
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Inference of Sequential Patterns for Neural
Message Passing in Temporal Graphs

Anonymous authors
Paper under double-blind review

Abstract

The modelling of temporal patterns in dynamic graphs is an important
current research issue in the development of time-aware Graph Neural
Networks (GNNs). However, whether or not a specific sequence of events
in a temporal graph constitutes a temporal pattern not only depends on
the frequency of its occurrence. We must also consider whether it deviates
from what is expected in a temporal graph where timestamps are randomly
shuffled. While accounting for such a random baseline is important to
model temporal patterns, it has mostly been ignored by current temporal
graph neural networks. To address this issue we propose HYPA-DBGNN,
a novel two-step approach that combines (i) the inference of anomalous
sequential patterns in time series data on graphs based on a statistically
principled null model, with (ii) a neural message passing approach that
utilizes a higher-order De Bruijn graph whose edges capture overrepresented
sequential patterns. Our method leverages hypergeometric graph ensembles
to identify anomalous edges within both first- and higher-order De Bruijn
graphs, which encode the temporal ordering of events. Consequently, the
model introduces an inductive bias that enhances model interpretability.
We evaluate our approach for static node classification using established
benchmark datasets and a synthetic dataset that showcases its ability to in-
corporate the observed inductive bias regarding over- and under-represented
temporal edges. Furthermore, we demonstrate the framework’s effectiveness
in detecting similar patterns within empirical datasets, resulting in superior
performance compared to baseline methods in node classification tasks. To
the best of our knowledge, our work is the first to introduce statistically
informed GNNs that leverage temporal and causal sequence anomalies.
HYPA-DBGNN represents a promising path for bridging the gap between
statistical graph inference and neural graph representation learning, with
potential applications to static GNNs.

1 Introduction

Graphs are powerful representations of complex data. Not surprisingly, there is a growing
collection of successful methods for learning on graphs (Kipf & Welling, 2017; Veličković
et al., 2018; Hamilton et al., 2018). These methods are versatile and are widely used in
bioinformatics (Zhang et al., 2021), social sciences (Phan et al., 2023), and pharmacy (Stokes
et al., 2020). While many methods assume a static graph, real-world scenarios often
involve dynamic systems, such as evolving interactions in social networks. Although known
techniques for static graphs can be applied to dynamic graphs (Liben-Nowell & Kleinberg,
2007), important patterns may be missed (Xu et al., 2020). Recently, several approaches have
incorporated temporal dynamics to obtain time-aware graph neural networks. These methods
are applied to different tasks such as static node classification (Qarkaxhija et al., 2022), link
prediction or continuous node property prediction (Rossi et al., 2020). In this work, we
focus on static node classification for graphs where patterns are encoded in the temporal
order of edge activation. The key idea is that this temporal order crucially influences the
role of nodes, which can be leveraged for static node classification. As an example, in a
network of interactions between employees in a company, the specific temporal order in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which actors interact with their peers may depend on their role. Hence, two actors that are
indistinguishable based on the static topology may still exhibit different temporal interaction
patterns.
A common theme between static and temporal GNNs is that the observed graphs are
usually directly used for message passing. Recently data augmentation techniques have been
proposed to improve the generalizability of GNNs. Such data augmentation techniques have
been considered for a variety of reasons such as to reduce oversquashing (Topping et al.,
2021), improve class homophily for node classification (Liu et al., 2022), foster diffusion
(Zhao et al., 2021a), or include non-dyadic relation-ships (Qarkaxhija et al., 2022). Another
motivation that has recently been highlighted by Zhao et al. (2021c) is the presence of noise
in empirically observed graphs. This motivates augmentation techniques for GNNs that
ideally prune spuriously observed edges, while adding erroneously unobserved edges.
However, addressing noise in observed graphs arguably requires graph correction methods
accounting for a “random baseline” that allows to distinguish significant patterns from
noise, rather than augmentation methods that are based on heuristics or adjust the graph
based on ground truth node classes. Moreover, the application of GNNs to temporal graphs
introduces unique challenges for data augmentation as we typically want to focus on temporal
patterns that are due to the time-ordered sequence of events. To the best of our knowledge,
no existing works have considered graph correction methods that combine a statistically
principled inference of sequential patterns with temporal GNNs.
Addressing this research gap, in this work we propose HYPA-DBGNN, a novel two-step
approach for temporal graph learning: In a first step we infer anomalous sequential patterns
in time series data on graphs based on a statistical ensemble of temporal graphs, i.e. a null
model of random graphs that preserves the frequency of time-stamped edges but randomizes
the temporal ordering in which those edges occur. Building on the HYPA framework
(LaRock et al., 2020), our method leverages hypergeometric graph ensembles. This allows us
to analytically calculate expected frequencies of node sequences on time-respecting paths,
which is the basis to identify anomalous sequential patterns in temporal graphs. Consider
the interaction sequence ⟨AXC⟩ in Figure 1. Compared to the other observed sequences, it
has a low frequency and thus it would have a low impact in the computations of a standard
GNN. However, accounting for the frequencies of its sub-sequences reveals that it occurred
more often than expected, i.e., it is overrepresented. Discarding this information can over-
or underplay the role of an interaction, thus negatively affecting results. Therefore, in the
second step of our approach, we apply neural message passing on an augmented higher-order
De Bruijn graph, whose edges capture overrepresented sequential patterns in a temporal
graph. This introduces an inductive bias that emphasizes sequential patterns over mere edge
frequencies. The contributions of our work are as follows:

(i) We propose a novel approach to augment message passing based on a statistical
null model. This allows us to infer which temporal sequences in a time-stamped
interaction sequence are over- or under-represented compared to a random baseline
temporal graph in which the frequency of edges are preserved while their temporal
ordering is shuffled.

(ii) Building on this statistical inference approach, we propose HYPA-DBGNN, a time-
aware temporal graph neural network architecture that specifically captures temporal
patterns that deviate from a random baseline.

(iii) We demonstrate our approach in synthetic temporal graphs sampled from a model
that generates heterogeneously distributed temporal sequences of events in such a way
that node classes are associated with the over- or underrepresentation of temporal
events compared to random temporal orderings rather than mere frequencies.

(iv) We demonstrate the practical relevance of our method by evaluating node classifi-
cation in five empirical temporal graphs capturing time-stamped proximity events
between humans. A comparison of HYPA-DBGNN with standard De Bruijn Graph
Neural Networks without our HYPA-based inference reveals that our approach yields
an improved accuracy in all five data sets. Moreover, a comparison to seven baseline
techniques shows that our method yields the best performance in all empirical data.

(v) We finally show that the distribution of HYPA scores in the augmented message
passing graph, which captures the degree to which frequencies of temporal sequences

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

deviate from a random baseline, enables us to explain why HYPA-DBGNN yields
larger performance improvements on some data sets compared to others.

Different from prior works, we propose a statistically principled data augmentation for
temporal graph neural networks that uses a statistical ensemble of temporal graphs with a
given weighted topology. Besides improving temporal GNNs, we further argue the general
approach of utilizing well-known statistical ensembles of graphs from network science for
graph correction could help to improve the performance of GNNs in data affected by noise.

Figure 1: Inference procedure leading to the dynamic graph used for neural message passing.
(a) Example of sequence data adapted from LaRock et al. (2020). (b) First- (blue) and
higher-order (orange) De Bruijn graphs encoding temporal ordered time-stamped edges are
compared to random graph ensemble null model with shuffled time-stamped k-1-order edges.
(c) The graphs are corrected by introducing a statistical-principled bias that revalues all
edges (w⟨AXC⟩ ≈ w⟨BXD⟩ > w⟨BXC⟩) and removes under-represented edges, i.e. edges that
appear with a high probability less than expected (⟨AXD⟩). (d) The multi-order graph
neural network is trained respecting the inferred graphs.

2 Related Work

Data augmentation for graphs has been explored from various directions with the goal of
allowing machine learning models to better generalize and attend to signal over noise (Zhao
et al., 2022). Many methods have utilized heuristic graph modification strategies like randomly
removing nodes (Feng et al., 2020), edges (Rong et al., 2019), or subgraphs (Wang et al., 2020;
You et al., 2020) to improve performance and generalizability. Other works have considered
adding virtual nodes (Pham et al., 2017; Hwang et al., 2021) or rewiring the network topology,
which also addresses oversquashing (Topping et al., 2021; Barbero et al., 2023), with graph
transformers operating on a fully connected topology representing an extreme case (Mialon
et al., 2021; Ying et al., 2021; Kreuzer et al., 2021). Additionally, it has been shown that
using graph diffusion convolutions instead of raw neighborhoods alleviates problems from
noisy and arbitrarily defined edges in real-world graphs (Gasteiger et al., 2019). Network data
augmentation has also been explored by going beyond pairwise connections, either through
mediating node interactions via subgraphs (Monti et al., 2018; Bevilacqua et al., 2021; Zhao
et al., 2021b; Cotta et al., 2021) or by utilizing higher-order graphs. Examples of higher-order
approaches include simplicial networks (Bodnar et al., 2021b), cellular complexes (Bodnar
et al., 2021a; Hajij et al., 2022), hypergraphs (Huang & Yang, 2021; Chien et al., 2021;
Georgiev et al., 2022), and time-respecting node sequences (Qarkaxhija et al., 2022). Another
area of research focused on learning the graph augmentations from the data. One approach
is to perform graph augmentation as a preprocessing step, completely separate from the
downstream task, where the graph structure is cleaned before being used as input to the
GNN (Jin et al., 2020; Zhao et al., 2021c). Other works embed the augmentation strategy
into an end-to-end differentiable pipeline, jointly learning the optimal graph representation
and the downstream task (Jiang et al., 2019; Lu et al., 2024; Franceschi et al., 2019; Fatemi
et al., 2021; Kazi et al., 2022).
As our work addresses temporal graph data, it is related to the field of temporal GNNs.
Temporal GNNs have been developed for both discrete- and continuous-time settings (Longa
et al., 2023). Discrete-time approaches segment the temporal data into time windows (Liben-
Nowell & Kleinberg, 2007; Sankar et al., 2020; Hajiramezanali et al., 2019), thus aggregating
interactions and losing information on time-respecting paths within those time windows. In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

contrast to the discrete-time setting, continuous-time approaches produce time-evolving node
embeddings, focusing on the temporal variability of network activity at different time points,
rather than on the patterns occurring across temporally-ordered interaction sequences (Xu
et al., 2020; Rossi et al., 2020; Kumar et al., 2019). These methods are commonly evaluated
based on the prediction of dynamically changing node labels, which differs from the prediction
of static node labels with sequential information that we consider in our work. The work
most similar to our perspective is DBGNN (Qarkaxhija et al., 2022), which learns from
sequential correlations in high-resolution timestamped data. Our approach diverges from
DBGNN by considering a more nuanced notion of the relevance of time-respecting paths
that involves structural changes to the graph. Rather than relying on the raw frequency
of interactions, HYPA-DBGNN uses a statistically grounded anomaly score. This score
quantifies the over- and under-expression of time-respecting paths, making the model less
susceptible to noise while basing contribution of paths on their statistical significance.

3 Background

A graph G = (V, E) is defined as a set of nodes V representing the elements of the system, and
a set of edges E ⊆ V ×V representing their direct connections. However, it is often important
to consider how nodes influence one another through a path, which is an ordered sequence
(v0, v1, . . . , vl) of nodes vi ∈ V . In a path, all node transitions must correspond to edges in the
graph, i.e., ei = (vi, vi+1) ∈ E; ∀i ∈ [0, l − 1]. Paths are often inferred from edges based on a
transitivity assumption. This assumption states that if there is an edge (v0, v1) with transition
probability α, and an edge (v1, v2) with transition probability β, then the path (v0, v1, v2)
will be observed with probability α · β. In other words, the transitions are considered to be
independent. The transitivity assumption simplifies the modeling of a path by expressing
its probability as the product of the individual edge transition probabilities. However, this
assumption often fails in temporal networks Gt = (V, Et), where Et ⊆ V × V × N as edges
have timestamps. In temporal networks, the ordering of edges can play an important role in
determining the likelihood of observing certain paths. A time-respecting path is defined as a
sequence of edges ((v0, v1, t1), . . . , (vi, vi+1, ti+1), . . . , (vl−1, vl, tl)) that ∀i ∈ [0, l − 1] respects
two conditions: (i) transitions respect the order of time ti > ti−1, and (ii) ti−ti−1 ≤ δ, where δ
is a parameter controlling the maximum time distance for considering interactions temporally
adjacent. Therefore, different from what we would get by discarding time and using the
transitivity assumption, the two edges (v, w, t1) and (u, v, t2) form a time-respecting path
only if t2 > t1. To capture time-respecting sequential patterns, higher-order De Bruijn graphs
model the probabilities of path sequences explicitly. These models construct a representation
that respects the topology of the original graph and the frequencies of observed paths
of a given length k. Specifically, a higher-order network of the k-th order is defined as
an ordered pair G(k) = (V (k), E(k)), where V (k) ⊆ V k are the higher-order vertices, and
E(k) ⊆ V (k) × V (k) are the higher-order edges. V k contains all k-th order vertices that exists
as paths in the first-order graph G whereas V (k) contains the subset of k-th order vertices
that exist as path in the observed data. Each higher-order vertex v =: ⟨v0v1 . . . vk−1⟩ ∈ V (k)

is an ordered tuple of k vertices vi ∈ V from the original graph. The higher-order edges
connect higher-order nodes that overlap in exactly k − 1 vertices, similar to the construction
of high-dimensional De Bruijn graphs (De Bruijn, 1946). The weights of the higher-order
edges in G(k) represent the frequency of paths of length k in the original graph. Specifically,
the weight of the edge (⟨v0 . . . vk−2⟩, ⟨v1 . . . vk−1⟩) counts how often the path ⟨v0 . . . vk−1⟩ of
length k occurs. By explicitly modeling the probabilities of these higher-order path sequences,
the higher-order network representation can capture patterns and dependencies that may be
missed when relying on the transitivity assumption (Scholtes, 2017).

Detection of Path Anomalies Defining anomalies requires a reference base. In our case,
the transitivity assumption provides the null model that serves as this baseline. Anomalies
occur in sequences that deviate from this baseline, likely due to correlations and interdepen-
dencies not captured by the transitivity assumption. First, we discuss how the hypergeometric
ensemble allows testing for anomalous edge frequencies based on node activity, i.e., their in-
and out-degrees. Building on this, we then outline how this methodology is extended to test
if the frequencies of paths of length k are anomalous given those of paths of length k − 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Configuration models (Molloy & Reed, 1995) provide randomization methods for graphs
that shuffle edges while preserving vertex degrees. In a nutshell, first, they disassemble
the graph, leaving nodes with in- an out-stubs. Then, a new network is reassembled
by connecting pairs of in- and out- are picked with equal probability. This procedure is
algorithmically straightforward but can be computationally expensive. To address this,
Casiraghi & Nanumyan (2021) contributed a closed-form expression for the soft configuration
model, which fixes the expected vertex degrees rather than the exact degree sequence. In
their formulation, the sampling of edges is equated to sampling from an urn. The authors
introduce a combinatorial matrix Ξ ∈ Nn × Nn, where Ξij = dout

i · din
j encodes the product

of the out-degree of node i and the in-degree of node j in the original graph G. The total
number of possible edge placements is then M =

∑
ij Ξij . A network is sampled from this

ensemble by drawing m =
∑

i dout
i =

∑
i din

i edges without replacement from the M possible
edge placements. The probability of observing Aij edges between nodes i and j is then given
by the hypergeometric distribution: P (Aij) =

(
M
m

)−1(Ξij

Aij

)(
M−Ξij

m−Aij

)
. Having this probability

mass function, we can use the equation above to quantify the anomalousness of the frequency
of an edge. This closed-form expression and the sampling process that generates it provides
a principled null model that preserves the expected degree sequence, which will be crucial
for our subsequent analysis of anomalous path patterns in the network.
Our concept of path anomalies, introduced by LaRock et al. (2020), provides a statistical
framework for identifying paths through a graph that are traversed with anomalous fre-
quencies. The key idea is to define a null model of order k − 1 that captures the expected
frequencies of paths of length k, and then identify paths that deviate significantly from this
null model. To construct the null model, one must establish a statistical ensemble of k-th
order De Bruijn graphs. The starting point is the hypergeometric ensemble outlined in the
previous paragraph, which preserves the total in- and out-degrees of nodes while shuffling
the edge weights. For a De Bruijn graph of order k, the nodes’ degrees are determined by the
frequencies of paths of length k − 1, i.e., by the edge frequencies of De Bruijn graph of order
k − 1. A hypergeometric ensemble of the De Bruijn graph presents one additional difficulty.
Specifically, an edge between two k-th order nodes is valid only if their path representations
overlap in k − 1 first-order nodes. This implies that some of the Ξ matrix entries represent
invalid paths. HYPA handles this by zeroing out impossible entries and redistributing their
values through an optimization procedure, as detailed in the original work.

4 HYPA De Bruijn Graph Neural Network Architecture

We now introduce the HYPA-DBGNN architecture 1 that relies on statistical-principled
graph augmentation. The temporal dynamics of the sequential patterns are encoded in first-
and higher-order De Bruijn graphs. Graph corrections are inferred that include anomaly
statistics in the graph topology. We then present a multi-order augmented message passing
scheme that relies on the inferred graphs with induced bias. Although we adapt the message
passing procedure of Graph Convolution Networks (GCN) from Kipf & Welling (2017), our
architecture is generalizable to other message passing schemes due to the selective additions.

Statistical-Principled Graph Augmentation As outlined before, the k-th-order De
Bruijn graphs capture the observed frequencies of the k-th-order sequences through the edges
between k-th-order nodes. This potentially biased representation yields the foundation for
hypergeometric ensembles whose edge frequencies are induced by the (k-1)-th-order sub-
sequences. The HYPA score (LaRock et al., 2020), defined as HY PA(k)(u, v) = Pr(Xuv ≤
f(u, v)), uses these to describe how probable an observed edge has a higher frequency than
in any random realization. A large HYPA score encodes edges that are observed more than
expected whereas a HYPA score approaching zero describes edges that are observed less
than expected. Leveraging the HYPA scores as adjacency matrix A

(k)
uv = HY PA(k)(u, v)

leads to corrected graphs where the weights of underrepresented edges are reduced and the
weights of overrepresented edges are scaled based on the expected value. To improve the
scalability of our approach we preserve the sparsity of the observed higher-order graph by

1A reference implementation, data sets and benchmarks are given at [blinded].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

not including HYPA scores of unobserved edges while adding HYPA scores of observed edges
as edge attributes.

Message Passing for Higher-Order De Bruijn Graphs with Induced Bias For
layer l, we define the update rule of the message passing as

h⃗k,l
v = σ

Wk,l
∑

{u∈V (k):(u,v)∈E(k)}∪{v}

HY PA(k)(u, v) · h⃗k,l−1
u√

H(v) · H(u)

 , (1)

with the previous hidden representation h⃗k,l−1
u of node u ∈ V (k), the inferred HYPA score

HY PA(k)(u, v) of the given edge (u, v) ∈ E(k) (capturing the induced bias), the trainable
weight matrices Wk,l ∈ RHl×Hl−1 , the normalization factor based on the HYPA score
sum of incoming edges H(v) :=

∑
{u∈V (k):(u,v)∈E(k)}∪{v} HY PA(k)(u, v), and the non-linear

activation function σ, here ReLU. We want to highlight that integrating the inferred scores
is a major technical challenge with room for further studies. We compare different variants
in Appendix A and Appendix B.
Depending on order k, the message passing for different higher order graphs is based on
different higher order node sets V (k) whose nodes v have their own hidden representations
h⃗k,l

v for every layer l. An initial feature encoding is only provided for the first order (k = 1) as
h⃗1,0

v . To transfer the features to higher-order nodes and to merge the hidden representations,
we introduce two bipartite mappings.

The initial first-order feature set h⃗1,0
u is mapped to the higher-order node representations

h⃗k,1
v using the bipartite graph Gb0 =

(
V (k) ∪ V, Eb0 ⊆ V ×V (k)) with euv ∈ Eb0 if v =

(v0, . . . , vk−1) ∈ V (k) and v0 = u in analogy to interpreting message passing layers as
higher-order Markov chains. This advancement enables the propagation of features to the
higher-order graph. Multiple first-order representations are aggregated using the function F
(in our case MEAN) and transformed with the learnable weight matrix Wb0 ∈ RH1,0×Hk,0

to the higher-order feature space.

h⃗k,1
v = σ

(
Wb0F

({
h⃗1,0

u : for u ∈ V (1) with (u, v) ∈ Eb0
}))

(2)

The second mapping is defined as by Qarkaxhija et al. (2022). It is the counterpart to the first
bipartite layer. Here, the higher-order node representations are summed with the first-order
node representations (requiring matching representation dimensions F g = H l) if the last
path entry uk−1 of the higher-order node u = (u0, . . . , uk−1) ∈ V (k) equals the first-order
node v = uk−1. The bipartite graph is given as Gb =

(
V (k) ∪ V, Eb ⊆ V (k) × V

)
and leads

to a first-order node representation h⃗b
v with v ∈ V and the learnable matrix Wb ∈ RF g×Hl .

h⃗b
v = σ

(
WbF

({
h⃗k,l

u + h⃗1,g
v : for u ∈ V (k) with (u, v) ∈ Eb

}))
(3)

In Figure 1 we show an overview of the inference process and the proposed neural network
architecture for the first- and second-order graph. Moreover, Appendix C contains a more
detailed visualization of the architecture. We rely on a one-hot encoding as first-order feature
set. The fist bipartite layer transfers this to the higher-order nodes. The neural network
performs multiple message passing steps independently for the two given graph topologies.
The number of message passing rounds and the dimensions of layers may vary in the two
parts. After performing the message passing in parallel and merging the features with the
second bipartite layer a final classification layer is applied. The model architecture allows to
include node and edge features due to the underlying GCN. The computational complexity
of HYPA-DBGNN is upper-bounded by the complexity of the baseline DBGNN due to the
edges removed in graph correction.
For a more detailed discussion on the computational complexity we refer the reader to
Appendix D. We note that the computational complexity is not a limiting factor for our
approach. This is supported by the event count 223 in the synthetic data set that is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

comparable to the events in small to medium size TGB data sets Huang et al. (2023) or to
the edge counts in corresponding non-temporal graphs in OGB data sets (Hu et al., 2020).
We also report the overall needed training resources (Appendix E) for the used data sets
together with their properties (Appendix F).

5 Experimental Evaluation

We compare our architecture with graph representation learning methods (EVO (Belth
et al., 2020), HONEM (Saebi et al., 2020), DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover & Leskovec, 2016)) and deep graph learning methods (GCN (Kipf &
Welling, 2017), LGNN (Chen et al., 2020) and DBGNN (Qarkaxhija et al., 2022)). Finally,
we also consider the state of the art dynamic node prediction method TGN (Rossi et al.,
2020). This method was developed for predicting changes of nodes labels over time, and
not for the prediction of static node labels that depend on the sequences of interactions.
Therefore, we adapt the original training procedure to fit the static task as outlined in
Appendix G. For the representation learning models Node2Vec and EVO we adhere to
the original configurations, i.e. we use an embedding size of d = 128 and a random walk
length of l = 80, repeated r = 10 times. As context size we use k = 10. For Node2Vec we
select the return parameter (p) and the in-out parameter (q) from the set 0.25, 0.5, 1, 2, 4.
The deep learning models (GCN, LGNN, DBGNN, and our proposed model) consist of
three layers. Following the approach of Qarkaxhija et al. (2022), we set the size of the
last layer to h2 = 16, while the sizes of the preceding layers are determined during model
selection. The study range for h0 and h1 encompasses 4, 8, 16, 32 over a maximum of 5000
epochs as per Qarkaxhija et al. (2022). The higher-order path length is fixed to k = 2 for
HYPA-DBGNN and DBGNN because it is shown as optimal by Qarkaxhija et al. (2022) for
the given data sets. Stochastic Gradient Descent (SGD) serves as our optimization function,
with the learning rate set to 0.001, which showed the best performances. We use dropout
regularization with a dropout rate of 0.4 to mitigate overfitting and we incorporate class
weights in the loss function to address imbalanced training datasets.
To compare various Graph Neural Network (GNN) architectures, we adopt a conventional
approach as documented in literature (Errica et al., 2019; Morris et al., 2020; James et al.,
2013). For the assessment of model generalizability, we employ a nested cross-validation
strategy with N = 10 repetitions. The data undergoes stratified partitioning into nine
training and one testing fold, further divided into stratified training and validation subsets
(80/20%) within each repetition. Subsequently, we select the best-performing model and
epoch based on its validation set performance. Finally, we evaluate the chosen model’s
performance on the test set, reporting the mean and standard deviation of the respective
metric across all N repetitions. For comparability, we use the same folds and splits for
all experiments. Besides the random splits, the random initialization of the model also
contributes to the variability captured by the standard deviation. For reproducibility, we fix
the random splits and reuse a common seed in every repetition for the random initialization
of model weights and dropout candidates.
We additionally perform two ablation studies to investigate different aspects of our method.
First, Appendix H shows the contribution of both parts of the novel combination of statistically
inference with machine learning by disabling the individual components of our architecture.
Second, finding a suitable way of integrating the statistical inferred information is a key
technical challenge with potential for further work. In Appendix A we present different
integrations based on the Z-score for even more efficiency and numerical stability and a
pruning-based approach. However, the approach we evaluate in the following leads to the
best performance, as shown in Appendix B.

5.1 Experimental Results for Synthetic Data Sets

We use synthetic data with two classes of nodes C = {A, B} to demonstrate the type of
patterns that only our model can learn. The characteristic properties and its derivation
of the configuration model are detailed in Appendix I. Importantly, it contains a hetero-
geneous sequence (e.g. ⟨v0, v1, v2⟩f) distribution of time-stamped edges or events (here:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(v0, v1)t0 , (v1, v2)t1 , t0 < t1) between nodes. The learnable sequential pattern is an increased
class-assortativity, i.e. edges are temporally ordered such that same class events are preferred
followed by each other (e.g. leading to ⟨A, A, A, B⟩). Hence, these higher-order sequences
with nodes from the same group are over-expressed compared to what we would expect by
shuffling the temporal-order of the timestamped-edges between the nodes (e.g. ⟨A, B, A, A⟩).
The pattern is only discernible by higher-order models due to its restriction to higher-order
sequences. For a homogeneous sequence distribution the pattern of overrepresented sequences
would be reflected in the mere frequencies. However, due to the initial heterogeneous
distribution, overrepresented sequences can also have low frequencies (e.g. ⟨A, X, C⟩ in
Figure 1). Thus, they are also unobservable by higher-order baselines only including mere
frequencies like DBGNN. However, the comparison of the observed frequencies with a null
model that preserves the frequency of time stamped-edges but randomizes the temporal
order reveals the sequential pattern.
We use two synthetic data sets with the same distribution of time-stamped edges. Unweighted
Sampling contains sequences with randomized temporal order of time-stamped edges whereas
Weighted Sampling contains sequences with increased class-assortativity. An unintended
correlation between the obtained graph topology and the event classes is not excluded for
both data sets. Weighted Sampling additionally contains the preferential chaining pattern.
The results in Table 1 show the capabilities of the models in terms of accuracy in solving the
respective binary node classification tasks. The different methods yield varying results for
synthetic data set without intended pattern. All representation learning methods with a
horizon of l = 80, except EVO, perform better than the deep graph learning methods with a
smaller horizon of l = 3. Our approach performs as good as DBGNN that shares similarities,
like two distinct message passing modules, in its architecture.
The Weighted Sampling highlights the ability of the methods to learn the intended pattern.
For the second data set GCN performs worse and all other baselines methods perform equal
as for the first one. In contrast, HYPA-DBGNN improves by 55% and reaches an accuracy
of 100%. These observations lead to the result that some of current baselines are able to
learn an unintended pattern in both data sets. However, they fail in learning the implanted
increased class-assortativity pattern whereas HYPA-DBGNN is able to learn this pattern.

Table 1: Comparison of HYPA-DBGNN baselines for the synthetic data sets. The table
presents the balanced accuracy and its standard deviation for the static node classification
task on dynamic graphs as obtained through the outlined experiments. The Unweighted
Sampling data set contains a heterogeneous sequence distribution of time-stamped edges
with shuffled temporal order. The adapted distribution of sequences in Weighted Sampling
encodes a sequential pattern such that time-stamped edges between nodes of the same class
are overrepresented but not necessarily very frequent.

Representation Learning EVO HONEM DeepWalk Node2Vec
Unweighted Sampling 40.00 ± 31.62 80.00 ± 25.82 60.00 ± 21.08 60.00 ± 21.08

Weighted Sampling 40.00 ± 31.62 80.00 ± 25.82 60.00 ± 21.08 60.00 ± 21.08

Deep Graph Learning GCN LGNN DBGNN TGN HYPA-DBGNN
Unweighted Sampling 50.00 ± 33.33 50.00 ± 0.00 45.00 ± 28.38 50.00 ± 0.00 45.00 ± 15.81

Weighted Sampling 45.00 ± 28.38 50.00 ± 0.00 45.00 ± 15.81 50.00 ± 0.00 100.00 ± 0.00

5.2 Experimental Results for Empirical Data Sets

Our experiments leverage the five empirical time series datasets on dynamic graphs from
Qarkaxhija et al. (2022). This work also provides the optimal order of the higher-order
model and the δ value (the maximum time difference for edges to be considered part of
a causal walk) for generating the time respecting paths within each dataset. The data
sets are Highschool2011 and Highschool2012 (Fournet & Barrat, 2014), Hospital (Vanhems
et al., 2013), StudentSMS (Sapiezynski et al., 2019), and Workplace2016 (Génois et al.,
2015). These data sets are in particular relevant due to the following properties: They are

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

continuous-time data sets for static node classification and they include a sufficient large
number of interactions compared to the number of nodes and edges. In our evaluation, we
do not use the datasets from the TGB data sets (Huang et al., 2023) because they focus on
time varying node labels. Our work does not address the prediction of changes of node labels
in time, but the prediction a static node label based on sequential information. This section
addresses the question of how our architecture compares to the described baselines with
respect to the named empirical data sets. The mean balanced accuracy and its standard
deviation is reported in Table 2.
We reproduce the superior results of DBGNN compared to other baselines for all data sets
except Workplace2016 for which LGNN performs better than shown by Qarkaxhija et al.
(2022). The obtained standard deviations are also comparable to the named work. However,
HYPA-DBGNN outperforms all baselines, including DBGNN and TGN. For Highschool2011
and Highschool2012, the gain is smallest with 2.77% and 2.27%, respectively. For StudentSMS
and Workplace2016, the gain is about twice as large at 5.09% and 4.58%, respectively. It is
noteworthy that the baseline results for Workplace2016 are already at least 20% better than
for the other data sets, so the gain of 4.58% is harder to achieve and brings the balanced
accuracy close to the optimum. A remarkable result is the gain of 45.50% for Hospital.
Here, the baselines are the weakest compared to the other data sets, while for our approach
only Workspace2016 is better solvable. Further, HYPA-DBGNN outperforms TGN in all
tested cases. This difference can be explained by the observation that TGN does not use
time-respecting paths that encode relevant patterns but rather accounts for the temporal
evolution of the graph which is more relevant in the dynamic case. All in all, the inclusion
of path anomalies is beneficial for all empirical data sets considered, but the gain depends
on the particular data set. Here, the results for Hospital and Workplace2016 stand out.

Table 2: Comparison of HYPA-DBGNN with node representation learning and deep graph
learning baselines for dynamic graphs. The table presents the balanced accuracy and its
standard deviation for the models on empirical static node classification tasks for dynamic
graphs that is obtained through the outlined experiments. The best results are marked.
Results with additional metrics are attached in Appendix J.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
EVO 43.68 ± 10.91 50.05 ± 7.30 25.83 ± 8.29 55.05 ± 6.39 26.50 ± 12.08

HONEM 59.00 ± 10.61 50.49 ± 9.31 39.44 ± 17.57 53.81 ± 7.28 83.17 ± 11.14

DeepWalk 54.64 ± 17.70 49.65 ± 12.97 24.58 ± 10.92 52.78 ± 7.83 20.54 ± 9.51

Node2Vec 54.64 ± 17.70 49.65 ± 12.97 24.58 ± 10.92 52.31 ± 7.70 20.54 ± 9.51

GCN 55.00 ± 13.37 59.35 ± 11.13 43.47 ± 9.03 54.50 ± 6.40 73.33 ± 12.60

LGNN 57.72 ± 9.85 51.43 ± 17.94 44.03 ± 9.03 52.71 ± 6.63 84.83 ± 14.77

DBGNN 61.54 ± 11.13 64.93 ± 15.26 52.50 ± 19.27 57.72 ± 5.29 84.42 ± 15.59

TGN 61.52 ± 11.25 41.52 ± 6.19 50.27 ± 14.83 50.67 ± 4.10 80.16 ± 18.71

HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

5.3 Comparison of Temporal Sequences in Empirical and Synthetic Data

The synthetic data set encodes a pattern of increased class-assortativity that is learned by
HYPA-DBGNN. Figure 2 shows the deviation from the expected edge frequencies in terms
of HYPA scores for the used data sets regarding the incident nodes, i.e. for each node the
distribution of the average HYPA score of incident edges is plotted. The second-order plot
shows the increased class-assortativity for nodes of class 0 in the Weighted Sampling data set.
The incident second-order edges have on average a larger HYPA score and thus are more
often overrepresented compared to edges incident to nodes of class 1. Due to the statistic
principled inferred graph, HYPA-DBGNN is able to learn this pattern. Also, Hospital and
Workplace2016 emit such under- and overrepresented sequential patterns in both graphs that
are related to distinct node classes. In Hospital second-order edges incident to nodes of class
0 and 1 are overly often overrepresented. However, the first-order edges incident to nodes of
class 0 and 1 differ in its statistics. This observed connection between node classes and the
sequential patterns containing the respective nodes supports the superior performance of
HYPA-DBGNN for Hospital and Workplace2016.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: We plot the average HYPA score of all incident edges for each node and show the
distribution with respect to nodes’ classes. The left plot shows first-order HYPA scores and
the right second-order ones. The synthetic set uses Weighted Sampling. For some data sets,
varying distributions suggest a connection between the HYPA scores and the node classes.

6 Conclusion

In this work, we propose HYPA-DBGNN, a novel deep graph learning architecture that
accounts for time-respecting paths in temporal graph data with high temporal resolution.
Different from existing graph learning methods that employ neural message passing along time-
respecting paths, we introduce a two-step approach which first infers anomalous sequential
patterns based on an analytically tractable null model for time-respecting paths that preserves
both the topology and the frequency, but not the temporal ordering, of time-stamped edges.
In a second step, we apply neural message passing on an augmented higher-order De Bruijn
graph, whose edges capture time-respecting paths that are overrepresented compared to the
expectation from that random baseline. An experimental evaluation of our approach in a
synthetic model and five empirical data sets on temporal graphs reveals that our proposed
method considerably improves node classification compared to eight baseline methods in all
studied data sets, with performance gains ranging from 2.27 % to 45.5 %. An investigation
of HYPA scores – which capture the degree to which time-respecting path statistics deviate
from what is expected in a null model – as well as an ablation study show that the correlation
between node classes and the magnitude of the deviations from the random expectation is
particularly pronounced for those empirical temporal graphs where we also observe the largest
performance gains for our method. This finding highlights that the innovative combination
of statistical inference and neural message passing, which is the key contribution of our work,
leads to considerable advantages for temporal graph learning.
Despite these contributions, our work raises a number of open questions that we did not
address within the scope of this work. First, in order to isolate the influence of sequential
patterns in temporal graphs, here we solely focused on the sequence of time-stamped edges,
thus neglecting additional node attributes and edge features. Future studies building on our
work could thus additionally consider richer node and edge information, which is likely to
further improve the performance of our model. Moreover, the framework of hypergeometric
statistical ensembles allows to include non-homogeneous “edge propensities” based, e.g.,
on a homophily of nodes with similar attributes. This could possibly be used to generate
domain-specific null models leading to a graph learning architecture that includes a non-
trivial inductive bias, which we did not explore in this work. Bridging the gap between the
application of statistical graph ensembles in network science and deep graph learning, we
finally argue that our work opens broader perspectives for the integration of statistical graph
inference, graph augmentation, and neural message passing. In particular, applying our
method to the inference of (first-order) edges in static graphs could be a promising approach
to address the issue that empirical graphs are rarely unspoiled reflections of reality, but
are often subject to measurement errors and noise. The need to combine graph inference
techniques with neural message passing (Ma et al., 2019; Pal et al., 2020; Zhang et al., 2019)
has recently been identified as a major challenge for deep graph learning, and our work can
be seen as a step in this direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Gio-

vanni. Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Caleb Belth, Fahad Kamran, Donna Tjandra, and Danai Koutra. When to remember where
you came from: node representation learning in higher-order networks. In Proceedings of
the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, ASONAM ’19, pp. 222–225, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450368681. doi: 10.1145/3341161.3342911. URL
https://doi.org/10.1145/3341161.3342911.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in
neural information processing systems, 34:2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pp. 1026–1037. PMLR,
2021b.

Giona Casiraghi and Vahan Nanumyan. Configuration models as an urn problem. Scientific
Reports, 11(1), June 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-92519-y. URL
http://dx.doi.org/10.1038/s41598-021-92519-y.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph
neural networks, 2020.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset
function framework for hypergraph neural networks. arXiv preprint arXiv:2106.13264,
2021.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
representations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Nicolaas Govert De Bruijn. A combinatorial problem. Proceedings of the Section of Sciences
of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, 49(7):758–764,
1946.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison
of graph neural networks for graph classification. CoRR, abs/1912.09893, 2019. URL
http://arxiv.org/abs/1912.09893.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves
structure learning for graph neural networks. Advances in Neural Information Processing
Systems, 34:22667–22681, 2021.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised
learning on graphs. Advances in neural information processing systems, 33:22092–22103,
2020.

Julie Fournet and Alain Barrat. Contact patterns among high school students. PLoS ONE,
9(9):e107878, September 2014. ISSN 1932-6203. doi: 10.1371/journal.pone.0107878. URL
http://dx.doi.org/10.1371/journal.pone.0107878.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In International conference on machine learning, pp.
1972–1982. PMLR, 2019.

11

https://doi.org/10.1145/3341161.3342911
http://dx.doi.org/10.1038/s41598-021-92519-y
http://arxiv.org/abs/1912.09893
http://dx.doi.org/10.1371/journal.pone.0107878

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves
graph learning. Advances in neural information processing systems, 32, 2019.

Dobrik Georgiev, Marc Brockschmidt, and Miltiadis Allamanis. Heat: Hyperedge attention
networks. arXiv preprint arXiv:2201.12113, 2022.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 855–864, 2016.

Mathieu Génois, Christian L. Vestergraad, Julie Fournet, André Panisson, Isabelle Bonmarin,
and Alain Barrat. Data on face-to-face contacts in an office building suggest a low-cost
vaccination strategy based on community linkers. Network Science, 3(3):326–347, March
2015. ISSN 2050-1250. doi: 10.1017/nws.2015.10. URL http://dx.doi.org/10.1017/
nws.2015.10.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukherjee,
Shreyas N Samaga, et al. Topological deep learning: Going beyond graph data. arXiv
preprint arXiv:2206.00606, 2022.

Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan
Zhou, and Xiaoning Qian. Variational graph recurrent neural networks. Advances in
neural information processing systems, 32, 2019.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. CoRR, abs/2005.00687, 2020. URL https://arxiv.org/abs/2005.00687.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural
networks. arXiv preprint arXiv:2105.00956, 2021.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany.
Temporal graph benchmark for machine learning on temporal graphs, 2023. URL https:
//arxiv.org/abs/2307.01026.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. Revisiting
virtual nodes in graph neural networks for link prediction. 2021.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction
to Statistical Learning: with Applications in R. Springer, 2013. URL https://faculty.
marshall.usc.edu/gareth-james/ISL/.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with
graph learning-convolutional networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11313–11320, 2019.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 66–74, 2020.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein.
Differentiable graph module (dgm) for graph convolutional networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(2):1606–1617, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017.

12

http://dx.doi.org/10.1017/nws.2015.10
http://dx.doi.org/10.1017/nws.2015.10
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2307.01026
https://arxiv.org/abs/2307.01026
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://faculty.marshall.usc.edu/gareth-james/ISL/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. Advances in Neural
Information Processing Systems, 34:21618–21629, 2021.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, pp. 1269–1278, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:
10.1145/3292500.3330895. URL https://doi.org/10.1145/3292500.3330895.

Timothy LaRock, Vahan Nanumyan, Ingo Scholtes, Giona Casiraghi, Tina Eliassi-Rad, and
Frank Schweitzer. HYPA: Efficient Detection of Path Anomalies in Time Series Data on
Networks, pp. 460–468. Society for Industrial and Applied Mathematics, January 2020. doi:
10.1137/1.9781611976236.52. URL http://dx.doi.org/10.1137/1.9781611976236.52.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology, 58(7):1019–1031,
2007. ISSN 1532-2890. doi: 10.1002/asi.20591. URL http://dx.doi.org/10.1002/asi.
20591.

Yongxu Liu, Zhi Zhang, Yan Liu, and Yao Zhu. Gatsmote: Improving imbalanced node
classification on graphs via attention and homophily. Mathematics, 10(11), 2022. ISSN
2227-7390. doi: 10.3390/math10111799. URL https://www.mdpi.com/2227-7390/10/
11/1799.

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio,
Franco Scarselli, and Andrea Passerini. Graph neural networks for temporal graphs: State
of the art, open challenges, and opportunities. arXiv preprint arXiv:2302.01018, 2023.

Jianglin Lu, Yi Xu, Huan Wang, Yue Bai, and Yun Fu. Latent graph inference with limited
supervision. Advances in Neural Information Processing Systems, 36, 2024.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for
graph-based semi-supervised learning. Advances in Neural Information Processing Systems,
32, 2019.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding
graph structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree
sequence. Random Struct. Alg., 6(2-3):161–180, March 1995. ISSN 1098-2418. doi:
10.1002/rsa.3240060204.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE data science workshop (DSW),
pp. 225–228. IEEE, 2018.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs.
CoRR, abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang, Yishi Xu,
and Mark Coates. Non parametric graph learning for bayesian graph neural networks. In
Conference on uncertainty in artificial intelligence, pp. 1318–1327. PMLR, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’14. ACM, August 2014. doi: 10.1145/2623330.
2623732. URL http://dx.doi.org/10.1145/2623330.2623732.

Trang Pham, Truyen Tran, Hoa Dam, and Svetha Venkatesh. Graph classification via deep
learning with virtual nodes. arXiv preprint arXiv:1708.04357, 2017.

13

https://doi.org/10.1145/3292500.3330895
http://dx.doi.org/10.1137/1.9781611976236.52
http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1002/asi.20591
https://www.mdpi.com/2227-7390/10/11/1799
https://www.mdpi.com/2227-7390/10/11/1799
https://arxiv.org/abs/2007.08663
http://dx.doi.org/10.1145/2623330.2623732

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Huyen Trang Phan, Ngoc Thanh Nguyen, and Dosam Hwang. Fake news detection: A survey
of graph neural network methods. Appl. Soft Comput., 139(C), may 2023. ISSN 1568-4946.
doi: 10.1016/j.asoc.2023.110235. URL https://doi.org/10.1016/j.asoc.2023.110235.

Lisi Qarkaxhija, Vincenzo Perri, and Ingo Scholtes. De bruijn goes neural: Causality-aware
graph neural networks for time series data on dynamic graphs, 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903,
2019.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv
preprint arXiv:2006.10637, 2020.

Mandana Saebi, Giovanni Luca Ciampaglia, Lance M. Kaplan, and Nitesh V. Chawla. Honem:
Learning embedding for higher order networks. Big Data, 8(4):255–269, August 2020.
ISSN 2167-647X. doi: 10.1089/big.2019.0169. URL http://dx.doi.org/10.1089/big.
2019.0169.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of
the 13th international conference on web search and data mining, pp. 519–527, 2020.

Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. Inter-
action data from the copenhagen networks study. Scientific data, 6, December 2019. ISSN
2052-4463. doi: 10.1038/s41597-019-0325-x.

Ingo Scholtes. When is a network a network? multi-order graphical model selection in
pathways and temporal networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1037–1046, 2017.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J.
Chory, George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and
James J. Collins. A deep learning approach to antibiotic discovery. Cell, 180(4):688–
702.e13, 2020. ISSN 0092-8674. doi: https://doi.org/10.1016/j.cell.2020.01.021. URL
https://www.sciencedirect.com/science/article/pii/S0092867420301021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via
curvature. arXiv preprint arXiv:2111.14522, 2021.

Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton, Nagham Khanafer,
Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. Estimating potential
infection transmission routes in hospital wards using wearable proximity sensors. PLoS
ONE, 8(9):e73970, September 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0073970.
URL http://dx.doi.org/10.1371/journal.pone.0073970.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks, 2018.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph
cropping for graph classification. arXiv preprint arXiv:2009.10564, 2020.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. CoRR, abs/2002.07962, 2020. URL https:
//arxiv.org/abs/2002.07962.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation?
Advances in neural information processing systems, 34:28877–28888, 2021.

14

https://doi.org/10.1016/j.asoc.2023.110235
http://dx.doi.org/10.1089/big.2019.0169
http://dx.doi.org/10.1089/big.2019.0169
https://www.sciencedirect.com/science/article/pii/S0092867420301021
http://dx.doi.org/10.1371/journal.pone.0073970
https://arxiv.org/abs/2002.07962
https://arxiv.org/abs/2002.07962

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their
current applications in bioinformatics. Frontiers in Genetics, 12, 2021. ISSN 1664-8021. doi:
10.3389/fgene.2021.690049. URL https://www.frontiersin.org/journals/genetics/
articles/10.3389/fgene.2021.690049.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph
convolutional neural networks for semi-supervised classification. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 5829–5836, 2019.

Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. Adaptive diffusion
in graph neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021a. URL https:
//openreview.net/forum?id=0Kb33DHJ1g.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting
any gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021b.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the aaai conference on artificial
intelligence, volume 35, pp. 11015–11023, 2021c.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah,
and Meng Jiang. Graph data augmentation for graph machine learning: A survey. arXiv
preprint arXiv:2202.08871, 2022.

15

https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.690049
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.690049
https://openreview.net/forum?id=0Kb33DHJ1g
https://openreview.net/forum?id=0Kb33DHJ1g

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A Variants of HYPA-DBGNN

In this section, we present other variations of our main HYPA-DBGNN architecture.

A.1 Base Architecture without Anomalies (HYPA-DBGNN−)

Replacing the HYPA scores with the absolute edge frequencies in the message passing
procedure leads to the original message passing layers proposed by Kipf & Welling (2017).
The overall structure including the bipartite layers is kept. The comparison of this model
(HYPA-DBGNN−) with HYPA-DBGNN reinforces the understanding of the significance of
HYPA scores.

A.2 Edge Embedded HYPA Scores (HYPA-DBGNNE)

For HYPA-DBGNN the HYPA scores are used in a graph model selection step to enhance
the message passing. Whereas for HYPA-DBGNNE the HYPA scores are understood as
additional edge attributes whose significance is learned by an adapted graph convolution
operation that embeds the edge attributes into the incident node attributes during message
passing in the first graph neural network layers. The augmented propagation rule is given as

h⃗k,1
vi

= σ

∑
j

1
cij

(
h⃗k,0

vj
W k,1 + h⃗ek

ij
W k,e

) , (4)

with the first hidden representation h⃗k,0
vj

of node u ∈ V (k), the inferred HYPA scores in h⃗ek
ij

for the k-th-order edge ek
ij ∈ E(k), the trainable weight matrices W k,1 ∈ RH1×H0 for the

nodes and W k,e ∈ RH1×1 for the edges and the normalization factor cij as defined by Kipf
& Welling (2017).

A.3 Z-Score as Replacement for HYPA Scores (HYPA-DBGNNZ)

The HYPA scores are based on the CDF. A a replacement for the CDF, a transformed
Z-score instead of the HYPA score is implemented in HYPA-DBGNNZ . The underlying soft
configuration model provides the needed expected value and variance with

E[Xij] = m
Ξij

M
(5)

and

V ar[Xij] = m
M − m

M − 1
Ξij

M
(6)

needed to define the Z-score as

z(Aij) = Aij − E[Xij]√
V ar[Xij]

. (7)

Opposing to the HYPA score the Z-score is unbounded and possibly negative. Edges with
negative Z-score are excluded because they are under-represented. Likewise in HYPA-
DBGNN in most cases under-represented edges are removed, too, because their HYPA scores
is approximately zero. Additionally, edges with a Z-score smaller than one are removed with
the same argument of not having an unexpected large contribution to the graph and only
beeing larger than 0 due to noisy fluctuations in the frequencies. The resulting restricted
Z-score is logarithmically transformed due to observed large spread in empirical data, leading
to the final replacement for the HYPA-score:

z′(eij) =
{

0 if z(eij) < 1,

log(z(eij)) otherwise (8)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B Ablation Study - Impact of Statistical Information

We conduct an ablation study in which we compare our architectures HYPA-DBGNN,
HYPA-DBGNNE and HYPA-DBGNNZ to the base architecture HYPA-DBGNN− that is
not using statistical information. We aim to answer the question of what effect the addition
of statistical information has on the prediction capability of the architectures in Table 3.
By comparing HYPA-DBGNN to HYPA-DBGNN− we see that the statistical information
play an important role for all data sets but most importantly it becomes visible that the
improvements for Hospital are indeed related to the additional information.
HYPA-DBGNNE with edge encoded statistical features performs better than the uninformed
baseline but is most of the time significant weaker than HYPA-DBGNN. The structural
graph correction applied in HYPA-DBGNN is still missing even when the edge encoder is
able to learn the significance of the HYPA scores. HYPA-DBGNNZ performs weak for data
sets where we don’t see direct patterns in the analysis but works well for Hospital. It needs
to be explored why the Z-score is more susceptible for data sets with weak or no patterns.

Table 3: Ablation study for HYPA-DBGNN. The best results are marked.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

HYPA-DBGNNE 61.54 ± 13.62 64.94 ± 17.71 59.03 ± 12.72 60.46 ± 9.42 88.50 ± 13.57

HYPA-DBGNNZ 53.97 ± 17.59 59.63 ± 15.74 69.31 ± 11.74 53.45 ± 7.50 88.42 ± 10.88

HYPA-DBGNN− 57.67 ± 17.16 64.49 ± 15.27 55.83 ± 19.27 56.23 ± 10.41 86.46 ± 12.65

C Model Architecture

Figure 3: Illustration of the HYPA-DBGNN architecture. The architecture uses node
features as inputs. In our case the node id is given as a one-hot encoding even though present
features might be used. The bipartite mapping propagates the first-order node features to
the first- and higher-order graph. The edge weights are given as HYPA scores such that the
HYPA scores define the graph used for neural message passing. Under-represented edges
with HY PA(k)(u, v) = 0 are removed from the graph. Hence the used graphs are defined
through the statistical model. The second bipartite layer merges the lower- and higher-order
embedding after three message-passing layers. A final linear layer converts the embedding to
the class prediction.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D Comments on Computational Complexity

There are two distinct steps to be considered when arguing about the complexity of our
approach. First, there is the preprocessing step that creates the augmented graphs,i.e., the
competition of the HYPA scores and the removal of the under-represented paths. Second, the
graph neural network is trained on that graphs. For both steps, the complexity is determined
by the number of edges in the higher-order De Bruijn graph. In the preprocessing, we
calculate the HYPA score for higher-order edges.
The worst-case for the number of higher-order edges is given by the number of different
sequences of length k, i.e., |V |k for a network with |V | nodes. However, two arguments
show that we can expect much lower complexity in real-world data. First of all, real-world
networks are usually sparse, which implies that most sequences cannot occur as they would
otherwise violate the network topology.
LaRock et al. (2020) use this argument, and prove that the complexity of their algorithm can
be tightened with ∆G(k) ≤ |V |2λk

1 , where |V | denotes the number of nodes in the first-order
graph G and λ1 is the leading eigenvalue of the binary adjacency matrix of G. They conclude,
that the HYPA score calculation scales linearly with the number of paths N in the given data
set for sparse real-world graphs, a moderate order k, and a sufficiently large N . (Qarkaxhija
et al., 2022) also uses the argument of sparsity to further limit the complexity of the De
Bruijn graph. They note that the number of walks of length k becoming higher-order edges
in the higher-order De Bruijn graph is also limited by

∑
ij Ak

ij ≤ |V |k, where Ak is the k-th
power of the binary adjacency matrix A of G.
Furthermore, higher-order networks are even sparser than what we would expect based on the
first-order topology. This is because the number of different time-respecting paths occurring
on a network is generally much lower than the number of possible paths. (Qarkaxhija et al.,
2022) demonstrate this (see in the appendix) by plotting the number of realized walks at
each length and showing that in empirical graphs only a small fraction of walks is realized
due to the restriction to time-respecting paths. By studying the complexity of the used
empirical data set, they argue that De Bruijn graphs are applicable to real-world tasks.
We consider a path data set S with N entries. The number of edges in the k-th-order De
Bruijn graph is denoted as ∆G(k). LaRock et al. (2020) state that the asymptotic runtime of
HYPA is O(N + ∆G(k)). A trivial upper-bound for ∆G(k) is the fully connected case with
|V |k+1. This trivial case is also considered by Qarkaxhija et al. (2022) when they argue that
the complexity of message passing on the De Bruijn graph is bounded.

E Experiment Resources and Reproducibility

We performed the experiments on a single PC with an NVIDIA GeForce RTX 3070 with 8
GB memory. On average one single experiment repetition takes approximately 5 minutes
depending on the method and the data set. We run 4 experiments in parallel. We test the
12 methods (9 in the main study, 3 in the ablation study) with a parameter search over at
most 25 variants on 7 data sets (5 empirical, 2 synthetic). All in all, the estimated time for
the experiments is approximately 12 · 7 · 25 · 5/60 ≈ 440 hours, excluding pre-studies. While
this is only a rough estimate it reflects the order of magnitude of time needed to run all
experiments.
To reproduce the experiments, we provide a reference implementation at [blinded] together
with synthetic and empirical data sets and their splits and licenses. For the implementa-
tions of the baselines we attribute the reused implementations from the DBGNN reference
paper (Qarkaxhija et al., 2022). They also parse and provide the used empirical data sets.
We include a self-containing benchmark to compare HYPA-DBGNN to other methods
including strong candidates like GCN and DBGNN following the described evaluation
procedure. The benchmark is as concise as possible to let the reader focus on the main
contributions. This benchmark can be used to reproduce presented results.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F Properties of Experiment Data Sets

Table 4: Overview of time series data and ground truth node classes used in the experiments.
δ describes the maximum time difference for edges to be considered part of a casual walk.

Data Set Ref. Events |V | |E| |V (2)| |E(2)| Classes (Sizes) δ
Highschool2011 (Fournet & Barrat, 2014) 28561 126 3355 3042 17141 2 (85/41) 4
Highschool2012 (Fournet & Barrat, 2014) 45047 180 4399 3965 20614 2 (132/48) 4
Hospital (Vanhems et al., 2013) 32424 75 2052 2028 15500 4 (29/27/11/8) 4
StudentSMS (Sapiezynski et al., 2019) 24333 429 1160 733 846 2 (314/115) 40
Workplace2016 (Génois et al., 2015) 9827 92 1491 1431 7121 5 (34/26/15/13/4) 4
Random Sampling Ours (Synthetic) 8388608 20 400 400 1600 2 (10/10) 1
Weighted Sampling Ours (Synthetic) 8388608 20 400 400 1600 2 (10/10) 1

G TGN Adaptations

We implement TGN as proposed by Rossi et al. (2020) Instead of a link prediction layer, we
add a node prediction layer as the last stage. The embedding size is fixed to 32 as for the
other models. For TGN the training procedure is adapted due to its dynamic origin. The
proposed training procedure for dynamic node predictions splits the events into fixed-size
temporal batches and predicts the next node state for the nodes affected by the events. The
batches are temporally divided into train and test batches. Opposing, the static prediction
task splits the nodes into train and test sets. We try to keep as much from the original
training procedure as possible to favor the memory based architecture. Hence, we train the
model on all event batches of size 200 but restrict the training nodes to the train set with
fixed class. The last prediction for the given test nodes is used to evaluate the performance.
This is not necessary in the last batch of events. For the synthetic data the batch size is
increased to 200.000 since each of the 223 events has its own timestamps which leads to
infeasible training time with lower batch sizes. Compared to the other deep learning methods
the model the losses are updated more often because they are updated for every event batch
and not only for every node batch. Consequently, we adapt the learning rate to 0.0001 and
the originally used optimizer Adam to obtain improved results.

H Ablation Study - Impact of Individual Parts

Table 5: Ablation study for HYPA-DBGNN showing the balanced accuracy. Subsequently
parts of the model are removed. (a) contains the complete HYPA-DBGNN model. In (b) the
HYPA scores are removed such that the statistical information are not passed to the model.
In (c) we further remove the first bipartite layer that maps the first-order node features to
the second-order nodes and replace it by a second-order one-hot encoding (OHE). In (d) we
additionally remove the complete second-order message passing (MP).
In (e) we use the base HYPA-DBGNN but replace the first-order OHE with available
features. Only Highschool2011 and Highschool2012 contain node features. Those are the
classes the students belong to. We suspect that those features are not informative for the
given prediction task.

Model Highschool2011 Highschool2012 Hospital StudentSMS Workplace2016
(a) base HYPA-DBGNN 63.25 ± 16.18 66.41 ± 10.24 76.39 ± 17.12 60.66 ± 6.11 88.29 ± 10.51

(b) without HYPA scores 57.67 ± 17.16 64.49 ± 15.27 55.83 ± 19.27 56.23 ± 10.41 86.46 ± 12.65

(c) OHE instead bipartite layer 61.54 ± 11.13 64.93 ± 15.26 52.50 ± 19.27 57.72 ± 5.29 84.42 ± 15.59

(d) without second-order MP 55.00 ± 13.37 59.35 ± 11.13 43.47 ± 9.03 54.50 ± 6.40 73.33 ± 12.60

(e) HYPA-DBGNN with features 59.12 ± 20.24 62.43 ± 10.06 - - -

I Synthetic Data Creation Procedure

In this section, we give information about the synthetic data set creation and its characteristics
We use two synthetic data sets that are created with the following procedure. Figure 4 gives
an overview of the procedure.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The algorithm consists of two main parts aimed at constructing the first-order and second-
order topology of the network, respectively. Initially, the algorithm receives as input
parameters the set of nodes, a node-to-class mapping, a bias parameter, and the desired
number of paths of length k (k-th order edges) to generate.
In the first part, we assign the node degrees, and consequently the values of the Ξ matrix as
Ξ = kin · kout, To do this, we give each node a random weight sampled from a continuous
uniform distribution U [0, 1]. Next, for each node, we sample a number of (unweighted)
edge stubs from a multinomial distribution. The number of categories in the multinomial
distribution equals the number of nodes, and the probability for each category, respectively
edge stub, is proportional to the previously assigned node weight. The number of stubs
we sample equals the desired number of paths of length k given in input. Once we have
this, we randomly connect the in and out stubs, thus getting the multi-set of multi-edges
and the first-order topolgy. Notice that the multi-edges created in this step also yields
the higher-order nodes, and that the multi-edge frequencies correspond to their in- and
out-weighted degrees.
In the second part, an iterative process creates higher-order edges. First, an out-stub
(⟨v0v1 . . . vk−1⟩, ·) is sampled proportional to its weighted out-degree. Subsequently, a set
P of potential in-stubs (· , ⟨v1 . . . vk−1vk⟩) is identified, ensuring valid connections between
higher-order nodes by applying the de Bruijn condition that requires the last k − 1 elements
of (⟨v0v1 . . . vk−1⟩, ·) to match the first k − 1 elements of (· , ⟨v1 . . . vk−1vk⟩). The sampling
process for successor in-stubs from P is biased based on the classes of the first-order nodes v0,
v1 . . . vk−1, and vk. Specifically, counts are artificially inflated by the bias parameter for in-
stubs where all k nodes belong to the same class, encoding the desired pattern of preferential
attachment. The selected out-stub (⟨v0v1 . . . vk−1⟩, ·) and in-stub (· , ⟨v1 . . . vk−1vk⟩) form a
higher-order edge (⟨v0v1 . . . vk−1⟩, ⟨v1 . . . vk−1vk⟩) in the final network. This iterative process
continues until all stubs are connected, resulting in paths of length k that predominantly
connect nodes within the same class, with the degree of class-assortativity controlled by the
bias parameter.

Figure 4: This figure presents the sampling procedure for the synthetic path data. It consists
of five steps (left to right): (1) sampling of first-order nodes (uniform distribution) from
a set with two classes (blue and orange); (2) combining the sampled nodes into second
order nodes; (3) sampling out-connection candidates from the set of second-order nodes (e.g.,
(⟨A, A⟩, ·) highlighted in green). (4) sampling in-connections for every out-stub we sample a
valid in-stub (e.g., from (⟨A, A⟩, ·): (· , ⟨A, C⟩) or (· , ⟨A, A⟩) – highlighted in grey). Valid
in-stubs whose nodes belong to the same group have a 5% increased probability of being
sampled ((· , ⟨A, A⟩) gets the bonus while (· , ⟨A, C⟩) does not). (5) the edges are saved as
paths (⟨A, A, A⟩).

I.1 Synthetic Data Characteristics

We use two synthetic data sets with n = 222 paths. The paths emit first and second-order
graphs with heterogeneous edge statistics. Figure 5 presents the the edge statistics for the
synthetic data sets. For the given resolution, the graph for the synthetic data set with
implanted pattern looks identical to the one without pattern due to the construction through
the reused expected first-order statistics that defines the Ξ-matrix for the second-order
statistics and a sufficient small bias parameter during sampling. However, the emitted edge
frequencies vary between the emitted graphs due to the random sampling procedure.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) First-order edge statistics. They are equal for both the Weighted and the Unweighted
data set. The differences are not observable by comparing them with the expected first-order
edge statistics. The heterogeneous distribution is clearly visible.

(b) Second-order edge statistics. The frequencies in the Weighted and Unweighted data sets
differ but it is not visible due to the heterogeneous distribution. They also differ from the
expected frequencies. We also distinguish between paths connecting same class nodes and
different class nodes. Here it becomes clear that the mere frequencies – that are skewed –
are not enough to distinguish between both cases.

Figure 5: Edge frequencies of the emitted graphs for the synthetic data sets. The plots
show that due to the heterogeneous distribution overrepresented paths do not become visible.
Figure 6 gives a zoomed in view to show the differences exploited by HYPA-DBGNN.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 6 presents the absolute difference of the first- and second-order edge frequencies
between the two data sets. Notable, all edges whose incident nodes are predominantly
connected are sampled more often due to the bias parameter. This class-assortativity needs
to be learned by the machine learning model.

Figure 6: This plot presents the absolute difference of the second-order edge frequencies of
the Weighted and Unweighted data set. Due to the random sampling there are edges that
have a higher frequency in on or the other data set. This trend increases with for edges that
have more candidates in the urn. The edges that represent paths connecting nodes from the
same class are mostly more often sampled and thus overrepresented in the Weighted data set.
However, compared to the absolute frequencies in Figure 5 the deviations are minor such
that edges with low frequencies can be overrepresented. HYPA-DBGNN learns this pattern.

The comparison in Figure 7 of the frequencies with the the expected frequencies given by
the Ξ-matrix supports the differences between the two synthetic data sets and highlights the
encoded class-assortativity in the data set with the biased sampling.

(a) Relative frequency dif-
ference of the same second-
order paths between the
Unweighted Sampling and
Weighted Sampling data.
Paths connecting same class
nodes on average have a
higher frequency in the
Weighted Sampling data set.
This is consistent with Fig-
ure 6.

(b) Relative frequency dif-
ference of the same second-
order paths between the Un-
weighted Sampling data and
the expected path frequen-
cies. Here, no bias parame-
ter is applied. Thus, the fre-
quencies of paths connect-
ing same class nodes are
vary as much from the ex-
pected frequencies than the
other paths.

(c) Relative frequency dif-
ference of the same second-
order paths between the
Weighted Sampling data and
the expected path frequen-
cies. An increased bias pa-
rameter is applied. Thus,
the frequencies of paths
connecting the same class
nodes appear more often
with respect to the expected
frequencies than the other
paths.

Figure 7: Box plots showing how the distribution of second-order path frequencies vary in
comparison between the two synthetic data sets and in comparison to the expected path
frequencies. Only in the Weighted Sampling data set, the paths connecting same class nodes
appear more often than the remaining paths.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

J Additional Results

Table 6: Comparison of our architectures (HYPA-DBGNN, HYPA-DBGNN−, HYPA-
DBGNNE , HYPA-DBGNNZ) with different machine learning models. The balanced accuracy
is given in Table 1, Table 2 and Table 3. The results are obtained as described in Section 5.
The best results are marked.

Data Set Model F1-score-macro Precision-macro Recall-macro
Highschool2011 EVO 39.51 ± 11.50 39.38 ± 19.64 43.68 ± 10.91

HONEM 57.54 ± 11.52 58.19 ± 13.09 59.00 ± 10.61

DeepWalk 53.70 ± 18.55 53.47 ± 19.61 54.64 ± 17.70

Node2Vec 53.70 ± 18.55 53.47 ± 19.61 54.64 ± 17.70

GCN 48.55 ± 15.49 49.45 ± 18.52 55.00 ± 13.37

LGNN 52.66 ± 14.71 53.57 ± 15.97 57.72 ± 9.85

DBGNN 57.08 ± 11.35 61.78 ± 10.75 61.54 ± 11.13

TGN 57.32 ± 9.84 59.56 ± 10.59 61.52 ± 11.25

HYPA-DBGNN 59.60 ± 15.04 62.55 ± 14.38 63.25 ± 16.18

HYPA-DBGNN− 55.92 ± 17.41 56.85 ± 16.26 57.67 ± 17.16

HYPA-DBGNNE 57.30 ± 15.77 63.29 ± 14.85 61.54 ± 13.62

HYPA-DBGNNZ 49.63 ± 17.56 52.23 ± 19.82 53.97 ± 17.59

Highschool2012 EVO 46.83 ± 9.44 47.97 ± 18.15 50.05 ± 7.30

HONEM 50.58 ± 9.49 53.89 ± 15.27 50.49 ± 9.31

DeepWalk 48.79 ± 13.02 49.75 ± 13.77 49.65 ± 12.97

Node2Vec 48.79 ± 13.02 49.75 ± 13.77 49.65 ± 12.97

GCN 54.53 ± 10.82 56.94 ± 12.00 59.35 ± 11.13

LGNN 45.32 ± 16.88 51.43 ± 14.63 51.43 ± 17.94

DBGNN 60.22 ± 13.73 63.18 ± 12.57 64.93 ± 15.26

TGN 38.32 ± 5.37 35.86 ± 5.36 41.52 ± 6.19

HYPA-DBGNN 60.58 ± 12.12 66.23 ± 13.01 66.41 ± 10.24

HYPA-DBGNN− 61.26 ± 16.13 64.37 ± 15.44 64.49 ± 15.27

HYPA-DBGNNE 61.53 ± 17.30 64.22 ± 15.56 64.94 ± 17.71

HYPA-DBGNNZ 56.00 ± 15.24 58.46 ± 14.32 59.63 ± 15.74

Hospital EVO 20.05 ± 6.64 19.12 ± 9.20 25.00 ± 7.86

HONEM 34.88 ± 18.22 36.88 ± 23.53 37.50 ± 17.35

DeepWalk 20.00 ± 9.53 18.76 ± 9.68 23.89 ± 10.91

Node2Vec 20.00 ± 9.53 18.76 ± 9.68 23.89 ± 10.91

GCN 37.38 ± 8.67 33.83 ± 8.00 43.47 ± 9.03

LGNN 35.81 ± 8.96 32.75 ± 10.64 44.03 ± 9.03

DBGNN 47.87 ± 20.02 48.21 ± 21.79 51.67 ± 20.34

TGN 46.50 ± 13.60 50.83 ± 8.89 49.16 ± 16.95

HYPA-DBGNN 71.80 ± 19.18 71.50 ± 20.95 74.31 ± 17.45

HYPA-DBGNN− 51.91 ± 20.77 50.83 ± 22.33 55.00 ± 20.49

HYPA-DBGNNE 52.08 ± 13.10 52.25 ± 13.41 59.03 ± 12.72

HYPA-DBGNNZ 65.66 ± 13.39 66.79 ± 16.20 69.31 ± 11.74

StudentSMS EVO 54.62 ± 7.73 55.63 ± 9.53 55.05 ± 6.39

HONEM 52.46 ± 9.71 55.65 ± 14.29 53.81 ± 7.28

DeepWalk 52.08 ± 7.19 53.18 ± 7.61 52.78 ± 7.83

Node2Vec 51.87 ± 7.39 52.13 ± 6.90 52.31 ± 7.70

GCN 53.85 ± 6.39 54.39 ± 6.27 54.50 ± 6.40

LGNN 46.79 ± 5.27 52.70 ± 6.07 52.71 ± 6.63

DBGNN 56.87 ± 5.05 58.55 ± 5.58 57.72 ± 5.29

TGN 48.98 ± 4.50 50.71 ± 3.10 50.67 ± 4.10

HYPA-DBGNN 60.47 ± 6.68 61.40 ± 7.00 60.66 ± 6.11

HYPA-DBGNN− 54.58 ± 9.12 55.66 ± 8.88 56.23 ± 10.41

HYPA-DBGNNE 59.31 ± 9.08 59.97 ± 9.24 60.46 ± 9.42

HYPA-DBGNNZ 52.60 ± 6.74 54.24 ± 9.03 53.45 ± 7.50

Workplace2016 EVO 22.74 ± 12.34 21.84 ± 14.18 26.50 ± 12.08

HONEM 77.75 ± 11.70 79.53 ± 13.50 79.46 ± 10.32

DeepWalk 17.23 ± 8.77 16.30 ± 9.42 20.54 ± 9.51

Node2Vec 17.23 ± 8.77 16.30 ± 9.42 20.54 ± 9.51

GCN 68.56 ± 14.78 66.21 ± 16.88 73.33 ± 12.60

LGNN 82.96 ± 15.65 84.32 ± 15.04 84.83 ± 14.77

DBGNN 81.16 ± 19.16 81.33 ± 20.14 84.42 ± 15.59

TGN 78.71 ± 20.32 79.95 ± 22.21 80.16 ± 18.71

HYPA-DBGNN 85.82 ± 12.23 85.42 ± 13.75 88.29 ± 10.51

HYPA-DBGNN− 82.75 ± 14.26 83.25 ± 15.21 84.71 ± 13.66

HYPA-DBGNNE 86.47 ± 16.28 86.00 ± 17.36 88.50 ± 13.57

HYPA-DBGNNZ 87.67 ± 11.99 88.83 ± 13.10 88.42 ± 10.88

23

	Introduction
	Related Work
	Background
	HYPA De Bruijn Graph Neural Network Architecture
	Experimental Evaluation
	Experimental Results for Synthetic Data Sets
	Experimental Results for Empirical Data Sets
	Comparison of Temporal Sequences in Empirical and Synthetic Data

	Conclusion
	Variants of HYPA-DBGNN
	Base Architecture without Anomalies (HYPA-DBGNN-)
	Edge Embedded HYPA Scores (HYPA-DBGNNE)
	Z-Score as Replacement for HYPA Scores (HYPA-DBGNNZ)

	Ablation Study - Impact of Statistical Information
	Model Architecture
	Comments on Computational Complexity
	Experiment Resources and Reproducibility
	Properties of Experiment Data Sets
	TGN Adaptations
	Ablation Study - Impact of Individual Parts
	Synthetic Data Creation Procedure
	Synthetic Data Characteristics

	Additional Results

