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ABSTRACT

The tremendous success of deep neural networks (DNNs) in solving ‘any’ com-
plex computer vision task leaves no stone unturned for their deployment in the
physical world. However, the concerns arise when natural adversarial corruptions
might perturb the physical world in unconstrained images. It is widely known that
these corruptions are inherently present in the environment and can fool DNNs.
While the literature aims to provide safety to DNNs against these natural cor-
ruptions they have developed two forms of defenses: (i) detection of corrupted
images and (ii) mitigation of corruptions. So far, very little work has been done
to understand the reason behind the vulnerabilities of DNNs against such corrup-
tion. We assert that network confidence is an essential component and ask whether
the higher it is, the better the decision of a network is or not. Moreover, we ask
the question of whether this confidence itself is a reason for their vulnerability
against corruption. We extensively study the correlation between the confidence
of a model and its robustness in handling corruption. Through extensive experi-
mental evaluation using multiple datasets and models, we found a significant con-
nection between the confidence and robustness of a network.

1 INTRODUCTION

With the remarkable success of deep learning architectures in nearly every area of computer vision, a
plethora of deep neural networks have emerged. However, convolutional neural networks (CNN) are
known to be vulnerable to adversarial attacks, where they can be easily fooled by noise and small
perturbations in the input data (Goodfellow et al., 2015). The significant issue arises when these
models are found vulnerable to natural corruptions similar to artificial adversarial corruptions (Guo
et al., 2020; Agarwal et al., 2020b; Hendrycks & Dietterich, 2019a). The seriousness of this vul-
nerability can be seen from the fact that these corruptions are inherently present in images Agarwal
et al. (2020b) without the hassle of artificially generating them. Another serious problem that acts as
a barrier to deep learning model deployment in real-world applications relates to inappropriate cali-
bration of their prediction confidence. In practical scenarios, most models reflect overconfidence in
their prediction probabilities even when the model predictions are wrong (Lakshminarayanan et al.
(2017)). Existing literature believes when training the model that the higher the confidence of a
model better its prediction, whether the testing comes from in or out of distribution. Therefore, to
keep that in mind, these networks are designed/trained to make confident predictions on any input
as high as possible, which we believe is a reason for their vulnerability. The one famous adversary
that exploits this concept is an adversarial example that exploits the training strategy of deep neural
networks and primarily uses its ingredients such as gradients while generating artificial perturba-
tions. To overcome adversarial examples, adversarial training has been incorporated which aims
to increase the confidence of models against adversarial examples. We believe this confidence in a
network that aims to map an image to its label might also be a reason for the success of the back-
door attack because the network maps even the corrupted data with the associated label with high
confidence (Agarwal et al., 2023a). We believe this confidence or overconfidence might be a prime
reason that these models are vulnerable to even unseen noise types and surprisingly this vulnera-
bility is not associated with any form of deep models whether convolution or transformer (Agarwal
et al., 2022a; Gu et al., 2023).

Interestingly, the research focusing on improving the robustness of deep networks has not explored
the relationship between model calibration and robustness (Zühlke & Kudenko, 2024; Costa et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024; Goyal et al., 2023; Han et al., 2023). Current research on CNN robustness primarily focuses
on two areas: improving the model’s robustness to adversarial attacks (Zhang et al. (2023), Peng
et al. (2023)) and distinguishing between real and adversarial images (Sen et al. (2023); Agarwal
et al. (2023b)). We are not undermining the effort put in developing these defenses such as binary
classifiers which are even generalized in handling unseen perturbations (Agarwal et al., 2021; 2020a)
and adversarial training (Qian et al., 2022) which re-train the model using the adversarial images.
However, we have to think that in both these effective defense cases, several issues involved: (i)
training of a separate classifier, (ii) computational cost in generating adversarial examples, and (iii)
trade-off between robsutness and clean accuracy. Henceforth, this research aims to tackle several
critical bottlenecks in the existing work: a limited exploration of defense against natural corrup-
tion, avoiding training extra classifiers or generation of adversarial examples, and no existing study
understanding the correlation between confidence and robustness. Through this work, for the first
time, we investigate the underlying reasons for vulnerability against natural corruption, focusing on
the role of model confidence. We are particularly interested in the contribution of model confidence
in the network’s sensitivity in handling corrupted images.

For that, extensive experiments are performed using multiple benchmark object recognition datasets
namely CIFAR-10 (Alex, 2009) and CIFAR-100 (Alex, 2009) and classification networks such as
VGG (Simonyan & Zisserman, 2014) and PreActResNet (He et al., 2016). We have trained the mod-
els using stochastic gradient descent and an advanced version of it namely SWAG (Izmailov et al.,
2018) to effectively capture the uncertainty within the model. In brief, the primary contributions of
this research are:

1. Identifying overconfident predictions as a key factor contributing to reduced robustness in
CNN architectures like VGG and ResNet, particularly against adversarial and corrupted
inputs.

2. Employing confidence scores and reliability diagrams to systematically analyze and quan-
tify overconfidence in CNN predictions.

3. Utilizing the SWAG method to improve uncertainty estimation in CNNs by fitting a Gaus-
sian distribution over the stochastic gradient descent trajectory, enhancing model calibra-
tion.

2 RELATED WORK

Image Corruptions: Several studies have explored the susceptibility of CNNs to common cor-
ruption. (Guo et al., 2020) shows that motion blur, commonly occurring in real-world scenarios,
can significantly degrade deep learning model performance. Additionally, Agarwal et al. (2020b)
introduces camera-inspired perturbations, simulating noise from natural conditions and camera im-
perfections to study their impact on model robustness. Similarly, Özdenizci & Legenstein (2023)
focuses on addressing environmental noises like snow introduced by adverse weather conditions
using diffusion methods. Dodge & Karam (2016), show that CNNs are in particular vulnerable to
blur and Gaussian noise. To evaluate the robustness of neural network models, corrupted versions
of standard datasets have been widely used, as proposed by Hendrycks & Dietterich (2019b). These
datasets introduce various types of noise and distortions, categorized systematically into different
classes.

Imporving Robustness against corruptions: Image restoration and enhancing model robustness
against various corruptions have been the focus of many studies. For instance, Cui et al. (2023)
introduces a multi-scale representation to effectively improve image quality by addressing different
levels of blur and noise in corrupted images. Dong et al. (2023) focuses on utilizing multi-scale
processing to remove motion blur through residual learning and low-pass filters, offering a compre-
hensive approach to handling complex distortions. In the context of enhancing images with high
contrast or brightness, Tian et al. (2023) provides an extensive discussion on various deep learning
methods tailored for low-light conditions. Cheng et al. (2024) proposes a novel denoising method
using a truncated loss function within a Res2Net architecture. This technique efficiently suppresses
non-Gaussian noise, including impulse noise like shot noise, while preserving crucial image de-
tails and edges. Furthermore, Zhu et al. (2023) introduces a method that restores images degraded
by various weather conditions, such as snow and fog. The approach learns weather-general fea-
tures common across different adverse weather types as well as weather-specific features unique to
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individual conditions, enhancing the model’s adaptability to diverse environmental distortions. Ad-
ditionally, researchers are also exploring whether there is any connection between corruption and
adversarial perturbation that can be employed for a universal defense (Agarwal et al., 2022c;b).

Confidence and Model Calibration: Calibrating deep neural networks is crucial for creating reli-
able and robust AI systems, especially in safety-critical applications. Model calibration (Moon et al.
(2020)) refers to the alignment between a model’s predicted probabilities and the actual likelihood of
those predictions being correct (Wang, 2023). In a well-calibrated model, when the model predicts
an event, the model is calibrated if, for all samples where the model predicts a class with confidence
of 80%, the true accuracy is also 80% (Guo et al. (2017)). Various methods have been developed
for model calibration, Silva Filho et al. (2023), discusses various approaches, including post-hoc ad-
justments, regularization techniques, and metrics for assessing calibration quality. Techniques like
Bayesian inference (Blundell et al. (2015)) and ensemble methods (Valdenegro-Toro (2019)) are
widely used for improving model calibration by providing better uncertainty estimates. Stochastic
Weight Averaging-Gaussian (SWAG) (Maddox et al. (2019)), which models the weight distribution
of stochastic gradient descent (SGD) to approximate a Gaussian distribution, offers a more reliable
estimate of uncertainty, helping to identify and address overconfidence in predictions.

In addition to these methods, various techniques have been introduced to distinguish between cor-
rect and incorrect predictions (Naeini et al. (2015)). For evaluating the performance of a model’s
probabilistic predictions, metrics like Negative Log-Likelihood (NLL) are commonly used. NLL
measures the likelihood that the model assigns to the true labels, penalizing incorrect or overconfi-
dent predictions. A lower NLL indicates that the model’s predicted probabilities align well with the
true labels, suggesting not only accuracy but also meaningful confidence scores (Guo et al. (2017)).
Together, these methods and metrics play a crucial role in developing models that are both accurate
and well-calibrated.

NLL = −
N∑
i=1

logP (yi|xi, θ)

P (yi | xi, θ) is the predicted probability assigned by the model to the true label yi given the input
xi and model parameters θ.

3 ASSERTING MODEL CALIBRATION AND CONFIDENCE

In this section, we describe Stochastic Weight Averaging-Gaussian (SWAG) (Maddox et al., 2019),
an extension of Stochastic Gradient Descent (SGD) that addresses its limitations, particularly in
uncertainty quantification. While traditional SGD optimizes the neural network by converging to a
single set of weights, SWAG takes a different approach. It builds on SGD by collecting multiple
weight checkpoints throughout training, averaging them to explore a broader region of the loss
landscape. SWAG then fits a Gaussian distribution to these collected weights, allowing it to capture
the inherent uncertainty in the model’s parameters more effectively. We assert this better estimation
of uncertainty makes the models highly robust against corruption; however, in the literature, no study
exists that understands this phenomenon. Since, natural corruption is a serious concern, understand-
ing whether better calibration can lead to a highly robust model can pave the way for developing
robust models through effective training rather than developing a new model always whenever new
adversarial comes into the picture.

3.1 STOCHASTIC GRADIENT DESCENT

In standard stochastic gradient descent training, the model weights are updated using stochastic
gradient descent (SGD). The update rule is given by:

θt = θt−1 +
η

B

B∑
i=1

∇ log p(yi|f(xi; θ)),

where θ represents the model parameters, η is the learning rate, xi and yi are the input data and
labels, f(xi; θ) is the neural network with weights θ, and B is the size of the mini-batch. The term
∇ log p(yi|f(xi; θ)) represents the gradient of the log-likelihood concerning the model parameters.
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The loss function typically used in this process is the negative log-likelihood combined with a regu-
larization term:

L(θ) = −
B∑
i=1

log p(yi|f(xi; θ)) + log p(θ).

Here, the regularizer log p(θ) helps prevent overfitting by penalizing certain model parameters.
However, this maximum likelihood training approach does not account for uncertainty in the pre-
dictions or the parameters θ.

3.2 STOCHASTIC WEIGHT AVERAGING GAUSSIAN

Stochastic Weight Averaging (SWA) (Izmailov et al. (2018)) is a method that improves model gener-
alization by averaging the weights of a neural network over several iterations of Stochastic Gradient
Descent (SGD). Suppose the weights of the model after epoch i are θi. Then, the SWA solution after
T epochs is given by:

θSWA =
1

T

T∑
i=1

θi,

With SWAG (Stochastic Weight Averaging-Gaussian)(Maddox et al. (2019)) a Gaussian is fitted
with the SWA mean as the first moment and a low-rank diagonal covariance matrix, thus forming
an approximate posterior distribution over model weights. SWAG then estimates the covariance
structure around the mean. To capture the uncertainty in the weight space, SWAG uses both a
low-rank approximation and a diagonal covariance matrix. The low-rank component models the
directions in the parameter space where weights vary the most. The diagonal component accounts
for variance along each parameter independently, offering a simpler estimate of uncertainty.

Σ =
1

K − 1

K∑
i=1

(θi − θ̄)(θi − θ̄)T ,

where K is the total number of checkpoints, θi are the individual model weights, and θ̄ is the mean
of the weights.
This allows SWAG to approximate the posterior distribution over model weights as:

p(w | D) ≈ N
(
wSWA,

1

2
· (Σdiag +Σlow-rank)

)
Using this Gaussian distribution, sample several weight sets wi

SWAG. Each sampled weight repre-
sents a different version of the model, incorporating the variability captured during training. SWAG
can provide well-calibrated uncertainty estimates for neural networks across various settings in
computer vision. Notably, it achieves a higher test likelihood compared to other state-of-the-art
approaches, such as MC Dropout (Gal & Ghahramani (2015)) and temperature scaling (Guo et al.
(2017)).

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first discuss the ingredients needed to perform the experiments such as datasets
and CNNs. We have used two benchmark datasets namely CIFAR-10 and CIFAR-100 and two
CNNs namely VGG and PreActResNet. We train the PreActResNet-164 model and VGG-16 with
Batch Normalization on both datasets for 300 epochs. The initial learning rate is set to 0.01 with a
weight decay of 0.0002. Stochastic Weight Averaging (SWA) is introduced at epoch 161 to collect
the model weights, using a learning rate of 0.05. We have used the pre-defined training and testing
split of datasets to evaluate the confidence of the models. The models are trained using two opti-
mization techniques namely Stochastic Gradient Descent (SGD) and Stochastic Weight Averaging
Gaussian (SWAG) to reflect the impact of calibration/confidence on their classification performance.
In the end, to analyze the correlation between confidence and robustness, we have used the naturally
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Table 1: Effect of calibration on the performance of VGG-16 and PreActResNet-164 using CI-
FAR datasets. The results are reported in terms of classification accuracy (%). It shows the better-
calibrated model has higher robustness.

Noise Type
VGG-16 PreActResNet-164

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
SGD SWAG SGD SWAG SGD SWAG SGD SWAG

Clean (No Noise) 90.53 95.62 64.00 76.87 90.27 94.59 67.79 80.37
Brightness 27.80 87.72 19.03 67.15 30.66 93.04 19.34 72.22
Contrast 11.70 85.65 5.80 65.00 11.10 88.81 3.65 65.07
Pixelate 25.57 77.56 11.67 56.33 22.03 88.37 13.80 65.52
Jpeg Compression 14.18 61.40 10.10 40.20 18.08 84.42 11.02 58.26
Snow 20.52 78.92 13.94 54.99 28.56 86.65 13.37 60.62
Frost 16.50 77.93 11.10 54.86 20.66 88.10 11.48 62.54
Fog 12.04 87.18 9.21 64.40 12.50 91.23 6.07 67.37
Gaussian Noise 17.28 50.85 5.30 33.48 26.05 79.93 8.74 49.11
Impulse Noise 23.16 59.68 7.54 39.50 25.35 72.44 6.14 44.10
Speckle Noise 18.81 58.96 6.75 35.89 24.89 81.54 9.88 51.53
Shot Noise 18.72 57.41 7.20 36.18 26.02 81.69 10.61 51.84
Motion Blur 11.53 83.60 5.62 60.49 11.80 90.01 5.72 68.57
Glass Blur 15.95 61.76 3.20 40.79 17.52 74.44 5.13 49.44
Defocus Blur 12.83 86.04 9.20 63.44 14.23 90.94 8.68 69.08
Gaussian Blur 13.15 82.93 7.40 58.45 13.23 89.95 6.96 66.78
Zoom Blur 10.72 84.69 6.16 61.51 11.49 91.14 5.68 69.14
Saturate 29.38 88.04 19.17 57.87 30.79 91.56 18.93 62.42
Spatter 23.62 81.89 13.5 58.76 27.08 87.12 12.82 61.97
Elastic Transform 11.27 79.02 9.50 55.42 14.48 88.32 8.62 64.96

corrupted images of the test set of the datasets (Hendrycks & Dietterich, 2019a). The corrupted
images of the datasets are taken from the following link1.

To effectively analyze the observation presented in this paper, we have used several metrics pro-
posed by ((Maddox et al., 2019)) namely (i) confidence: is defined as the maximum softmax output
value in the model’s predictions, representing the model’s certainty in its output, (ii) perfect calibra-
tion: In an ideally calibrated model, the predicted confidence directly aligns with the true accuracy,
and (iii) reliability diagram: We used the modified reliability diagram as introduced in (Maddox
et al., 2019) to effectively visualize how accurately the model’s confidence reflects its likelihood of
correctness across different types of noise and distortions.

4.1 RESULTS AND ANALYSIS

In this section, we present the analysis of the results based on different factors. First, the analysis
is based on the different model architectures. Moving further, the analysis is based on the different
types of noise and, finally, the analysis based on the different optimization and training methods is
presented in detail.

4.1.1 ANALYSIS OF MODEL ARCHITECTURES

The choice of model architecture significantly affects the capacity and robustness to corruption.
For instance, the PreActResNet outperforms the VGG model in terms of the capacity to classify
fine-grained classes. As shown in Table 1, the SGD-trained VGG model yields an accuracy of
64.00% as compared to the 67.79% accuracy obtained by the PreActResNet model on the CIFAR-
100 dataset. While for coarse-grained image classification, the performance of SGD-trained models
on both datasets yields comparable performance. However, we assert that purely utilizing the soft-
max score as the confidence score yields poor calibration, which can be visible from the higher

1https://github.com/hendrycks/robustness?tab=readme-ov-file
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performance of the SWAG model compared to the SGD-trained models. Stochastic Weight Av-
eraging Gaussian (SWAG), which fits the Gaussian distribution on the first moment of stochastic
gradient descent (SGD) and aims to better learn the true posterior distribution. The SWAG-trained
VGG model shows a boost of more than 12.87%; whereas, the SWAG-trained PreActResNet model
shows a jump of more than 12% on the CIFAR-100 dataset as compared to the VGG-16 model.
It demonstrates the capacity of the SWAG model as compared to the traditionally trained models
having stationary SGD distribution. We want to highlight that the advantage of SWAG not only lies
in increasing the capacity of the models but also in increasing their robustness against natural cor-
ruption. On each dataset and each form of corruption, SWAG trained models are found significantly
better than the SGD trained models. On top of that, similar to the higher capacity of PreActResNet,
the model is found to be more resilient than the VGG model in each form of corruption. For instance,
with SGD, PreActResNet-164 achieves 90.01% accuracy on CIFAR-10 under motion blur, whereas
VGG-16BN reaches 83.60%. Similarly, on CIFAR-100, PreActResNet-164 with SWAG achieves
69.08% accuracy under defocus blur, compared to 63.44% for VGG-16BN. These differences, rang-
ing from 5% to 10%, underscore the superiority of deeper architectures like PreActResNet-164 in
handling complex noise and perturbations more effectively than simpler models such as VGG-16BN.

4.1.2 ANALYSIS OF NOISE TYPE

In broad terms the corruption used in this research can be broadly grouped into the following cate-
gories: (i) Digital Noise: included variations in brightness and contrast that can result from differ-
ent lighting conditions, which can significantly impact image clarity and mislead image classifiers
(Agarwal et al. (2019)). Additionally, pixelation and JPEG compression introduce unique artifacts
that degrade image quality, (ii) Environmental Noise: includes factors such as snow, frost, and
fog can severely degrade image quality, (iii) Random Noise: The Gaussian distribution is one of
the most commonly observed phenomena in the real world, and it represents a frequent type of
corruption in images captured in uncontrolled environments. Similarly, shot noise, an electronic
disturbance arising from the discrete nature of light, often affects images. Apart from that, the ro-
bustness is also evaluated against two other popular noises namely speckle and impulse, (iv) Blur
Effects: Consists of motion blur, glass blur, defocus blur, Gaussian blur, and zoom blue to evalu-
ate the model’s robustness to various types of blurring artifacts, and (v) Geometric Transforms:
consists of saturate, spatter, and elastic transform corruptions.

The above description demonstrates that the different corruptions of different forms of data distri-
bution drift in the images; henceforth, we can simply assert the unique impact of each corruption on
the robustness of the models. When we analyze the impact of each group of corruption, we see clear
trends depending on the type of noise. When the VGG model is trained using the traditional SGD
training method, it is found most sensitive (lowest accuracy) against the images corrupted by the blur
category on each dataset. For example, the VGG model which yields 90.53% accuracy on the clean
test set of the CIFAR-10 dataset, drops down to 10.72% under the effect of zoom blur. Whereas, its
performance on the CIFAR-100 dataset drops down to 3.20% concerning glass blur from 64.00%
on clean images. However, SWAG-trained models come to the rescue and improve the performance
of the model on each dataset and corruption. For example, zoom blur which is found most effective
under SGD trained shows a jump from 10.72% to 84.69% on the CIFAR-10 dataset when the VGG
is trained using SWAG method. A similar tens-of-fold jump has been noticed against glass blur on
the CIFAR-100 dataset. It is to note here that while the SWAG model is found robust in handling
any corruption, it is found less robust in handling noise corruption including Gaussian, impulse, and
shot corruptions. The observation is consistent against the PreActResNet model as well which is
found least robust against noise corruption even when it is trained on the SWAG method. Despite
that, we must not ignore the resiliency SWAG brings concerning any corruption.

On the VGG model, saturate geometric corruption is found least effective followed by brightness
corruption grouped under digital corruption. However, on both the corruptions, the SWAG model
boosts the classification performance drastically. For example, when brightness noise is applied to
CIFAR-10, VGG-16BN accuracy takes a huge impact, dropping to 27.80% with SGD which ele-
vates to 87.72%, which is an incredible 215% improvement. On a similar note, PreActResNet-164
also benefits greatly from SWAG, with its accuracy rising from 30.66% to 93.04% on brightness-
corrupted CIFAR-10 images. The detailed results concerning the type of noise is also shown in
Table 1. These results show that SWAG helps models maintain stable predictions even when the
images are blurred, allowing them to extract meaningful information despite poor image quality.
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Figure 1: Reliability plots comparing the calibration of different models on CIFAR-10 images cor-
rupted by (i) environmental and blur distortions (top row) and noise and digital corruption (bottom
row). The plots are reflected to showcase the calibrated capacity of the VGG model.

4.1.3 RELIABILITY ANALYSIS

From Figure 1 on the CIFAR-10 dataset, we observe that the VGG model trained with SGD consis-
tently exhibits overconfident predictions when dealing with noisy or corrupted data. The prediction
points are significantly above the optimal line, indicating excessive confidence. This overconfidence
is evident in the sharp drop in accuracy at high confidence levels for the SGD-trained models. In con-
trast, the SWAG-trained models (Maddox et al., 2019)provide more reliable uncertainty estimates,
as shown by the smoother curves and higher accuracy across varying confidence levels, particularly
under noisy conditions. Although the SGD model also shows overconfidence in the clean dataset, it
is far less pronounced than its behavior on data with different types of noise. Its effect can be seen in
accuracies in Table 1. In contrast, the predictions made using SWAG are much closer to the optimal
line, demonstrating better calibration and improved performance on corrupted data. The reliabil-
ity curves for the model trained with SWAG are consistently closer to the optimal line, suggesting
more reliable and well-calibrated predictions across different noise types. SWAG maintains more
calibrated confidence levels across both clean and noisy datasets.

A similar observation from Figures 2 and 3 can be made on the PreActResNet where the predictions
made by the SGD model tend to be overconfident when noise is present in the data. This overcon-
fidence is reflected in the model assigning high probabilities to its predictions, even when the input
images are corrupted. Such behavior indicates that the SGD-trained model struggles to accurately
quantify uncertainty in noisy conditions, potentially leading to incorrect or misleading predictions.

4.1.4 EFFECT OF OPTIMIZERS AND TRAINING METHODS

Optimization techniques play a very crucial role in how well models perform, especially when deal-
ing with noisy or corrupted data. For example, on clean CIFAR-10 images, SGD yields an accuracy
of 90.53% for VGG-16BN, but SWAG enhances this to 95.62%, representing a substantial gain of
5%. It is to be noted here that all other hyper-parameters are kept fixed when training the model.
The distinction between the two strategies becomes more evident with the introduction of noise.
For example, in the context of brightness noise, the accuracy of SGD decreases to 27.80%, whereas

7
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Figure 2: Reliability plots comparing the calibration of different models on CIFAR-100 images cor-
rupted by (i) environmental and blur distortions (top row) and noise and digital corruption (bottom
row). The plots are reflected to showcase the calibrated capacity of the PreActResNet model.

Figure 3: Reliability plots comparing the calibration of VGG and PreActResNet models on CIFAR-
10 and CIFAR-100, respectively. The calibration is demonstrated under the influence of geometric
corruption.

SWAG suffers a loss of 7.9% on brightness-corrupted images as compared to clean images. This
drastic robustness difference is visible across corruptions. In brief, SWAG demonstrates substantial
enhancement across noise types, highlighting its proficiency in managing uncertainty and calibra-
tion. The observation is not restricted to one dataset or any specific number of classes in the dataset.
For example, in the fine-grained CIFAR-100 dataset, the gap between SGD and SWAG is equally
prominent. On Gaussian blur images, VGG-16BN attains merely 7.40% accuracy utilizing SGD,
while SWAG enhances it to 58.45%, representing an almost 680% increase in accuracy. Similarly,
PreActResNet-164 significantly improves the accuracy to 66.78% when subjected to Gaussian blur
when SWAG is used as an optimizer. The substantial improvements indicate that SWAG markedly
increases the robustness of convolutional neural networks (CNNs) indicating that SWAG is not only
improving calibration but also enabling CNNs to generalize better in complex tasks, making it a
valuable approach for robustness in adverse conditions.
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Figure 4: Reliability plots illustrating the impact of corruption on the ImageNet dataset are shown
on the left, while the reliability diagram on the right highlights the performance achieved using the
Adam optimizer.

Figure 5: Comparison of SGD and ADAM optimizer for clean data and different environmental
noises.

In the case of PreActResNet, trained on CIFAR-10, SGD achieves an accuracy of 90.27%, while
SWAG improves this to 94.59%. Similarly, on CIFAR-100, the accuracy for the clean dataset
is 67.79% with SGD, but it increases to 80.37% when using SWAG. SWAG provides a more
reliable method for handling various forms of corruption, thereby enhancing the performance and
robustness of CNNs. Across almost all noise types, both on CIFAR-10 and CIFAR-100 datasets,
the models trained with Stochastic Weight Averaging Gaussian (SWAG) show higher accuracy
compared to those trained with standard SGD. The most notable improvements with SWAG are
seen in challenging noise conditions, such as brightness, contrast, Gaussian blur, and impulse noise,
where SWAG significantly enhances model performance. Figure 4 (right) highlights the impact
of using the Adam optimizer, different from the one used in Maddox et al. (2019). Even with
this modification, the trend remains consistent: models trained with SWAG demonstrate superior
calibration compared to their counterparts. Specifically, while Adam-trained models exhibit
increased overconfidence in their predictions under different noise conditions, SWAG-trained
models maintain predictions closer to the optimal confidence-accuracy line. This observation
underscores the robustness of SWAG-trained models, even under varying noise levels and optimizer
settings, further validating their effectiveness in handling corrupted dataset. The Figure 5 illustrates
the reliability graph, comparing the performance of the SGD and ADAM optimizers under various
environmental noise conditions.

4.1.5 EFFECT OF LARGER DATASET

The reliability graphs in Figure 4 illustrate model evaluations under various corruption scenarios. On
the left, we expand the analysis to include a larger model trained on ImageNet1k, transitioning from
CIFAR-100 to assess calibration performance under corruptions such as Contrast, Brightness, and
Fog. The findings reveal a consistent trend: models trained with SGD demonstrate increased over-
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confidence, even with the larger dataset, while those trained with SWAG exhibit calibration more
closely aligned with the ideal confidence-accuracy relationship. Notably, the clean ImageNet accu-
racy of ResNet-50 improves from 82% with SGD to 91% with SWAG. Under Brightness noise, the
accuracy of the SGD-trained model drops significantly to 15%, whereas the SWAG-trained model
maintains a much higher accuracy of 47%, highlighting its robustness to such perturbations.

5 CONCLUSION AND FUTURE WORK

The tremendous success of deep neural networks has seen a boom in the development of a plethora
of architectures; however, interestingly, after the knowledge of their vulnerability against corrup-
tion, started a race against developing ‘new’ robust models. Surprisingly, a few research aims to
advance the robustness of existing models. To tackle this issue and understand why the existing
models are not robust to natural corruption, we hypothesize this phenomenon from the point of their
classification confidence. After conducting a detailed analysis and extensive experimentation, we
confirm our hypothesis that overconfidence in predictions leads to vulnerabilities. The reliability di-
agrams illustrate that, in the presence of natural noise, CNNs trained with standard methods become
excessively overconfident in their predictions. Conversely, when training the models using Stochas-
tic Weight Averaging Gaussian, we observed that the confidence scores became more aligned with
actual performance, leading to better-calibrated and robust predictions. Thus, for real-world deploy-
ment scenarios, it is crucial to consider training with a strategy that can better calibrate the model in
its predictions since the world is inherently noisy (Pedraza et al., 2022), (Chen et al., 2023), and ev-
ery time developing a new robust model leaving a non-robust model behind can lead to a hazardous
solution.
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