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Abstract

The modelling of temporal patterns in dynamic graphs is an important
current research issue in the development of time-aware Graph Neural
Networks (GNNs). However, whether or not a specific sequence of events
in a temporal graph constitutes a temporal pattern not only depends on
the frequency of its occurrence. We must also consider whether it deviates
from what is expected in a temporal graph where timestamps are randomly
shuffled. While accounting for such a random baseline is important to
model temporal patterns, it has mostly been ignored by current temporal
graph neural networks. To address this issue we propose HYPA-DBGNN,
a novel two-step approach that combines (i) the inference of anomalous
sequential patterns in time series data on graphs based on a statistically
principled null model, with (ii) a neural message passing approach that
utilizes a higher-order De Bruijn graph whose edges capture overrepresented
sequential patterns. Our method leverages hypergeometric graph ensembles
to identify anomalous edges within both first- and higher-order De Bruijn
graphs, which encode the temporal ordering of events. Consequently, the
model introduces an inductive bias that enhances model interpretability.
We evaluate our approach for static node classification using established
benchmark datasets and a synthetic dataset that showcases its ability to in-
corporate the observed inductive bias regarding over- and under-represented
temporal edges. Furthermore, we demonstrate the framework’s effectiveness
in detecting similar patterns within empirical datasets, resulting in superior
performance compared to baseline methods in node classification tasks. To
the best of our knowledge, our work is the first to introduce statistically
informed GNNs that leverage temporal and causal sequence anomalies.
HYPA-DBGNN represents a promising path for bridging the gap between
statistical graph inference and neural graph representation learning, with
potential applications to static GNNs.

1 Introduction

Graphs are powerful representations of complex data. Not surprisingly, there is a growing
collection of successful methods for learning on graphs (Kipf & Welling, 2017; Veličković
et al., 2018; Hamilton et al., 2018). These methods are versatile and are widely used in
bioinformatics (Zhang et al., 2021), social sciences (Phan et al., 2023), and pharmacy (Stokes
et al., 2020). While many methods assume a static graph, real-world scenarios often
involve dynamic systems, such as evolving interactions in social networks. Although known
techniques for static graphs can be applied to dynamic graphs (Liben-Nowell & Kleinberg,
2007), important patterns may be missed (Xu et al., 2020). Recently, several approaches have
incorporated temporal dynamics to obtain time-aware graph neural networks. These methods
are applied to different tasks such as static node classification (Qarkaxhija et al., 2022), link
prediction or continuous node property prediction (Rossi et al., 2020). In this work, we
focus on static node classification for graphs where patterns are encoded in the temporal
order of edge activation. The key idea is that this temporal order crucially influences the
role of nodes, which can be leveraged for static node classification. As an example, in a
network of interactions between employees in a company, the specific temporal order in
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which actors interact with their peers may depend on their role. Hence, two actors that are
indistinguishable based on the static topology may still exhibit different temporal interaction
patterns.
A common theme between static and temporal GNNs is that the observed graphs are
usually directly used for message passing. Recently data augmentation techniques have been
proposed to improve the generalizability of GNNs. Such data augmentation techniques have
been considered for a variety of reasons such as to reduce oversquashing (Topping et al.,
2021), improve class homophily for node classification (Liu et al., 2022), foster diffusion
(Zhao et al., 2021a), or include non-dyadic relation-ships (Qarkaxhija et al., 2022). Another
motivation that has recently been highlighted by Zhao et al. (2021c) is the presence of noise
in empirically observed graphs. This motivates augmentation techniques for GNNs that
ideally prune spuriously observed edges, while adding erroneously unobserved edges.
However, addressing noise in observed graphs arguably requires graph correction methods
accounting for a “random baseline” that allows to distinguish significant patterns from
noise, rather than augmentation methods that are based on heuristics or adjust the graph
based on ground truth node classes. Moreover, the application of GNNs to temporal graphs
introduces unique challenges for data augmentation as we typically want to focus on temporal
patterns that are due to the time-ordered sequence of events. To the best of our knowledge,
no existing works have considered graph correction methods that combine a statistically
principled inference of sequential patterns with temporal GNNs.
Addressing this research gap, in this work we propose HYPA-DBGNN, a novel two-step
approach for temporal graph learning: In a first step we infer anomalous sequential patterns
in time series data on graphs based on a statistical ensemble of temporal graphs, i.e. a null
model of random graphs that preserves the frequency of time-stamped edges but randomizes
the temporal ordering in which those edges occur. Building on the HYPA framework
(LaRock et al., 2020), our method leverages hypergeometric graph ensembles. This allows us
to analytically calculate expected frequencies of node sequences on time-respecting paths,
which is the basis to identify anomalous sequential patterns in temporal graphs. Consider
the interaction sequence ⟨AXC⟩ in Figure 1. Compared to the other observed sequences, it
has a low frequency and thus it would have a low impact in the computations of a standard
GNN. However, accounting for the frequencies of its sub-sequences reveals that it occurred
more often than expected, i.e., it is overrepresented. Discarding this information can over-
or underplay the role of an interaction, thus negatively affecting results. Therefore, in the
second step of our approach, we apply neural message passing on an augmented higher-order
De Bruijn graph, whose edges capture overrepresented sequential patterns in a temporal
graph. This introduces an inductive bias that emphasizes sequential patterns over mere edge
frequencies. The contributions of our work are as follows:

(i) We propose a novel approach to augment message passing based on a statistical
null model. This allows us to infer which temporal sequences in a time-stamped
interaction sequence are over- or under-represented compared to a random baseline
temporal graph in which the frequency of edges are preserved while their temporal
ordering is shuffled.

(ii) Building on this statistical inference approach, we propose HYPA-DBGNN, a time-
aware temporal graph neural network architecture that specifically captures temporal
patterns that deviate from a random baseline.

(iii) We demonstrate our approach in synthetic temporal graphs sampled from a model
that generates heterogeneously distributed temporal sequences of events in such a way
that node classes are associated with the over- or underrepresentation of temporal
events compared to random temporal orderings rather than mere frequencies.

(iv) We demonstrate the practical relevance of our method by evaluating node classifi-
cation in five empirical temporal graphs capturing time-stamped proximity events
between humans. A comparison of HYPA-DBGNN with standard De Bruijn Graph
Neural Networks without our HYPA-based inference reveals that our approach yields
an improved accuracy in all five data sets. Moreover, a comparison to seven baseline
techniques shows that our method yields the best performance in all empirical data.

(v) We finally show that the distribution of HYPA scores in the augmented message
passing graph, which captures the degree to which frequencies of temporal sequences
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deviate from a random baseline, enables us to explain why HYPA-DBGNN yields
larger performance improvements on some data sets compared to others.

Different from prior works, we propose a statistically principled data augmentation for
temporal graph neural networks that uses a statistical ensemble of temporal graphs with a
given weighted topology. Besides improving temporal GNNs, we further argue the general
approach of utilizing well-known statistical ensembles of graphs from network science for
graph correction could help to improve the performance of GNNs in data affected by noise.

Figure 1: Inference procedure leading to the dynamic graph used for neural message passing.
(a) Example of sequence data adapted from LaRock et al. (2020). (b) First- (blue) and
higher-order (orange) De Bruijn graphs encoding temporal ordered time-stamped edges are
compared to random graph ensemble null model with shuffled time-stamped k-1-order edges.
(c) The graphs are corrected by introducing a statistical-principled bias that revalues all
edges (w⟨AXC⟩ ≈ w⟨BXD⟩ > w⟨BXC⟩) and removes under-represented edges, i.e. edges that
appear with a high probability less than expected (⟨AXD⟩). (d) The multi-order graph
neural network is trained respecting the inferred graphs.

2 Related Work

Data augmentation for graphs has been explored from various directions with the goal of
allowing machine learning models to better generalize and attend to signal over noise (Zhao
et al., 2022). Many methods have utilized heuristic graph modification strategies like randomly
removing nodes (Feng et al., 2020), edges (Rong et al., 2019), or subgraphs (Wang et al., 2020;
You et al., 2020) to improve performance and generalizability. Other works have considered
adding virtual nodes (Pham et al., 2017; Hwang et al., 2021) or rewiring the network topology,
which also addresses oversquashing (Topping et al., 2021; Barbero et al., 2023), with graph
transformers operating on a fully connected topology representing an extreme case (Mialon
et al., 2021; Ying et al., 2021; Kreuzer et al., 2021). Additionally, it has been shown that
using graph diffusion convolutions instead of raw neighborhoods alleviates problems from
noisy and arbitrarily defined edges in real-world graphs (Gasteiger et al., 2019). Network data
augmentation has also been explored by going beyond pairwise connections, either through
mediating node interactions via subgraphs (Monti et al., 2018; Bevilacqua et al., 2021; Zhao
et al., 2021b; Cotta et al., 2021) or by utilizing higher-order graphs. Examples of higher-order
approaches include simplicial networks (Bodnar et al., 2021b), cellular complexes (Bodnar
et al., 2021a; Hajij et al., 2022), hypergraphs (Huang & Yang, 2021; Chien et al., 2021;
Georgiev et al., 2022), and time-respecting node sequences (Qarkaxhija et al., 2022). Another
area of research focused on learning the graph augmentations from the data. One approach
is to perform graph augmentation as a preprocessing step, completely separate from the
downstream task, where the graph structure is cleaned before being used as input to the
GNN (Jin et al., 2020; Zhao et al., 2021c). Other works embed the augmentation strategy
into an end-to-end differentiable pipeline, jointly learning the optimal graph representation
and the downstream task (Jiang et al., 2019; Lu et al., 2024; Franceschi et al., 2019; Fatemi
et al., 2021; Kazi et al., 2022).
As our work addresses temporal graph data, it is related to the field of temporal GNNs.
Temporal GNNs have been developed for both discrete- and continuous-time settings (Longa
et al., 2023). Discrete-time approaches segment the temporal data into time windows (Liben-
Nowell & Kleinberg, 2007; Sankar et al., 2020; Hajiramezanali et al., 2019), thus aggregating
interactions and losing information on time-respecting paths within those time windows. In
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contrast to the discrete-time setting, continuous-time approaches produce time-evolving node
embeddings, focusing on the temporal variability of network activity at different time points,
rather than on the patterns occurring across temporally-ordered interaction sequences (Xu
et al., 2020; Rossi et al., 2020; Kumar et al., 2019). These methods are commonly evaluated
based on the prediction of dynamically changing node labels, which differs from the prediction
of static node labels with sequential information that we consider in our work. The work
most similar to our perspective is DBGNN (Qarkaxhija et al., 2022), which learns from
sequential correlations in high-resolution timestamped data. Our approach diverges from
DBGNN by considering a more nuanced notion of the relevance of time-respecting paths
that involves structural changes to the graph. Rather than relying on the raw frequency
of interactions, HYPA-DBGNN uses a statistically grounded anomaly score. This score
quantifies the over- and under-expression of time-respecting paths, making the model less
susceptible to noise while basing contribution of paths on their statistical significance.

3 Background

A graph G = (V, E) is defined as a set of nodes V representing the elements of the system, and
a set of edges E ⊆ V ×V representing their direct connections. However, it is often important
to consider how nodes influence one another through a path, which is an ordered sequence
(v0, v1, . . . , vl) of nodes vi ∈ V . In a path, all node transitions must correspond to edges in the
graph, i.e., ei = (vi, vi+1) ∈ E; ∀i ∈ [0, l − 1]. Paths are often inferred from edges based on a
transitivity assumption. This assumption states that if there is an edge (v0, v1) with transition
probability α, and an edge (v1, v2) with transition probability β, then the path (v0, v1, v2)
will be observed with probability α · β. In other words, the transitions are considered to be
independent. The transitivity assumption simplifies the modeling of a path by expressing
its probability as the product of the individual edge transition probabilities. However, this
assumption often fails in temporal networks Gt = (V, Et), where Et ⊆ V × V × N as edges
have timestamps. In temporal networks, the ordering of edges can play an important role in
determining the likelihood of observing certain paths. A time-respecting path is defined as a
sequence of edges ((v0, v1, t1), . . . , (vi, vi+1, ti+1), . . . , (vl−1, vl, tl)) that ∀i ∈ [0, l − 1] respects
two conditions: (i) transitions respect the order of time ti > ti−1, and (ii) ti−ti−1 ≤ δ, where δ
is a parameter controlling the maximum time distance for considering interactions temporally
adjacent. Therefore, different from what we would get by discarding time and using the
transitivity assumption, the two edges (v, w, t1) and (u, v, t2) form a time-respecting path
only if t2 > t1. To capture time-respecting sequential patterns, higher-order De Bruijn graphs
model the probabilities of path sequences explicitly. These models construct a representation
that respects the topology of the original graph and the frequencies of observed paths
of a given length k. Specifically, a higher-order network of the k-th order is defined as
an ordered pair G(k) = (V (k), E(k)), where V (k) ⊆ V k are the higher-order vertices, and
E(k) ⊆ V (k) × V (k) are the higher-order edges. V k contains all k-th order vertices that exists
as paths in the first-order graph G whereas V (k) contains the subset of k-th order vertices
that exist as path in the observed data. Each higher-order vertex v =: ⟨v0v1 . . . vk−1⟩ ∈ V (k)

is an ordered tuple of k vertices vi ∈ V from the original graph. The higher-order edges
connect higher-order nodes that overlap in exactly k − 1 vertices, similar to the construction
of high-dimensional De Bruijn graphs (De Bruijn, 1946). The weights of the higher-order
edges in G(k) represent the frequency of paths of length k in the original graph. Specifically,
the weight of the edge (⟨v0 . . . vk−2⟩, ⟨v1 . . . vk−1⟩) counts how often the path ⟨v0 . . . vk−1⟩ of
length k occurs. By explicitly modeling the probabilities of these higher-order path sequences,
the higher-order network representation can capture patterns and dependencies that may be
missed when relying on the transitivity assumption (Scholtes, 2017).

Detection of Path Anomalies Defining anomalies requires a reference base. In our case,
the transitivity assumption provides the null model that serves as this baseline. Anomalies
occur in sequences that deviate from this baseline, likely due to correlations and interdepen-
dencies not captured by the transitivity assumption. First, we discuss how the hypergeometric
ensemble allows testing for anomalous edge frequencies based on node activity, i.e., their in-
and out-degrees. Building on this, we then outline how this methodology is extended to test
if the frequencies of paths of length k are anomalous given those of paths of length k − 1.
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Configuration models (Molloy & Reed, 1995) provide randomization methods for graphs
that shuffle edges while preserving vertex degrees. In a nutshell, first, they disassemble
the graph, leaving nodes with in- an out-stubs. Then, a new network is reassembled
by connecting pairs of in- and out- are picked with equal probability. This procedure is
algorithmically straightforward but can be computationally expensive. To address this,
Casiraghi & Nanumyan (2021) contributed a closed-form expression for the soft configuration
model, which fixes the expected vertex degrees rather than the exact degree sequence. In
their formulation, the sampling of edges is equated to sampling from an urn. The authors
introduce a combinatorial matrix Ξ ∈ Nn × Nn, where Ξij = dout

i · din
j encodes the product

of the out-degree of node i and the in-degree of node j in the original graph G. The total
number of possible edge placements is then M =

∑
ij Ξij . A network is sampled from this

ensemble by drawing m =
∑

i dout
i =

∑
i din

i edges without replacement from the M possible
edge placements. The probability of observing Aij edges between nodes i and j is then given
by the hypergeometric distribution: P (Aij) =

(
M
m

)−1(Ξij

Aij

)(
M−Ξij

m−Aij

)
. Having this probability

mass function, we can use the equation above to quantify the anomalousness of the frequency
of an edge. This closed-form expression and the sampling process that generates it provides
a principled null model that preserves the expected degree sequence, which will be crucial
for our subsequent analysis of anomalous path patterns in the network.
Our concept of path anomalies, introduced by LaRock et al. (2020), provides a statistical
framework for identifying paths through a graph that are traversed with anomalous fre-
quencies. The key idea is to define a null model of order k − 1 that captures the expected
frequencies of paths of length k, and then identify paths that deviate significantly from this
null model. To construct the null model, one must establish a statistical ensemble of k-th
order De Bruijn graphs. The starting point is the hypergeometric ensemble outlined in the
previous paragraph, which preserves the total in- and out-degrees of nodes while shuffling
the edge weights. For a De Bruijn graph of order k, the nodes’ degrees are determined by the
frequencies of paths of length k − 1, i.e., by the edge frequencies of De Bruijn graph of order
k − 1. A hypergeometric ensemble of the De Bruijn graph presents one additional difficulty.
Specifically, an edge between two k-th order nodes is valid only if their path representations
overlap in k − 1 first-order nodes. This implies that some of the Ξ matrix entries represent
invalid paths. HYPA handles this by zeroing out impossible entries and redistributing their
values through an optimization procedure, as detailed in the original work.

4 HYPA De Bruijn Graph Neural Network Architecture

We now introduce the HYPA-DBGNN architecture 1 that relies on statistical-principled
graph augmentation. The temporal dynamics of the sequential patterns are encoded in first-
and higher-order De Bruijn graphs. Graph corrections are inferred that include anomaly
statistics in the graph topology. We then present a multi-order augmented message passing
scheme that relies on the inferred graphs with induced bias. Although we adapt the message
passing procedure of Graph Convolution Networks (GCN) from Kipf & Welling (2017), our
architecture is generalizable to other message passing schemes due to the selective additions.

Statistical-Principled Graph Augmentation As outlined before, the k-th-order De
Bruijn graphs capture the observed frequencies of the k-th-order sequences through the edges
between k-th-order nodes. This potentially biased representation yields the foundation for
hypergeometric ensembles whose edge frequencies are induced by the (k-1)-th-order sub-
sequences. The HYPA score (LaRock et al., 2020), defined as HY PA(k)(u, v) = Pr(Xuv ≤
f(u, v)), uses these to describe how probable an observed edge has a higher frequency than
in any random realization. A large HYPA score encodes edges that are observed more than
expected whereas a HYPA score approaching zero describes edges that are observed less
than expected. Leveraging the HYPA scores as adjacency matrix A

(k)
uv = HY PA(k)(u, v)

leads to corrected graphs where the weights of underrepresented edges are reduced and the
weights of overrepresented edges are scaled based on the expected value. To improve the
scalability of our approach we preserve the sparsity of the observed higher-order graph by

1A reference implementation, data sets and benchmarks are given at [blinded].

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

not including HYPA scores of unobserved edges while adding HYPA scores of observed edges
as edge attributes.

Message Passing for Higher-Order De Bruijn Graphs with Induced Bias For
layer l, we define the update rule of the message passing as

h⃗k,l
v = σ

Wk,l
∑

{u∈V (k):(u,v)∈E(k)}∪{v}

HY PA(k)(u, v) · h⃗k,l−1
u√

H(v) · H(u)

 , (1)

with the previous hidden representation h⃗k,l−1
u of node u ∈ V (k), the inferred HYPA score

HY PA(k)(u, v) of the given edge (u, v) ∈ E(k) (capturing the induced bias), the trainable
weight matrices Wk,l ∈ RHl×Hl−1 , the normalization factor based on the HYPA score
sum of incoming edges H(v) :=

∑
{u∈V (k):(u,v)∈E(k)}∪{v} HY PA(k)(u, v), and the non-linear

activation function σ, here ReLU. We want to highlight that integrating the inferred scores
is a major technical challenge with room for further studies. We compare different variants
in Appendix A and Appendix B.
Depending on order k, the message passing for different higher order graphs is based on
different higher order node sets V (k) whose nodes v have their own hidden representations
h⃗k,l

v for every layer l. An initial feature encoding is only provided for the first order (k = 1) as
h⃗1,0

v . To transfer the features to higher-order nodes and to merge the hidden representations,
we introduce two bipartite mappings.

The initial first-order feature set h⃗1,0
u is mapped to the higher-order node representations

h⃗k,1
v using the bipartite graph Gb0 =

(
V (k) ∪ V, Eb0 ⊆ V ×V (k)) with euv ∈ Eb0 if v =

(v0, . . . , vk−1) ∈ V (k) and v0 = u in analogy to interpreting message passing layers as
higher-order Markov chains. This advancement enables the propagation of features to the
higher-order graph. Multiple first-order representations are aggregated using the function F
(in our case MEAN) and transformed with the learnable weight matrix Wb0 ∈ RH1,0×Hk,0

to the higher-order feature space.

h⃗k,1
v = σ

(
Wb0F

({
h⃗1,0

u : for u ∈ V (1) with (u, v) ∈ Eb0
}))

(2)

The second mapping is defined as by Qarkaxhija et al. (2022). It is the counterpart to the first
bipartite layer. Here, the higher-order node representations are summed with the first-order
node representations (requiring matching representation dimensions F g = H l) if the last
path entry uk−1 of the higher-order node u = (u0, . . . , uk−1) ∈ V (k) equals the first-order
node v = uk−1. The bipartite graph is given as Gb =

(
V (k) ∪ V, Eb ⊆ V (k) × V

)
and leads

to a first-order node representation h⃗b
v with v ∈ V and the learnable matrix Wb ∈ RF g×Hl .

h⃗b
v = σ

(
WbF

({
h⃗k,l

u + h⃗1,g
v : for u ∈ V (k) with (u, v) ∈ Eb

}))
(3)

In Figure 1 we show an overview of the inference process and the proposed neural network
architecture for the first- and second-order graph. Moreover, Appendix C contains a more
detailed visualization of the architecture. We rely on a one-hot encoding as first-order feature
set. The fist bipartite layer transfers this to the higher-order nodes. The neural network
performs multiple message passing steps independently for the two given graph topologies.
The number of message passing rounds and the dimensions of layers may vary in the two
parts. After performing the message passing in parallel and merging the features with the
second bipartite layer a final classification layer is applied. The model architecture allows to
include node and edge features due to the underlying GCN. The computational complexity
of HYPA-DBGNN is upper-bounded by the complexity of the baseline DBGNN due to the
edges removed in graph correction.
For a more detailed discussion on the computational complexity we refer the reader to
Appendix D. We note that the computational complexity is not a limiting factor for our
approach. This is supported by the event count 223 in the synthetic data set that is
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comparable to the events in small to medium size TGB data sets Huang et al. (2023) or to
the edge counts in corresponding non-temporal graphs in OGB data sets (Hu et al., 2020).
We also report the overall needed training resources (Appendix E) for the used data sets
together with their properties (Appendix F).

5 Experimental Evaluation

We compare our architecture with graph representation learning methods (EVO (Belth
et al., 2020), HONEM (Saebi et al., 2020), DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover & Leskovec, 2016)) and deep graph learning methods (GCN (Kipf &
Welling, 2017), LGNN (Chen et al., 2020) and DBGNN (Qarkaxhija et al., 2022)). Finally,
we also consider the state of the art dynamic node prediction method TGN (Rossi et al.,
2020). This method was developed for predicting changes of nodes labels over time, and
not for the prediction of static node labels that depend on the sequences of interactions.
Therefore, we adapt the original training procedure to fit the static task as outlined in
Appendix G. For the representation learning models Node2Vec and EVO we adhere to
the original configurations, i.e. we use an embedding size of d = 128 and a random walk
length of l = 80, repeated r = 10 times. As context size we use k = 10. For Node2Vec we
select the return parameter (p) and the in-out parameter (q) from the set 0.25, 0.5, 1, 2, 4.
The deep learning models (GCN, LGNN, DBGNN, and our proposed model) consist of
three layers. Following the approach of Qarkaxhija et al. (2022), we set the size of the
last layer to h2 = 16, while the sizes of the preceding layers are determined during model
selection. The study range for h0 and h1 encompasses 4, 8, 16, 32 over a maximum of 5000
epochs as per Qarkaxhija et al. (2022). The higher-order path length is fixed to k = 2 for
HYPA-DBGNN and DBGNN because it is shown as optimal by Qarkaxhija et al. (2022) for
the given data sets. Stochastic Gradient Descent (SGD) serves as our optimization function,
with the learning rate set to 0.001, which showed the best performances. We use dropout
regularization with a dropout rate of 0.4 to mitigate overfitting and we incorporate class
weights in the loss function to address imbalanced training datasets.
To compare various Graph Neural Network (GNN) architectures, we adopt a conventional
approach as documented in literature (Errica et al., 2019; Morris et al., 2020; James et al.,
2013). For the assessment of model generalizability, we employ a nested cross-validation
strategy with N = 10 repetitions. The data undergoes stratified partitioning into nine
training and one testing fold, further divided into stratified training and validation subsets
(80/20%) within each repetition. Subsequently, we select the best-performing model and
epoch based on its validation set performance. Finally, we evaluate the chosen model’s
performance on the test set, reporting the mean and standard deviation of the respective
metric across all N repetitions. For comparability, we use the same folds and splits for
all experiments. Besides the random splits, the random initialization of the model also
contributes to the variability captured by the standard deviation. For reproducibility, we fix
the random splits and reuse a common seed in every repetition for the random initialization
of model weights and dropout candidates.
We additionally perform two ablation studies to investigate different aspects of our method.
First, Appendix H shows the contribution of both parts of the novel combination of statistically
inference with machine learning by disabling the individual components of our architecture.
Second, finding a suitable way of integrating the statistical inferred information is a key
technical challenge with potential for further work. In Appendix A we present different
integrations based on the Z-score for even more efficiency and numerical stability and a
pruning-based approach. However, the approach we evaluate in the following leads to the
best performance, as shown in Appendix B.

5.1 Experimental Results for Synthetic Data Sets

We use synthetic data with two classes of nodes C = {A, B} to demonstrate the type of
patterns that only our model can learn. The characteristic properties and its derivation
of the configuration model are detailed in Appendix I. Importantly, it contains a hetero-
geneous sequence (e.g. ⟨v0, v1, v2⟩f ) distribution of time-stamped edges or events (here:
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(v0, v1)t0 , (v1, v2)t1 , t0 < t1) between nodes. The learnable sequential pattern is an increased
class-assortativity, i.e. edges are temporally ordered such that same class events are preferred
followed by each other (e.g. leading to ⟨A, A, A, B⟩). Hence, these higher-order sequences
with nodes from the same group are over-expressed compared to what we would expect by
shuffling the temporal-order of the timestamped-edges between the nodes (e.g. ⟨A, B, A, A⟩).
The pattern is only discernible by higher-order models due to its restriction to higher-order
sequences. For a homogeneous sequence distribution the pattern of overrepresented sequences
would be reflected in the mere frequencies. However, due to the initial heterogeneous
distribution, overrepresented sequences can also have low frequencies (e.g. ⟨A, X, C⟩ in
Figure 1). Thus, they are also unobservable by higher-order baselines only including mere
frequencies like DBGNN. However, the comparison of the observed frequencies with a null
model that preserves the frequency of time stamped-edges but randomizes the temporal
order reveals the sequential pattern.
We use two synthetic data sets with the same distribution of time-stamped edges. Unweighted
Sampling contains sequences with randomized temporal order of time-stamped edges whereas
Weighted Sampling contains sequences with increased class-assortativity. An unintended
correlation between the obtained graph topology and the event classes is not excluded for
both data sets. Weighted Sampling additionally contains the preferential chaining pattern.
The results in Table 1 show the capabilities of the models in terms of accuracy in solving the
respective binary node classification tasks. The different methods yield varying results for
synthetic data set without intended pattern. All representation learning methods with a
horizon of l = 80, except EVO, perform better than the deep graph learning methods with a
smaller horizon of l = 3. Our approach performs as good as DBGNN that shares similarities,
like two distinct message passing modules, in its architecture.
The Weighted Sampling highlights the ability of the methods to learn the intended pattern.
For the second data set GCN performs worse and all other baselines methods perform equal
as for the first one. In contrast, HYPA-DBGNN improves by 55% and reaches an accuracy
of 100%. These observations lead to the result that some of current baselines are able to
learn an unintended pattern in both data sets. However, they fail in learning the implanted
increased class-assortativity pattern whereas HYPA-DBGNN is able to learn this pattern.

Table 1: Comparison of HYPA-DBGNN baselines for the synthetic data sets. The table
presents the balanced accuracy and its standard deviation for the static node classification
task on dynamic graphs as obtained through the outlined experiments. The Unweighted
Sampling data set contains a heterogeneous sequence distribution of time-stamped edges
with shuffled temporal order. The adapted distribution of sequences in Weighted Sampling
encodes a sequential pattern such that time-stamped edges between nodes of the same class
are overrepresented but not necessarily very frequent.

Representation Learning EVO HONEM DeepWalk Node2Vec
Unweighted Sampling 40.00 ± 31.62 80.00 ± 25.82 60.00 ± 21.08 60.00 ± 21.08

Weighted Sampling 40.00 ± 31.62 80.00 ± 25.82 60.00 ± 21.08 60.00 ± 21.08

Deep Graph Learning GCN LGNN DBGNN TGN HYPA-DBGNN
Unweighted Sampling 50.00 ± 33.33 50.00 ± 0.00 45.00 ± 28.38 50.00 ± 0.00 45.00 ± 15.81

Weighted Sampling 45.00 ± 28.38 50.00 ± 0.00 45.00 ± 15.81 50.00 ± 0.00 100.00 ± 0.00

5.2 Experimental Results for Empirical Data Sets

Our experiments leverage the five empirical time series datasets on dynamic graphs from
Qarkaxhija et al. (2022). This work also provides the optimal order of the higher-order
model and the δ value (the maximum time difference for edges to be considered part of
a causal walk) for generating the time respecting paths within each dataset. The data
sets are Highschool2011 and Highschool2012 (Fournet & Barrat, 2014), Hospital (Vanhems
et al., 2013), StudentSMS (Sapiezynski et al., 2019), and Workplace2016 (Génois et al.,
2015). These data sets are in particular relevant due to the following properties: They are
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continuous-time data sets for static node classification and they include a sufficient large
number of interactions compared to the number of nodes and edges. In our evaluation, we
do not use the datasets from the TGB data sets (Huang et al., 2023) because they focus on
time varying node labels. Our work does not address the prediction of changes of node labels
in time, but the prediction a static node label based on sequential information. This section
addresses the question of how our architecture compares to the described baselines with
respect to the named empirical data sets. The mean balanced accuracy and its standard
deviation is reported in Table 2.
We reproduce the superior results of DBGNN compared to other baselines for all data sets
except Workplace2016 for which LGNN performs better than shown by Qarkaxhija et al.
(2022). The obtained standard deviations are also comparable to the named work. However,
HYPA-DBGNN outperforms all baselines, including DBGNN and TGN. For Highschool2011
and Highschool2012, the gain is smallest with 2.77% and 2.27%, respectively. For StudentSMS
and Workplace2016, the gain is about twice as large at 5.09% and 4.58%, respectively. It is
noteworthy that the baseline results for Workplace2016 are already at least 20% better than
for the other data sets, so the gain of 4.58% is harder to achieve and brings the balanced
accuracy close to the optimum. A remarkable result is the gain of 45.50% for Hospital.
Here, the baselines are the weakest compared to the other data sets, while for our approach
only Workspace2016 is better solvable. Further, HYPA-DBGNN outperforms TGN in all
tested cases. This difference can be explained by the observation that TGN does not use
time-respecting paths that encode relevant patterns but rather accounts for the temporal
evolution of the graph which is more relevant in the dynamic case. All in all, the inclusion
of path anomalies is beneficial for all empirical data sets considered, but the gain depends
on the particular data set. Here, the results for Hospital and Workplace2016 stand out.

Table 2: Comparison of HYPA-DBGNN with node representation learning and deep graph
learning baselines for dynamic graphs. The table presents the balanced accuracy and its
standard deviation for the models on empirical static node classification tasks for dynamic
graphs that is obtained through the outlined experiments. The best results are marked.
Results with additional metrics are attached in Appendix J.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
EVO 43.68 ± 10.91 50.05 ± 7.30 25.83 ± 8.29 55.05 ± 6.39 26.50 ± 12.08

HONEM 59.00 ± 10.61 50.49 ± 9.31 39.44 ± 17.57 53.81 ± 7.28 83.17 ± 11.14

DeepWalk 54.64 ± 17.70 49.65 ± 12.97 24.58 ± 10.92 52.78 ± 7.83 20.54 ± 9.51

Node2Vec 54.64 ± 17.70 49.65 ± 12.97 24.58 ± 10.92 52.31 ± 7.70 20.54 ± 9.51

GCN 55.00 ± 13.37 59.35 ± 11.13 43.47 ± 9.03 54.50 ± 6.40 73.33 ± 12.60

LGNN 57.72 ± 9.85 51.43 ± 17.94 44.03 ± 9.03 52.71 ± 6.63 84.83 ± 14.77

DBGNN 61.54 ± 11.13 64.93 ± 15.26 52.50 ± 19.27 57.72 ± 5.29 84.42 ± 15.59

TGN 61.52 ± 11.25 41.52 ± 6.19 50.27 ± 14.83 50.67 ± 4.10 80.16 ± 18.71

HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

5.3 Comparison of Temporal Sequences in Empirical and Synthetic Data

The synthetic data set encodes a pattern of increased class-assortativity that is learned by
HYPA-DBGNN. Figure 2 shows the deviation from the expected edge frequencies in terms
of HYPA scores for the used data sets regarding the incident nodes, i.e. for each node the
distribution of the average HYPA score of incident edges is plotted. The second-order plot
shows the increased class-assortativity for nodes of class 0 in the Weighted Sampling data set.
The incident second-order edges have on average a larger HYPA score and thus are more
often overrepresented compared to edges incident to nodes of class 1. Due to the statistic
principled inferred graph, HYPA-DBGNN is able to learn this pattern. Also, Hospital and
Workplace2016 emit such under- and overrepresented sequential patterns in both graphs that
are related to distinct node classes. In Hospital second-order edges incident to nodes of class
0 and 1 are overly often overrepresented. However, the first-order edges incident to nodes of
class 0 and 1 differ in its statistics. This observed connection between node classes and the
sequential patterns containing the respective nodes supports the superior performance of
HYPA-DBGNN for Hospital and Workplace2016.
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Figure 2: We plot the average HYPA score of all incident edges for each node and show the
distribution with respect to nodes’ classes. The left plot shows first-order HYPA scores and
the right second-order ones. The synthetic set uses Weighted Sampling. For some data sets,
varying distributions suggest a connection between the HYPA scores and the node classes.

6 Conclusion

In this work, we propose HYPA-DBGNN, a novel deep graph learning architecture that
accounts for time-respecting paths in temporal graph data with high temporal resolution.
Different from existing graph learning methods that employ neural message passing along time-
respecting paths, we introduce a two-step approach which first infers anomalous sequential
patterns based on an analytically tractable null model for time-respecting paths that preserves
both the topology and the frequency, but not the temporal ordering, of time-stamped edges.
In a second step, we apply neural message passing on an augmented higher-order De Bruijn
graph, whose edges capture time-respecting paths that are overrepresented compared to the
expectation from that random baseline. An experimental evaluation of our approach in a
synthetic model and five empirical data sets on temporal graphs reveals that our proposed
method considerably improves node classification compared to eight baseline methods in all
studied data sets, with performance gains ranging from 2.27 % to 45.5 %. An investigation
of HYPA scores – which capture the degree to which time-respecting path statistics deviate
from what is expected in a null model – as well as an ablation study show that the correlation
between node classes and the magnitude of the deviations from the random expectation is
particularly pronounced for those empirical temporal graphs where we also observe the largest
performance gains for our method. This finding highlights that the innovative combination
of statistical inference and neural message passing, which is the key contribution of our work,
leads to considerable advantages for temporal graph learning.
Despite these contributions, our work raises a number of open questions that we did not
address within the scope of this work. First, in order to isolate the influence of sequential
patterns in temporal graphs, here we solely focused on the sequence of time-stamped edges,
thus neglecting additional node attributes and edge features. Future studies building on our
work could thus additionally consider richer node and edge information, which is likely to
further improve the performance of our model. Moreover, the framework of hypergeometric
statistical ensembles allows to include non-homogeneous “edge propensities” based, e.g.,
on a homophily of nodes with similar attributes. This could possibly be used to generate
domain-specific null models leading to a graph learning architecture that includes a non-
trivial inductive bias, which we did not explore in this work. Bridging the gap between the
application of statistical graph ensembles in network science and deep graph learning, we
finally argue that our work opens broader perspectives for the integration of statistical graph
inference, graph augmentation, and neural message passing. In particular, applying our
method to the inference of (first-order) edges in static graphs could be a promising approach
to address the issue that empirical graphs are rarely unspoiled reflections of reality, but
are often subject to measurement errors and noise. The need to combine graph inference
techniques with neural message passing (Ma et al., 2019; Pal et al., 2020; Zhang et al., 2019)
has recently been identified as a major challenge for deep graph learning, and our work can
be seen as a step in this direction.
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A Variants of HYPA-DBGNN

In this section, we present other variations of our main HYPA-DBGNN architecture.

A.1 Base Architecture without Anomalies (HYPA-DBGNN−)

Replacing the HYPA scores with the absolute edge frequencies in the message passing
procedure leads to the original message passing layers proposed by Kipf & Welling (2017).
The overall structure including the bipartite layers is kept. The comparison of this model
(HYPA-DBGNN−) with HYPA-DBGNN reinforces the understanding of the significance of
HYPA scores.

A.2 Edge Embedded HYPA Scores (HYPA-DBGNNE)

For HYPA-DBGNN the HYPA scores are used in a graph model selection step to enhance
the message passing. Whereas for HYPA-DBGNNE the HYPA scores are understood as
additional edge attributes whose significance is learned by an adapted graph convolution
operation that embeds the edge attributes into the incident node attributes during message
passing in the first graph neural network layers. The augmented propagation rule is given as

h⃗k,1
vi

= σ

∑
j

1
cij

(
h⃗k,0

vj
W k,1 + h⃗ek

ij
W k,e

) , (4)

with the first hidden representation h⃗k,0
vj

of node u ∈ V (k), the inferred HYPA scores in h⃗ek
ij

for the k-th-order edge ek
ij ∈ E(k), the trainable weight matrices W k,1 ∈ RH1×H0 for the

nodes and W k,e ∈ RH1×1 for the edges and the normalization factor cij as defined by Kipf
& Welling (2017).

A.3 Z-Score as Replacement for HYPA Scores (HYPA-DBGNNZ)

The HYPA scores are based on the CDF. A a replacement for the CDF, a transformed
Z-score instead of the HYPA score is implemented in HYPA-DBGNNZ . The underlying soft
configuration model provides the needed expected value and variance with

E[Xij ] = m
Ξij

M
(5)

and

V ar[Xij ] = m
M − m

M − 1
Ξij

M
(6)

needed to define the Z-score as

z(Aij) = Aij − E[Xij ]√
V ar[Xij ]

. (7)

Opposing to the HYPA score the Z-score is unbounded and possibly negative. Edges with
negative Z-score are excluded because they are under-represented. Likewise in HYPA-
DBGNN in most cases under-represented edges are removed, too, because their HYPA scores
is approximately zero. Additionally, edges with a Z-score smaller than one are removed with
the same argument of not having an unexpected large contribution to the graph and only
beeing larger than 0 due to noisy fluctuations in the frequencies. The resulting restricted
Z-score is logarithmically transformed due to observed large spread in empirical data, leading
to the final replacement for the HYPA-score:

z′(eij) =
{

0 if z(eij) < 1,

log(z(eij)) otherwise (8)
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B Ablation Study - Impact of Statistical Information

We conduct an ablation study in which we compare our architectures HYPA-DBGNN,
HYPA-DBGNNE and HYPA-DBGNNZ to the base architecture HYPA-DBGNN− that is
not using statistical information. We aim to answer the question of what effect the addition
of statistical information has on the prediction capability of the architectures in Table 3.
By comparing HYPA-DBGNN to HYPA-DBGNN− we see that the statistical information
play an important role for all data sets but most importantly it becomes visible that the
improvements for Hospital are indeed related to the additional information.
HYPA-DBGNNE with edge encoded statistical features performs better than the uninformed
baseline but is most of the time significant weaker than HYPA-DBGNN. The structural
graph correction applied in HYPA-DBGNN is still missing even when the edge encoder is
able to learn the significance of the HYPA scores. HYPA-DBGNNZ performs weak for data
sets where we don’t see direct patterns in the analysis but works well for Hospital. It needs
to be explored why the Z-score is more susceptible for data sets with weak or no patterns.

Table 3: Ablation study for HYPA-DBGNN. The best results are marked.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

HYPA-DBGNNE 61.54 ± 13.62 64.94 ± 17.71 59.03 ± 12.72 60.46 ± 9.42 88.50 ± 13.57

HYPA-DBGNNZ 53.97 ± 17.59 59.63 ± 15.74 69.31 ± 11.74 53.45 ± 7.50 88.42 ± 10.88

HYPA-DBGNN− 57.67 ± 17.16 64.49 ± 15.27 55.83 ± 19.27 56.23 ± 10.41 86.46 ± 12.65

C Model Architecture

Figure 3: Illustration of the HYPA-DBGNN architecture. The architecture uses node
features as inputs. In our case the node id is given as a one-hot encoding even though present
features might be used. The bipartite mapping propagates the first-order node features to
the first- and higher-order graph. The edge weights are given as HYPA scores such that the
HYPA scores define the graph used for neural message passing. Under-represented edges
with HY PA(k)(u, v) = 0 are removed from the graph. Hence the used graphs are defined
through the statistical model. The second bipartite layer merges the lower- and higher-order
embedding after three message-passing layers. A final linear layer converts the embedding to
the class prediction.
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D Comments on Computational Complexity

There are two distinct steps to be considered when arguing about the complexity of our
approach. First, there is the preprocessing step that creates the augmented graphs,i.e., the
competition of the HYPA scores and the removal of the under-represented paths. Second, the
graph neural network is trained on that graphs. For both steps, the complexity is determined
by the number of edges in the higher-order De Bruijn graph. In the preprocessing, we
calculate the HYPA score for higher-order edges.
The worst-case for the number of higher-order edges is given by the number of different
sequences of length k, i.e., |V |k for a network with |V | nodes. However, two arguments
show that we can expect much lower complexity in real-world data. First of all, real-world
networks are usually sparse, which implies that most sequences cannot occur as they would
otherwise violate the network topology.
LaRock et al. (2020) use this argument, and prove that the complexity of their algorithm can
be tightened with ∆G(k) ≤ |V |2λk

1 , where |V | denotes the number of nodes in the first-order
graph G and λ1 is the leading eigenvalue of the binary adjacency matrix of G. They conclude,
that the HYPA score calculation scales linearly with the number of paths N in the given data
set for sparse real-world graphs, a moderate order k, and a sufficiently large N . (Qarkaxhija
et al., 2022) also uses the argument of sparsity to further limit the complexity of the De
Bruijn graph. They note that the number of walks of length k becoming higher-order edges
in the higher-order De Bruijn graph is also limited by

∑
ij Ak

ij ≤ |V |k, where Ak is the k-th
power of the binary adjacency matrix A of G.
Furthermore, higher-order networks are even sparser than what we would expect based on the
first-order topology. This is because the number of different time-respecting paths occurring
on a network is generally much lower than the number of possible paths. (Qarkaxhija et al.,
2022) demonstrate this (see in the appendix) by plotting the number of realized walks at
each length and showing that in empirical graphs only a small fraction of walks is realized
due to the restriction to time-respecting paths. By studying the complexity of the used
empirical data set, they argue that De Bruijn graphs are applicable to real-world tasks.
We consider a path data set S with N entries. The number of edges in the k-th-order De
Bruijn graph is denoted as ∆G(k). LaRock et al. (2020) state that the asymptotic runtime of
HYPA is O(N + ∆G(k)). A trivial upper-bound for ∆G(k) is the fully connected case with
|V |k+1. This trivial case is also considered by Qarkaxhija et al. (2022) when they argue that
the complexity of message passing on the De Bruijn graph is bounded.

E Experiment Resources and Reproducibility

We performed the experiments on a single PC with an NVIDIA GeForce RTX 3070 with 8
GB memory. On average one single experiment repetition takes approximately 5 minutes
depending on the method and the data set. We run 4 experiments in parallel. We test the
12 methods (9 in the main study, 3 in the ablation study) with a parameter search over at
most 25 variants on 7 data sets (5 empirical, 2 synthetic). All in all, the estimated time for
the experiments is approximately 12 · 7 · 25 · 5/60 ≈ 440 hours, excluding pre-studies. While
this is only a rough estimate it reflects the order of magnitude of time needed to run all
experiments.
To reproduce the experiments, we provide a reference implementation at [blinded] together
with synthetic and empirical data sets and their splits and licenses. For the implementa-
tions of the baselines we attribute the reused implementations from the DBGNN reference
paper (Qarkaxhija et al., 2022). They also parse and provide the used empirical data sets.
We include a self-containing benchmark to compare HYPA-DBGNN to other methods
including strong candidates like GCN and DBGNN following the described evaluation
procedure. The benchmark is as concise as possible to let the reader focus on the main
contributions. This benchmark can be used to reproduce presented results.
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F Properties of Experiment Data Sets

Table 4: Overview of time series data and ground truth node classes used in the experiments.
δ describes the maximum time difference for edges to be considered part of a casual walk.

Data Set Ref. Events |V | |E| |V (2)| |E(2)| Classes (Sizes) δ
Highschool2011 (Fournet & Barrat, 2014) 28561 126 3355 3042 17141 2 (85/41) 4
Highschool2012 (Fournet & Barrat, 2014) 45047 180 4399 3965 20614 2 (132/48) 4
Hospital (Vanhems et al., 2013) 32424 75 2052 2028 15500 4 (29/27/11/8) 4
StudentSMS (Sapiezynski et al., 2019) 24333 429 1160 733 846 2 (314/115) 40
Workplace2016 (Génois et al., 2015) 9827 92 1491 1431 7121 5 (34/26/15/13/4) 4
Random Sampling Ours (Synthetic) 8388608 20 400 400 1600 2 (10/10) 1
Weighted Sampling Ours (Synthetic) 8388608 20 400 400 1600 2 (10/10) 1

G TGN Adaptations

We implement TGN as proposed by Rossi et al. (2020) Instead of a link prediction layer, we
add a node prediction layer as the last stage. The embedding size is fixed to 32 as for the
other models. For TGN the training procedure is adapted due to its dynamic origin. The
proposed training procedure for dynamic node predictions splits the events into fixed-size
temporal batches and predicts the next node state for the nodes affected by the events. The
batches are temporally divided into train and test batches. Opposing, the static prediction
task splits the nodes into train and test sets. We try to keep as much from the original
training procedure as possible to favor the memory based architecture. Hence, we train the
model on all event batches of size 200 but restrict the training nodes to the train set with
fixed class. The last prediction for the given test nodes is used to evaluate the performance.
This is not necessary in the last batch of events. For the synthetic data the batch size is
increased to 200.000 since each of the 223 events has its own timestamps which leads to
infeasible training time with lower batch sizes. Compared to the other deep learning methods
the model the losses are updated more often because they are updated for every event batch
and not only for every node batch. Consequently, we adapt the learning rate to 0.0001 and
the originally used optimizer Adam to obtain improved results.

H Ablation Study - Impact of Individual Parts

Table 5: Ablation study for HYPA-DBGNN showing the balanced accuracy. Subsequently
parts of the model are removed. (a) contains the complete HYPA-DBGNN model. In (b) the
HYPA scores are removed such that the statistical information are not passed to the model.
In (c) we further remove the first bipartite layer that maps the first-order node features to
the second-order nodes and replace it by a second-order one-hot encoding (OHE). In (d) we
additionally remove the complete second-order message passing (MP).
In (e) we use the base HYPA-DBGNN but replace the first-order OHE with available
features. Only Highschool2011 and Highschool2012 contain node features. Those are the
classes the students belong to. We suspect that those features are not informative for the
given prediction task.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
(a) base HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

(b) without HYPA scores 57.67 ± 17.16 64.49 ± 15.27 55.83 ± 19.27 56.23 ± 10.41 86.46 ± 12.65

(c) OHE instead bipartite layer 61.54 ± 11.13 64.93 ± 15.26 52.50 ± 19.27 57.72 ± 5.29 84.42 ± 15.59

(d) without second-order MP 55.00 ± 13.37 59.35 ± 11.13 43.47 ± 9.03 54.50 ± 6.40 73.33 ± 12.60

(e) HYPA-DBGNN with features 59.12 ± 20.24 62.43 ± 10.06 - - -

I Synthetic Data Creation Procedure

In this section, we give information about the synthetic data set creation and its characteristics
We use two synthetic data sets that are created with the following procedure. Figure 4 gives
an overview of the procedure.
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The algorithm consists of two main parts aimed at constructing the first-order and second-
order topology of the network, respectively. Initially, the algorithm receives as input
parameters the set of nodes, a node-to-class mapping, a bias parameter, and the desired
number of paths of length k (k-th order edges) to generate.
In the first part, we assign the node degrees, and consequently the values of the Ξ matrix as
Ξ = kin · kout, To do this, we give each node a random weight sampled from a continuous
uniform distribution U [0, 1]. Next, for each node, we sample a number of (unweighted)
edge stubs from a multinomial distribution. The number of categories in the multinomial
distribution equals the number of nodes, and the probability for each category, respectively
edge stub, is proportional to the previously assigned node weight. The number of stubs
we sample equals the desired number of paths of length k given in input. Once we have
this, we randomly connect the in and out stubs, thus getting the multi-set of multi-edges
and the first-order topolgy. Notice that the multi-edges created in this step also yields
the higher-order nodes, and that the multi-edge frequencies correspond to their in- and
out-weighted degrees.
In the second part, an iterative process creates higher-order edges. First, an out-stub
(⟨v0v1 . . . vk−1⟩, · ) is sampled proportional to its weighted out-degree. Subsequently, a set
P of potential in-stubs ( · , ⟨v1 . . . vk−1vk⟩) is identified, ensuring valid connections between
higher-order nodes by applying the de Bruijn condition that requires the last k − 1 elements
of (⟨v0v1 . . . vk−1⟩, · ) to match the first k − 1 elements of ( · , ⟨v1 . . . vk−1vk⟩). The sampling
process for successor in-stubs from P is biased based on the classes of the first-order nodes v0,
v1 . . . vk−1, and vk. Specifically, counts are artificially inflated by the bias parameter for in-
stubs where all k nodes belong to the same class, encoding the desired pattern of preferential
attachment. The selected out-stub (⟨v0v1 . . . vk−1⟩, · ) and in-stub ( · , ⟨v1 . . . vk−1vk⟩) form a
higher-order edge (⟨v0v1 . . . vk−1⟩, ⟨v1 . . . vk−1vk⟩) in the final network. This iterative process
continues until all stubs are connected, resulting in paths of length k that predominantly
connect nodes within the same class, with the degree of class-assortativity controlled by the
bias parameter.

Figure 4: This figure presents the sampling procedure for the synthetic path data. It consists
of five steps (left to right): (1) sampling of first-order nodes (uniform distribution) from
a set with two classes (blue and orange); (2) combining the sampled nodes into second
order nodes; (3) sampling out-connection candidates from the set of second-order nodes (e.g.,
(⟨A, A⟩, · ) highlighted in green). (4) sampling in-connections for every out-stub we sample a
valid in-stub (e.g., from (⟨A, A⟩, · ): ( · , ⟨A, C⟩) or ( · , ⟨A, A⟩) – highlighted in grey). Valid
in-stubs whose nodes belong to the same group have a 5% increased probability of being
sampled (( · , ⟨A, A⟩) gets the bonus while ( · , ⟨A, C⟩) does not). (5) the edges are saved as
paths (⟨A, A, A⟩).

I.1 Synthetic Data Characteristics

We use two synthetic data sets with n = 222 paths. The paths emit first and second-order
graphs with heterogeneous edge statistics. Figure 5 presents the the edge statistics for the
synthetic data sets. For the given resolution, the graph for the synthetic data set with
implanted pattern looks identical to the one without pattern due to the construction through
the reused expected first-order statistics that defines the Ξ-matrix for the second-order
statistics and a sufficient small bias parameter during sampling. However, the emitted edge
frequencies vary between the emitted graphs due to the random sampling procedure.
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(a) First-order edge statistics. They are equal for both the Weighted and the Unweighted
data set. The differences are not observable by comparing them with the expected first-order
edge statistics. The heterogeneous distribution is clearly visible.

(b) Second-order edge statistics. The frequencies in the Weighted and Unweighted data sets
differ but it is not visible due to the heterogeneous distribution. They also differ from the
expected frequencies. We also distinguish between paths connecting same class nodes and
different class nodes. Here it becomes clear that the mere frequencies – that are skewed –
are not enough to distinguish between both cases.

Figure 5: Edge frequencies of the emitted graphs for the synthetic data sets. The plots
show that due to the heterogeneous distribution overrepresented paths do not become visible.
Figure 6 gives a zoomed in view to show the differences exploited by HYPA-DBGNN.
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Figure 6 presents the absolute difference of the first- and second-order edge frequencies
between the two data sets. Notable, all edges whose incident nodes are predominantly
connected are sampled more often due to the bias parameter. This class-assortativity needs
to be learned by the machine learning model.

Figure 6: This plot presents the absolute difference of the second-order edge frequencies of
the Weighted and Unweighted data set. Due to the random sampling there are edges that
have a higher frequency in on or the other data set. This trend increases with for edges that
have more candidates in the urn. The edges that represent paths connecting nodes from the
same class are mostly more often sampled and thus overrepresented in the Weighted data set.
However, compared to the absolute frequencies in Figure 5 the deviations are minor such
that edges with low frequencies can be overrepresented. HYPA-DBGNN learns this pattern.

The comparison in Figure 7 of the frequencies with the the expected frequencies given by
the Ξ-matrix supports the differences between the two synthetic data sets and highlights the
encoded class-assortativity in the data set with the biased sampling.

(a) Relative frequency dif-
ference of the same second-
order paths between the
Unweighted Sampling and
Weighted Sampling data.
Paths connecting same class
nodes on average have a
higher frequency in the
Weighted Sampling data set.
This is consistent with Fig-
ure 6.

(b) Relative frequency dif-
ference of the same second-
order paths between the Un-
weighted Sampling data and
the expected path frequen-
cies. Here, no bias parame-
ter is applied. Thus, the fre-
quencies of paths connect-
ing same class nodes are
vary as much from the ex-
pected frequencies than the
other paths.

(c) Relative frequency dif-
ference of the same second-
order paths between the
Weighted Sampling data and
the expected path frequen-
cies. An increased bias pa-
rameter is applied. Thus,
the frequencies of paths
connecting the same class
nodes appear more often
with respect to the expected
frequencies than the other
paths.

Figure 7: Box plots showing how the distribution of second-order path frequencies vary in
comparison between the two synthetic data sets and in comparison to the expected path
frequencies. Only in the Weighted Sampling data set, the paths connecting same class nodes
appear more often than the remaining paths.
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Table 6: Comparison of our architectures (HYPA-DBGNN, HYPA-DBGNN−, HYPA-
DBGNNE , HYPA-DBGNNZ) with different machine learning models. The balanced accuracy
is given in Table 1, Table 2 and Table 3. The results are obtained as described in Section 5.
The best results are marked.

Data Set Model F1-score-macro Precision-macro Recall-macro
Highschool2011 EVO 39.51 ± 11.50 39.38 ± 19.64 43.68 ± 10.91

HONEM 57.54 ± 11.52 58.19 ± 13.09 59.00 ± 10.61

DeepWalk 53.70 ± 18.55 53.47 ± 19.61 54.64 ± 17.70

Node2Vec 53.70 ± 18.55 53.47 ± 19.61 54.64 ± 17.70

GCN 48.55 ± 15.49 49.45 ± 18.52 55.00 ± 13.37

LGNN 52.66 ± 14.71 53.57 ± 15.97 57.72 ± 9.85

DBGNN 57.08 ± 11.35 61.78 ± 10.75 61.54 ± 11.13

TGN 57.32 ± 9.84 59.56 ± 10.59 61.52 ± 11.25

HYPA-DBGNN 59.60 ± 15.04 62.55 ± 14.38 63.25 ± 16.18

HYPA-DBGNN− 55.92 ± 17.41 56.85 ± 16.26 57.67 ± 17.16

HYPA-DBGNNE 57.30 ± 15.77 63.29 ± 14.85 61.54 ± 13.62

HYPA-DBGNNZ 49.63 ± 17.56 52.23 ± 19.82 53.97 ± 17.59

Highschool2012 EVO 46.83 ± 9.44 47.97 ± 18.15 50.05 ± 7.30

HONEM 50.58 ± 9.49 53.89 ± 15.27 50.49 ± 9.31

DeepWalk 48.79 ± 13.02 49.75 ± 13.77 49.65 ± 12.97

Node2Vec 48.79 ± 13.02 49.75 ± 13.77 49.65 ± 12.97

GCN 54.53 ± 10.82 56.94 ± 12.00 59.35 ± 11.13

LGNN 45.32 ± 16.88 51.43 ± 14.63 51.43 ± 17.94

DBGNN 60.22 ± 13.73 63.18 ± 12.57 64.93 ± 15.26

TGN 38.32 ± 5.37 35.86 ± 5.36 41.52 ± 6.19

HYPA-DBGNN 60.58 ± 12.12 66.23 ± 13.01 66.41 ± 10.24

HYPA-DBGNN− 61.26 ± 16.13 64.37 ± 15.44 64.49 ± 15.27

HYPA-DBGNNE 61.53 ± 17.30 64.22 ± 15.56 64.94 ± 17.71

HYPA-DBGNNZ 56.00 ± 15.24 58.46 ± 14.32 59.63 ± 15.74

Hospital EVO 20.05 ± 6.64 19.12 ± 9.20 25.00 ± 7.86

HONEM 34.88 ± 18.22 36.88 ± 23.53 37.50 ± 17.35

DeepWalk 20.00 ± 9.53 18.76 ± 9.68 23.89 ± 10.91

Node2Vec 20.00 ± 9.53 18.76 ± 9.68 23.89 ± 10.91

GCN 37.38 ± 8.67 33.83 ± 8.00 43.47 ± 9.03

LGNN 35.81 ± 8.96 32.75 ± 10.64 44.03 ± 9.03

DBGNN 47.87 ± 20.02 48.21 ± 21.79 51.67 ± 20.34

TGN 46.50 ± 13.60 50.83 ± 8.89 49.16 ± 16.95

HYPA-DBGNN 71.80 ± 19.18 71.50 ± 20.95 74.31 ± 17.45

HYPA-DBGNN− 51.91 ± 20.77 50.83 ± 22.33 55.00 ± 20.49

HYPA-DBGNNE 52.08 ± 13.10 52.25 ± 13.41 59.03 ± 12.72

HYPA-DBGNNZ 65.66 ± 13.39 66.79 ± 16.20 69.31 ± 11.74

StudentSMS EVO 54.62 ± 7.73 55.63 ± 9.53 55.05 ± 6.39

HONEM 52.46 ± 9.71 55.65 ± 14.29 53.81 ± 7.28

DeepWalk 52.08 ± 7.19 53.18 ± 7.61 52.78 ± 7.83

Node2Vec 51.87 ± 7.39 52.13 ± 6.90 52.31 ± 7.70

GCN 53.85 ± 6.39 54.39 ± 6.27 54.50 ± 6.40

LGNN 46.79 ± 5.27 52.70 ± 6.07 52.71 ± 6.63

DBGNN 56.87 ± 5.05 58.55 ± 5.58 57.72 ± 5.29

TGN 48.98 ± 4.50 50.71 ± 3.10 50.67 ± 4.10

HYPA-DBGNN 60.47 ± 6.68 61.40 ± 7.00 60.66 ± 6.11

HYPA-DBGNN− 54.58 ± 9.12 55.66 ± 8.88 56.23 ± 10.41

HYPA-DBGNNE 59.31 ± 9.08 59.97 ± 9.24 60.46 ± 9.42

HYPA-DBGNNZ 52.60 ± 6.74 54.24 ± 9.03 53.45 ± 7.50

Workplace2016 EVO 22.74 ± 12.34 21.84 ± 14.18 26.50 ± 12.08

HONEM 77.75 ± 11.70 79.53 ± 13.50 79.46 ± 10.32

DeepWalk 17.23 ± 8.77 16.30 ± 9.42 20.54 ± 9.51

Node2Vec 17.23 ± 8.77 16.30 ± 9.42 20.54 ± 9.51

GCN 68.56 ± 14.78 66.21 ± 16.88 73.33 ± 12.60

LGNN 82.96 ± 15.65 84.32 ± 15.04 84.83 ± 14.77

DBGNN 81.16 ± 19.16 81.33 ± 20.14 84.42 ± 15.59

TGN 78.71 ± 20.32 79.95 ± 22.21 80.16 ± 18.71

HYPA-DBGNN 85.82 ± 12.23 85.42 ± 13.75 88.29 ± 10.51

HYPA-DBGNN− 82.75 ± 14.26 83.25 ± 15.21 84.71 ± 13.66

HYPA-DBGNNE 86.47 ± 16.28 86.00 ± 17.36 88.50 ± 13.57

HYPA-DBGNNZ 87.67 ± 11.99 88.83 ± 13.10 88.42 ± 10.88
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