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Abstract

Model Editing, also known as knowledge edit-
ing, is receiving increasing attention in the field
of Large Language Models (LLMs). How-
ever, existing model editing approaches pre-
dominantly focus on knowledge-level or static
visual domains, overlooking dynamic seman-
tics. This paper exploratively applies four rep-
resentative model editing methods (FT, IKE,
MEND, and SERAC) to Video Large Language
Models (Vid-LLMs) and introduces the first
benchmark specifically designed for Vid-LLMs
editing—VMEB (Vid-LLMs Model Editing
Benchmark)—systematically extending model
editing research from static modalities to dy-
namic video scenarios. In the video paradigm,
our evaluation dimensions encompass tradi-
tional metrics including Reliability, Locality,
and Generality, while also introducing a video-
specific metric: Robustness. Based on ex-
perimental results, we analyze the strengths
and limitations of existing model editing ap-
proaches, among which MEND demonstrates
superior performance, and identify new chal-
lenges and research directions for the future
development of the model editing field.

1 Introduction

Model Editing (Knowledge Editing) has rapidly
emerged as a popular research direction for adapt-
ing Large Language Models (LLMs) to the ever-
evolving real-world knowledge (Zhao et al., 2023;
Yao et al., 2023; Hernandez et al., 2024; Wang
et al., 2024a). Early work concentrated on updat-
ing factual triples, with approaches such as ROME
(Meng et al., 2022) and MEND (Mitchell et al.,
2022a) suggesting that targeted parameter interven-
tions can inject new facts while, to a certain extent,
preserving unrelated knowledge. More recent stud-
ies have extended editing to richer downstream
tasks (Mao et al., 2023; Chen et al., 2024; Li et al.,
2024c; Wang et al., 2024b; Huang et al., 2024b)
and to diverse knowledge representations beyond
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Figure 1: Overview of the Vid-LLMs editing task. The
goal is to update the model’s understanding of a specific
video-text input. indicate subop-
timal outputs that require editing, while

represent correct responses.

simple triples—e.g. events, procedures, and free-
form text (Peng et al., 2024; Liu et al., 2024; Deng
et al., 2025; Jiang et al., 2025).

The paradigm was first transferred to Mul-
timodal Large Language Models (MLLMs) by
Cheng et al. (2024). Follow-up benchmarks such
as VLKEB (Huang et al., 2024a)—which adds
the Portability metric—and MMKE-Bench (Du
et al., 2024)—which broadens the range of editable
knowledge types—have strengthened evaluation
protocols for MLLM editing. Nevertheless, these
studies focus almost exclusively on static visual
inputs, leaving the temporal dimension largely un-
explored.

Concurrently, Video Large Language Models
(Vid-LLMs) have advanced video understanding by
harnessing LLMs’ ability to model long sequences
with rich temporal structure, enabling sophisticated
reasoning over dynamic content (Tang et al., 2024;
Fu et al., 2024a; Weng et al., 2024). Extending
Model Editing to Vid-LLMs is thus a timely yet
non-trivial challenge: edits must account for com-
plex motion patterns, higher-level abstractions, and
broader temporal generalization.

We take the first step toward video-centric Model



Editing by presenting VMEB, the first compre-
hensive Vid-LLMs Model Editing Benchmark.
VMEB systematically assesses editing perfor-
mance in three widely used Vid-LLMs of dif-
ferent scales—LLaVA-NeXT-Video (7B) (Zhang
et al., 2024) and Qwen2.5-VL (3B & 7B) (Bai
et al., 2025). Evaluation covers the existing di-
mensions (Yao et al., 2023; Cheng et al., 2024)
of Reliability, Locality, and Generality, while
introducing video-specific axes that probe Robust-
ness. We adapt representative editing methods (FT,
IKE (Zheng et al., 2023), MEND (Mitchell et al.,
2022a) and SERAC (Mitchell et al., 2022b)) to sev-
eral Vid-LLMs, emphasizing edits that transcend
conventional factual updates or static multimodel
model editing. We hope VMEB will spur further
research on temporally grounded model editing and
shed light on how knowledge updates can be effec-
tively injected, preserved, and generalized within
dynamic multimodal systems.

Experimental results demonstrate that the
MEND method exhibits superior performance
across all evaluation dimensions, achieving effec-
tive editing while preserving model integrity. Al-
though SERAC shows relatively inferior editing
performance, it causes minimal degradation to the
model’s original capabilities. In contrast, both FT
and IKE methodologies inflict significant destruc-
tive impact on the models. Additionally, video-
level metrics show a notable decline compared to
text-level metrics, highlighting a notable gap in cur-
rent mainstream model editing approaches when
applied to Vid-LLMs.

In general, we summarize our contributions as
follows:

* First exploration of video-centric Model
Editing. We take the initial step in extending
Model Editing research from static modalities
to Vid-LLMs, framing the unique challenges
that arise in dynamic settings.

* VMEB benchmark. We propose VMEB—a
comprehensive benchmark that rigorously
evaluates how well existing editing methods
perform on Vid-LLMs, across both existing
and video-specific dimensions.

* Extensive empirical analysis. Through sys-
tematic experiments, we analyze our settings,
tasks and performance—providing insights
that we hope will catalyze further research in
this emerging area.

2 Related Work

2.1 Video Large Language Models

Video Large Language Models (Vid-LLMs) ex-
tend Large Language Models (LLMs) to video do-
mains, addressing a multitude of video understand-
ing tasks such as Video Question Answering (Video
QA) and Video Captioning (Tang et al., 2025).

Early systems like Flamingo (Alayrac et al.,
2022) and FrozenBiLM (Yang et al., 2022) paired
frozen language backbones with video encoders,
delivering strong zero-shot results without task-
specific fine-tuning, indicating frozen LMs as ef-
fective cores for video—language reasoning. Sub-
sequent work shifted to instruction-tuned chat
paradigms; models like VideoChat (Li et al.,
2024a), Video-LLaMA (Zhang et al., 2023),
Video-LLaVA (Lin et al.,, 2024), and Video-
ChatGPT (Maaz et al.,, 2024) use lightweight
adapters for spatiotemporal features and align with
video-instruction pairs, enabling multi-turn dia-
logue on actions, causality, and temporal order.

More recent efforts focus on unifying im-
age/video understanding and handling long-
duration videos. LLaVA-Next-Video (Zhang et al.,
2024) treats sparse frames as a “long image,” al-
lowing a 7B vision—language backbone to inherit
image skills and gain temporal reasoning with
minimal extra cost. Concurrently, models like
MovieChat (Song et al., 2024) address minute- to
hour-long clips. Qwen2.5-VL (Bai et al., 2025), by
scaling parameters and context with techniques like
dynamic-resolution windowing and absolute-time
encoding, achieves state-of-the-art grounding on
long-video benchmarks while preserving conversa-
tional quality.

Despite this rapid progress, Vid-LLMs still face
challenges. These include fine-grained temporal lo-
calisation, multimodal hallucination, and efficient
inference for very long sequences.

2.2 Model Editing

Model (or Knowledge) Editing seeks to inject,
revise, or remove specific facts in a pretrained
model without exhaustive retraining (Sinitsin et al.,
2020). Techniques span two axes—intrinsic, which
directly alter network parameters, and extrinsic,
which operate through prompts or external mem-
ory. Recently, growing interests extends the Model
Editing to MLLMs.

Intrinsic Editing. Intrinsic methods embed
new knowledge by modifying a model’s internal
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Figure 2: Framework of our Vid-LLMs Editing Tasks

weights or activations. Early fine—tuning delivers
reliable edits but is computationally heavy and risks
catastrophic forgetting. Meta-learning approaches
such as MEND (Mitchell et al., 2022a) and MAL-
MEN (Tan et al., 2024) introduce lightweight hyper-
networks that predict parameter deltas conditioned
on an edit request. Locate-then-edit techniques like
ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) trace the causal pathway of the tar-
get fact, then overwrite only the salient compo-
nents, achieving high locality with minimal collat-
eral damage.

Extrinsic Editing. Extrinsic strategies inject
knowledge via inputs or outputs without chang-
ing backbone weights. IKE (Zheng et al.,
2023) uses few-shot prompts to edit via in-
context learning. Memory-augmented systems,
such as SERAC (Mitchell et al., 2022b) and
MeLLo (Zhong et al., 2023), maintain a separate
store of counterfactual knowledge: SERAC cou-
ples a gating classifier with an editable side net-
work, whereas MeLLo refines facts through iter-
ative prompting, making it suitable for multi-hop

reasoning. These approaches are computationally
light but face context-length and retrieval chal-
lenges.

Multimodal Editing. The editing paradigm was
first transplanted to Multimodal LLMs (MLLMs)
by Cheng et al. (2024). VLKEB extends evaluation
with a Portability metric, assessing whether visual
edits transfer across related contexts (Huang et al.,
2024a), while MMKE-Bench broadens the spec-
trum of edit types to match real-world multimodal
diversity (Du et al., 2024). Yet both benchmarks
focus on static imagery, overlooking the tempo-
ral dynamics intrinsic to video. Recent Vid-LLMs
such as Llava-Next-Video and Qwen2.5-VL illus-
trate the feasibility of temporal reasoning (Zhang
et al., 2024; Bai et al., 2025), but no framework
yet measures how well edits persist over time. We
bridge this gap with VMEB, the first Vid-LLMs
Model Editing Benchmark, which extends clas-
sic metrics—Reliability, Locality, and General-
ity—with temporal-robustness axes (e.g., frame
skipping, speed perturbations), offering a compre-
hensive testbed for editing in dynamic multimodal



settings.

3 Vid-LLMs Editing

We illustrate the proposed task of Vid-LLMs edit-
ing in Figure 2. We will introduce the task def-
inition (§3.1), dataset construction details (§3.2),
the Vid-LLMs we chose (§3.3), and the editing
methods (§3.4) we used in the experiments.

3.1 Task Definition

We define the mapping y, = f(ve,ze;0) as the
inference process of Vid-LLMs parameterized by
0, where v, refers to the editing video input, x.
refers to the editing text prompt input and y, rep-
resents the original output answer of the model.
After the model undergoes editing, # becomes the
edited parameter 6, and we want the output to cor-
respondingly change to y. = f(ve, zc; 6').

To evaluate the effectiveness of model editing,
we design a dataset D.g4;; , defined as a quadruple
(Ve, Ze, Yo, Ye ). Concurrently, we use M as a nota-
tion symbol, where the superscript represents the
scope of the data and the subscript indicates the
evaluation domain. Drawing inspiration from (Yao
et al., 2023) and (Huang et al., 2024a), our evalu-
ation metrics specifically designed for Vid-LLMs
editing are presented as follows.

Reliability. To directly verify the effectiveness of
the model editing method, we define the percentage
of edited models outputting the target answer as the
value of the reliability metric!, which is described
as the following:

_ . o
Mrel B (ieyxevyo]:ge)’vpedi[]l {f (Ze’ Les 0 ) - ye}
(1

where 0’ refers to the edited parameters.

Locality. When editing models, we aim for edits
that are not only effective but also precise. To
evaluate an editing method’s ability to preserve
unrelated parts of the model while making targeted
changes, we introduce the locality metric, which is
divided into M . and M, .

loc describes the stability of the foundation
language model—which serves as the core com-
ponent of all models—after editing. Recent re-
search has shown that maintaining language model
stability during editing is crucial for preserving
general capabilities while implementing targeted

! Accuracy is calculated per token, then averaged across all
entries for the final rate.

changes (De Cao et al.,, 2021; Mitchell et al.,
2022b).

loc describes the stability of the model’s vi-
sual decoding and projection layers after editing.
This metric is particularly important in multimodal
models where visual understanding must remain
intact despite text-based edits (Meng et al., 2022;

Yao et al., 2023).They are calculated as follows:

Mie=  E  {f(230) = fla;0)} (2
(Il,yl)NDfoc
_/\/lﬁm: E ]l{f (vl,xl;ﬁl)
(vi,x1,91)~Dy, (3)

= f(v,2150)}
where Df _ and D} . respectively refers to text-
locality and video-locality dataset stated in §3.2.2.
x; represents text prompt inputs that are not related
to the editing domain.v; represents the video input
that is out of scope. while y; represents the model

output answers corresponding to x; or x; and v;.

Generality. Edited models require good gen-
eralization capabilities, which will be evaluated
through modifications to questioning methods or
grammatical structures. The accuracy rate will be
calculated after posing these varied questions, as
follows:

Mgen - E
(U€7x5 7yovye)NDedit
Tr~N(ze)

1 {f (Ueal‘r;e/) = ye}

“
where N () stands for the in-scope text prompt
input. x, stands for the rephrased text prompt input
according the original text prompt input.

Robustness. Robustness is defined as an algo-
rithm’s ability to maintain performance and sta-
bility when faced with uncertainties such as noise
interference, parameter variations, and anomalous
conditions. Studies have shown that robustness
to visual variations is particularly challenging in
edited multimodal models, as minor visual per-
turbations can significantly affect model outputs
despite maintaining semantic equivalence (Elsayed
et al., 2018). In the domain of model editing, we
aim for edits to remain effective when the model
processes videos perturbed by random noise com-
pared to those used during editing.

To quantify this capability, we introduce the
M,..p, metric, which evaluates both the robustness



of the editing method and the generalization capa-
bility of the edited model. This metric is calculated
as follows:

Miop = E
('Ue 7xevyovye)NDedit
v~ N (ve)

1 {f (Ura Le; 9/) = ye}

)
where N (v, ) represents the original editing video,
while v, represents the new video obtained by ap-
plying random perturbation processing to the origi-
nal video.

3.2 Dataset Construction

Our dataset, VMEB, represents a fundamental type
of Edit Video-QA, similar to VQA (Visual Ques-
tion Answering) (Antol et al., 2015), but extends
visual information to video understanding. Dataset
consists of 1580 data entries and their correspond-
ing videos, with the videos categorized into 14
distinct subcategories. For detailed classification,
please refer to figure 3.

3.2.1 Edit Dataset.

We began with data selection, choosing videos
and annotations from the influential video datasets
MVBench (Li et al., 2024b) and Video-MME (Fu
et al., 2024b) as our raw data. M,g; consists of
four data components, where we concatenated the
original questions and options for the videos as
Ze , with the videos serving as v.. We tested
MVBench and Video-MME using the LLaVA-
NeXT-Video(7B) model and retained the incor-
rectly answered responses as y,, which represent
the original outputs requiring editing, while the
correct answers for these entries were designated
as 9. While all entries with correct answers were
discarded from the dataset.

3.2.2 Locality Dataset.

We must evaluate the model’s normal performance
after editing, therefore we decided to use common-
sense question-answering from Wikipedia to as-
sess textual locality. We randomly selected
1,580 knowledge-based question-answer pairs from
VLKEB(Huang et al., 2024a), such as ("Where
does Disney’s Hunchback of Notre Dame take
place?", "Paris"), as the tuple pairs (z;, y;) in Dfoc.

Similarly, for video-level locality, we can query
the model using existing videos in the dataset to
evaluate the impact of editing methods on the
model. For D;, ., we reshuffled the dataset using

a shuffling algorithm and created one-to-one cor-
respondences between the shuffled dataset and the
original ordered dataset, specifically (ve, Ze, Ye) —

(vi, 1, Yr).

3.2.3 Generality Dataset.

The Definition of Rephrased Questions. For the
mapping ye = f(ve, x¢; 0), we consider it as the
model’s answer to the question x, given the video
input v.. We can then define arg f(ye, ve; 0) = x,
which represents a question x that would yield the
answer ¥, under the same parameters and video
input, noting that this x is not unique. The pro-
cess of constructing a rephrased question involves
designing an x, such that argf(ye, ve;0) = .
Specific examples.For model editing, we aim to
achieve excellent generalization capabilities. Tak-
ing text editing as an example, if we intend to edit
("Who is the president of USA now", "Joe Biden",
"Donald Trump"), then similarly structured ques-
tions with grammatical and structural variations,
such as ("Who currently holds the office of the
U.S. President"”, "Joe Biden", "Donald Trump"),
should also be successfully edited. To evaluate this
generalization capability, we utilized GPT-40 to
generate high-quality question restatements, which
were subsequently manually reviewed. This review
process ensured that the restated questions z, main-
tained the same answers as the original questions
z while preserving semantic similarity.

3.2.4 Robustness Dataset.

Videos, as a type of signal, are frequently sub-

ject to noise interference such as disturbances

and distortion. We aim for edits represented as

(Vey ey Ye)  — (Up, Te, Ye) to maintain equiv-
vr~ N (ve)

alent efficacy. Therefore, we input v, into the
model that has undergone editing (v, Ze, Ye) to
evaluate its robustness. We apply common random
perturbations to the original video v, as shown in
Table 2, thereby obtaining v;..

3.3 Vid-LLMs

LLaVA-NeXT-Video (Zhang et al., 2024) is a
state-of-the-art Vid-LLM excelling in video under-
standing via extensive instruction tuning on a syn-
thetic dataset. It processes video by treating sparse
frames as a "long image," enabling it to combine
robust image understanding with acquired temporal
reasoning skills.

Qwen2.5-VL (Bai et al., 2025) is a flagship multi-
modal LLM series particularly strong in long-video



Type Level Number of Instances Perturbations
Object-Level Understanding Basic 685 Horizontal mirroring
2x playback speed
Action-Level Understanding Intermediate 802 4x playback speed
Domain-Specific Understanding  Specialized 273 90-degree rotation
Contextual Understanding Advanced 228 180-degree rotation
270-degree rotation
Total - 1988 Grayscale conversion

Table 1: Composition of the VMEB Dataset. The dataset is categorized into
four levels according to the depth of understanding required: Basic, Intermediate,

Specialized and Advanced.
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Figure 3: Dataset Composition with Primary and Sec-
ondary Categories

comprehension (up to hours). It features dynamic
resolution processing and absolute time encoding
for precise event localization, using a redesigned
Vision Transformer and time-aligned Multimodal
Rotary Position Embedding (MROPE) to under-
stand temporal dynamics.

3.4 Editing Methods
3.4.1 Fine tuning

Fine tuning is the most fundamental method in
intrinsic editing methods. It mainly updates the
parameters of the model through gradient descent
to achieve the purpose of changing certain charac-
teristics of the model.

3.4.2 In-Context Knowledge Editing(IKE)

In-Context Knowledge Editing(IKE) is a model
editing method based on In-Context Learning
(ICL), which directly modifies the factual knowl-
edge in the LLM by designing specific demonstra-
tion samples, and achieves efficient knowledge up-
date with low side effects and without adjusting
model parameters (Zheng et al., 2023).

Table 2: All processing is
based on FFmpeg, without
loss of semantics.

34.3 MEND

MEND is an efficient model editing method
based on gradient decomposition. By training a
lightweight auxiliary editing network, it converts
traditional fine-tuning gradients into low-rank pa-
rameter updates, thereby achieving fast and accu-
rate editing of LLMs (Mitchell et al., 2022a).

3.4.4 SERAC

SERAC is a semi-parametric editing approach
based on a retrieval-augmented counterfactual
model that stores edits in explicit memory and
learns to reason about them to adjust the predic-
tions of the underlying model as needed (Mitchell
et al., 2022b).

4 Experiments

In this section, we conducted experiments of FT,
IKE, MEND, and SERAC on VMEB. With an
equal number of training steps across methods, the
test results are presented in Table 3, where we have
highlighted both the superior and anomalous data
points for ease of reference. In §4.1, we provide a
comparative analysis of how different editing meth-
ods perform in terms of Reliability, Locality, Gen-
erality, and Robustness, as well as the variations
between different models. §4.2 focuses on analyz-
ing the implications of extending model editing
to video applications. Figure illustrates the differ-
ences between textual indicators and video-level
indicators, which forms the basis for our discussion
on future challenges for model editing techniques.

4.1 Results

From a macro perspective, MEND demonstrates
the best overall performance, while FT and IKE
both show tendencies to damage the model, and
SERAC exhibits poorer editing effectiveness than



Table 3: Comparison of different models and editing methods across various metrics. Rel., Txt-Loc., Vid-Loc.,
Gen. and Rob. denote Reliability, Text-Locality, Video-Locality, Generality and Robustness, respectively. Best
results could be highlighted in bold, while second-best results could be underlined if criteria were defined. The
data highlighted in red indicates that the method performs poorly on that metric, which would degrade model

performance.

Model Method Rel.(1) Txt-Loc.(t) Vid-Loc.(T) Gen.(T) Rob.(1)

Base Model  0.00 100.00 100.00 0.00 0.00

. FT 99.96 79.93 99.92 9996
LLan;Tf??;ZldeO TKE 87.68 4226 86.39  87.87
Hedeore MEND 96.31 99.02 85.11 96.12  96.21
SERAC 80.23 99.87 96.39 7951  78.98

Base Model 0.00 100.00 100.00 0.00 0.00

FT 100.00 94.03 55.90 99.84  100.00

wafr/‘fSV[L IKE 7790  71.06 7936 77.74
pedaene e MEND 99.05 98.53 74.85 98.46  98.73
SERAC 83.27 99.35 89.75 82.71  80.17

Base Model  0.00 100.00 100.00 0.00 0.00

FT 100.00 74.18 9981  99.95

%W‘fr/‘fSZBL TKE 8585  80.75 79.48  84.96
Hedeone MEND 96.97 97.43 71.80 96.18  96.43
SERAC 75.46 99.77 88.09 7557  75.06

MEND. After applying random perturbations to
the videos, all metrics showed varying degrees of
decline.

Reliability. Based on the results analysis, all meth-
ods demonstrated significant improvement in ac-
curacy, indicating effective performance across ex-
isting model editing approaches. Among these
methods, FT and MEND achieved notably higher
accuracy rates, approaching 100%, while IKE and
SERAC methods performed relatively poorly with
accuracy rates ranging between 70% and 80%.
However, it is important to note that compared
to other model editing methods, the destructive
impact of FT on the model is evident; therefore,
high accuracy alone cannot be considered indica-
tive of FT’s superiority. Simultaneously, IKE, as
a method that does not modify model parameters,
exhibited the lowest accuracy in most scenarios,
highlighting the limitations of prompt-injection-
based approaches. Furthermore, SERAC, despite
requiring training, did not demonstrate significant
improvement over IKE in video-level editing, in-
dicating SERAC’s relative insufficiency in this do-
main. In contrast, MEND performed exceptionally
well, showing no significant decline in performance
when extended to video-level editing while ensur-

ing the model remained undamaged, thus demon-
strating excellence across multiple evaluation met-
rics.

Locality. Under this metric, all methods exhibited
varying degrees of performance decline compared
to the Base model, demonstrating that existing
model editing approaches cannot yet achieve modi-
fication without affecting the model’s performance.
However, SERAC and MEND demonstrated ex-
cellent performance at the text-level, indicating
that the foundational language model’s capabil-
ities remained largely unaffected by the editing
process. In contrast, both FT and IKE methodolo-
gies showed metrics predominantly below 90% at
both text-level and video-level, suggesting these ap-
proaches introduce slight degradation to the model.
Notably, IKE, despite being a method that does
not alter model parameters, still demonstrated sig-
nificant impact on the model’s performance. This
finding indicates that models can potentially be
"confused" by prompts, resulting in outputs that
deviate from expected outcomes.

Generality. Comparing different methods, both
MEND and FT methodologies demonstrate accu-
racy rates approaching 100%; however, FT’s perfor-
mance comes at the expense of compromising the
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Figure 4: Video-level metrics by average demonstrate a
significant degradation compared to the text-level met-
rics by average.

model’s standard functionality. In contrast, MEND
substantially preserves the model’s inherent capa-
bilities while maintaining excellent generality, en-
suring that edits remain effective across similar
queries. This finding suggests that MEND poten-
tially enables the model to "comprehend" the edited
knowledge at a deeper level. In contrast, IKE and
SERAC exhibit relatively poor performance, pri-
marily because both methods rely on the model’s
inherent generalization ability (IKE depends on
Vid-LLMs while SERAC relies on the binary clas-
sification model)—specifically, the ability to recog-
nize different expressions of the same problem.

Robustness. When considering all four methods
collectively, they exhibit similar patterns for both
reliability and robustness metrics. FT and MEND
demonstrate consistently higher scores, whereas
IKE and SERAC exhibit comparatively lower per-
formance metrics. Similar performance patterns
between robustness and reliability are expected, as
the video perturbations applied are not overly se-
vere and preserve the majority of visual semantics.
Consequently, methods that achieve better editing
performance also excel in the robustness metric.

4.2 Video-Level Editing: Great Performance,
Yet Requires Further Investigation

As shown in Figure 4, the video-level metrics
demonstrate varying degrees of decline compared
to text-level metrics, highlighting the inherent com-
plexity of multimodal editing. However, the per-

formance degradation from text to image (Huang
et al., 2024a; Cheng et al., 2024) and subsequently
to video is not substantial. In our experiment,
we only edited the MLP layers in the last three
layers, without editing the corresponding visual
layers or projection layers. This means that our
edits did not directly target visual semantics, yet
they achieved the effect of editing visually. This
raises a fundamental question: Can model editing
truly teach models to "understand” visual semantics
and transformations in spatial logical relationships?
Based on our analysis results and the progression
of model editing work from text to image (Huang
et al., 2024a; Cheng et al., 2024) to video, we con-
clude that model editing tends to operate more in
a probabilistic sense. During the editing process,
models likely learn statistical patterns present in
the training data rather than developing true under-
standing. Another possibility is that these models
may not strictly differentiate between modalities at
higher representational levels, potentially forming
a shared semantic space where concepts transcend
their original modalities. Therefore, we conclude
that these effects cannot be attributed to the model’s
comprehension of changes in visual semantics, but
rather to complex interactions within the model’s
representation space. This presents an entirely new
challenge for the future of model editing: devel-
oping editing methods capable of distinguishing
genuine cross-modal understanding in multimodal
representations, as well as creating novel bench-
marks to evaluate such editing methods.

5 Conclusion

In this paper, we propose a novel benchmark called
VMEB. We have adapted model editing methods,
such as IKE, MEND, and SERAC, to Vid-LLMs
and have implemented them for the Qwen2.5-VL
and LLaVA-NeXT-Video models, representing the
first attempt at model editing in the video domain.
Then, we analyzed the experimental results and
formulated the following conclusion: Among the
four editing methodologies examined—FT, IKE,
SERAC, and MEND—MEND demonstrated su-
perior performance across all evaluation dimen-
sions. While SERAC exhibited suboptimal editing
effectiveness, it caused minimal degradation to the
model’s integrity. In contrast, both FT and IKE
methodologies resulted in demonstrably destruc-
tive impacts on the model’s performance. Finally
we offer some perspectives on the future develop-
ment of the model editing field.



Limitations

Model Selection. In our experiment, we selected
only two types of Vid-LLMs, without considering
the majority of other models. Additionally, we only
selected open-source large models, while editing
closed-source large models remains an unresolved
challenge. The models we selected were all be-
low 10B parameters, and we did not test larger
models, such as the 72B version of LLaVA-NeXT-
Video (Zhang et al., 2024) or Qwen2.5-VL (Bai
et al., 2025).

Editing Layers. For model editing, we only pre-
liminarily attempted application editing at the lan-
guage layer, while ignoring other model structures.
Editing only the language layer may not enable the
model to "understand" the edited content, poten-
tially resulting in poor actual editing effectiveness.
Perturbation Methods. During the video process-
ing, our disturbance method preserved the complete
semantics of the videos without attempting to use
stricter perturbations such as black line masking
or blurring. This approach resulted in robustness
metrics not declining significantly compared to re-
liability metrics.
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A Dataset Construction Details

The dataset is partitioned according to the follow-
ing specifications:
* Train-Evaluation Split: 7:3 ratio
* Training Set (train.json): 1,108 data instances
* Evaluation Set (eval.json): 472 data instances
* Video Files (VMEB.zip) 3976 videos
* Additional File: eval_multihop.json (identi-
cal to eval.json for compatibility with VLKEB.
For detailed explanations, please refer to the
§A.4.2.)

A.1 Construction Process of Rephrased
Questions

A.1.1 Specific Construction Method

We utilize the GPT-40 model to construct rephrased
questions, with the prompt design format illustrated
in the Figure 5. During the construction process,
for each data point, we generate three rephrased
questions and manually select the one that best
meets our requirements. The selected question
transforms the relevant sentence structure, gram-
mar, or syntactic patterns without altering the sub-
ject matter of the original question. This selected
question serves as our rephrased question.

A.1.2 Data Example

We randomly selected a data point from our dataset
as an example. The "src" key of this data point
(for a detailed definition of this key, please refer to
§A.4) is "According to the video, which country
will host this live stage event? America., Australia.,
Canada., England." This key contains the question
and answer options. In the actual dataset, we re-
moved the quotation marks from the answers. This
decision was implemented because fewer punctu-
ation marks ensure more stable model output and
facilitate more efficient data processing. During
the rephrasing process, we ensured that the answer
options remained unchanged.

We input the prompt and the "src" key into GPT-
40, which generated the following three rephrased
questions:

1. "Based on the video, where is this live stage
event going to take place? America., Australia.,
Canada., England."

2. "From the video, can you tell which coun-
try is the host of this live stage event? America.,
Australia., Canada., England."”

3. "In the video, which country is the live
stage event set to take place? America., Australia.,
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[SYSTEM]

[USER]

Strict Instructions:
1. Original question: {src}
2. Correct answer: {pred}

Generation Requirements:

* Example input:

speaking', 'performing']"
» Example output:

'performing']"
* Output Format:

\.

* You are an assistant that strictly adheres to formatting requirements

» {rephrase}: Restate the question using different grammar while keeping the answer
unchanged. Must be in English, and the options after the question must remain unchanged.

"What is the action performed by the person in the video?['rocking', 'playing fun', 'child

"What kind of the action did the person do?['rocking', 'playing fun', 'child speaking',

Return strictly JSON format: {{"rephrase": “rephrased question"}}

J

Figure 5: Prompt for generating rephrased question, where {src} and {pred} is replaced by the actual datas in the

editing dataset.

Canada., England."

We selected the third option as the rephrased
question for this data point. Thus, for this partic-
ular data point, the "src" key is "According to the
video, which country will host this live stage event?
America., Australia., Canada., England." and the
"rephrase” key (i.e., the rephrased question) is "In
the video, which country is the live stage event
set to take place? America., Australia., Canada.,
England."

A.2  Construction Process of Pred key

We utilized the LLaVA-NeXT-Video (7B) model
to generate responses for the original dataset, and
subsequently selected incorrect answers to serve
as the "pred" key in the dataset.It is worth noting
that when we input questions to the model, what
we actually input is [prompt] + src, which is used
to generate the model’s response and presented in
Figure 6.

A.3 Detailed Description of Video
Perturbation

A.3.1 Hardware and Software Environment

Our video perturbation operations were executed
on a high-performance computing platform with
the following specifications:

* CPU: 14 cores
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Component Version/Details

Python Python 3.x

Core Libraries multiprocessing,
subprocess, 0s, glob

Progress Visualization | tqdm

Error Handling logging

Parallel Processing Dynamic allocation

Table 4: Python Environment Configuration

* Memory: 100 GB
* GPU: NVIDIA A800 80GB PClIe (1 unit)

The implementation leveraged a Python-based
processing framework with the environment speci-
fications in Table 4.

The entire video processing pipeline was funda-
mentally built upon FFmpeg as the core processing
engine. FFmpeg was utilized through Python’s sub-
process module to execute various transformation
operations on the video files. This architecture
allowed us to leverage FFmpeg’s powerful video
processing capabilities while maintaining precise
control over the perturbation parameters through
our Python framework. The system incorporated
robust error handling mechanisms, including au-
tomatic retries with exponential backoff, ensuring
reliable processing even when handling large video
datasets.



[SYSTEM]

* You are a professional assistant.
[USER]
from, for example:

washing, bubbling.
ASSISTANT: bathing

explanations.Answer without quotes.
* Question: {src}

.

* Now you need to answer a question. The question contains options which you should choose

Question: "What is the action performed by the person in the video?" bathing, watering,

 Please strictly answer according to the example format, only output the answer, do not add

A

Figure 6: Prompt for generating rephrased question, where {src} and {pred} is replaced by the actual datas in the

editing dataset.

A.3.2 Perturbation Design Principles

Our video perturbation methodology was carefully
designed to preserve semantic integrity while in-
troducing controlled variations. We implemented
a content-aware approach with the following con-
straints:

* For videos containing questions about color
attributes, grayscale processing was explicitly
excluded to maintain critical color informa-
tion necessary for accurate question answer-
ing.

For videos related to spatial understanding,
transformations such as mirror flipping and
rotations (90°, 180°, 270°) were excluded to
preserve essential spatial relationships.

For all remaining videos, we employed a ran-
domized perturbation strategy by selecting
one processing method from a pool of seven
distinct techniques: horizontal mirror flipping,
2x speed acceleration, 4x speed acceleration,
grayscale conversion, and three rotation an-
gles (90°, 180°, 270°).

This selective approach ensured that perturba-
tions challenged model robustness without compro-
mising the fundamental semantic content necessary
for accurate comprehension. The implementation
employed an efficient multiprocessing architecture
that dynamically allocated computational resources
based on system capabilities, with built-in error
handling and recovery mechanisms to ensure pro-
cessing reliability.

A.3.3 Perturbation Examples

The complete range of our perturbation techniques
is visually documented in Figure 7, which presents
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examples of all perturbation methods applied to
sample video frames. Each example illustrates the
visual transformation introduced by the correspond-
ing perturbation technique, providing a compre-
hensive visualization of the modifications applied
throughout our experimental process.

The processing pipeline incorporated quality
control measures, including verification of output
file integrity and size optimization through adaptive
compression, ensuring consistent quality across the
processed dataset while maintaining reasonable file
sizes.

A.4 Dataset Composition Examples

Our dataset is designed for video-centric model
editing tasks and comprises three main components:
train.json, eval.json, and associated video files. The
dataset is built upon the VLKEB engineering frame-
work, maintaining compatibility with its structure
while introducing our specific modifications.

A.4.1 Data Format

Each entry in both train.json and eval.json follows
an identical structure. Table 5 outlines the keys and
their corresponding meanings.

A.4.2 Implementation Note

While our codebase is derived from VLKEB’s
source code, we have maintained the requirement
for an eval_multihop.json file to ensure compatibil-
ity. This file contains identical content to eval.json
but is not utilized in our experimental procedures.
We opted not to modify VLKEB’s relevant source
code in the interest of development efficiency.



Key Description

src Question with accompanying options

rephrase Rephrased question with accompanying options

pred Model-generated original answer (y,), representing
the incorrect answer

alt Correct answer (Ye)

video Relative path to the video (v.), stored as a string

video_rephrase | Relative path to the perturbed video (v.), stored as a
string

loc Common-sense question unrelated to editing, used to
evaluate model’s text-locality

loc_ans Answer to the common-sense question

m_loc Path to an additional video (v;), stored as a string

m_loc_q Question corresponding to video v;, used to evaluate
model’s video-locality

m_loc_a Answer to the question about video ;

Table 5: Dataset Schema and Key Descriptions

A.4.3 Quantity Correspondence

As shown in Table 5, each data entry contains three
video addresses. The m_loc video in a given entry
may or may not be included among the video or
video_rephrase keys of other entries in the dataset.
Specifically, an m_loc video might appear exclu-
sively in its own entry, or it might also appear as a
video or video_rephrase in other data entries. Con-
sequently, the total number of unique videos in the
dataset slightly exceeds twice the total number of
data entries.

B Detailed Experimental Steps

B.1 Experimental Platform and Environment

In this section, we provide a comprehensive
overview of our experimental setup to ensure re-
producibility of our results.

B.1.1 Hardware Configuration

Our experiments were conducted on a high-
performance computing platform with the follow-
ing specifications:

Component Specification

CPU 14 cores
Memory 100 GB RAM
GPU NVIDIA A800 80GB PCle x 1

B.1.2 Software Environment

All experiments were implemented using Python
3.9.7 in a Conda environment. The major software
components and their versions are listed below:
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Software Version
PyTorch 2.0.1
Transformers 4.49.0
CUDA Libraries 11.7
PEFT 0.7.1
Flash Attention 2.6.1
Accelerate 1.5.2
Datasets 1.18.3
NumPy 1.22.1
OpenCV-Python 4.8.0.76
AV (PyAV) 14.2.0

Additional dependencies include scikit-learn
(1.0.2), pandas (1.4.0), and various utilities for
data processing and model optimization. Our en-
vironment utilized optimized CUDA libraries with
cuBLAS, cuDNN, and other NVIDIA performance
libraries to accelerate computations on the GPU.
The complete environment configuration is avail-
able in our repository for comprehensive repro-
ducibility.

B.2 Code Declaration

This research implementation builds upon the
VLKEB framework (Huang et al., 2024a). Our
codebase extends the original implementation with
modifications to support the methodologies de-
scribed in this paper. The original VLKEB project
is distributed under the Apache 2.0 license, which
permits adaptation and modification with appro-
priate attribution. All our modifications maintain
compliance with the terms of this license.

The primary adaptations to the original frame-



work include enhancements to support our video-
language model editing methodology, dataset pro-
cessing components, and evaluation procedures.
The architecture of our implementation preserves
the core mechanisms of VLKEB while introduc-
ing the novel components necessary for Vid-LLMs
editing described in our work.

Our code will be made publicly available on
GitHub for research purposes.

B.3 Parameters for Model Editing

This section contains the detailed configuration
parameters used in our experiments. We present
six tables corresponding to different model editing
methods and their training/evaluation settings.The
calculation formula for loss is as follows:

l085total = Cedit X 108Scqit

+ Cloe X (lossfﬁft + loss}’aigeo) (6)

. video
+ Teqit X l0SSggst

Where ceg;t, Cloc, and ieq;; respectively adjust
the weights of different metrics.
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Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B

Editing Layers 25-27 29-31

Base Learning Rate | le-5 Se-7

Edit Learning Rate | le-2 le-5

Optimizer Adam Adam

Gradient Clip 100.0 1.0

Batch Size 1 1

Sentence Encoder

all-mpnet-base-v2

all-mpnet-base-v2

Cedit 0.1 0.1
ledit 0.1 0.1
Cloc 1.0 1.0

Table 6: SERAC training parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL | LLaVA-NeXT-Video
Model Size 7B/3B 7B

Editing Layers 25-27 29-31

Base Learning Rate | le-5 Se-7

Edit Learning Rate | le-2 le-5

Batch Size 1 1

Evaluation Only True True

Table 7: SERAC evaluation parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL | LLaVA-NeXT-Video
Model Size 7B/3B 7B
Editing Layers 25-27 29-31
Base Learning Rate | 1e-6 Se-7
Edit Learning Rate | le-4 le-5
Optimizer Adam Adam
Gradient Clip 50.0 1.0
Batch Size 1 1

Cedit 0.1 0.1
ledit 0.1 0.1
Cloc 1.0 1.0

Table 8: MEND training parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL | LLaVA-NeXT-Video
Model Size 7B/3B 7B

Editing Layers 25-27 29-31

Base Learning Rate | le-6 Se-7

Edit Learning Rate | le-4 le-5

Batch Size 1 1

Evaluation Only True True
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Table 9: MEND evaluation parameters for Qwen2.5-VL and LLaVA-NeXT-Video models




Parameter Qwen2.5-VL | LLaVA-NeXT-Video
Model Size 7B/3B 7B

Editing Layers 27 31

Base Learning Rate | 1e-6 le-6

Edit Learning Rate | le-4 le-4

Optimizer Adam Adam

Gradient Clip 100.0 100.0

Batch Size 1 1

Table 10: Fine-Tuning parameters for Qwen2.5-VL and LLaVA-NeXT-Video models

Parameter Qwen2.5-VL LLaVA-NeXT-Video
Model Size 7B/3B 7B

k (Context Size) | 27 27

Sentence Model | all-MiniLM-L6-v2 | all-MiniLM-L6-v2

Table 11: IKE parameters for Qwen2.5-VL and LLaVA-NeXT-Video models
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180-degree rotation 270-degree rotation

Figure 7: Perturbation Examples
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