
Proceedings of Machine Learning Research 1–11, 2020 Full Paper – MIDL 2020

Laplacian pyramid-based complex neural network learning
for fast MR imaging

Haoyun Liang∗1

Yu Gong∗1

Hoel Kervadec2

Cheng Li1

Jing Yuan3

Xin Liu1

Hairong Zheng1

Shanshan Wang†1 ss.wang@siat.ac.cn; sophiasswang@hotmail.com
1 Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced

Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
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Abstract

A Laplacian pyramid-based complex neural network, CLP-Net, is proposed to reconstruct
high-quality magnetic resonance images from undersampled k-space data. Specifically,
three major contributions have been made: 1) A new framework has been proposed to
explore the encouraging multi-scale properties of Laplacian pyramid decomposition; 2) A
cascaded multi-scale network architecture with complex convolutions has been designed
under the proposed framework; 3) Experimental validations on an open source dataset
fastMRI demonstrate the encouraging properties of the proposed method in preserving
image edges and fine textures.
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1. INTRODUCTION

Fast magnetic resonance imaging (MRI) is vital for clinical applications. Accordingly, dif-
ferent MR acceleration approaches have been proposed, such as designing physics-based
fast imaging sequences (Oppelt et al., 1986), improving hardware-based parallel imaging
techniques (Lustig and Pauly, 2010), and developing signal processing-based image recon-
struction from undersampling k-space strategies (Lustig et al., 2008; Wang et al., 2018).
Among them, k-space undersampling is one most popular method that can achieve near
to perfect high-resolution images under very high acceleration factors with elaborately de-
signed reconstruction algorithms.

Recently, deep learning has found wide employment in the field of medical imaging. It
has been involved in different aspects of medical image analysis, including image recon-
struction (Wang et al., 2019; Chen et al., 2019; Wang et al., 2020), segmentation (Yang
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et al., 2019; Qi et al., 2019), and classification (Zhou et al., 2018). Deep learning was
first introduced to MR image reconstruction by Wang et al., where a Convolutional Neural
Network (CNN) was used to learn the nonlinear mapping between images reconstructed
from the undersamled and fully sampled k-space (Wang et al., 2016). Subsequently, many
deep learning-based reconstruction algorithms have been developed. Schlemper et al. pro-
posed a deep cascaded CNN (DCCN) for dynamic MR image reconstruction (Schlemper
et al., 2017). Generative Adversarial Network (GAN)-based reconstruction methods were
utilized to alleviate the blurry issue identified in reconstructed MR images (Shende et al.,
2019; Quan et al., 2018) . Hammernik et al. developed a Variational Network (VN)-based
method to improve the image reconstruction quality (Hammernik et al., 2018). Sun et al.
designed an ADMM-Net based on the classic Alternating Direction Method of Multipliers
(ADMM) algorithms to obtain accurate reconstruction results from undersampled k-space
data (Sun et al., 2016). A Model-based Deep Learned priors framework (MoDL) was pro-
posed to combine the power of data-driven deep learning with model-based reconstruction
schemes (Aggarwal et al., 2018).

Despite all the successes achieved, reconstruction results of existing methods are still
plagued by the notorious blurry issue of tissue and the missing details, especially when high
acceleration factors are utilized. To this end, we propose a novel framework with Laplacian
pyramid-based complex neural network (CLP-Net) to further utilize the prior information of
the available big datasets. This framework explores the multi-scale properties of Laplacian
pyramid decomposition for MR reconstruction from undersampled k-space data. A cascaded
multi-scale network architecture with complex convolutions is embedded in the proposed
framework, as well as a data consistency layer. Experimental results on the fastMRI dataset
show that our method obtains better reconstruction results than the state-of-the-art.

2. METHODS

2.1. Problem Formulation

In MR reconstruction, y ∈ Y is the noisy measurement and x ∈ X denotes the image to be
recovered. That is:

y = T x+ n (1)

where T = PF is an undersampled Fourier encoding matrix, and n is the measurement
noise modelled as additive white Gaussian noise. The corresponding fully sampled k-space
data can be represented as Fx and F indicates the Fourier encoding matrix. P denotes the
undersampling mask selecting lines in k-space to be sampled. The Fourier encoding matrix
is normalized as FHF = I. H is Hermitian transpose operation.

The task of this paper is to reconstruct high-quality MR images from undersampled
k-space data, whose objective function can be written as:

argmin
Θ
‖x− fCNN (xu; θ)‖2 (2)

where fcnn denotes the proposed reconstruction network which takes the zero-filled image
xu as inputs and outputs the corrsponding high-quality images.
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2.2. Complex Laplacian Pyramid Decomposition

Laplacian pyramid is an image encoding method (Burt and Adelson, 1983), which treats
operators in different scales as its basic functions. It has a low level of computational
complexity and is easy to implement. In this paper, we modify the conventional Laplacian
pyramid method to make it suitable for complex-valued images. Specifically, g0 is the
image to be decomposed with a shape of h × w × 2 (2 means concatenating the real part
and the imaginary part). g1 is obtained with g0 passing through a Gaussian low-pass filter.
Subtracting g1 from g0, we can get L0, which indicates the difference between g0 and g1:

L0 = g0 − g1 (3)

Afterward, g1 is downsampled. By repeating the above steps with the downsampled im-
ages, a complex Laplacian pyramid {L0, L1, L2, . . . Ln} can be finally obtained. g0 can be
reconstructed from g1 and L0, which means we only need to handle the reconstruction of
g1 instead of g0. As a result, the computation can be reduced as g1 has a smaller image
matrix than g0.

2.3. Complex Convolution

MR k-space data are complex-valued data. Accordingly, the reconstructed images are also
complex-valued. Although the amplitude image is frequently utilized as a simplification
of the complex-value MR images, the phase image can also provide valuable information.
Therefore, building a complex convolution operation-based neural network is a more effec-
tive way for MR image reconstruction.

Complex convolutions were proposed in (Wang et al., 2020). The complex-valued image
x can be denoted by xreal and ximag and x = xreal+iximag. We can use a complex convolution
filter Ω = Ωreal + iΩimag to convolve it. The components of Ω, Ωreal and Ωimag, are real-
valued. The convolution operation is shown in Equation (4). Since convolution operation
is distributive. Ω can be written in the rectangular form as Ω = |Ω|eiθ = Ωreal + iΩinag =
|Ω| cos θ + i|Ω| sin θ, where θ and |Ω| are the phase and magnitude of Ω, respectively. In
order to reduce the risk of gradient vanishing, we use Rayleigh distribution to initialize the
magnitude of Ω and use the uniform distribution between −π and π to initialize the phase
of Ω.

Ω ∗ x = (Ωreal ∗ xreal − Ωimag ∗ ximag) + i (Ωreal ∗ ximag + Ωimag ∗ xreal) (4)

2.4. Network Structure

Directly train a deep learning network with image pairs obtained from undersampled and
fully-sampled k-space data is computational intensive. To solve this problem, we improve
the conventional Laplacian pyramid to make it suitable for processing complex-valued im-
ages and built CLP-Net based on it. The architecture of Laplacian pyramid-based block in
CLP-Net is shown in Figure 1.

Predictions (zero-filled image for the first layer) from the previous layers are fed into two
network branches, one of which performs the complex Laplacian pyramid decomposition,
and the other implements shuffle downsampling. Complex Laplacian pyramid decomposi-
tion produces two Laplacian error maps in different scales and one Gaussian map. The
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Complex Laplacian pyramid decomposition

4x Shuffle downsample

2x Linear upsample

Conv Block - 1 Conv Block - 2

AddPer-pixel Conv

4x Shuffle upsample

2x Shuffle upsample

Figure 1: Laplacian pyramid-based block in CLP-Net.

shuffle downsampling module is illustrated in Figure 2. After downsampling, the resultant
feature maps will be sent to the Conv Block-1 module shown in Figure 2 to extract shallow
features. Conv Block-1 module consists of sixteen residual blocks, each consisting of two
complex convolution layers and one ReLU activation layer. The extracted shallow features
are then sent to the next three branches. Each branch has a Conv Block-2 module and
a shuffle upsampling module except for the first branch, as illustrated in Figure 2. Conv
Block-2 module consists of three complex convolution layers and three ReLU activation
layers. Then we reshape the last dimension of the resultant deep features from Conv Block
-2 module to k × k and we call the reshaped features ”Kernel”. Besides, k is manually set.
Then, we perform the following operations

F (m,n) = Ineighbor(m,n)⊗K(m,n) (5)

where K(m,n) means the pixel value of the ”Kernel” at position (m,n). And Ineighbor(m,n)
is the neighborhood of the pixel of the Laplacian error maps or the Gaussian maps at position
(m,n). In this paper, we investigate the effect of different k values on the reconstruction
results and choose the optimal k. F (m,n) is the pixel of the acquired feature maps F at
position (m,n), and ⊗ means inner product operation.

After the above operations, we can obtain the resultant image by performing Laplacian
reconstruction and upsampling on the acquired feature maps F . The resultant image will
be passed trough a data consistency (dc) layer which is first proposed by (Schlemper et al.,
2017). And the above whole process will be repeated several times, resulting into a cascaded
structure.
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Figure 2: Illustration of the shuffle downsampling modules.

3. EXPERIMENTS

3.1. Experimental Data and configuration

In this paper, we evaluated our method on the public dataset fastMRI (Zbontar et al.,
2018). The training, validation and testing subsets of the single-coil k-space data include
973, 199 and 118 scans respectively. Each scan is collected with one of of the three clinical 3T
systems (Siemens Magnetom Skyra, Prisma and Biograph mMR) or one clinical 1.5T system
(Siemens Magnetom Aera). Conventional Cartesian 2D Turbo Spin-Echo (TSE) protocol
was used to acquire the dataset. Sequence parameters are, as per standard clinical protocol,
matched as closely as possible between the systems, with a repetition time (TR) ranging
between 2200 and 3000 milliseconds, and echo time (TE) between 27 and 34 milliseconds.
The size of images scanned by different systems keep the same with a matrix size of 320×320,
in-plane resolution of 0.5mm× 0.5mm, slice thickness of 3mm, and there is no gap between
adjacent slices. We used 1D random sampling pattern with the acceleration factor of 4 and
8 auto-calibration (ACS) lines for all the experiments.

3.2. Implementation Details

The model was implemented with Pytorch 1.4 and trained with a NVIDIA GeForce RTX
2080Ti GPU. We used Adam algorithm (Kingma and Ba, 2014) to optimize the proposed
network. The hyperparameters of Adam algorithm were set as β1 = 0.9 and β2 = 0.999.
The loss function of proposed network is L1 loss. The number of epochs is 200. The initial
learning rate was set to α = 1.0× 10−4 and the exponential decay rates of the learning rate
for per-epoch is 0.95.

3.3. Quantitative Evaluation Index

Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Matrix (SSIM) are
chosen to evaluate the quality of the reconstructed images. Theoretically, images with
higher PSNR and higher SSIM have better quality.
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3.4. Ablation Study

3.4.1. Ablation Study for the Kernel Size

Table 1: The average value of PSNR and SSIM of the reconstructed images and floating-
point operations per second (GFLOPs) per epoch of CLP-net with different kernel
sizes.

SSIM PSNR GFLOPs
k=5 0.633 28.19 196
k=9 0.634 28.21 283
k=11 0.635 28.26 345
k=13 0.637 28.29 419

Table 2: The average value of PSNR and SSIM of the reconstructed images and floating-
point operations per second (GFLOPs) per epoch of CLP-net with different cas-
caded structure.

cascade SSIM PSNR GFLOPs
3 0.624 28.02 117
4 0.628 28.13 156
5 0.633 28.19 196
6 0.635 28.22 235

We utilized different-sized convolution kernels to test the influence on reconstruction
results. As shown in Table 1, although the network performance improves with the increase
of kernel size, the improvement is marginal. However, an increase in the size of the convolu-
tion kernel leads to a sharp increase in the number of network parameters. Considering the
computational efficiency and network performance, we selected a convolution kernel with
the size of 5 in our proposed CLP-net.

3.4.2. Ablation Study for the Cascaded Structure

We implemented the network with different number of cascading modules to test the influ-
ence on network capacity. As shown in Table 2, the reconstruction performance improves
with the increase of the number of cascading modules. It proves that the cascaded structure
is more applicable to MR image reconstruction. To balance the network performance with
the computational complexity, we utilized 5 cascading modules in our proposed CLP-net.

3.4.3. Ablation Study for the Laplacian pyramid decompose

In order to verify the contribution from the Laplacian pyramid decomposition to MRI image
reconstruction, we compared the reconstruction results of CLP-net with and without the
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Laplacian pyramid decomposition. The mean values of PSNR and SSIM are shown in
Table 3. It can be observed Laplacian pyramid decomposition improves the reconstruction
performance by capturing multi-scale image information.

Reference Under-sampling U-Net KIKI-Net Cascade-Net kspace learning CLP-Net 

Reference Under-sampling U-Net KIKI-Net Cascade-Net kspace learning CLP-Net 

Figure 3: Reconstruction results on fastMRI dataset included the original image and the
error map image of different networks. From left to right: reference; zero-filled;
U-net; KIKI-net; Cascade-net; k-space learning and CLP-net.

3.4.4. Ablation Study for the Complex convolution

The average value of PSNR and SSIM of the reconstruction results of CLP-net with complex-
valued convolution and the CLP-net with real valued convolution is shown in Table 4. As
we can see, complex-valued convolution improves the reconstruction performance of CLP-
net. Since the MRI image itself is a complex-valued image, complex convolution is more
suitable for MRI reconstruction than real-valued convolution.
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Table 3: The average value of PSNR and SSIM of the reconstructed images processed by
CLP-net with and without Laplacian pyramid decompose.

SSIM PSNR
LP decompose 0.633 28.19
no decompose 0.613 27.33

Table 4: The average value of PSNR and SSIM of the reconstructed images processed by
CLP-net with complex convolution and CLP-net with common convolution.

SSIM PSNR
Complex conv 0.633 28.19
Common conv 0.624 27.96

3.5. Comparing with Other Methods

Table 5: The average value of PSNR and SSIM of the reconstruction images processed by
different networks on fastMRI dataset.

Zero-filled U-net KIKI-net Cascade-net kspace learning CLP-net
PSNR 23.23 25.28 25.95 27.74 27.78 28.19
SSIM 0.518 0.555 0.583 0.618 0.622 0.633

To evaluate the reconstruction performance of the proposed network, we also trained
U-net (Ronneberger et al., 2015), KIKI-net (Eo et al., 2018), Cascade-net (Schlemper et al.,
2017) and k-space learning (Han et al., 2019) for the comparison purposes. The reconstruc-
tion results are shown in Figure 3.

As we can see in Figure 3, all the methods are able to generate high-quality images.
The suppression of artifacts improves the visual quality of the reconstruction images greatly.
Nevertheless, there are differences between the reconstruction results of different networks.
The reconstruction effect of U-net is relatively poor compared to other networks (both
the inputs and outputs of U-net are the respective amplitude MR images). There are
slight artifacts in the reconstructed images of U-net shown in Figure 3. In the zoomed
regions-of-interest (ROI) marked by the red rectangle, the over-smoothing phenomenon can
be observed in the reconstruction results of U-net. It leads to the loss of many texture
details. Besides, there are more reconstruction residuals in the results of U-net than that
of the other networks as shown in the error-map (Figure 3). Although noise suppression
ability of KIKI-net is better than U-net, the error-map shows that high-intensity noise still
exists in some areas. As we can see in the zoomed ROI in Figure 3, KIKI-net successfully
suppressed the artifacts but lost many texture details. Cascade-net not only has better noise
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suppression capability than U-net and KIKI-net but also has excellent artifact suppression
capability. As shown in Figure 3, the suppression of artifacts improves the visual quality of
the reconstructed image of Cascade-net significantly. The over-smoothing phenomenon in
the reconstruction results of Cascade-net is relatively light. However, the texture detail loss
is still a serious problem shown in the zoomed ROI (Figure 3). Based on the Cascade-net
reconstruction results, k-space learning further suppresses the reconstruction noise. The
reconstructed images of k-space learning shown in Figure 3 are closer to the reference
images visually than that of U-net, KIKI-net, and Cascade-net. More texture information
was saved in the reconstructed image of k-space learning. However, blurry effects can still
be observed. The reconstruction performance of CLP-net is the best among the different
methods. As we can see in Figure 3, reconstructed images of CLP-net possess more texture
details and less image noises, which proves that CLP-net has an excellent reconstruction
ability. Compared with the reconstruction results of the other networks, the tissue in the
reconstructed images of CLP-net is clearer shown in the zoomed ROI in Figure 3. It also
proves that there is no excessive noise reduction in the reconstruction process of CLP-net.

We calculated the average PSNR and SSIM of the whole test dataset. The results are
shown in Table Table 5. The proposed CLP-net achieves the best scores for both PSNR
and SSIM.

4. CONCLUSIONS

In this paper, we propose a novel Laplacian pyramid-based complex neural network for
fast MR imaging. Complex Laplacian pyramid decomposition provides encouraging multi-
scale properties for MR reconstruction from undersampled k-space data. The proposed
framework contains a cascaded multi-scale network architecture with complex convolutions
and data consistency layers. Experimental results demonstrated that our method achieved
comparable and even superior reconstruction results than recently published state-of-the-art
methods both quantitatively and qualitatively.
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