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ABSTRACT

Motivated by various practical applications, we propose a novel and general for-
mulation of targeted multi-objective hyperparameter optimization. Our formula-
tion allows a clear specification of an automatable optimization goal using lex-
icographic preference over multiple objectives. We then propose a randomized
directed search method named LexiFlow to solve this problem. We demonstrate
the strong empirical performance of the proposed algorithm in multiple hyperpa-
rameter optimization tasks.

1 INTRODUCTION

Hyperparameter optimization (HPO) of machine learning models, as a core component of AutoML,
is a process of finding a good choice of hyperparameter configuration that optimizes the model
“performance”. In the context of practical ML systems, there are typically more than one metrics
to evaluate the model “performance” on which one desires to optimize. For instance, latency (He
et al., 2018), fairness (Brookhouse & Freitas, 2022), and explainability (Gonzalez et al., 2021) are
important complementary metrics of interest in addition to prediction accuracy in many application
scenarios. Typical multi-objective HPO (MO-HPO) approaches (Knowles, 2006; Daulton et al.,
2020) seek to find wide-spread Pareto frontiers for users to choose from. This type of method can
only establish a partial ordering of the configurations. The final choice on which Pareto frontier
to use is typically done manually and is opaque to the optimization algorithm. We call such opti-
mization “untargeted”. An automated approach is desirable, especially in repetitive tuning scenarios
such as continuous integration and delivery (CI/CD) of machine learning models or MLOps in gen-
eral (Garg et al., 2021; Mäkinen et al., 2021; Symeonidis et al., 2022). This automation is possible
if the criteria for selecting the final choice is specified explicitly. In this scenario, untargeted HPO
can be inefficient as the optimization algorithm may waste resources on finding Pareto frontiers that
are far from the desired final choice, i.e., the target.

In this work, we consider a targeted HPO scenario: practitioners have a priority order over the
objectives, which enables a total ordering of all the configurations. We formalize a general notion of
priority order rigorously as a lexicographic preference (Fishburn, 1975) over multiple objectives in
an HPO task. It allows users to specify a clear optimization target across multiple objectives before
the optimization starts and removes the need for manual post hoc selection. Such a priority structure
is found in HPO tasks from various application domains. For example, in many bioinformatics
applications, besides the primary objective of finding model hyperparameter configurations with
low prediction error, minimizing feature numbers via a feature selection step is found to be helpful
in avoiding overfitting and discovering relevant features for domain experts and thus is suggested to
be used as an auxiliary objective in HPO (Bommert et al., 2017; Gonzalez et al., 2021). When both
objectives are included, the auxiliary objective is considered less important than the minimization
of the prediction error, which naturally forms a lexicographic structure.

Despite its appealing practical importance, we find this type of targeted HPO problem remarkably
under-explored. In this work, we first provide a rigorous problem formulation for the targeted HPO
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Figure 1: Results in an XGBoost tuning task to find accurate and fair models, in which validation
loss is specified as an objective of a higher priority, and DSP (fairness-related objective) of a lower
priority. Lexi-Target∗ = l∗+0.05, in which l∗ is the optimal loss value which is unknown before the
optimization starts and 0.05 is the user-specified tolerance onloss degradation. The circles represent
proposed configurations from different methods in the objective space (darker color indicates later
iteration). Both objectives are smaller the better. SO-HPO easily achieves the target loss value
but performs poorly regarding fairness. MO-HPO is able to achieve a better performance in terms
of fairness compared to SO-HPO. However, it also wastes resources on finding points outside the
desired loss target as it seeks a wide spread of the Pareto front. Compared to MO-HPO, a larger
fraction of the configurations in LexiFlow are within the loss target. This allows LexiFlow to try
more configurations within the desired loss range and achieves better fairness performance.

task with lexicographic preference over multiple objectives. This formulation provides a general and
flexible way for the users to specify customized targets expressed via a priority order on the objec-
tives and a list of optional goals and tolerances on the objectives. Based on the problem formulation,
we propose an algorithm named LexiFlow as a general solution. Specifically, LexiFlow conducts
the optimization by leveraging pairwise comparisons between hyperparameter configurations in a
randomized direct search framework. The pairwise comparisons are supported by a suite of targeted
lexicographic relations, which allow us to navigate toward the more promising region of the search
space considering the lexicographic structure in the objective space. By doing so, the algorithm is
able to efficiently optimize the objectives with a strong any-time performance.

We perform extensive empirical evaluation on four different machine learning model tuning tasks,
including a tuning task to find accurate and fast/small neural network models, a tuning task to find
accurate and fair Xgboost models, a tuning task on random forest combined with feature selection
for gene expression prediction, and a tuning task to mitigate overfitting. Our method has promis-
ing performance on all the evaluated tasks. The good empirical performance verified the unique
advantages of our proposed algorithm. We demonstrate different performance patterns of meth-
ods including our method LexiFlow, a single objective method (SO-HPO), and a multiple objective
method (MO-HPO) in Figure 1.

1.1 RELATED WORK

There are a number of works trying to address MO-HPO tasks on machine learning models, includ-
ing evolutionary algorithms (Deb et al., 2002; Srinivas & Deb, 1994; Zhang & Li, 2007; Binder
et al., 2020), Bayesian optimization (Knowles, 2006; Daulton et al., 2020; Emmerich & Klinken-
berg, 2008; Hernández-Lobato et al., 2016) and multi-fidelity methods (Schmucker et al., 2020;
2021). All the aforementioned methods treat all the objectives equally important and seek an ap-
proximation of the Pareto front in the objectives space. Some recent work proposes to incorporate
different types of user preferences into MO-HPO. Paria et al. (2020) allow users to encode their
preferences as a prior on a weight vector to scalarize multiple objectives. The prior will induce
a posterior distribution over the set of Pareto optimal values. Setting a proper prior in practice is
non-trivial as the relation between the prior and posterior is difficult, if not impossible, to derive
for an average practitioner. Abdolshah et al. (2019) regard preferences as the stability of objec-
tives, using a constrained Bayesian optimization method. An earlier multi-objective optimization
method (Zitzler et al., 2008) incorporates preference information into the multiple objective evolu-
tionary frameworks by defining relations between different populations. However, this preference
information is defined upon different populations rather than individual configurations.
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2 PROBLEM FORMULATION

In this section, we first provide a rigorous formulation of the targeted HPO problem with lexico-
graphic preferences over multiple objectives together with a motivating example. We then analyze
the challenges in approaching the problem.

2.1 PROBLEM FORMULATION

Throughout the paper, we use [K] to denote the integers from 1 to K. The studied problem needs
the following inputs from the user,

• A d-dimensional hyperparameter search space X . Any hyperparameter configuration x ∈ X is
considered a feasible configuration.

• A list of K (K > 1) objective functions regarding x ∈ X , denoted by F (x) =
[f1(x), f2(x), ..., fK(x)]. Specifically, each fk (∀k ∈ [K]) is a real-valued objective function
of x ∈ X , and the superscript k in fk indicates the priority order (the smaller the index, the
high the priority) of the objective. Without loss of generality, we assume minimization problems
regarding all the objectives here and throughout this paper.

• A K-dimensional tolerance vector on the objectives denoted by T = [τ1, τ2, ..., τK ]. ∀k ∈ [K],
each τk is a non-negative number representing an optimality tolerance on the k-th objective. It
can be intuitively considered as the amount of performance degradation the user is willing to
compromise in order to find choices with better performance on the objectives of lower priorities.

• C = [c1, c2, ..., cK ] a K-dimensional goal vector, in which ck ∈ R denotes a goal value on the
k-th objective desired by the user.

With the inputs F, T,C specified above, ∀k ∈ [K], we can define a lexi-target value zk∗ . The lexi-
target value zk∗ of the k-th objective is defined recursively based on the lexi-target values of the more
important objectives, i.e., the first (k − 1) objectives. We define X0

∗ = X and for k ∈ [K],

zk∗ := max{ck, fk
∗ + τk}, fk

∗ := inf
x∈Xk−1

∗

fk(x), Xk
∗ := {x ∈ Xk−1

∗ |fk(x) ≤ zk∗} (1)

where X1
∗ ⊇ X2

∗ ⊇ ... ⊇ XK
∗ is a series of nested sets dubbed lexi-frontiers considering the first

1, 2, ...,K objectives respectively; and fk
∗ is the inferior limit of lexi-frontiers in Xk

∗ on the k-th
objective. Note that the cardinality of {F (x)}x∈XK

∗
can be larger than one. To compare these F (x)

vectors, we define lexicographic relations as follows:

F (x′) =l F (x) ⇔ fk(x′) = fk(x) ∀k ∈ [K] (2)

F (x′) ≺l F (x) ⇔ ∃k ∈ [K] : fk(x′) < fk(x) ∧ (∀k′ < k, fk
′

(x′) = fk
′

(x)) (3)

F (x′) ⪯l F (x) ⇔ F (x′) ≺l F (x) ∨ F (x′) =l F (x) (4)

Our aim is to find a lexi-optimal configuration, i.e., any element in X∗ = {x ∈ XK
∗ |∀x′ ̸=

x, F (x) ⪯l F (x′)}, using minimal cost. We call this problem a Lexi-HPO problem in short.
Remark 1 (Lexi-optimal vs Pareto frontiers). The lexi-optimal solutions in X∗ are always a subset
of the Pareto frontiers in the K-dimensional objective space. The relative location of XK

∗ in the
Pareto frontiers depends on the lexicographic preferences and the relaxations imposed via tolerance
and/or goals. In this way, the users could specify their own ‘target’ of interest in the Pareto frontiers
in a straightforward way before the optimization starts.
Remark 2 (On tolerances and goals). Note that the two inputs tolerances T and goals C are both
optional. They are introduced to help impose customized needs on the targeted optimum in flexible
ways. When there is no tolerance and no particular goal on a particular objective k, one can just set
τk = 0 and ck = − inf without affecting the nature of the problem.

To facilitate understanding of the Lexi-HPO problem and better motivate the studied scenario, we
include a concrete example for gene expression prediction from the bio-informatics domain below.

Example: In the HPO task for gene expression prediction from (Bommert et al., 2017), three
minimization objectives are considered during the HPO process, including the model’s prediction
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error, the resulting feature numbers after feature selection, and feature selection instability. The
three objectives are in descending priority order. Despite the priority order, when trying to find
the optimal choice, it is okay to consider the configurations whose loss does not exceed l∗ + 0.05,
in which l∗ denotes the best loss one can achieve by any feasible hyperparameter configuration.
In addition, a feature number of 500 is considered good enough for the second objective. Say in
this example l∗ = 0.1 and xA,xB ,xC ,xD are whole Pareto frontiers with performance F (xA) =
[0.2, 100, 0.1], F (xB) = [0.1, 600, 0.2], F (xC) = [0.13, 500, 0.2], and F (xD) = [0.1, 300, 0.5].

This example can be formulated as a Lexi-HPO problem, where the objectives are F =
[loss, feature number, instability], tolerances are T = [0.05, 0, 0], and goals are C =
[inf, 500,− inf]. Under the Lexi-HPO problem, we have the following conclusions: (1) xC is the
optimal choice among the whole frontiers; (2) Combining the first conclusion with Remark 1, we
can also conclude that xC is also the lexi-optimal choice in the whole space. This example also
shows that the tolerances T and goals C are, in general, intuitive to understand and easy to set by
practitioners because they are directly about each single objective value.

2.2 CHALLENGES

We want to first remind the readers that in the context of HPO of ML models, the objectives are
mostly black-box, and it is also expensive to get function evaluations because it involves training
and validating an ML model. The black-box nature of this problem makes methods that require ana-
lytic forms of the objectives, e.g., gradient-based methods (Gong et al., 2021) inapplicable. We also
urge methods that are efficient and cost-frugal because of the expensive function evaluations and
practical resource limitations. One potential solution for the Lexi-HPO problem is to use MO-HPO
approaches to find Pareto frontiers and add a post-processing step to narrow them down to the tar-
geted optimal points. This type of method can be inefficient because they strive to find a wide spread
of Pareto frontiers while the users are actually only interested in a subset of them in a particular re-
gion. Another potential solution is to perform single objective HPO or constrained single objective
HPO regarding each objective sequentially following the preference order. More specifically, when
optimizing the k-th objective, one can impose constraints of the form f i(x) ≤ zi∗,∀i ∈ [k − 1] and
estimate zk∗ according to the result. However, one tricky problem in this approach is how to allocate
limited resources to the optimization of different objectives. The resource allocation directly affects
how reliable the constraints are. For example, if we allocate insufficient resources to the first objec-
tive, we will not reach the optimal value on the first objective which loosens the constraints imposed
on the first objective when trying to optimize objectives of lower priorities. If we allocate excessive
resources to the first objective, the optimization of other objectives can be hindered due to a lack of
resources. We include this approach as a baseline in the experiment section.

3 ALGORITHM

We propose an algorithm named LexiFlow to solve the Lexi-HPO problem. We adopt a randomized
direct search framework that could direct the search to the targeted optimum based on lexicographic
comparisons over pairs of configurations. During the iterative optimization process, the algorithm
automatically adjusts its focus on the different objectives based on their priorities and room for
improvement. For example, when there is no room for improvement on the first objective in a
particular iteration, the algorithm will direct the search toward the region where the second objective
could improve without hurting the optimality of the first objective. Since such adjustment is made at
every iteration, the algorithm keeps the chance to improve every objective when the optimality has
not been reached. By doing so, the algorithm is able to adaptively allocate optimization resources
over multiple objectives in a flexible order while respecting the priority. This strategy can help the
algorithm achieve a good any-time performance.

LexiFlow is presented in Alg. 1. It takes as inputs the objectives F , a goal vector C (optionally), and
a tolerance vector T (optionally). When C and T are not provided, we just set ck to −∞, and τk to
0, ∀k ∈ [K]. After an initialization step, which sets an initial hyperparameter configuration x0 and
an initial stepsize δinit, the algorithm proceeds as follows: At each iteration i, LexiFlow maintains
an ‘incumbent’ point, denoted by xi. The ‘incumbent’ point is the point in whose neighboring area
the algorithm samples randomized directions to get new points to try next. More specifically, a new
direction u is sampled uniformly at random from a unit sphere (Line 4 in Alg. 1), which leads to
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two newly proposed points xi ± δu (considering both the sampled direction and its opposite direc-
tion). After evaluating the newly proposed point(s), i.e., obtaining F (xi + δu) and potentially also
F (xi − δu), it decides whether to update the incumbent with one of the newly proposed points,
i.e., xi + δu or xi − δu. In LexiFlow, this decision is made via a carefully designed Update
function. Following the same spirit of an existing randomized direct search-based single-objective
HPO method (Wu et al., 2021), LexiFlow includes the restart and dynamic stepsize techniques to
free the algorithm from local optimum and manual configuration of stepsize (line 9-11 of Alg. 1).
We also adopt the same setting of the initial stepsize δinit and stepsize lower bound δlower with
the aforementioned work. The algorithm terminates if it runs out of resource budget and outputs a
lexi-optimal configuration x∗, which is maintained in a way such that it is lexi-optimal among all
the evaluated configurations. Following the general principles of direct search (Kolda et al., 2003),
the incumbent point shall be maintained in a way such that it is the best or at least a very promis-
ing point among the historically evaluated points (within a local search thread without considering
restart). This general principle, together with an iterative random sampling of new points around the
incumbent, could gradually lead the search to more promising region (Kolda et al., 2003; Wu et al.,
2021). The algorithm makes a decision on whether to update the incumbent with a newly proposed
point via the Update procedure attached at the end of Alg. 1 (line 12-18).

Algorithm 1: LexiFlow
Input: Objectives F (·), goals C (optional) and tolerances T (optional).

1 Initialization: Initial configuration x0, i′ = r = s = 0, δ = δinit;
2 Obtain F (x0), and x∗ ← x0,H ← {x0}, ZH ← F (x0)
3 while i = 0, 1, ... do
4 Sample u uniformly from unit sphere S
5 if Update(F (xi + δu), F (xi), ZH) then xi+1 ← xi + δu, i′ ← i;
6 else if Update(F (xi − δu), F (xi), ZH) then xi+1 ← xi − δu, i′ ← i ;
7 else xi+1 ← xi, s← s+ 1 ;
8 H ← H∪ {xi+1}, and update ZH according to Eq. (8)
9 if s = 2d−1 then s← 0, δ ← δ

√
(i′ + 1)/(i+ 1) ;

10 if δ < δlower then
11 r ← r + 1, xi+1 ← N(x0, I), δ ← δinit + r // Random Restart
12 Procedure Update(F (x′), F (x), ZH):
13 if F (x′) ≺(ZH) F (x) Or

(
F (x′) =(ZH) F (x) and F (x′) ≺l F (x

)
) then

14 if F (x′) ≺(ZH) F (x∗) Or
(
F (x′) =(ZH) F (x∗) and F (x′) ≺l F (x∗)

)
then

15 x∗ ← x′ // Using x∗ to keep track of the lexi-optimal solution
16 Return True // Accept x′

17 else
18 Return False // Discard x′

19 Output: A lexi-optimal configuration x∗

Update Function. Existing work on randomized direct search (Kolda et al., 2003; Wu et al., 2021),
especially the one about cost-frugal HPO (Wu et al., 2021) indicates the following desiderata for do-
ing cost-efficient randomized direct search: (1) Whenever a newly proposed point is better than the
incumbent, it should be accepted as the new incumbent. This property can help achieve a good any-
time performance of the algorithm and avoids getting stuck into local optimum while maintaining
a good convergence rate. (2) The algorithm should not accept a point that is strictly worse than the
incumbent. This property can help control the evaluation cost in each individual trial according to
theoretical analysis of the cost of a randomized direct search method (Proposition 4 and 5 in (Wu
et al., 2021)). Our Update function is designed following these desiderata.

One seemingly straightforward idea for the Update function is to directly make comparisons be-
tween the incumbent and the newly proposed points according to the vanilla lexicographic relations
defined in Eq. (2), Eq. (3) and Eq. (4). However, one problem with vanilla lexicographic relations
is that they cannot accommodate user-specified tolerances and goals on the objectives. To address
this challenge, we introduce the targeted lexicographic relations, which are parameterized by a K-
dimensional real-valued target vector Z = [z1, z2, ..., zK ] and denoted by =(Z),≺(Z),⪯(Z),

F (x′) =(Z) F (x) ⇔ fk(x′) = fk(x) ∨ (fk(x′) ≤ zk ∧ fk(x) ≤ zk) ∀k ∈ [K] (5)

F (x′) ≺(Z) F (x) ⇔ ∃k ∈ [K] : fk(x′) < fk(x) ∧ fk(x) > zk ∧ F k−1(x) =(Z) F
k−1(x′) (6)

F (x′) ⪯(Z) F (x) ⇔ F (x′) ≺(Z) F (x) ∨ F (x′) =(Z) F (x) (7)
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in which F k−1(x) denotes a vector with the first k − 1 dimensions of F (x), i.e., F k−1(x) =
[f1(x), ..., fk−1(x)] (We define F 0(x) = 0,∀x ∈ X). It is easy to verify that the relation ⪯(Z) is
reflexive in X and we prove in Lemma 1 (in Appendix A) that it is also transitive in X . With these
properties, it can be verified that when Z is set to the lexi-targets Z∗ = [z1∗, z

2
∗, ..., z

K
∗ ], the targeted

lexicographic relations can be used to find points that are in XK
∗ , i.e., the lexi-frontiers, through

exhaustive pairwise comparisons of configurations from the search space X .

Another caveat in this idea is that the comparisons depend on the knowledge of lexi-targets zk∗
∀k ∈ [K], which are generally unknown during the optimization process. To address this difficulty,
we propose to maintain an online approximate of the lexi-targets based on historical observations.
Specifically, we maintain all historically evaluated points in H and introduce the following statistics
of H based on Eq. (1): X(0)

H = H and ∀k ∈ [K],

zkH := max{ck, fk
H + τk}, fk

H := min
x∈Xk−1

H

fk(x), Xk
H := {x ∈ Xk−1

H |fk(x) ≤ zkH} (8)

Here zkH, fk
H, and Xk

H can be considered online versions of zk∗ , fk
∗ , and Xk

∗ respectively, calculated
based on historical observations in H. With the approximated lexi-targets ZH = [z1H, zH2 , ..., zKH ],
we decide whether to accept a newly proposed point x′ comparing the the current incumbent x
according to the Update procedure in Alg. 1. Specifically, we accept x′ as the new incumbent
in the following two cases: (1) When F (x′) ≺(ZH) F (x) is true. This condition allows us to
leverage the targeted lexicographic relation ≺(ZH) to direct the search toward the approximated lexi-
frontiers based on the approximated lexi-targets ZH. (2) When F (x′) =(ZH) F (x) and F (x′) ≺l

F (x
)
. This condition allows us to move toward lexi-optimal points (also approximated) when the

proposed point is already an approximated lexi-frontier. The update rules on the one hand respect
the lexicographic relations considering the existence of lexi-targets and on the other hand follow the
established desiderata. In Alg. 1 we use x∗ to keep track of the lexi-optimal solution and update it
whenever needed in a similar way in the Update procedure (line 13-15). Note that when there is
no random start, x∗ is simply the current incumbent, i.e., xi at iteration. The extra update steps in
line 13-15 are essential considering the potential random restarts.

4 EXPERIMENTS

We perform evaluations on multiple hyperparameter tuning tasks, which fall into the following two
categories of use case scenarios: (1) To directly perform lexicographic optimization in cases where
the users do have lexicographic preferences over multiple objectives. (2) To optimize a particular
objective that is inaccessible during the optimization, by finding lexi-optimal solutions in terms of
a list of proxy objectives. For the first type of use case, we include an efficient NN tuning task,
an unfairness mitigation task, and a high-dimensional feature selection task in Section 4.1. For the
second type of use case, we include a task about overfitting mitigation in Section 4.2. We tune three
types of models including Xgboost, Random Forest and Neural Networks on different classification
tasks. In all the experiments, if not otherwise specified, we show the results of the lexi-optimal
solutions calculated based on the historical observations in each method at each particular concerned
time point. All reported results are averaged over five runs with different random seeds.

4.1 HPO WITH LEXICOGRAPHIC PREFERENCES OVER MULTIPLE OBJECTIVES

Since there are no existing HPO methods that are directly applicable to the Lexi-HPO problem, we
include three general HPO methods which could be extended to the Lexi-HPO problem: (1) A single
objective HPO algorithm (SO-HPO), named CFO (Wu et al., 2021), which only optimizes the objec-
tive of the highest priority. The method CFO is selected as it is a strong SO-HPO method showing
superior performance over other alternatives, e.g., BO-based methods, multi-fidelity-based meth-
ods as reported in (Wu et al., 2021). (2) A constrained optimization method (C-HPO) as described
and constructed in Section 2.2. This method allocates even resources to different objectives. (3) A
popular multiple objective HPO algorithm (MO-HPO) qEHVI (Daulton et al., 2020). We choose
qEHVI in this category because it is a state-of-the-art MO-HPO method with ready-to-use open-
source implementation. We use both CFO and its constrained optimization version implementation
from the AutoML library FLAML (Wang et al., 2021), and use the implementation for qEHVI from
the HPO library Optuna (Akiba et al., 2019). In all the experiments, when presenting the anytime
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performance, we use a horizontal dashed line labeled Lexi-Target∗ to represent the lexi-target cal-
culated based on user inputs and the configurations found by all the methods (unknown before the
optimization) according to Eq. (8).

4.1.1 TUNING ACCURATE AND EFFICIENT NEURAL NETWORKS

Deploying neural networks in practical applications typically requires a balance between model ac-
curacy and efficiency. Lexico-HPO can be a good way to find models achieving the desired balance.
For example, as mentioned in (He et al., 2018), for AI applications such as Google Photos, model
accuracy is more important than latency, and it is desirable to find smaller models under the condi-
tion of not sacrificing accuracy. There is a natural lexicographic preference over the two objectives
of improving model accuracy and reducing latency. In this experiment, we evaluate our method
for the task of tuning accurate and efficient neural networks. More specifically, following a similar
search space setting with (Abdolshah et al., 2019; Hernández-Lobato et al., 2016), we tune neural
network models on a subsampled Fashion MNIST dataset (Xiao et al., 2017) with two minimization
objectives under lexicographic preference. The 1st objective is the error rate. The 2nd objective is
efficiency-related objectives including FLOPs and parameter numbers in two different experiments
respectively. For both experiments, we provide tolerance vector T = [τ1 = 1/

√
S, τ2 = 0.0], where

S represents the number of validation data points since the error metric calculated from validation
data can deviate from the true test error in the scale of 1/

√
S. We do not set a specific goal vector

for this task, as mentioned in (He et al., 2018), latency is typically not a hard constraint.

We perform tuning for 2 hours with each method and show the anytime performance of the methods
regarding the two objectives in Figure 2. All four methods eventually achieve good performance in
terms of the objective of the highest priority, i.e., the error rate: all of them are within the calculated
lexi-target. LexiFlow, SO-HPO, and C-HPO achieve the target value earlier than MO-HPO because
they put more priority on the first objective. In terms of the second objective, LexiFlow shows a
significant performance improvement in both two experiments compared to all the baselines. MO-
HPO finds models with lower FLOPs and lower parameter numbers than SO-HPO and C-HPO. But
the FLOPs and parameter numbers in MO-HPO are still 2-4 times larger than that in LexiFlow when
the error rate is within the tolerance range.

(a) Finding accurate and fast NN (b) Finding accurate and small NN

Figure 2: Results from the neural networks tuning task on Fashion-MNIST. Each of the curves
represents averaged result of a particular method from 5 runs with different random seeds. The
shaded area corresponds to 95% confidence intervals.

4.1.2 TUNING ACCURATE AND FAIR XGBOOST

Due to increasing evidence on fairness-related harms (Angwin et al., 2016; Barocas & Selbst, 2016)
in ML, there is an emerging need to build ML models that is not only accurate but also fair. One
way to achieve this goal is to optimize the predictive performance of a model (1st objective) while
minimizing the unfair bias (2nd objective) under a lexicographic preference in model tuning (Brook-
house & Freitas, 2022). Following the same setting with (Brookhouse & Freitas, 2022), we perform
the Xgboost tuning task with two minimization objectives, including validation loss (1st objective)
according to (Brookhouse & Freitas, 2022), and DSP (2nd objective), which an unfairness-related
metric calculated based on statistical disparity (Perrone et al., 2021). We do the evaluation on
datasets including Adult, Compas, and German, which are commonly used datasets for fairness-
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related tasks (Perrone et al., 2021). We set a tolerance of 0.05 on the validation loss according
to (Brookhouse & Freitas, 2022), and we do not provide the goal value .

We perform tuning for 1 hour with each method and show the final performance in Table 1. The
results show that LexiFlow can indeed achieve the best performance considering the lexicographic
preference over the objectives compared to baselines: LexiFlow has a similar performance with
baselines considering optimality tolerance (0.05) in terms of the 1st objective and achieves a better
performance in terms of the 2nd objective across all three datasets. Regarding the performance on the
2nd objective, i.e., the DSP value, 0.05 is a commonly used reference value for good DSP (Perrone
et al., 2021). LexiFlow reaches 0.016 in Compas and 0.034 in German, where most of the other
baselines got larger than 0.05.

Table 1: Results from tuning Xgboost on tasks that involve fairness considerations. All four methods
are within the optimality tolerance range in 1st objective. In terms of the 2nd objective, LexiFlow
achieves a significant performance improvement compared to baselines.

Method Compas German Adult
Val Loss DSP Val Loss DSP Val loss DSP

SO-HPO 0.344 (+0.004) 0.067 0.431 (+0.007) 0.064 0.368 (+0.003) 0.082
MO-HPO 0.340 (+0.000) 0.064 0.472 (+0.048) 0.078 0.408 (+0.043) 0.198
C-HPO 0.354 (+0.014) 0.029 0.424 (+0.000) 0.100 0.369 (+0.004) 0.088

LexiFlow 0.345 (+0.005) 0.016 0.434 (+0.010) 0.034 0.365 (+0.000) 0.060

4.1.3 FEATURE SELECTION IN BIOINFORMATICS

Figure 3: The results in tuning Xgboost on biological dataset AP Colon Kidney.

In many applications of ML in bioinformatics, the primary goal is to find a model with good predic-
tive performance. For high-dimension biological data, due to a large number of features, it is also
critical to integrate feature selection into the model fitting process, to make the selected features few
and stable (Bommert et al., 2017), which could help provide insights for domain experts.

In this experiment, we verify LexiFlow in a feature selection task following a similar setting with
(Bommert et al., 2017) which implicitly formulates the optimization objectives as lexicographic
preference. Specifically, we perform the Xgboost tuning on biological dataset AP colon Kidney
with three minimizing objectives including error rate, feature number, and the instability of the
selected features (with descending priority order). We set targets C = [c1 = 0, c2 = 500, c3 = 0]
and tolerances T = [τ1 = 0.01, τ2 = 0.0, τ3 = 0.0] according to(Bommert et al., 2017) We use the
filter feature selection method from Scikit-learn (Pedregosa et al., 2011) for feature selection.

We perform tuning for 104 seconds and report the anytime performance regarding the three objec-
tives in Figure 3. From the results, we observe that regarding the 1st objective, all four methods
are within the optimality tolerance range. In terms of the 2nd objective, only LexiFlow reaches the
goal in the end. Moreover, LexiFlow achieves significant performance improvement compared to
baselines in the 3rd objective. We also include results from all five random seeds in Appendix B.

4.2 LEXIFLOW AS AN OPTIMIZATION TOOL TO MITIGATE OVERFITTING

Although low loss on the final test data is the objective of interest in machine learning, validation
loss is commonly used as a proxy metric for test loss since the final test data is inaccessible in
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Table 2: Test-time error rate (%) achieved by different methods on different datasets.

Method Gisette Madelon Ginal prior Ginal agnostic Bioresponse Hiva agnostic Scene Christine

SO-HPO w/o FS 2.46 ± 0.08 17.1 ± 0.7 4.54 ± 0.3 5.00 ± 0.2 2.15 ± 0.7 2.41 ± 0.2 2.49 ± 0.0 26.4 ± 0.5

SO-HPO w/ FS 2.30 ± 0.2 18.5 ± 1.2 5.01 ± 0.4 4.71 ± 0.1 2.14 ± 0.7 2.39 ± 0.1 2.52 ± 0.07 26.5 ± 0.9

LexiFlow w/ FS 2.08 ± 0.3 16.3 ± 2.5 4.50 ± 0.4 4.45 ± 0.2 2.19 ± 0.6 2.36 ± 0.1 2.49 ± 0.0 26.1 ± 1.0

the model building and tuning stage. It is well known that there may exist a gap between an ML
model’s performance on validation data and test data. Overfitting is a major factor that causes such
a performance gap. Evidence from existing work show that optimizing machine learning models
with fewer but key features could mitigate overfitting problems (Jović et al., 2015; Ying, 2019;
Abdel-Aal, 2005). These findings inspire us to explore the possibility of incorporating the objective
of minimizing feature numbers as an additional proxy objective in ML model tuning. Specifically,
we consider the commonly used validation loss as the primary objective and feature number as a
secondary proxy objective during HPO. We tune Random Forest (RF) with training and validation
data and evaluate the best model’s test loss on a reserved test dataset as the final performance metric.

More specifically, we include the following methods in comparison: (1) LexiFlow w/ FS, which
is LexiFlow with two minimization objectives, including validation loss (1st), and feature number
(2nd). (2) SO-HPO w/ FS, which is the single objective HPO algorithm CFO (Wu et al., 2021)
with validation loss as its objective. (3) SO-HPO w/o FS, which is the single objective HPO al-
gorithm CFO with validation loss as the objective and without a feature selection process. Both
LexiFlow w/ FS and SO-HPO w/ FS include a feature selection step (indicated by w/ FS) using
the same feature selection method as that in Section 4.1.3, in addition to RF model hyperparameter
tuning. We include eight classification datasets, which are datasets from two previous feature selec-
tion studies (Gonzalez et al., 2021; Bommert et al., 2020) satisfying the following two conditions:
feature number larger than 100 and available on Openml. We use 0.01 or 0.001 as the tolerance on
validation loss according to empirical studies from (Gonzalez et al., 2021): for each dataset, if the
mean validation loss from a default RF model (from sklearn) is larger than 0.1, 0.01 is used as the
tolerance, otherwise 0.001. No tolerance or target is imposed on the 2nd objective.

We show the final test result from different methods in Table 2. LexiFlow w/ FS achieves the best
performance on most of the datasets (7/8). We also investigate the number of features selected in
each method and find that LexiFlow w/ FS achieves the smallest reserved feature ratio (30.1%)
compared with SO-HPO w/o FS (100%) and SO-HPO w/ FS (66.8%). There are two important
takeaways from this experiment, considering the nature of the compared methods and their perfor-
mance: (1) The good test performance of SO-HPO w/o FS and LexiFlow w/ FS (over SO-HPO w/o
FS) indicates that reducing feature number can indeed help mitigate overfitting and thus improve test
performance, which is consistent with findings from existing work mentioned; (2) The dominating
performance of LexiFlow w/ FS over SO-HPO w/ FS indicates that leveraging feature number as a
secondary objective in addition to validation loss during model tuning is an effective way to further
mitigate overfitting. Our method serves as an ideal optimization tool in this important endeavor.

5 CONCLUSION

In this paper, we propose an HPO algorithm named LexiFlow, which could easily incorporate users’
lexicographic preferences across multiple objectives in HPO tasks. LexiFlow is simple and effec-
tive, showing a strong empirical performance over a wide spectrum of tuning tasks and application
domains. LexiFlow is of good practical importance especially considering the ubiquitous existence
of potentially conflicting objectives in modern machine learning systems, such as accuracy, latency,
model size, robustness, and ethics-related objectives. We also made an interesting finding on over-
fitting mitigation: tuning certain proxy objectives with a lexicographic structure could help find
models that are less likely to overfit. The implementation of our method is available in the open-
source AutoML library FLAML1.

1Link to the documentation page of LexiFlow in FLMAL: https://microsoft.github.io/
FLAML/docs/Use-Cases/Tune-User-Defined-Function#lexicographic-objectives.
code example demonstrating the use of LexiFlow to find accurate and fast neural networks: https:
//microsoft.github.io/FLAML/docs/Examples/Tune-Lexicographic-objectives.
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A PROOF

Lemma 1. The binary relation ⪯(Z) defined in Eq. (7) is transitive, i.e., ∀x,y,w ∈ X , F (x) ⪯(Z)

F (y) ∧ F (y) ⪯(Z) F (w) ⇒ F (x) ⪯(Z) F (w).

Proof of Lemma 1. According to Eq. (7),

F (x) ⪯(Z) F (y) ∧ F (y) ⪯(Z) F (w) ⇒(
F (x) ≺(Z) F (y) ∨ F (x) =(Z) F (y)

)
∧
(
F (y) ≺(Z) F (w) ∨ F (y) =(Z) F (w)

)
⇒(

F (x) =(Z) F (y) ∧ F (y) =(Z) F (w)
)︸ ︷︷ ︸

i

∨
(
F (x) ≺(Z) F (y) ∧ F (y) ≺(Z) F (w)

)︸ ︷︷ ︸
ii

∨
(
F (x) =(Z) F (y) ∧ F (y) ≺(Z) F (w)

)︸ ︷︷ ︸
iii

∨
(
F (x) ≺(Z) F (y) ∧ F (y) =(Z) F (w)

)︸ ︷︷ ︸
iv

(9)

Statement I: F (x) =(Z) F (y) ∧ F (y) =(Z) F (w) ⇒ F (x) =(Z) F (w).

Proof of Statement I. From Eq. (5), we have,

F (x) =(Z) F (y) ∧ F (y) =(Z) F (w) ⇒(
fk(x) = fk(y) ∨

(
fk(x) ≤ zk ∧ fk(y) ≤ zk

)
,∀k ∈ [K]

)
∧
(
fk(y) = fk(w) ∨

(
fk(y) ≤ zk ∧ fk(w) ≤ zk,∀k ∈ [K]

))
⇒ ∀k ∈ [K] :

(
fk(x) = fk(y) = fk(w)

)
∨
((

fk(x) = fk(y)
)
∧
(
fk(y) ≤ zk ∧ fk(w) ≤ zk

))
∨
((

fk(x) ≤ zk ∧ fk(y) ≤ zk
)
∧
(
fk(y) = fk(w)

))
∨
(
fk(x) ≤ zk ∧ fk(y) ≤ zk ∧ fk(w) ≤ zk

)
⇒

((
fk(x) = fk(w)

)
∨
(
fk(x) ≤ zk ∧ fk(w) ≤ zk

)
,∀k ∈ [K]

)
⇒ F (x) =(Z) F (w)

(10)

Statement II: F (x) ≺(Z) F (y) ∧ F (y) ≺(Z) F (w) ⇒ F (x) ≺(Z) F (w)

Proof of Statement II. According to Eq. (6), we have

F (x) ≺(Z) F (y) ⇔
∃k1 ∈ [K] : fk1(x) < fk1(y) ∧ fk1(y) > zk1 ∧ F k1−1(x) =(Z) F

k1−1(y)

F (y) ≺(Z) F (w) ⇔
∃k2 ∈ [K] : fk2(y) < fk2(w) ∧ fk2(w) > zk2 ∧ F k2−1(y) =(Z) F

k2−1(w)

(11)

Let k′ = min{k1, k2}, according to Statement I and Eq. (11), we have:

(
F k′−1(x) =(Z) F

k′−1(y)
)
∧
(
F k′−1(y) =(Z) F

k′−1(w)
)
⇒ F k′−1(x) =(Z) F

k′−1(w)

(12)

According to Eq. (12), if k′ = k1 < k2, we have(
fk′

(x) < fk′
(y) = fk′

(w)
)
∧
(
zk

′
< fk′

(y) = fk′
(w)

)
(13)

If k′ = k2 < k1, we have(
fk′

(x) = fk′
(y) < fk′

(w)
)
∧
(
zk

′
< fk′

(w)
)

(14)
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Otherwise when k′ = k1 = k2, we have(
fk′

(x) < fk′
(y) < fk′

(w)
)
∧
(
zk

′
< fk′

(y) < fk′
(w)

)
(15)

Combing Eq. (12), Eq. (13), Eq. (14) and Eq. (15), we have found existing k = k′ such that(
fk(x) < fk(w)

)
∧
(
fk(w) > zk

)
∧
(
F k−1(x) =(Z) F

k−1(w)
)
.

Statement III: F (x) =(Z) F (y) ∧ F (y) ≺(Z) F (w) ⇒ F (x) ≺(Z) F (w).

Proof of Statement III. According to the definitions of =(Z) and ≺(Z) in Eq. (5) and Eq. (6),(
F (x) =(Z) F (y)

)
∧
(
F (y) ≺(Z) F (w)

)
⇒(

∀k1 ∈ [K] :
(
fk1(x) = fk1(y)

)
∨
(
fk1(x) ≤ zk1 ∧ fk1(y) ≤ zk1

))
∧
(
∃k2 ∈ [K] : fk2(y) < fk2(w) ∧ fk2(w) > zk2 ∧ F k2−1(y) =(Z) F

k2−1(w)
) (16)

Then, we find a k = k2, such that,((
fk(x) = fk(y) < fk(w)

)
∨
(
fk(x) ≤ zk < fk(w)

))
∧
(
zk < fk(w)

)
∧
(
F k−1(x) =(Z) F

k−1(w)
)

⇒
(
fk(x) < fk(w)

)
∧
(
zk < fk(w)

)
∧
(
F k−1(x) =(Z) F

k−1(w)
) (17)

in which indicates F (x) ≺(Z) F (w).

Statement IV: F (x) ≺(Z) F (y) ∧ F (y) =(Z) F (w) ⇒ F (x) ≺(Z) F (w).

Proof of Statement IV. According to the definitions of =(Z) and ≺(Z) in Eq. (5) and Eq. (6),(
F (x) ≺(Z) F (y)

)
∧
(
F (y) =(Z) F (w)

)
⇒

(
∃k1 ∈ [K] : fk1(x) < fk1(y) ∧ fk1(y) > zk1 ∧ F k1−1(x) =(Z) F

k1−1(y)
)
∧(

∀k2 ∈ [K] :
(
fk2(y) = fk2(w)

)
∨
(
fk2(y) ≤ zk2 ∧ fk2(w) ≤ zk2

)) (18)

Then, we can find a k = k1, such that,(
fk(x) < fk(y) = fk(w)

)
∧
(
zk < fk(w) = fk(y)

)
∧
(
F k−1(x) =(Z) F

k−1(w)
)

⇒
(
fk(x) < fk(w)

)
∧
(
zk < fk(w)

)
∧
(
F k−1(x) =(Z) F

k−1(w)
)
⇒ F (x) ≺(Z) F (w)

(19)

By substituting the conclusions in statement (I), (II), (III) and (IV) into (i), (ii), (iii), and (iv) in
Eq. (9) respectively, we get:

F (x) ⪯(Z) F (y) ∧ F (y) ⪯(Z) F (w) ⇒
(
F (x) ≺(Z) F (w)

)
∨
(
F (x) =(Z) F (w)

)
⇒ F (x) ⪯(Z) F (w)

(20)

which concludes the proof.

B SUPPLEMENTARY RESULTS

We provide the results for the feature selection task in bio-informatics (Section 4.1.3) under different
random seeds in Figure 4.
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(a) seed = 1

(b) seed = 2

(c) seed = 3

(d) seed = 4

(e) seed = 5

Figure 4: The detailed results in tuning Xgboost on biological dataset AP Colon Kidney with dif-
ferent random seeds.
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C EXPERIMENTATION DETAILS

C.1 SEARCH SPACE

The detailed search space in tuning Neural Networks, Random Forest, and XGboost are shown in
Table 3, Table 4 and Table 5, respectively.

Table 3: Hyperparameters tuned in Neural Network

hyperparameter type range
epoch num int [1, 20]
layer num int [1 , 3]

hidden units num per layer int [4, 128]
dropout value per layer float [0.2, 0.5]
learning rate per layer float [1e-5, 1e-1]

Table 4: Hyperparameters tuned in Random Forest

hyperparameter type range
max features float [min(0.1, 1/

√
data features), 1.0]

estimators number int [4, min(2048, train datasize)]
max leaves int [4, train size]

Table 5: Hyperparameters tuned in XGboost

hyperparameter type range
estimators number int [4, min(32768, train datasize)]

max leaves int [4, min(32768, train datasize)]
max depth int [0, 6, 12]

min child weight float [0.001, 128]
learning rate float [1/1024, 1.0]

subsample float [0.1, 1.0]
colsample by tree float [0.01, 1.0]

colsample by level float [0.01, 1.0]
reg alpha float [1/1024, 1024]

reg lambda float [1/1024, 1024]

C.2 DATE STATISTICS INFORMATION

All datasets used in our experiment are available in OpenML. In Table 6, we show the detailed
statistics information of the datasets used in Section 4.2.

Table 6: Date statistics information

Dataset statistics Gisette Christine Scene Ginal prior Ginal agnostic Bioresponse Hiva agnostic Madelon

# of train instance 4900 4063 1805 2601 2601 2813 3171 1950

# of val instance 2098 1355 602 867 867 938 1058 650

# full feature dimension 5000 1636 299 784 970 1776 1617 500

C.3 DETAILS OF THE VALIDATION LOSS CALCULATION IN SECTION 4.1.2

In section 4.1.2, in order to keep the same experiment setting with the paper (Brookhouse & Freitas,
2022), we use the accuracy metric named the geometric mean of Sensitivity and Specificity from
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(Brookhouse & Freitas, 2022) to calculate the 1st objective validation loss in the experiment section.
More specifically, the accuracy metric geometric mean of Sensitivity and Specificity GMSen×Spe is
calculated by:

Sensitivity =
TP

TP + FN
,Specificity =

TN

TN + FP
(21)

GMSen×Spe =
√

Sensitivity × Specificity

Where TP , TN , FN and FP represent the number of true positive instances, the number of true
negative instances, the number of false negative instances and the number of false positive instances,
respectively. The validaiton loss reported in Table 1 is calculated by 1−GMSen×Spe. More infor-
mation of this metric could be found in (Brookhouse & Freitas, 2022).
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