluate its robustness. We apply common random 380

perturbations to the original video ve, as shown in 381

Table 2, thereby obtaining vr. 382

3.3 Vid-LLMs 383

LLaVA-NeXT-Video (Zhang et al., 2024) is a 384

state-of-the-art Vid-LLM excelling in video under- 385

standing via extensive instruction tuning on a syn- 386

thetic dataset. It processes video by treating sparse 387

frames as a "long image," enabling it to combine 388

robust image understanding with acquired temporal 389

reasoning skills. 390

Qwen2.5-VL (Bai et al., 2025) is a flagship multi- 391

modal LLM series particularly strong in long-video 392
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Type Level Number of Instances

Object-Level Understanding Basic 685

Action-Level Understanding Intermediate 802

Domain-Specific Understanding Specialized 273

Contextual Understanding Advanced 228

Total – 1988

Table 1: Composition of the VMEB Dataset. The dataset is categorized into
four levels according to the depth of understanding required: Basic, Intermediate,
Specialized and Advanced.

Perturbations

Horizontal mirroring

2x playback speed

4x playback speed

90-degree rotation

180-degree rotation

270-degree rotation

Grayscale conversion

Table 2: All processing is
based on FFmpeg, without
loss of semantics.

Figure 3: Dataset Composition with Primary and Sec-
ondary Categories

comprehension (up to hours). It features dynamic393

resolution processing and absolute time encoding394

for precise event localization, using a redesigned395

Vision Transformer and time-aligned Multimodal396

Rotary Position Embedding (MROPE) to under-397

stand temporal dynamics.398

3.4 Editing Methods399

3.4.1 Fine tuning400

Fine tuning is the most fundamental method in401

intrinsic editing methods. It mainly updates the402

parameters of the model through gradient descent403

to achieve the purpose of changing certain charac-404

teristics of the model.405

3.4.2 In-Context Knowledge Editing(IKE)406

In-Context Knowledge Editing(IKE) is a model407

editing method based on In-Context Learning408

(ICL), which directly modifies the factual knowl-409

edge in the LLM by designing specific demonstra-410

tion samples, and achieves efficient knowledge up-411

date with low side effects and without adjusting412

model parameters (Zheng et al., 2023).413

3.4.3 MEND 414

MEND is an efficient model editing method 415

based on gradient decomposition. By training a 416

lightweight auxiliary editing network, it converts 417

traditional fine-tuning gradients into low-rank pa- 418

rameter updates, thereby achieving fast and accu- 419

rate editing of LLMs (Mitchell et al., 2022a). 420

3.4.4 SERAC 421

SERAC is a semi-parametric editing approach 422

based on a retrieval-augmented counterfactual 423

model that stores edits in explicit memory and 424

learns to reason about them to adjust the predic- 425

tions of the underlying model as needed (Mitchell 426

et al., 2022b). 427

4 Experiments 428

In this section, we conducted experiments of FT, 429

IKE, MEND, and SERAC on VMEB. With an 430

equal number of training steps across methods, the 431

test results are presented in Table 3, where we have 432

highlighted both the superior and anomalous data 433

points for ease of reference. In §4.1, we provide a 434

comparative analysis of how different editing meth- 435

ods perform in terms of Reliability, Locality, Gen- 436

erality, and Robustness, as well as the variations 437

between different models. §4.2 focuses on analyz- 438

ing the implications of extending model editing 439

to video applications. Figure illustrates the differ- 440

ences between textual indicators and video-level 441

indicators, which forms the basis for our discussion 442

on future challenges for model editing techniques. 443

4.1 Results 444

From a macro perspective, MEND demonstrates 445

the best overall performance, while FT and IKE 446

both show tendencies to damage the model, and 447

SERAC exhibits poorer editing effectiveness than 448
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Table 3: Comparison of different models and editing methods across various metrics. Rel., Txt-Loc., Vid-Loc.,
Gen. and Rob. denote Reliability, Text-Locality, Video-Locality, Generality and Robustness, respectively. Best
results could be highlighted in bold, while second-best results could be underlined if criteria were defined. The
data highlighted in red indicates that the method performs poorly on that metric, which would degrade model
performance.

Model Method Rel.(↑) Txt-Loc.(↑) Vid-Loc.(↑) Gen.(↑) Rob.(↑)

LLaVA-NeXT-Video

Base Model 0.00 100.00 100.00 0.00 0.00

Model Size: 7B

FT 99.96 79.93 22.79 99.92 99.96
IKE 87.68 42.26 24.49 86.39 87.87

MEND 96.31 99.02 85.11 96.12 96.21
SERAC 80.23 99.87 96.39 79.51 78.98

Qwen2.5-VL

Base Model 0.00 100.00 100.00 0.00 0.00

Model Size: 3B

FT 100.00 94.03 55.90 99.84 100.00
IKE 77.90 71.06 21.41 79.36 77.74

MEND 99.05 98.53 74.85 98.46 98.73
SERAC 83.27 99.35 89.75 82.71 80.17

Qwen2.5-VL

Base Model 0.00 100.00 100.00 0.00 0.00

Model Size: 7B

FT 100.00 74.18 9.92 99.81 99.95
IKE 85.85 80.75 21.08 79.48 84.96

MEND 96.97 97.43 71.80 96.18 96.43
SERAC 75.46 99.77 88.09 75.57 75.06

MEND. After applying random perturbations to449

the videos, all metrics showed varying degrees of450

decline.451

Reliability. Based on the results analysis, all meth-452

ods demonstrated significant improvement in ac-453

curacy, indicating effective performance across ex-454

isting model editing approaches. Among these455

methods, FT and MEND achieved notably higher456

accuracy rates, approaching 100%, while IKE and457

SERAC methods performed relatively poorly with458

accuracy rates ranging between 70% and 80%.459

However, it is important to note that compared460

to other model editing methods, the destructive461

impact of FT on the model is evident; therefore,462

high accuracy alone cannot be considered indica-463

tive of FT’s superiority. Simultaneously, IKE, as464

a method that does not modify model parameters,465

exhibited the lowest accuracy in most scenarios,466

highlighting the limitations of prompt-injection-467

based approaches. Furthermore, SERAC, despite468

requiring training, did not demonstrate significant469

improvement over IKE in video-level editing, in-470

dicating SERAC’s relative insufficiency in this do-471

main. In contrast, MEND performed exceptionally472

well, showing no significant decline in performance473

when extended to video-level editing while ensur-474

ing the model remained undamaged, thus demon- 475

strating excellence across multiple evaluation met- 476

rics. 477

Locality. Under this metric, all methods exhibited 478

varying degrees of performance decline compared 479

to the Base model, demonstrating that existing 480

model editing approaches cannot yet achieve modi- 481

fication without affecting the model’s performance. 482

However, SERAC and MEND demonstrated ex- 483

cellent performance at the text-level, indicating 484

that the foundational language model’s capabil- 485

ities remained largely unaffected by the editing 486

process. In contrast, both FT and IKE methodolo- 487

gies showed metrics predominantly below 90% at 488

both text-level and video-level, suggesting these ap- 489

proaches introduce slight degradation to the model. 490

Notably, IKE, despite being a method that does 491

not alter model parameters, still demonstrated sig- 492

nificant impact on the model’s performance. This 493

finding indicates that models can potentially be 494

"confused" by prompts, resulting in outputs that 495

deviate from expected outcomes. 496

Generality. Comparing different methods, both 497

MEND and FT methodologies demonstrate accu- 498

racy rates approaching 100%; however, FT’s perfor- 499

mance comes at the expense of compromising the 500
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Figure 4: Video-level metrics by average demonstrate a
significant degradation compared to the text-level met-
rics by average.

model’s standard functionality. In contrast, MEND501

substantially preserves the model’s inherent capa-502

bilities while maintaining excellent generality, en-503

suring that edits remain effective across similar504

queries. This finding suggests that MEND poten-505

tially enables the model to "comprehend" the edited506

knowledge at a deeper level. In contrast, IKE and507

SERAC exhibit relatively poor performance, pri-508

marily because both methods rely on the model’s509

inherent generalization ability (IKE depends on510

Vid-LLMs while SERAC relies on the binary clas-511

sification model)—specifically, the ability to recog-512

nize different expressions of the same problem.513

Robustness. When considering all four methods514

collectively, they exhibit similar patterns for both515

reliability and robustness metrics. FT and MEND516

demonstrate consistently higher scores, whereas517

IKE and SERAC exhibit comparatively lower per-518

formance metrics. Similar performance patterns519

between robustness and reliability are expected, as520

the video perturbations applied are not overly se-521

vere and preserve the majority of visual semantics.522

Consequently, methods that achieve better editing523

performance also excel in the robustness metric.524

4.2 Video-Level Editing: Great Performance,525

Yet Requires Further Investigation526

As shown in Figure 4, the video-level metrics527

demonstrate varying degrees of decline compared528

to text-level metrics, highlighting the inherent com-529

plexity of multimodal editing. However, the per-530

formance degradation from text to image (Huang 531

et al., 2024a; Cheng et al., 2024) and subsequently 532

to video is not substantial. In our experiment, 533

we only edited the MLP layers in the last three 534

layers, without editing the corresponding visual 535

layers or projection layers. This means that our 536

edits did not directly target visual semantics, yet 537

they achieved the effect of editing visually. This 538

raises a fundamental question: Can model editing 539

truly teach models to "understand" visual semantics 540

and transformations in spatial logical relationships? 541

Based on our analysis results and the progression 542

of model editing work from text to image (Huang 543

et al., 2024a; Cheng et al., 2024) to video, we con- 544

clude that model editing tends to operate more in 545

a probabilistic sense. During the editing process, 546

models likely learn statistical patterns present in 547

the training data rather than developing true under- 548

standing. Another possibility is that these models 549

may not strictly differentiate between modalities at 550

higher representational levels, potentially forming 551

a shared semantic space where concepts transcend 552

their original modalities. Therefore, we conclude 553

that these effects cannot be attributed to the model’s 554

comprehension of changes in visual semantics, but 555

rather to complex interactions within the model’s 556

representation space. This presents an entirely new 557

challenge for the future of model editing: devel- 558

oping editing methods capable of distinguishing 559

genuine cross-modal understanding in multimodal 560

representations, as well as creating novel bench- 561

marks to evaluate such editing methods. 562

5 Conclusion 563

In this paper, we propose a novel benchmark called 564

VMEB. We have adapted model editing methods, 565

such as IKE, MEND, and SERAC, to Vid-LLMs 566

and have implemented them for the Qwen2.5-VL 567

and LLaVA-NeXT-Video models, representing the 568

first attempt at model editing in the video domain. 569

Then, we analyzed the experimental results and 570

formulated the following conclusion: Among the 571

four editing methodologies examined—FT, IKE, 572

SERAC, and MEND—MEND demonstrated su- 573

perior performance across all evaluation dimen- 574

sions. While SERAC exhibited suboptimal editing 575

effectiveness, it caused minimal degradation to the 576

model’s integrity. In contrast, both FT and IKE 577

methodologies resulted in demonstrably destruc- 578

tive impacts on the model’s performance. Finally 579

we offer some perspectives on the future develop- 580

ment of the model editing field. 581
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Limitations582

Model Selection. In our experiment, we selected583

only two types of Vid-LLMs, without considering584

the majority of other models. Additionally, we only585

selected open-source large models, while editing586

closed-source large models remains an unresolved587

challenge. The models we selected were all be-588

low 10B parameters, and we did not test larger589

models, such as the 72B version of LLaVA-NeXT-590

Video (Zhang et al., 2024) or Qwen2.5-VL (Bai591

et al., 2025).592

Editing Layers. For model editing, we only pre-593

liminarily attempted application editing at the lan-594

guage layer, while ignoring other model structures.595

Editing only the language layer may not enable the596

model to "understand" the edited content, poten-597

tially resulting in poor actual editing effectiveness.598

Perturbation Methods. During the video process-599

ing, our disturbance method preserved the complete600

semantics of the videos without attempting to use601

stricter perturbations such as black line masking602

or blurring. This approach resulted in robustness603

metrics not declining significantly compared to re-604

liability metrics.605
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A Dataset Construction Details 830

The dataset is partitioned according to the follow- 831

ing specifications: 832

• Train-Evaluation Split: 7:3 ratio 833

• Training Set (train.json): 1,108 data instances 834

• Evaluation Set (eval.json): 472 data instances 835

• Video Files (VMEB.zip) 3976 videos 836

• Additional File: eval_multihop.json (identi- 837

cal to eval.json for compatibility with VLKEB. 838

For detailed explanations, please refer to the 839

§A.4.2.) 840

A.1 Construction Process of Rephrased 841

Questions 842

A.1.1 Specific Construction Method 843

We utilize the GPT-4o model to construct rephrased 844

questions, with the prompt design format illustrated 845

in the Figure 5. During the construction process, 846

for each data point, we generate three rephrased 847

questions and manually select the one that best 848

meets our requirements. The selected question 849

transforms the relevant sentence structure, gram- 850

mar, or syntactic patterns without altering the sub- 851

ject matter of the original question. This selected 852

question serves as our rephrased question. 853

A.1.2 Data Example 854

We randomly selected a data point from our dataset 855

as an example. The "src" key of this data point 856

(for a detailed definition of this key, please refer to 857

§A.4) is "According to the video, which country 858

will host this live stage event? America., Australia., 859

Canada., England." This key contains the question 860

and answer options. In the actual dataset, we re- 861

moved the quotation marks from the answers. This 862

decision was implemented because fewer punctu- 863

ation marks ensure more stable model output and 864

facilitate more efficient data processing. During 865

the rephrasing process, we ensured that the answer 866

options remained unchanged. 867

We input the prompt and the "src" key into GPT- 868

4o, which generated the following three rephrased 869

questions: 870

1. "Based on the video, where is this live stage 871

event going to take place? America., Australia., 872

Canada., England." 873

2. "From the video, can you tell which coun- 874

try is the host of this live stage event? America., 875

Australia., Canada., England." 876

3. "In the video, which country is the live 877

stage event set to take place? America., Australia., 878
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Figure 5: Prompt for generating rephrased question, where {src} and {pred} is replaced by the actual datas in the
editing dataset.

Canada., England."879

We selected the third option as the rephrased880

question for this data point. Thus, for this partic-881

ular data point, the "src" key is "According to the882

video, which country will host this live stage event?883

America., Australia., Canada., England." and the884

"rephrase" key (i.e., the rephrased question) is "In885

the video, which country is the live stage event886

set to take place? America., Australia., Canada.,887

England."888

A.2 Construction Process of Pred key889

We utilized the LLaVA-NeXT-Video (7B) model890

to generate responses for the original dataset, and891

subsequently selected incorrect answers to serve892

as the "pred" key in the dataset.It is worth noting893

that when we input questions to the model, what894

we actually input is [prompt] + src, which is used895

to generate the model’s response and presented in896

Figure 6.897

A.3 Detailed Description of Video898

Perturbation899

A.3.1 Hardware and Software Environment900

Our video perturbation operations were executed901

on a high-performance computing platform with902

the following specifications:903

• CPU: 14 cores904

Component Version/Details
Python Python 3.x
Core Libraries multiprocessing,

subprocess, os, glob
Progress Visualization tqdm
Error Handling logging
Parallel Processing Dynamic allocation

Table 4: Python Environment Configuration

• Memory: 100 GB 905

• GPU: NVIDIA A800 80GB PCIe (1 unit) 906

The implementation leveraged a Python-based 907

processing framework with the environment speci- 908

fications in Table 4. 909

The entire video processing pipeline was funda- 910

mentally built upon FFmpeg as the core processing 911

engine. FFmpeg was utilized through Python’s sub- 912

process module to execute various transformation 913

operations on the video files. This architecture 914

allowed us to leverage FFmpeg’s powerful video 915

processing capabilities while maintaining precise 916

control over the perturbation parameters through 917

our Python framework. The system incorporated 918

robust error handling mechanisms, including au- 919

tomatic retries with exponential backoff, ensuring 920

reliable processing even when handling large video 921

datasets. 922
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Figure 6: Prompt for generating rephrased question, where {src} and {pred} is replaced by the actual datas in the
editing dataset.

A.3.2 Perturbation Design Principles923

Our video perturbation methodology was carefully924

designed to preserve semantic integrity while in-925

troducing controlled variations. We implemented926

a content-aware approach with the following con-927

straints:928

• For videos containing questions about color929

attributes, grayscale processing was explicitly930

excluded to maintain critical color informa-931

tion necessary for accurate question answer-932

ing.933

• For videos related to spatial understanding,934

transformations such as mirror flipping and935

rotations (90°, 180°, 270°) were excluded to936

preserve essential spatial relationships.937

• For all remaining videos, we employed a ran-938

domized perturbation strategy by selecting939

one processing method from a pool of seven940

distinct techniques: horizontal mirror flipping,941

2x speed acceleration, 4x speed acceleration,942

grayscale conversion, and three rotation an-943

gles (90°, 180°, 270°).944

This selective approach ensured that perturba-945

tions challenged model robustness without compro-946

mising the fundamental semantic content necessary947

for accurate comprehension. The implementation948

employed an efficient multiprocessing architecture949

that dynamically allocated computational resources950

based on system capabilities, with built-in error951

handling and recovery mechanisms to ensure pro-952

cessing reliability.953

A.3.3 Perturbation Examples954

The complete range of our perturbation techniques955

is visually documented in Figure 7, which presents956

examples of all perturbation methods applied to 957

sample video frames. Each example illustrates the 958

visual transformation introduced by the correspond- 959

ing perturbation technique, providing a compre- 960

hensive visualization of the modifications applied 961

throughout our experimental process. 962

The processing pipeline incorporated quality 963

control measures, including verification of output 964

file integrity and size optimization through adaptive 965

compression, ensuring consistent quality across the 966

processed dataset while maintaining reasonable file 967

sizes. 968

A.4 Dataset Composition Examples 969

Our dataset is designed for video-centric model 970

editing tasks and comprises three main components: 971

train.json, eval.json, and associated video files. The 972

dataset is built upon the VLKEB engineering frame- 973

work, maintaining compatibility with its structure 974

while introducing our specific modifications. 975

A.4.1 Data Format 976

Each entry in both train.json and eval.json follows 977

an identical structure. Table 5 outlines the keys and 978

their corresponding meanings. 979

A.4.2 Implementation Note 980

While our codebase is derived from VLKEB’s 981

source code, we have maintained the requirement 982

for an eval_multihop.json file to ensure compatibil- 983

ity. This file contains identical content to eval.json 984

but is not utilized in our experimental procedures. 985

We opted not to modify VLKEB’s relevant source 986

code in the interest of development efficiency. 987
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Key Description
src Question with accompanying options
rephrase Rephrased question with accompanying options
pred Model-generated original answer (yo), representing

the incorrect answer
alt Correct answer (ye)
video Relative path to the video (ve), stored as a string
video_rephrase Relative path to the perturbed video (vr), stored as a

string
loc Common-sense question unrelated to editing, used to

evaluate model’s text-locality
loc_ans Answer to the common-sense question
m_loc Path to an additional video (vl), stored as a string
m_loc_q Question corresponding to video vl, used to evaluate

model’s video-locality
m_loc_a Answer to the question about video vl

Table 5: Dataset Schema and Key Descriptions

A.4.3 Quantity Correspondence988

As shown in Table 5, each data entry contains three989

video addresses. The m_loc video in a given entry990

may or may not be included among the video or991

video_rephrase keys of other entries in the dataset.992

Specifically, an m_loc video might appear exclu-993

sively in its own entry, or it might also appear as a994

video or video_rephrase in other data entries. Con-995

sequently, the total number of unique videos in the996

dataset slightly exceeds twice the total number of997

data entries.998

B Detailed Experimental Steps999

B.1 Experimental Platform and Environment1000

In this section, we provide a comprehensive1001

overview of our experimental setup to ensure re-1002

producibility of our results.1003

B.1.1 Hardware Configuration1004

Our experiments were conducted on a high-1005

performance computing platform with the follow-1006

ing specifications:1007

Component Specification
CPU 14 cores
Memory 100 GB RAM
GPU NVIDIA A800 80GB PCIe × 1

1008

B.1.2 Software Environment1009

All experiments were implemented using Python1010

3.9.7 in a Conda environment. The major software1011

components and their versions are listed below:1012

Software Version
PyTorch 2.0.1
Transformers 4.49.0
CUDA Libraries 11.7
PEFT 0.7.1
Flash Attention 2.6.1
Accelerate 1.5.2
Datasets 1.18.3
NumPy 1.22.1
OpenCV-Python 4.8.0.76
AV (PyAV) 14.2.0

1013

Additional dependencies include scikit-learn 1014

(1.0.2), pandas (1.4.0), and various utilities for 1015

data processing and model optimization. Our en- 1016

vironment utilized optimized CUDA libraries with 1017

cuBLAS, cuDNN, and other NVIDIA performance 1018

libraries to accelerate computations on the GPU. 1019

The complete environment configuration is avail- 1020

able in our repository for comprehensive repro- 1021

ducibility. 1022

B.2 Code Declaration 1023

This research implementation builds upon the 1024

VLKEB framework (Huang et al., 2024a). Our 1025

codebase extends the original implementation with 1026

modifications to support the methodologies de- 1027

scribed in this paper. The original VLKEB project 1028

is distributed under the Apache 2.0 license, which 1029

permits adaptation and modification with appro- 1030

priate attribution. All our modifications maintain 1031

compliance with the terms of this license. 1032

The primary adaptations to the original frame- 1033
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work include enhancements to support our video-1034

language model editing methodology, dataset pro-1035

cessing components, and evaluation procedures.1036

The architecture of our implementation preserves1037

the core mechanisms of VLKEB while introduc-1038

ing the novel components necessary for Vid-LLMs1039

editing described in our work.1040

Our code will be made publicly available on1041

GitHub for research purposes.1042

B.3 Parameters for Model Editing1043

This section contains the detailed configuration1044

parameters used in our experiments. We present1045

six tables corresponding to different model editing1046

methods and their training/evaluation settings.The1047

calculation formula for loss is as follows:1048

losstotal = cedit × lossedit

+ cloc ×
(
losstextloc + lossvideoloc

)
+ iedit × lossvideoedit

(6)1049

Where cedit, cloc, and iedit respectively adjust1050

the weights of different metrics.1051

15



Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 25-27 29-31
Base Learning Rate 1e-5 5e-7
Edit Learning Rate 1e-2 1e-5
Optimizer Adam Adam
Gradient Clip 100.0 1.0
Batch Size 1 1
Sentence Encoder all-mpnet-base-v2 all-mpnet-base-v2
cedit 0.1 0.1
iedit 0.1 0.1
cloc 1.0 1.0

Table 6: SERAC training parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 25-27 29-31
Base Learning Rate 1e-5 5e-7
Edit Learning Rate 1e-2 1e-5
Batch Size 1 1
Evaluation Only True True

Table 7: SERAC evaluation parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 25-27 29-31
Base Learning Rate 1e-6 5e-7
Edit Learning Rate 1e-4 1e-5
Optimizer Adam Adam
Gradient Clip 50.0 1.0
Batch Size 1 1
cedit 0.1 0.1
iedit 0.1 0.1
cloc 1.0 1.0

Table 8: MEND training parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 25-27 29-31
Base Learning Rate 1e-6 5e-7
Edit Learning Rate 1e-4 1e-5
Batch Size 1 1
Evaluation Only True True

Table 9: MEND evaluation parameters for Qwen2.5-VL and LLaVA-NeXT-Video models
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Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 27 31
Base Learning Rate 1e-6 1e-6
Edit Learning Rate 1e-4 1e-4
Optimizer Adam Adam
Gradient Clip 100.0 100.0
Batch Size 1 1

Table 10: Fine-Tuning parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B
k (Context Size) 27 27
Sentence Model all-MiniLM-L6-v2 all-MiniLM-L6-v2

Table 11: IKE parameters for Qwen2.5-VL and LLaVA-NeXT-Video models
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Figure 7: Perturbation Examples
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