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Abstract

Autoformalization, the translation of natural language into formal language, is
challenging for many reasons. One key issue is that humans express logic in a rich
and diverse set of ways, and even when a proof is rigorous from the perspective
of other humans, autoformalization can fail. To have Al tools for mathematics be
widely accessible, it is important that autoformalization systems be able to accept a
wide range of input. In this work, we examine the misalignment between free-form
human natural language and the language best suited for autoformalization. We
analyze fully-correct student-written proofs to identify recurring sources of ambigu-
ity that hinder formalization, and we develop a natural language pre-processesing
system that converts free-form math proofs into a form that leads to more cor-
rect autoformalizations. We evaluate this system to identify the ambiguities the
pre-processing system can and cannot resolve.

1 Introduction

A long-term vision for human—AlI collaborative math proving is to develop an end-to-end system that
maximizes accessibility and usability for a wide range of people. However, formal theorem provers
such as Lean (De Moura et al.,[2015)), Rocq (Huet et al., |1997) and Isabelle (Paulson, 1994) can be
challenging for people to use without extensive training (Shi et al.,2025). Particularly, in educational
settings we aspire to have a system where a student can focus on their mathematical understanding,
without being burdened by the details of the formal representation. A faithful autoformalizelf_] isa
key component of building such a system.

'We use the term faithful autoformalizer in the sense of Murphy et al.| (2024)), where we want to ensure that
the formal language follows the user intent, in addition to being syntactically correct.
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While some success has been achieved in autoformalization (Wu et al.| 2022; |Patel et al.|[2025; Wang
et al,|2025; [Li et al., [2024; Peng et al.| 2025; |Murphy et al., 2024), there remain many challenges.
Human reasoning — especially in casual or learning contexts — can be nonlinear, implicit, and
conveyed through loosely structured natural language (NL) (Hjelte et al., 2020). Theorem proving
languages are “low-resource” (Magueresse et al., [2020), making the autoformalization task difficult.
Many benchmark datasets for autoformalization only contain polished, textbook-style NL and provide
only a single NL proof for each problem (e.g., ProofNet (Azerbayev et al., 2023)), MiniF2F (Zheng
et al.|, [2021), Putnam-AXIOM (Gulati et al.| [2024), Lean-Workbook (Ying et al.l 2024)) or are
generated through back-translation of formal statements, and lack true human diversity (Gao et al.,
2024;|Ying et al. 2024} [Wang et al., [2024; Patel et al., [2025).

However, NL proofs in real-world settings, especially those of undergraduate students, can be
fragmented and non-linear, posing significantly greater challenges for machine interpretation and
autoformalization (Zheng et al.| 2021). If we want to use LLMs to make machine-checked reasoning
a reality for diverse users, we need autoformalization systems that are robust to ambiguous NL input.
Which leads us to the question, what are the ambiguities in free-form NL that prevent correct
autoformalization? In this work, we examine the “unspoken logic” in mathematical proofs. We think
of unspoken logic as the “mathematics that is not visible on paper, but becomes visible in a computer
formalized proof™, defined by Riehl| (2025). We classify the ambiguities that arise in formalization as
a result of this unspoken logic in Section[2]and develop and evaluate methods (Section [3]and [5) to
process NL human input such that it is more conducive for accurate autoformalization.

When autoformalized with the same system (LLM with the same prompt), NL proofs which have
been disambiguated through our proof-of-concept processing system outperform NL proofs which
have not been. Our results, grounded in formalizing real human-written proofs, make a case for
processing natural language inputs before autoformalizing via deep learning methods.

2 Characterizing Ambiguities in NL Proofs

Figure [I] shows an example of two student writ-
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system (details in Appendix [B). We compared using same proof strategy but distinct writing styles
the autoformalized proofs to the manually for-

malized version of each student proof to extract

syntactic and semantic errors introduced in the autoformalized proof.

Across the dataset, the baseline model failed on 46.5% of stepsE] in the first question (47/101), 66.7%
on the second (46/69), and 54.2% on the third (77/142) (Full questions in Appendix [B.T).

The dataset is small in scale, as each student proof was manually formalized (a time-consuming task), and
faithful autoformalization accuracy was manually evaluated to ensure accuracy. Even in this size sample, we
were able to see convergence in ambiguity types.

3Each step is a NL proof step with the smallest progression unit (which consist of one antecedent, one
consequent and the corresponding evidence). Each step consists of one or more Lean lines.
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Figure 2: The pre-processing pipeline for autoformalization: We implement four pre-processing
layers corresponding to each of the ambiguity categories, and a fifth post-processing layer for syntax
correction after the Lean code is generated.

We grouped these failures using reflexive thematic analysis (Braun et al.,[2023) (Appendix B.4) to
derive a taxonomy of ambiguity types that caused baseline autoformalization failure. Errors are
clustered into four ambiguity types:

Operation ambiguity (24 cases out of 312 student steps): This ambiguity type captures the confusion
around identifying whether a student statement is a declaration (declaring a new fact to be true in our
context) or an assertion (a transformation that brings the current state closer to the goal). A human
reader is able to infer this information from contextual knowledge, but our baseline system struggled
to do so. Examples of this ambiguity type can be found in Appendix [D.2]

Antecedent/Consequent/Evidence (ACE) ambiguity (33 cases out of 312 student steps): ACE
Ambiguity refers to the cases when a proof step lacks explicit markers for one of the three components
in an assertion step. These components are: (1) the antecedent: the starting expression (unsolved
goal, hypothesis, or known fact), (2) the consequent: the derived conclusion, and (3) the evidence:
the justification linking them. An example can be found in[D.3] Human readers rely on conventional
formats (e.g., antecedent on the left, consequent on the right, joined by an equals sign) and contextual
knowledge. However, the autoformalizer must infer all components based solely on the proof text as
none are explicitly marked (see Sectiondand Appendix [D.3]for examples.)

Reference Ambiguity (11 cases out of 312 student steps): Reference ambiguity captures cases where
a proof step uses pronouns (e.g., it, they, them) (Ganesalingam| 2013) or referential phrases (e.g.,
similarly, as mentioned before). In cases where students used such expressions, instead of clearly
stating the referent, the autoformalizer failed to recover the original meaning (examples in[D.T).

Granularity Ambiguity (50 cases out of 312 student steps): Granularity ambiguity describes cases
where students omitted intermediate steps that are required in a formal proof, but not expected in
an informal proof. This ambiguity type has been reported on before (Shi et al., [2025) and in our
study, common cases included: omitting low-level knowledge or presuppositions or using referential
phrases like “in a similar way” to point to one of the earlier steps in the proof (examples in[D.4).

An additional Syntactic/Miscellaneous category captured 60 non-ambiguity errors. For example,
rw [h1] at h2rewrites hl into h2, but Lean provide multiple substitution tactics which make the
correct choice theorem dependent; these errors stem from syntax, not NL ambiguity. (See Appendix
[Clfor the distribution and a more detailed explanation for each category. )

Prior research (Ionescu and Jansson, |2016) has noted that natural language ambiguity hinders novices’
understanding of proofs and purposed that using domain-specific languages and controlled natural
language can help eliminate such ambiguity. Our findings echoes with them. Detailed related works
are discussed in Section
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Figure 3: An example of ACE Ambiguity and an example of failed ACE identification.

3 Natural Language Pre-processing System

To address these ambiguities, we developed a processing pipeline to transform the student’s language
into natural language that would be less error-prone when autoformalizing. Our 5-layer system,
shown in Figure 2] systematically tackles the aforementioned ambiguities. System input is the
digitized student proof in a JSON format, where each entry corresponds to a student proof step.
Layer 1 resolves pronouns or referential terms by adding their referent behind the terms. Layer 2
classifies each step as an assertion or declaration (and its sub-types). In Layer 3, assertion steps,
are further decomposed into the antecedent, consequent, and evidence (if it is provided). Layer 4
addresses granularity issues in which the LLM is provided with known granularity issues. This is
followed by our Autoformalizer, and finally Layer 5, in which Lean syntax errors are fixed. Due to
space constraints, more details on the development and architecture of this pipeline can be found in
Appendix [ET] and [E:2] respectively. We measured the effectiveness of each layer at resolving the
ambiguities, the results can be found in |E

4 ACE Ambiguity in a Student Proof

As an example of our work, we highlight an example of one ambiguity type, ACE ambiguity, as well
as how the pre-processing system handles this ambiguity to improve autoformalization. Examples of
other ambiguities and corresponding pre-processing can be found in the Appendix

In the baseline autoformalization experiment, we categorized a code segment as exhibiting “an
error caused by ACE ambiguity” when its antecedent, consequent, or evidence differed from that
in the student’s proof. For example (Figure [3), in Question A (Figure [), the student must show
ABZ = BAZY. In the first step, the student writes: “BZ = B(c19 + ¢ca¥s + ... + ¢,U,,) . Instead
of choosing either left-hand side (LHS) ABZ, or right-hand side (RHS) BAZ as an antecedent, the
student begins with a sub-expression of the LHS: BZ. In Lean, this shift requires a have statement
to update the antecedent, but the model omits this. The autoformalized code applies the hypothesis
h_basis to the wrong target ABZ instead of B, producing syntactically valid but semantically
incorrect code due to misalignment in the reasoning trajectory.

As a result, our pre-processing system includes an LLM-based layer to predict the ACE for each
assertion step. While effective, the model still produces errors, mostly in sequences of continuous
equations rather than text-heavy steps. For instance, in Figure [3] a student wrote the continuous
equation A = B = C = D, where each symbol denotes a distinct term. Without context, this
sentence is most readily interpreted as: “Step 1: A = B; Step 2: B = C'...”. However, the correct
interpretation is: “Step 1: B = D; Step 2: using A = B and C = D, infer A = C from B = D.”



Correct parsing here depends on the proof goal and surrounding context— We believe additional
interaction with the user may be necessary to resolve such ambiguities. Appendix [ provides a
detailed taxonomy with examples for all errors presented in three LLM-based layers.

5 Evaluation

We conducted two experiments to evaluate whether the processed and disambiguated NL improved
autoformalization accuracy. An autoformalized step is counted as incorrect if it does not compile
(syntactic error) or diverges from student intent (semantic error).

1. Experiment 1: All proofs were processed from Layer 1 until the autoformalization module
in our processing system. Across all proofs, we found 68 erroneous steps (out of 312). Layer
5 (Syntax checker) was applied manually, allowing an LLM one query to try and fix each
erroneous step. After applying Layer 5, the error rate decreased to 35/312=11.2% steps. For
reference, the baseline autoformalizer’s error rate was 170/312=54.5%.

2. Experiment 2: We additionally implement our processing system with manual correction
of the outputs from Layers 1, 2, and 3. In this much more time-intensive implementation,
the error rate after the autoformalization module was 77/312, and dropped to 24/312=7%
after Layer 5. This demonstrates that correct execution of the processing steps can offer a
dramatic boost in autoformalization accuracy.

We additionally measure the number of successfully compiling lines in each autoformalized proof
until the first error (syntactic or semantic). Here, a line is defined as one line of Lean code. We
recognize that this metric is imperfect, but it is effective to evaluate the relative performance between
the systems and easy to measure. The baseline system averaged 1.6 correct lines per proof, our
processing system averaged 24.3 correct lines, and the processing systems with inter-layer manual
corrections compiled an average of 22.7EI lines per proof.

6 Conclusion and Future work

A main goal of this paper is to highlight the diversity of mathematical thinking, even for very
elementary proofs. Being able to have systems that capture this diversity of expression requires not
only better autoformalizers, which has been actively researched, but also proper pre-processing that
can remove some input ambiguities as well as well-designed input interfaces that guide users toward
clearer expression.

Input intervention One potential future work is input interface intervention. Manual review of the
pre-processing output provides insight into which ambiguities can or cannot be predicted by LLMs,
which therefore demonstrates how input interventions could enhance autoformalization accuracy. In
Evaluation Experiment 2, researchers’ manual edits exemplify potential interface interventions, such
as using the pre-processing pipeline to detect ambiguous terms and prompting users to verify whether
the predictions are accurate. Such user-in-the-loop feedback can iteratively refine input, bridging the
gap between natural and LLM-autoformalizable expressions.

Dataset generalization The current evaluation relies on a relatively limited dataset. Future exper-
iments should include a more diverse range of problem types, such as geometry problems, where
reasoning may be presented in multi-modal representations like sketches. The future work should
also includes a larger set of student responses.

Ablation study This paper does not yet disentangle the individual contribution of each layer in
the pre-processing pipeline. Conducting an ablation study would help assess the relative importance
of each stage and identify which components most significantly contribute to the improvement in
autoformalization accuracy.

“We predict that this number decrease slightly due to (1) the manually revised disambiguated NL is cleaner,
producing shorter Lean code, and (2) two proofs that compiled more steps in the first experiment encountered an
early syntax error in the second.
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A Related works

A.1 Theorem-provers and autoformalization

In recent years, an increasing number of academic publications have begun to include mechanized
proofs which are written with theorem provers, such as Lean (De Moura et al.,|2015)), Rocq (Huet:
et al.l [1997), and Isabelle (Paulson, [1994). Writing in these formal languages is labor-intensive
— even for experienced mathematicians. Through observations of how people construct formal
proofs using theorem provers, Shi (Shi et al., 2025) found that users frequently struggle with the
granularity required and face challenges in navigating large proof libraries to locate relevant lemmas
and definitions. With the advancement of LLMs, there has been growing interest in using them to
automate this tedious and technically demanding process.

Deep learning methods have been applied to the task of autoformalization with some success (Wu
et al., [2022} |Patel et al., 2025 Wang et al., [2025} [Li et al.| 2024). There are two key challenges. First,
theorem proving languages are “low-resource” (Magueresse et al., 2020), making the translation
task uniquely difficult. As a result, parallel datasets of informal-formal math statements are often
synthetically generated through back-translation of formal statements (Gao et al., [2024; Ying et al.,
2024;|Wang et al., [2024). The resulting models trained off such data are not robust to the diversity of
human input and fail to produce error-free formalizations. Second, even when evaluation accuracy
appears high, models struggle to generalize to real-world use. Many benchmark datasets contain
overly polished, textbook-style language (e.g., ProofNet (Azerbayev et al., 2023)), while others (e.g.,
MiniF2F (Zheng et al., 2021}, Putnam-AXIOM (Gulati et al., 2024)), Lean-Workbook (Ying et al.,
2024) ) provide only a single natural language version of each problem. These lack the stylistic and
structural variety of student-authored or researcher-authored proofs. Additionally, many benchmarks
focus on narrow mathematical domains, like Olympiad problems (Zheng et al.l 2021} |Gulati et al.|
2024) that differ significantly from everyday academic or instructional proof writing.

A.2 Domain Specific Language for mathematical proof construction

Prior research (Ionescu and Jansson, 2016) has explored the use of domain-specific languages to
reduce ambiguity in mathematical proofs to support math education. {onescu and Jansson| (2016J)
observed that students often struggle with classical mathematics due to its context-dependent and am-
biguous notation, while performing better in computer science courses that emphasize explicit syntax,
thus they introduced the functional programming language Haskell to enforce unambiguous typing
and function specification. Their observation on students highlights a similar gap between natural and
disambiguated expressions identified in our ambiguity analysis. Furthermore, educational Interactive
Theorem Provers (ITPs) such as Verbose Lean (Massot, 2024) and Waterproof (Wemmenhove et al.,
2022)) employ controlled natural language—a subset of natural language that can be accurately and
efficiently processed by a computer—which maintains linguistic readability while preserving rigor of
formal representation (Kuhn, 2014). However, since controlled natural languages limit syntax and
vocabulary, and require extensive granularity, tools like Verbose Lean are not intended to simplify
proof writing, but rather to facilitate students’ understanding and transfer of reasoning to paper
(Massot, |2024)).

A.3 Challenges in aligning natural language input in human-Al collaborative programming
tasks

The misalignment between human-friendly natural language and the kind that LLMs can interpret
reliably extends beyond mathematical autoformalization. In Al-assisted programming, multiple
studies have highlighted the challenges novice programmers face in learning how to prompt effectively
to communicate their intent (Liu et al., 2023} Jiang et al., 2022} L1 et al., 2020; Nguyen et al.| [2024;
Kazemitabaar et al.,|2024])). Prior work found that only a small portion of naturalistic utterances are
effective in guiding code generation, and users often feel they must learn the model’s “syntax” (Liu
et al., 2023} Jiang et al} 2022; |Li et al.| 2020). User’s input are always underspecified thus LLM need
to make assumptions in order to execute user’s logic (Kazemitabaar et al., 2024). Moreover, novice
programmers must learn to articulate program behavior at an abstraction level that aligns with what
the model can interpret|Liu et al.|(2023); Nguyen et al.[(2024).



To address these issues, Liu and Sarkar |Liu et al.| (2023) proposed grounded abstraction matching,
where the user’s input is first mapped to a formal representation and then translated back into natural
language for user confirmation — mitigating abstraction mismatches. Jiang [Jiang et al.| (2022)
developed an inline Al-assisted programming tool and proposed several design strategies to address
ambiguity in user input. Other studies (Xu et al.| 2022} |Jiang et al., [2022)) have also found that users
were open to more constrained syntax or design affordances that confirm word recognition, viewing
these as more helpful for generating reliable outputs than allowing unrestricted natural language
input.

While prior work has largely focused on addressing the abstraction gap between natural language
and formal representations as a unified challenge, our approach demonstrates that, within a narrower
context, ambiguity can be decomposed into distinct types — and systematically resolved through
targeted reformulations. Another key difference lies in the tolerance for ambiguity: in general
Al-assisted programming, it is often acceptable to generate multiple interpretations and let users
select the correct one. In contrast, certain contexts — including the educational setting of our research
— require disambiguation to the extent that the model and the user are fully aligned, with only one
plausible interpretation of the input remaining.

A.4 Broader challenges of natural language interpretation in human—AlI collaboration

The challenges in interpreting natural language input also extend to broader domains of human—AI
collaboration, for example decision-making in medical contexts (Zhang et al.2024), collaborative
gameplay (Liang et al.,|2019), and risk-sensitive tasks (Zhang et al., 2024), as well as task-oriented
dialog systems (Li et al.,[2020) and robotic interaction (Dragan et al.| 2013).

Li and Chen|Li et al.{(2020) investigated users’ challenges in identifying and repairing input ambiguity
when interacting with audio-based agents, particularly when such ambiguity led to task failure. Their
findings show that Al agents often rely on rigid communication patterns, forcing users to adapt their
language rather than the system adapting to the user. In studying repair strategies for conversational
breakdowns — defined as failures in the system’s understanding of user intent — Li and Chen found
that users often struggle to diagnose the cause of these breakdowns, and even when they do, their
natural language repairs are frequently ineffective. To address this, Li and Chen designed a system
for spoken task-oriented interactions on mobile devices that surfaces the system’s internal state using
GUI screenshots, helping users recognize misunderstandings and trace their causes.

Liang’s work |Liang et al.| (2019) highlights that human communication often relies on implicit
meaning — where listeners are expected to infer intent from context beyond the literal wording.
Building on this, Liang developed an Al agent for collaborative video game decision-making that
uses pragmatic reasoning to interpret and act on users’ implicit communication.

Our research builds on these findings. Like Liang’s work [Liang et al.| (2019), our preprocessing
system leverages contextual information to infer the intended meaning behind ambiguous terms. At
the same time, it addresses the challenge raised by Li and Chen [Li et al,| (2020) — helping users
identify the specific ambiguities in their input that lead to system failure, so they don’t have to guess
the cause of breakdowns themselves.
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B Characterizing ambiguities in natural language proofs

B.1 Exam questions used in the study

Question A

Let A,B € R"*™.  The eigenvalues and eigenvectors of A are given by
(a1,71), (g, ¥2), ..., (Qn, Uy), where all the a;, 1 < i < n, are distinct. Similarly,
the eigenvalues and eigenvectors of B are given by (1, 1), (82, ¥2), . . ., (Bn, Un ), where
all the 3;, 1 < i < n, are distinct.

Prove that:
ABZ = BAZ

for any vector & € R"™.

Question B
Prove that the set S is not a subspace of R?, given an invertible matrix D € R3*3,

S:{EER3|D§7':E’, T = x12073, T1 > 0, 20 > 0, x320}

Question C
Suppose z, y are integers. Prove that if xy and x + y are both even, then both x and y must
be even.

Figure 4: Three Proof questions used in this study.

B.2 Sample student proofs

W et 2 mabeS p 7 Fad &yt e n ehmwlnes , ¢, Hey
+ B suc twer trat
/A suen teod o L Vave  p rmam/ tuele pewgleq+ cigenrectors .

S-B 63 = BAX
AW = W BE =@ A= ) Ths T can b writkn gy see Timear
a N Bvu = B Covbingf; .
Ave : o20n ] ot st Mt e eigenteckes ke st
! aves! R S —~
' . . Rlgurtts W= By Ve ke F TV hare b Tl we)
Avn > Kwin Bn> fur~ Step2  Step3"®
- i 7 - N
Blantwar (V5 Va dow Maint sl sy ABX = (AR (N *hVs 1”.1(,‘\,7‘)
-
tg G oty &7 R R ZIA (BT BT 1 gy e )
= = = " 2
T RN mwas  CoW radbe OV R G ARY R AL MEY R S
N .
= AAEGG M  t pp g ‘o
<~ ¢ (e, 3 o LG 1
A< (g b FLMEG AL TRt Rs ey, Ve . = &
et = e - TSV ep
) = Stepd Steps ¢ > o
o (P e ) BAX >~ BA (00 t¥.Vs Fid A ep, ﬁ;w”;p‘m/ - p (o GF z,da,ﬂ.,)
P © o ()t 2 Step4 Step5 =P (am Vit 8aTo V2 4, et V;‘) as abwg. G &, 7, b By A
Co (&, (B () N 1 ; >
naswy g (AF) = (Co (o (B v oot v (K (P i = . T W
i) T ’/’y“rva,)+/&sz1‘/:\*..\4/1;0«”{.‘%. SO AR LA
ABF = ¢y (freid o Bodnba) = BAT G (o 90T - ABX
sine X B = A =R G A B i Lo
AB%. BAR ‘ BAZ T SO e Ao T . bR P YV = APE Qep,

Figure 5: This figure includes 3 student written proofs for 1 exam question. All of them are using the
same proof strategy, however, they have diverse ways of expressing the logic. The color highlight
similar steps in their proofs.

B.3 Baseline autoformalizer design

To avoid biasing our ambiguity categories toward any specific language model or prompt format,
we tested multiple prompting strategies and model configurations. Following prior work in prompt
engineering for autoformalization, we adopted the structure proposed by Murphy and Yang (Murphy
et al.,2024) and Patel (Patel et al.,|2025) as our primary reference. For LLM model selection, we
compared Claude Sonnet 4 (Anthropicl 2025) and GPT-4 (Achiam et al., 2023)), each on 6 student
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proofs (2 per question). GPT-4 showed lower performance, frequently mixing Lean 3 and 4 syntax
(23/65 steps), likely due to training bias. Claude Sonnet 4, while not error-free, performed more
consistently. To identify the most effective prompt structure, we ran five experiments (E1-ES5) on 6
proofs (Table: [T)), varying two factors: inclusion of a standard staff solution (i.e., correct proof for the
question at hand) paired with its Lean formalization, and whether student input was shown all at once
or step-by-step.

In E1 and E2, we included both the staff solution and its formalization. This often led to overfitting:
the model generated formalizations that mirrored the staff solution rather than reflecting the student’s
intent. On the other hand, E4 — using a step-by-step format with only the student natural language
proof but without the former formalized Lean code — performed poorly, as the model lacked access
to earlier variable or function definitions. E3 (whole proof with no staff solution) and E5 (step by
step, no staff solution and with correct Lean code for the prior steps) showed similar accuracy, but
the step-by-step strategy introduced a confound: accuracy on later steps was inflated when earlier
steps in the proof were similar, since the model could learn from previously formalized examples.
For instance, if Step 3 (proving A = B) fails due to ambiguity, but Step 4 (proving C = D) is
correctly formalized using similar logic narration with similar ambiguity, it is unclear whether the
model genuinely understood Step 4 or simply replicated the earlier pattern.

Based on these findings, we selected the E3 prompt structure — full proof input without staff solutions

— as our baseline for final evaluations. The baseline prompt includes: the problem statement (in
IATEX), theorem declaration (in Lean), the complete student proof (in ISTEX), brief autoformalization
instructions, and two unrelated example pairs (natural language step and corresponding formalization)
to illustrate the output format.

Table 1: Prompt structure and accuracy across five experiments

. Qin Lean Std. Acc  Acc Acc
Experiment NL decl.  ans Whole proof Prev steps QA QB QC
El: Whole proof with | v vy wWhole proof  — W1 218 926
standard answer
E2: Step by step with Y Y Y Current step Prev. steps | 3/21 3/18 9/26
standard answer
E3: Whole proof only Y N N Whole proof — 6/22  5/18 12/26
E4: Step by step only Y N N Current step Prev. steps | 1/21 1/18 9/26
E5: Step by step (w/

Lean code for prev. | Y N N Current step Prev. steps 7/22  5/18 18/26
steps) +Lean code

B.4 Methodology of characterizing ambiguity types

Each student proof was digitized using OCR (GPT-40 (Hurst et al., 2024)) with manual corrections
for OCR errors. Proofs were segmented into steps based on visual layout and semantic cues from the
handwritten structure, approximating the student’s reasoning flow. The segmented proof steps were
then processed by the baseline autoformalization model, which attempted to translate each step into
Lean.

For all 24 student-written proofs (312 steps in total), the first author manually formalized faithful
Lean code that closely reflected the students’ intended reasoning for all steps. Then, the first
author manually compared the autoformalized version with the correct version and looked for two
failure types: (1) code that failed to compile (lack of correctness), and (2) code that compiled
but misrepresented the student’s intent (lack of semantic fidelity). Both failures stemmed from
misalignment between natural language and model interpretation.

*This is a reasonable declaration for autoformalization in an educational setting, since the proofs under con-
sideration have known solutions. As we see, this extra information does not actually improve autoformalization
performance, since the student solution likely follows a different path.
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The dataset is small in scale, as each proof was manually formalized, and faithful autoformalization
accuracy was manually evaluated. Formalizing each standard solution took approximately four hours
per question, and each student proof required an additional hour to formalize and compare against
the autoformalized Lean code to identify autoformalization errors.

Then, we conducted a Reflexive Thematic Analysis (Braun et al.l 2023) of the natural language
steps which caused autoformalization error in our student proof samples. In accordance with
this method, the first author labeled the ambiguities on a subset of these natural language steps,
converged on broader ambiguity categories with clear definitions, and then completed the remaining
labeling. Through this analysis, we were able to identify common ambiguity patterns that occurred in
autoformalization, which we detail in the following sections. The full analysis pipeline is described
in Figure[6]

Student Original Proof Digitalized Proof steps (in Latex) Autoformalized Proof Manual Formalized Proof

Stepl  steps Syntax
error

ABZ = AB(c10] + c203+. .. +enty)

sssss

Step 2
Step 4

[ ec
A s x.mulVec
= A(e1p10i + e2fatiat. . . +enfuth) g [
P ec
LLM simp_rw [Matrix.mulVec_smul, h_eigen_A]
Step3  Step5

) | sStep4a = c101101 + 2028202+ . .
5Yn | Step5

+enanButn

Figure 6: This figure shows the process for characterizing ambiguity types. The handwritten student
proof is transformed to I&TEX using OCR (and is manually checked for accuracy). This ISTgX input is
then provided to an LLM-based autoformalizer that generates Lean-4 code. We manually compared
this code with an accurate human-written formal version of the proof to identify autoformalization
errors, which leads to the misalignment categories we identified.

C Ambiguity distribution across the three questions

As shown in |[Figure 7| autoformalization errors are attributed to four primary ambiguity categories
Operation Ambiguity (24 cases), Antecedent/Consequent/Evidence Ambiguity (33), Reference
Ambiguity (11), and Granularity Ambiguity (50). An additional Syntactic or Miscellaneous
category captured 60 cases not attributable to ambiguity. In less than ten cases (excluding overlapping
with syntax errors), a single proof step contained two distinct ambiguities, both of which needed
to be resolved for successful disambiguation. These cases were double-counted and included in
both relevant categories. The distribution of error types was influenced by the nature of each
question: QA — primarily used a direct proof strategy and focused on equation manipulation —
had more Antecedent/Consequent/Evidence Ambiguity and Granularity Ambiguity, likely due to
long, underspecified steps. In contrast, QB and QC — both of which involved contradiction-based
reasoning and allowed for multiple proof strategies — showed more failures stemming from Operation
Ambiguity.

Occurrence 25 ®aa

of Ambiguity 20 QB

15 Qc
10
5

0 . >
Operation Type ACE Ambiguity Reference Granularity Syntax Error
Ambiguity Ambiguity Ambiguity

Figure 7: This figure shows the distribution of different ambiguity types on the 3 questions (QA, QB
and QQC).

13



D Examples of each ambiguity types

D.1 Detailed explanation and an example of Reference Ambiguity

Reference Ambiguity capture cases where a proof step uses pronouns (i.e., it, they, them) or
referential phrases (i.e., in a similar way, by the reasons mentioned before). When students rely
on these expressions without clearly restating their referents, the autoformalizer sometimes fails to
recover the original meaning, leading to formalization errors.

Example: Reference Ambiguity leads to incorrect reference prediction. One student is asked to
prove ABZ = BAZ. The proof strategy involves unfolding ABZ to ¢; (81171 + . . . + BrnUy)
and unfolding BAT to ¢y (18191 + ... + @, B,Un), showing that both sides are equal. The two
unfoldings use a similar sequence of hypotheses. This student firstly wrote in detail the steps to
unfold ABZ, then wrote “by similar reasoning” and omitted the intermediate steps to unfold BAZ .
While clear to humans, the autoformalizer cannot resolve “similar reasoning” and fails to formalize
the step. For more details on this example, see Figure

Reference Ambiguity

g . , — 7. Then B x =B (C1 Vi + Cz2 V2 + «os + Ca Vo) = C1 (B V1) + oo + Co (B Vo) = C1 (B1 V1) + un + Co (Bn Va)
Let A, B € R"*". The eigenvalues and eigenvectors of A are given by (a1, 1), (a2, 82), - . ., (atn, ) . .
where all the a;, 1 < i < n, are distinct, have h_Bx : B.mulVec x =3 j, ¢ j = (B_val j * v j) := by
Similarly, the eigenvalues and eigenvectors of B are given by (81, 1), (82, ¥2), - - -, (B, Un), where rw [h_basis]
allthe f;, 1< i < n, are distinct rw [sun_mulVec B]
Prove that simp [mulVec_smul]
ABZ = BA# simp_rw [h_eigen_B]
for any vector 7 € R™.
—= 8. A(B x) = Alca (B va) + e + Co (Ba Vo)) = €2 (Br (A Vi) + ou + Co (Ba (A V) = ca (Ba (o2 va)) + ...
UL et 2 mabeS , have h_ABx : (A % B).mulVec x =3 j, ¢ j + (B_val j « (aval j = v j)) i= by
—= A(B x) = Alca (Bx vi) + uu + Co (Ba Va))
& B suctwer ot
/A swen el e " rw [~ Matrix.mulVec_mulvec]
N N B - 8,8 ABT= BAX rw [h_Bx]
AW = W — Alca (Br Vi) + vuv + Co (Ba Vo)) = c1 (B1 (A V1)) + suu + Co (Bn (A Vo))
- - rw [sun_mulVec Al
N N Bvy = B
Avr = o0 . — simp_rw [Matrix.mulVec_smull
. H Wart 5"“ ——c1 (Br (Ava)) + wou + Co (B (AVa)) = 1 (Br (@1 Vi) # oou + Co (Bn (0 V)
¥ Rrgnrtss simp_rw [h_eigen_A]
- 4 B> F
Avn = Xt -- 9. By similar reasoning, B(A x) = c1 (@1 (Bx V1)) + vuv + Co (G (Bn Vo))
o — oet Dy orders : =53 . j o jevi)) =
st (0,98 T Maier ad elprdss have h_BAx : (B % A).nulvec x =3 j, ¢ j « (avalj « (Bvalj + v j)) i= by
> -~ rw [Matrix.mulVec mulVec] —-wrong Wrong formalization
oy v abuds &7 R rw [h_basis]

rw [sum_mulVec A] —-missed one step: simp [mulVec_smull
simp_rw [h_eigen_Al

rw [sum_mulVec B]

simp_rw [Matrix.mulVec_smull

simp_rw [h_eigen_B]

e - =
% e R™ :;M&” C,v t Vg e Caln

d

have h_BAx : (B * A).mulVec x =3 j, ¢ j » (aval j « (Bval j = v j)) := by
Studfentl oG (e v D) rw [e Matrix.mulVec_mulVec]
proof step = (e rw [h_basis]
By Saitas = rw [sum_mulVec A]
P I O LR CN A =) sinp [nulvec_smul]

simp_rw [h_eigen_Al
) rw [sum_mulVec B]
sime X F= AT simp_rw [Matrix.mulVec_smul]
A B%> BAR simp_rw [h_eigen_B] Correct formalization

8T = €y (Biei voe Bo andn) = BAT= G (0 #.G*--v"‘*’“">

Figure 8: Reference Ambiguity example

D.2 Detailed explanation and examples of Operation Ambiguity

Operation Ambiguity captures cases where a proof step lacks explicit keywords indicating
whether the step is an assertion or an declaration, and if declaration, what type of declaration.
Mathematical reasoning tasks usually consist of several known facts and one or more unsolved goals.
A proof step either makes a declaration — declaring a new fact to be true in our context, or an assertion
— a transformation that brings the current state closer to the goal. These transformations may move
forward from known facts (forward reasoning) or work backward from the goal (backward reasoning).
While a human reader could infer this information from contextual knowledge, the autoformalizer
infers a wrong operation type.

From analyzing the written proofs, we categorized 4 different types of declarations. These include:
(1) introducing a new variable (e.g., Let n € R), (2) adding a new condition to an existing variable
(e.g., Let n > 0), (3) switching to a new sub-goal (e.g., shifting from proving a is even to proving b is
even), or (4) declaring a proof strategy (e.g., indicating the use of contradiction).

Example 1: Operation Ambiguity leads to declaration misread as assertion. For QB (Figure ),

in the first step, one student writes “Dz = ¢,” (Figure: [9) which appears to be an assertion, but is in
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fact an declaration — introducing new variables Z and ¢ € S. The model, lacking context, treats the
original proof step as restating the assumption in the question and omits formalization. In contrast,
a correct formalization would explicitly introduce ¢ and & as declarations. If rewritten in a more
autoformalization-friendly form, the step would say “Assume a new vector T and a vector ¢ € S such
that DX = ¢”. Without this clarification, the model interprets the original statement as an assertion
and outputs: “This is part of the definition of S, no specific Lean code needed.”

Operation Ambiguity

Matrix D £ B*? is invertible —— This is part of the definition of S, no specific lean code needed N
Consider the set § Wrong formalization

2 have h_exists_pos : 3 c €S, 3 x : Fin 3 - R, D.mulVec x = c A (¥ i, x 1 > @) := by
8= {FER”DE:?,E: { jl«f-LL‘U.MEU«T-uL‘U}- —-This function proof there exist a c in S which mitagate the granularity ambiguity
let x : Fin 3 » R := fun _ =>1

let ¢ := D.mulVec x

@y

iy

Prove § not a vector subspace of B? use c
constructor
o< = T Student proof step - CES
Sy -‘C" use x
p'Dx"=0 constructor
= - rfl
=01 E
 we mulliely B kw0 ol
| simp [x]
“;’:D"uﬁ’ + —— 3 x such that D.mulVec x = c A (V i, x i > @)
use x
2 X il heve negetive evines constructor
Weredore & is ndh Closed + rfl - D.mulVec x = ¢
. 3 «introi-—-caA (Vi xi>0)
under seder mildigliceAion siip [x] Correct formalization

\
AhasHE g wods 5”1"?”’ ot B —— Then we assume c in S, and get hypothesis:

— he.in-S: ‘c €'S, hx eq: D *%kv X ='¢c; hx.pos: ¥ (i = Fin 3); x 1> @
obtain (c, hc_in_S, x, hx_eq, hx_pos) := h_exists_pos

Figure 9: Operation Ambiguity example 1

Example 2: Operation Ambiguity leads to assertion misread as declaration. The opposite
misclassification — incorrectly interpreting an declaration as an assertion — also occurs. For example,
in QC (Figure , one student writes: “To prove: If 2% is even, then x is even. implies if  is odd,
then x? is odd.” (Figure This step can be interpreted in two ways. In one reading, the student
is applying contraposition to prove the original statement, in which case the following steps should
build arguments for “if z is odd, then 22 is odd.” Alternatively, the student may be making a direct
assertion. If no further justification is provided, the student likely considers the statement self-evident.
In this example, in the following steps, the student continued to prove the contrapositive, suggesting
it was a declaration. However, the LLM misinterprets it as an assertion and prematurely complete the
proof — before the student’s reasoning even begins. In contrast, human graders correctly interpret
such ambiguity by drawing on context from the entire proof — something the baseline LLM fails to
do.

Student proof step Autoformalizer output
St dux and Bl aw . , . — 9. To prove "If x*2 is even, then x is even",
o i e, M foliuy  dhat -~z wust he have x_even : Even (x*2) - Even x := by
PR 2p e ViEE — 10. If x is odd, then x~2 is odd.
ol wwhe 72 € : : e
This step set an declaration Ee [l 8 @ 8 2 (5 @ Wk (GF2) 6= by
To prove T2t T cen, then x eves © The following 1ntr<? a ha
steps proved obtain (m, hm) :=ha --a=2m+ 1
A 20 old, the 2*Tr odd this declaration use 2xm™2 + 2«m —— X2 = 4m? + 4m + 1 = 2(2m2 + 2m) + 1
Lot w2 bt ( , Cmen), otz 2B Demfs dubtemet], ring_nf
STuie dombond din o e, Tt folla Het 2R T ool o [h;]
ring

$Twce  contion portfie 75 o, the afyued  stodement 75 also Fme
Correct formalization
Stwe 27 T esta, 2T puen, oo —- 9. To prove "If x*2 is even, then x is even",
ChowTeg o 7 can e dow T emch Hh tase panne o have x_even : Even (x*2) - Even x := by
—— 10. If x is odd, then x*2 is odd.
intro h_x_sq_even
by_contra h_x_not_even
rw [Int.not_even_iff_odd] at h_x_not_even X

e that ¢ T tven

LT wer, vt oo beth ered, e ocwd o owat e ol )

Figure 10: Operation Ambiguity example 2
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D.3 Detailed explanation examples of Antecedent/Consequent/Evidence Ambiguity

In the previous section, we defined an assertion as a transformation that brings the current state closer
to the goal. Each assertion involves three components: an antecedent (the state being transformed), a
consequent (resulting state), and evidence. Antecedent/Consequent/Evidence Ambiguity refers to
cases where a proof step lacks explicit markers for one or more of these components, leading to
mismatches between the model’s formalization and the student’s intended meaning. In our dataset
students are not expected to identify the antecedent/consequent, and the dataset does not have such
labels. Certain cue-words, such as “‘since” or “because”, can indicate evidence, but these words are
not consistently used, and using them as indications for evidence is not always reliable. Human
readers rely on convention formats (e.g., antecedent on the left, consequent on the right, joined by an
equals sign) and contextual knowledge. However, LLMs must infer all components based solely the
proof text as none of them are explicitly marked.

Example 1: ACE Ambiguity leads to misidentification of an assertion’s structure. In the
following example (Figure , for QA (Figure: EI), what the student must show is ABZ = BAZ.
In the first step, the student wrote: “BZ = B(c19h + coUs + ... 4+ ¢,¥,)”. Instead of choosing
either left-hand side ABZ, or right-hand side BAZ as an antecedent, the student begins with a
sub-expression BZ. In Lean, this shift requires a have statement to update the antecedent, but the
model omits this. The autoformalized code applies the hypothesis h_basis to the wrong target ABZ
instead of BZ, producing syntactically valid but semantically incorrect code due to misalignment in
the reasoning trajectory.

Student proof step Autoformalizer output
ORn EEE R v [h_basis] — change (A%B)x.x to (A%B)¥.3 j, ¢ j * v j
’ O m [sum_nulvec 81
= oo —— intent to change (A%B)%3 j, ¢ j * v j to ¥ §, (A%B) % cj * v j
= o (8% simp [mulVec_smul]
A< A (o (B v Bo)) simp_rw [h_eigen_B]
= G A(BA - PrR—)) Correct formalization
i
= ¢ AYh ... valby (AR have h_Bx : B.mulVec x =3 j, ¢ j » (B_val j * v j) := by
(e ) rw [h_basis] — change B *u X t0 B *u § §, € j * v j

T (ﬂ, {mte) e e () rw [sum_mulVec B]
[ h = ——change B v Y j, cj*evijtoYyij,Bxocjoevij
naswy p (pE) = (o (B vt o (X (B OS simp [mulvec_smull

Ate o (mpdr.s ——change 3§, Bxv cjevjtolj, cjeBv]

ABT > (e ""'":i e e simp_rw [h_eigen_B]

A B%> BAR -—change § j, ¢ j *B* v jto}j, cje (Bvalj v j)

Figure 11: ACE ambiguity example 1

Example 2: ACE Ambiguity leads to misidentification of the evidence. This example (Figure
[12) illustrates evidence ambiguity: a student begins a step with “So, ...”, intending to build on the
previous result. However, since the human input does not explicitly reference the prior step, the
model fails to recognize that it should use the earlier step as evidence.

ACE Ambiguity (Evidence)

—— 5.Meaning, A X = C101V1 + ... + CnlnVn

— and B x = cifivi + ... + CoBaVn.

have step_5 : A.mulVec x =3 j, ¢ j « a_val j » v j i= by
rw [h_basis]

ABi DA
rw [sum_mulVec A]
"y simp [mulVec_smul]

aning AX = A i LA o simp_rw [h_eigen_Al
o na 3 c - NN
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P - 1Vt oy, Yy rw [sum_mulVec B]
X' = 2 , (;[,7‘ - ‘ Q‘" 7 simp [mulVec_smul]
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0 (o o Yo (udwl rw [step_6] Correct formalization
- = rw [sum_mulVec A] use step_6

o £ T v N A

Figure 12: ACE ambiguity example 2
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D.4 Detailed explanation and examples of Granularity Ambiguity

Example 1: Granularity Ambiguity which caused by skipping of lower level knowledge. One
student writes, “if zy is even, then at least one of x or y must be even,” (Figure: [I3) without further
elaboration. The step is awarded full credit, suggesting that the omission is acceptable to human
reader. However, its Lean formalization requires around ten additional sub-steps to justify the claim.
In autoformalization-friendly language, such steps must be explicitly detailed, including not just the
conclusion but the full logical pathway — similar to the level of precision expected in code.

Example 2: Granularity Ambiguity which caused by omitting presuppositions. In QB men-
tioned before (Figure: E[) one student introduces a new variable ¥; € S and states v; = D and
Z > 0, without first establishing that such a vector exists in the set S. The missing presupposition is:
“There exists some vector in S such that £ > 0.” While acceptable in human grading, such omissions
cause autoformalization to fail.

Granularity Ambiguity

Matrix D € R*"? is invertible —- 2. Consider \(\vec{v_1} \in S\). \(\vec{v_1} = D \vec{x}\), \(\vec{x} > @ \)
Consider the set § —--Groundtruth: This function proof there exist a c¢ in S which x>0
@1 have h_exists_pos : 3 c €S, 3 x : Fin 3 - R, D.mulVec x = c A (V i, x 1 > @) := by
SZ{EERE\D;:?ﬁ: {m]‘m}mmzzo‘nlﬂ} let x : Fin 3 > R := fun _ => 1
let ¢ := D.mulVec x
use ¢
Prove § not a vector subspace of R’ constructor
e (50
use x
Student proof constructor
o) step o (il
:intro 1
simp [x]
+ —— 3 x such that D.mulVec x = c A (V i, x i > @)
use x
constructor
" Y = rEL — D:mulVec X =c
‘D .,,_,;"m Bt 10 r,::r'f/ way of i cdntrod —c A (V i, xi>80)
LeDeRY, T ! simp [x]
obtain (vi, hc_in_S, x, hx_eq, hx_pos) := h_exists_pos

Ty,

dozed under  Scalac  pulbiplication.

‘But e paint choices can’t
¢

Correct formalization

Figure 13: Granularity Ambiguity example
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E Development of the pre-processing system

E.1 Preliminary Evaluation for constructing each pre-processing layer

To select suitable LLMs for Layers 1-3, we conducted a preliminary evaluation using several widely
adopted LLM models on a subset of student proofs (20 proof steps). While we acknowledge that
performance could be improved through better prompting, fine-tuning, or developing a task-specific
model, our goal was to achieve reasonably strong performance at each layer to enable analysis of
common LLM error types within the pipeline, and evaluate whether disambiguation could improve
autoformalization accuracy.

Layer 1. In a preliminary trial on 20 proof steps containing four explicit references, among the
models with best performance, Claude Sonnet 4 correctly resolved all four with no false positives.
OpenAl GPT-4 (Achiam et al.,|2023)) also identified all four but incorrectly labeled five non-referential
terms. OpenAl GPT-4o0 resolved three of four references. Based on these results, Claude Sonnet 4
was selected for the Reference Finder module.

Layer 2. Claude Sonnet 4, OpenAl GPT-4, and GPT-40 all performed comparably with the designed
prompt, achieving accuracies of 19/20, 20/20, and 19/20, respectively. GPT-4 was selected for full
evaluation.

Layer 3. In the trial run, LLMs showed limited ability to distinguish antecedents, consequents,
and evidences within assertion steps. Among the models with best performance, Claude Sonnet 4
achieved the highest accuracy (63.8%), followed by GPT-03 (OpenAll 2025) at 56%, with other
models performing worse. Claude Sonnet 4 was selected for full evaluation.

E.2 Detailed System architecture

Layer 1: Reference Resolution This layer takes as input the natural language proof steps that have
been digitized, manually corrected, and segmented using the same procedure described in the previous
study. This layer consist of two modules, the Reference Finder and Reference Matcher. The Reference
Finder is an LLM-based module which identifies pronouns and referential phrases, predicting their
corresponding referents from the current or surrounding steps. This layer detects third-person
pronouns such as it, they, them, their which refer to entities other than the writer ()OED2023, but
excludes self-referential pronouns like “we” (e.g., “so that we can prove...”), following the distinction
outlined by Ganesalingam in The Language of Mathematics (Ganesalingam), 2013)). Referential
phrases are defined as expressions that refer to prior content without restating it, such as “by a similar

9 <

reason,” “above,” or “in the previous step.”

The Reference Matcher then mechanically scans the original sentence for predicted pronoun or
referential phrase, and inserts their predicted referent in angle brackets (“<>"") immediately after the
expression. For example, the sentence: “Similarly, a can be written as x + y.” is transformed into:
“Similarly <Lemma A>, a can be written as x+y.”

Layer 2: Operation Classification This layer takes as input the natural language proof steps in
which all pronouns and referential phrases have been replaced with their resolved referents. An
LLM-based Operation Classifier determines whether each step is an declaration or an assertion. If
both operations are present, the step is split into two sub-steps accordingly.

We define two main operation types as follows:
* Assertion: A step that progresses the proof by deriving new information from known results,
hypotheses, or unsolved goals.

* Declaration: A step that sets up necessary context without directly progressing the proof.
Declarations include five sub-types:

— Introduction of a hypothesis: Introducing a new condition or case (e.g., “Assume
a+b=c";“Case 1: n < 0”).

— Introduction of a new variable: Declaring a new variable (e.g., “Let z = a + b”).
Restating existing variables is excluded.
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— Stating the proof goal: Declaring what is to be proven (e.g., “To prove that...”).

— Declaring the proof strategy: Indicating the method used (e.g., induction, contradic-
tion, contraposition).

— Repeating known facts: Restating known declarations from the problem or prior
steps.

The proofs are stored in JSON format, with each proof step containing an operation type as an
attribute.

Layer 3: Antecedent/ Consequent/ Evidence Identification This layer takes as input the proof
steps that have been classified as assertions. It includes two sub modules: an Antecedent/Consequen-
t/Evidence Identifier and a State Matcher. The LLM-based identifier performs two tasks: (1) segments
each assertion into smallest progression units, and (2) identifying the antecedent, consequent, and
supporting evidence within each unit. And the State Matcher then mechanically verifies that each
predicted phrase actually exists in the original proof step and is not hallucinated by the model.

A smallest progression unit is a minimal, self-contained statement that includes one antecedent, one
consequent, and one piece of evidence, though the antecedent or evidence may be omitted in actual
student writing. The antecedent is defined as the expression from which reasoning begins; it may
be the unsolved goal, a part of it, or a known fact such as a hypothesis or lemma, and can appear
in the current or previous step. If not present, “NA” is returned. The consequent is the derived
conclusion and must appear in the current unit. The evidence is the justification linking antecedent
and consequent; it may also come from the current or previous steps, and is labeled “NA” if missing.

The identified antecedent, consequent and evidence(s) are attributes for each steps in JSON.

Layer 4: Granularity Supplement The Granularity Supplement is a curated set of Lean code
blocks designed to be included in the autoformalization prompt, to fill in reasoning steps often
omitted by students but require non-trivial justification in Lean. Each code block is accompanied by
documentation on its intended use, supported natural language variations, and guidelines for adapting
it to specific proof contexts while maintaining correctness.

The Autoformalization Layer The autoformalization prompt is largely identical to the baseline
prompt to ensure fair comparison. The only modifications are: (1) replacing the original free-form
proof with the Layer 3 pre-processed version, and (2) appending the Granularity Supplement to
support commonly omitted but non-trivial reasoning steps.

Layer 5: Syntax Checker The generated Lean code is run through the Lean 4 compiler. If a step
fails to compile, it is not immediately marked as a failure. Instead, an LLM-based correction module
attempts a syntax fix using the proof question, preceding Lean code, the error-prone step, the current
unsolved goal, and the compiler error message to generate a corrected version. Notably, the current
unsolved goal state is not part of the autoformalization prompt, but is dynamically available in the
Lean environment after being compiled through the Lean compiler. It reflects the remaining proof
obligation at each step — for example, if the goal is A = B and the previous step proves A = C, the
dynamic goal state would display B = C.

All modifications made by the correction module are recorded and later reviewed to ensure only
syntactic errors were addressed. If the step remains uncompiled after one correction attempt, it is
marked as a formalization failure.

F Single layer evaluation: examples of failed predictions across layers

F.1 Failed predictions in Layer 1 Reference Resolution

In the full evaluation across 24 student proofs (312 total steps), Claude Sonnet 4 achieved a reference
resolution accuracy of 97%, correctly resolving 26 out of 31 references and producing 3 false
positives by mislabeling non-referential terms. The following paragraphs provide a detailed analysis
of these remaining errors. This gave the following error types:
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References that are successfully detected but incorrectly resolved to wrong referents . For
example, in the sentence: “Since D is invertible, we know that «T is the unique solution for Dx = c,
then it’s not satisfied that 1 > 0, x9 > 0, x3 > 0,” the Reference Finder correctly detects “it” but
incorrectly resolves it to “the condition that x1 > 0, zo > 0, x3 > 0” instead of the intended referent,

— 9

“a.

Undetected references . The prompt primarily focused on identifying referential terms with
positional cues (e.g., “the above step”), but references often appear in more varied forms. For
example, one student wrote “xy = 2k ... (1)” and later used “substitute into 1” to refer back to it —
this reference was not detected.

False positive reference detection . In 3 cases, the model incorrectly labeled non-referential terms
as references. For example, in the sentence “Contrapositive is true, so the original statement is
true,” the model assigned the referent “the contrapositive statement proven in the previous steps” to
“Contrapositive.” While “contrapositive does not meet the strict criteria for a reference, the inferred
referent is semantically equivalent, making the error relatively benign.

F.2 Failed predictions in Layer 2 Operation Classification

On the complete set of 24 student proofs (312 steps), it achieved an overall accuracy of 94.4% (295
correctly classified steps). The following paragraphs categorize and analyze the remaining errors.

Assertion—-Declaration Misclassification : This ambiguity type identified in the qualitative study,
cannot be 100% resolved by prediction by the Operation Classifier. The model made five errors
misclassifying assertions as declarations, and seven errors in the opposite direction. Of these 12
cases, six led to autoformalization failures in the baseline, while six did not. An example of a newly
introduced error is: “Showing for y is even can be done in exactly the same manner as x,” which
could signal either a strategic declaration or a justified assertion, depending on context. In this case,
the sentence constitutes the entire proof, with no further steps, so it should be classified as an assertion.
However, the model incorrectly labeled it as an declaration. One example of a remaining unsolved
case is found in QB (Figure ), we mentioned before in the Operation Ambiguity example (Figure:
O)that the step DZ = ¢ contains an ambiguity in distinguishing assertion/ declaration. This sentence
is misclassified as an assertion in the pre-processing system.

Misclassification among declaration subtypes (5 cases). For instance, for the question “Suppose
x and y are integer. Prove that if xy and x + y are both even, then both x and y must be even”,
a student wrote: “(1) xy = 2k; (2) x + y = 2ko” which introduces new variables kq, ko and
simultaneously states new hypotheses. However, the classifier only tagged it as an declaration
introduction, overlooking the new variable introduction subtype.

F.3 Failed predictions in Layer 3 ACE Prediction

Misidentification of antecedent and consequent in continuous equations: Errors emerge when
students deviate from a clear left-to-right or top-to-bottom structure. Many responses lack linear
formatting, making it difficult for the autoformalizer to infer transitions from language or formatting
cues alone. For instance, Case 1 in Figure the student wrote in a formatof A = B=C = D,
where each symbol represents a distinct term. The correct interpretation is: “Step 1: B = D; Step 2:
using the known equalities A = B and C = D, infer A = C from B = D.” Accurate parsing of this
reasoning requires awareness of the student’s proof goal and the surrounding context — information
not available from the sentence structure alone. In Case 2, a student again wrote A = B =C = D,
but the intended reasoning was: “Step 1: A = B; Step 2: B = C'; Step 3: conclude C = D, given
A = D”. Despite identical surface structure, these two steps reflect completely different logic flows.
However, both steps were predicted as “Step 1: A = B; Step 2: B = C; Step 3: C' = D” which is
wrong in either case. This type of misidentification accounts for 67 of the 88 total errors observed in
this layer.

Misidentification of smallest progression unit: In 17 cases, the model failed to segment a sentence

into minimal reasoning steps. For example, A = B = C' = D was incorrectly parsed as Step 1:
A = B = C, combining multiple logical progressions into a single unit.
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Misidentification of evidence: The LLM generally predicted evidence correctly when guided by
cues like “so” or “since,” but hallucinated evidence not present in the original sentence. These were
filtered out by the State Matcher. In 2 cases, valid evidence was incorrectly discarded because it was
semantically correct but not an exact match to the original text.

Misidentification of antecedent or consequent - Case 1

- b - - " . .
XeR n :,',\,}; as Civi t vz ben CaVn Wrong prediction:
o °(‘"7' )ﬂ Step1:A>B
= o (Bas.BE
S (B et WR) Step2:B>C
AXED < (o (g ) Context 1: We Step 3:C>D

oA piin w6 have shown A=B

e ()b e 0D Context 2: We
B: o (oG- ngul®) have shown C=D

Correct prediction:

By o aitas 3[_5) Step1:B> D
= Y2
nos?) Cﬁ {ﬂ"‘) = D& (D(‘ (-t Sl (0(""('5 Step 2: A > Cas we
A = B = C.  FE,aD.ua™ have known A = B
Wrong ASF = ¢ (fiain v B AnTa) = BAR= & (o it andC =D
prediction step sine X Fi= A
. A B%> BAX

Misidentification of antecedent or consequent - Case 2

% s
X.x €. @ ® Wrong prediction:
Cot EEEEENE 1 g dise P kv e ::ep 12”;:’)2
_ ep 2
Context: We have shown A=D
) = 2n-% Step 3:C->D

Sbstitte Tt

Correct prediction:

(0]
_, Wrong prediction step

s By wlonse) = gan wu_ A Step 1:A > B

«— A=B = = Step1:B > C

2IWE A sl ob 5 — Step2:C 5D
W even, U Aol b o p 2:

€ven , too folliug  that x must  he given A =D

Figure 14: Examples of failed antecedent/consequent/evidence identification: In both cases, the
proof step follows the format A = B = C' = D, but the intended reasoning differs, with different
antecedent/consequentstructures. The LLM failed to capture these differences, applying the same
interpretation to both cases.

G Autoformalization performance evaluation

We ran two experiments to evaluate whether disambiguated NL improves autoformalization accuracy.
(1) We input the 24 proofs into the pre-processing system (Layers 1-4) and used its raw output (the
disambiguated NL with prediction errors) for formalization. We then measured both the number of
compiled lines and step accuracy. The resulting code was further processed by the post-processing
Syntax Checker, after which we re-evaluated step accuracy. (2) We manually reviewed all outputs
from the pre-processing system to produce a fully disambiguated NL without prediction errors. This
version was then formalized, and we again measured compiled lines and step accuracy. Finally, we
passed this resulting code through the Syntax Checker to obtain modified code and re-assessed step
accuracy.

The number of compiled lines is defined as those that compile without errors and remain consistent
with the student’s original intent (verified manually).

The step error rate is calculated by marking any step that fails to compile or diverges from the
student’s intent as erroneous. Each such step (which may span several lines of code) is manually
corrected, and evaluation continues on subsequent steps.

H Syntax checker

The functionality of this layer has also been implemented in other autoformalization studies|Azerbayev
et al.| (2023); |Patel et al.| (2025)). In our system, since this is not the primary focus of the project, we
adopt a relatively constraint approach. An LLM-based model takes as input: (1) the preceding Lean

21



code, (2) the current Lean code with errors, (3) the error message, (4) the unsolved goal, and (5) a
syntax supplement file containing common syntax patterns. The model then generates three candidate
fixes in a single call. If one of these fixes resolves the error and the issue falls under the category of
syntax errors, the step is marked as successfully corrected by the syntax checker; otherwise, the step
is marked as incorrect.

All 53 cases successfully corrected by the syntax checker involved steps where the natural language
did not fall into any of the ambiguity types identified earlier. Many of these syntax issues were
recurring patterns. Among the 53 corrected cases: a large portion of them were due to either redundant
or missing use of tactics (i.e. specific Lean functions) like simp or ring. Five resulted from incorrect
combinations or substitutions of tactics such as apply, simp, rw, nth_rewrite, and rw[+ ].
Some other cases involved confusion between structurally similar expressions, such as exact hx 0
versus exact neg_pos.mpr (hx 0). The last few emerged from minor missing steps that did not
substantially affect the meaning of the proof step.

I Remaining failed formalizations after the post processing (syntax checker)

Among the 24 proof steps that remained failed to be formalized even after disambiguation, 20
were marked with granularity ambiguity in the ambiguity type analysis before. 8 of them involved
the omission of intermediate reasoning steps under the justification of structural similarity
— typically signaled by terms such as “similarly” or “by the same argument.” The rest involved
other granularity issues. Although our Reference Finder module was able to partially resolve these
by expanding the reference (e.g., “similarly” — “similarly, referring to Step X to Step Y”), the
elided content often does not follow the exact same reasoning process as the referenced steps, they
are usually, either using similar lemmas on different variables or proving an analogous goal under
different conditions. For instance, one student intends to prove “If x or y is odd, then xy or x +y
is odd.” The student spilt this goal into 3 sub-goals: “Case 1: assume x is odd, y is even. Case 2:
assume x is even, y is odd. Case 3: assume both x, y are odd.” For case 1, the student explains in
details how to progress from “x is odd and y is even” to the goal “xy or x+y is odd,” however, for
case 2 and 3 he wrote “By the same argument as above” and wrote a very concise proof. However, as
in different cases, the condition for x and y are different, the proof process is not identical in Lean
(i.e requires introduction of different variables in the intermediate steps), thus could not copy down
the exact same strategy used in the first case to the subsequence cases. This subtle divergence leads
to autoformalization failure.
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J Prompt for the LLM based layers
J.1 Baseline autoformalization prompt (E3 prompt)

Here is the proof question you need to formalize:
{proof_question}

Here is Lean Theorem Declaration and definition you can use:
{lean_code_overhead}

Here is the proof written by a student in LaTeX:
{student_latex_proof}

Your task is to formalize this student’s proof into Lean code
** step by step **. You must reuse the exact same theorem
declaration, variable names, and assumptions provided in
the overhead, so that your formalization can compile
directly with it.

Go through the proof step by step according to the step number,
for each step

** Each step need to correspond to some formalization code.
Follow the student steps, the former step

need to be formalized before the later step could start. *x*

If this step can be formalize into one or more lines of lean
code, ** write the student’s original

natural language in comment first, and then write the lean code
you formalized **

If this step cannot be formalize into any lean code, write down
the original sentence in comment and
write in comment why it cannot be formalized

**D0 NOT use have statment if the current step is progress on
the unsolved goal or hypothesis, only

use have when the current step does not progress on the
unsolved goal or hypothesis, or progress on

part of the unsolved goalx*x*

Here are some examples. NOTE: These are just examples. The
correct Lean4 code may not necessarily
use the propositions shown in these proofs.

Input:

1. so, a+ b +c=a+ (b+ c) =a+ (c + b)

2. Base case: \( n=0 \) \(C 2~(3 \cdot 0 + 1) + 5 =7 \) is
divisible by 7, proved.

3. Given that (vl, v2, ..., vn) are distinct and eigenvectors.
Output:
-- 1. so, a+ b +c=2a+ (b+c)=2a+ (c+ b)

rw [add_assoc]
rw [add_comm]

-- 2. Base case: \( n=0 \) \(C 2°(3 \cdot 0 + 1) + 5 =7 \) is
divisible by 7, proved.

zero =>
norm_num
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-- 3. Given that (v1, v2, ..., vn) are distinct and
eigenvectors.
-- No corresponding lean.

J.2 Prompt for Layer 1

Proof question:
{proof_question}

The natural language proof
{student_proof}

Instructions:

- For each proof step, list all pronouns or references and
specify what they refer to.

Example: In Since the eigenvectors are distinct, they can
serve as the basis for the column space of B. So that tells
us x can be expressed as a linear combination of
eigenvectors ,

’they’ ’the eigenvectors’

’that’ ’Since the eigenvectors are distinct, they can serve
as the basis for the column space of B’.

- Example pronoun: it, they, them, their, which, that

- Example references: by a similar reason, above, former

- Do NOT mark pronouns referring to the author (e.g., ’we?’).
Example:\n

{pronoun_example}

J.3  Prompt for Layer 2

You are a mathematics proof expert. Your task is to classify
the action type for each proof step.

Proof question:

{proof_question}

**Proof steps to analyze*xx:

{student_proof}

Action type definition: Each proof step can be categorized as
either an Assumption or an Assertion:

1. **xAssumption**: The current step is not making progress in
the proof, there are 5 sub-types:

** Assumption introduction**: introduce a hypothesis, like:
assume a+b = c, or set a case for an existing variable,
like: case 1: n<O0

**New variable introduction**: introduce a new variable: let x
= a+b (Restating variables already in the problem is not
new introduction).

**State proof goalx**: states what needs to be proven, often
starts with: To prove

xkState proof strategy**: states the overarching method (e.g.,
induction, contraposition, contradiction).

**Repeat known**: repeat the facts that have already been known

in the question

2. **xAssertion*x* Progresses the proof by deriving new
information from the current state/ a subgoal / a
hypothesis / a known result, sometimes provided with
evidence of this progression.

**Your task*x*:
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You are given a list of proof steps in json, analyse the proof
**step by step** in order.

Each step could contain **multiple action type(s)*x*. If so,
split it into sub-steps, each sub-step must have x**exactly
one action typex**

Copy the text of the proof exactly. ** Do not modify or delete
content . *x*

Output must be a valid JSON 1list of dictionaries in a format in

the example below.

{action_type_examplel}

J.4 Prompt for Layer 3

You are a mathematics proof expert. Your task is to identify
the **xstart point**, **xend point**, and **evidencex*x* for
each progression in a proof step.

Proof question:

{proof_question}

Proof steps to analyze:

{student_proof}

Definitions:

1. *xStart point**: the expression from which the progression
begins. This may be the current unsolved goal, a portion of

the goal, or a known statement (e.g., hypothesis, lemma,
or definition).

2. **End pointx**: the new expression or result obtained after
applying the progression.

3. **Evidence**: the justification or reasoning used to connect

the start to the end.

4. **Smallest progression unit**: a minimal self-contained
progression consisting of one start, one end, and evidence.

However , in the given proof steps, units may omit the
start or evidence.

**Your task:**

1. You are given a list of proof steps in json, analyse the
proof **step by step** in order. Each proof step is marked
with an action type: assumption or assertion. Analyze the
start, end and evidence for the **assertion stepsx**. Leave
the assumption steps unchanged.

2. For **assertion** steps, extract one or more smallest
progression units. Each unit should include one start (may
omitted), one end, and evidence (may omitted). A few steps
may contain no complete unit (e.g., a step state: Since
we have a = ¢ may only serve as evidence). In such cases
, group it with adjacent steps.

3. In each unit, analyze the start point, end point and
evidence. **The end point must always be present in the
current step.** The start point or evidence come from
earlier steps or may be omitted. DO NOT FABRICATE OR INFER
NEW CONTENT BEYOND THE PROVIDED PROOF STEPS.

4. For chained equalities (may or may not be grouped in one
step), the start point is always the immediate left side of

the equation, and end point is always the right side, 1like
in a = b = ¢, there are two units, unit 1: a = b, start: a
, end: b; unit 2: b = ¢, start: b, end: c.

5. Output must be a valid JSON list of dictionaries following

the format in the examples below.

25



6. The content in <> explains
pronouns or references before <>.
serve as start, end, or evidence.
*xExamples **
Example 1:
Input:
{\"step\":
\"proof\":
eigenvalues, so they both have \\(
independent eigenvectors.\",
\"action_type\": \"assertion\"}
Output:
{\"step\":
\"proof\":
eigenvalues, so they both have \\(
independent eigenvectors.\",
\"start\":
eigenvalues\",
\"end\":
eigenvectors.\",

\lll\ll s

\lll\ll s

ambiguous terms like

These phrases may also

A"\\NC A A\\) and \\( B \\) both have \\( n \\)

n \\) linearly

AN"NNC A AN) and \\(C B \\) both have \\( n \\)

n \\) linearly

A"\\NC A \\) and \\( B \\) both have \\( n \\)

\"they both have \\( n \\) linearly independent

~2+ab+ab+b~2\",

A2\" s

progression unit ((a+b)

\"evidence\": \"NA\"}

Example 2:

Input:

{\Ilstep\ll: \lll\ll’

\"proof\": \"(a+b)~2 = (a+b) (atb) = a

\"action_type\": \"assertion\"}

Output:

{\Ilstep\ll: \||1\||’

\"proof\": \"(a+b)~2 = (a+b) (at+b)\",

\"start\": \"(a+b) " "2\",

\"end\": \"(a+b) (a+b)\",

\"evidence\": \"NA\"},

{\"step\": \"1\",

\"proof\": \"(a+b)"2 = (a+b) (a+b)\",

\"start\": \"(a+b) (a+b)\",

\"end\": \"a"2+ab+ab+b~2\",

\"evidence\": \"NA\"}

Example 3:

Input:

{\"step\": \u3\n,

\"proof\": \"=(a+b) (a+b) =a~2+ab+ab+b

\"action_type\": \"assertion\"}

Output:

{\"step\": \u3\n,

\"proof\": \"(a+b)"2 = (a+b) (a+b)\",

\"start\": \"(a+b) " 2\",

\"end\": \"(a+b) (a+b)\",

\"evidence\": \"NA\"},

{\"step\": \"1\",

\"proof\": \"(a+b)"2 = (a+b) (a+b)\",

\"start\": \"(a+b) (a+b)\",

\"end\": \"a~2+ab+ab+b~2\",

\"evidence\": \"NA\"}

Explain: the start point of the first
~2) is in the previous step (not fabricated)

J.5

Granularity supplement file

Below is granularity supplement file for QA.
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-- Codeblock 1:

-- This lemma solves: M.mulVec ( j, £ j) = j, M.mulVec (
f j) (when M is matrix and f is vector)
-- This lemma also works for: M.mulVec ( j, ¢ J f j) =
j, ¢ j M.mulVec (f j) (when cj are scalars)
lemma sum_mulVec {R : Typex*} [CommSemiring R] {n : Typex} [
Fintype n] -- M * ( j, £ 3) = j, M x (£ j)
(M : Matrix nn R) (f : n n R) :
M.mulVec ( j, £ 3) = j, M.mulVec (f j) := by
ext i

simp [Matrix.mulVec, dotProduct, Finset.sum_apply]
simp [Finset.mul_sum]
rw [Finset.sum_comm]

-- Codeblock 2:

-- In hypothesis, we have (h_eigen_A : j, A.mulVec (v j) =
_val j v j), however, sometimes there is a scalar
between B and v, like: j, B * c jJ v j = j,» ¢
J _val j v oj

-- We use simp [mulVec_smull
-- Example application:

have: j, B.mulVec (c j v j) = j, ¢ B.mulVec (
v j) := by
simp [mulVec_smul]
-- This also works when there are multiple scalars: j, A.
mulVec ( j c j v j)

-- Alternative: congr 1; ext j; rw [mulVec_smull]

--Codeblock 3: user sometime ignore the step (AB)x = ABx,

-- We use rw [ Matrix.mulVec_mulVec]

-- Example application:

have: (A * B) .mulVec x = A.mulVec (B.mulVec x) := by
rw [ Matrix.mulVec_mulVec]

J.6 Syntax checker prompt

You are a Lean 4 expert. The current Lean step has an error.

Your task is to provide **xthree alternative Lean code
corrections*x*

that could fix the error, based on the given context.

Former Lean code (context):

{former_code}

The current Lean code with error:

{current_code}

Hypotheses and unsolved goal:

{hypo_goal}

Error message:

{error_msg}

{example}

Instructions:

- Identify why the current Lean step fails.

- Suggest 3 corrected Lean steps that may fix the issue.

- Do not modify the context unless necessary.

- Output in plain text, labeled clearly as Option 1, Option 2,
Option 3.

Common error:
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Mix of simp, rw, nth_rewrite, and rwl[ ], if omne of the
tactic is error, try to replace it with one of these

J.7 Syntax supplement file

Below is syntax supplement file for QA. QB and QC has no stntax supplement file.

1. Be careful when using mulVec_smul, when applying mulVec_smul
in summation

e,g: ( j, B % c j v j) j =« j, ¢ j _val
j v j) j rwlmulVec_smul] is wrong, you need to use
simp_rw[mulVec_smul]
e.g2: ( j, ¢ B * v j) j = ( j, ¢ J
_val j v j) j rwlrw [h_eigen_B]] is wrong, you need

to use simp_rwl[h_eigen_B]
and also be careful for the scalar to apply mulVec_smul
e.g: (A * c j _val j v j) x = (c j
_val j _val j v j) x rw[mulVec_smul] is
wrong, as there are two scalars in between, you need to use
it twice rwlmulVec_smul] rw[mulVec_smul]

2. Be careful in distinguish mul_comm and smul_comm
e.g (c j _val j _val j v j) x = ( _val j
_val j c j v j) x should not use rw [
mul_comm ( _val j) ( _val j)], should use rw [smul_comm (

_val j) ( _val j)I

3. if you see goal like this ( _val j c j v i)
X = (c j _val j v j) X or this ( X,
(c x * _val x) v x) j = ( x, ( _val x * c x)
v Xx) j

where the only unsolved goal is the order of multiplication,
try to use

simp

ring

to solve this

J.8 The autoformalization prompt for the disambiguated NL

"You are a Lean 4 expert. Your task is to formalize a
students proof into Lean 4 code. \n"

"Problem statement:\n"

f"{proof_question}\n\n"

"Theorem declaration and assumptions:\n"

f"{lean_code_overhead}\n\n"

"Students proof to formalize:\n"

f"{json_proof_steps_str}\n\n"

"Common micro-steps you may reference when filling gaps:\n"

f"{granularity_code}\n"

"Instructions:\n"

"l1. The students proof is a JSON list of steps. Each step
may include an action type, a start point, an end point,
and possibly evidence. Formalize in order, **step by step
.*x* totally follow students intent\n"

"2. If the action type is an assumption, this step introduces a

variable or assumption to the proof. Write Lean to
introduce it or adjust the goal (e.g., intro, cases/rcases,
by_cases, by_contra, set, have, let). If the assumption

28



repeats known information, produce no code for that step.\n

"3. If the current entry does not have an action type
column, this step is an assertion step, which makes
progress for the current proof. For every assertion, write
Lean code to progress the proof *xfrom the start point to
the end pointx**. If the student provides evidence, use the
method in their evidence if possible.\n"

"4. If the end point is already present in the Lean environment

or local context, output: --no formalization.\n"

"65. If the start point matches the current unsolved goal,
directly formalize the step to progress toward solving it.
(See example 3)\n"

"6. If the step does not directly operate on the unsolved goal,

but proves a locally true fact useful later (part of the
LHS/RHS of the unsolved goal or a fact from hypo or other
theorem), **xformalize it with have and prove it from
the start to the end point**. (See example 1,2)\n\n"

"Example 1: \n"

"Current unsolved_goal: 7 14 * a + 21 * b\n"

"Input: \n"

"{\N\\"proof\\\": \\\"14xa is dividable by 7\\\",\\n"

"\NA\"start \\\": \\\"14xa\\\" ,\\n"

"\\\"end\\\": \\\"14xa is dividable by 7\\\"}\n"

"OQutput:\n"

"have hl : 7 14 * a := by\n"

" use 2 * a\n"

" Ring\n\n"

"Example 2:\n"

"Current unsolved goal: let S := {c | x, D * X = ¢

(i : Fim 3), x i 0}; IsSubspace (Fin 3
) S\nll

"Input:\n"

"IN\\"proof \\\": \\\"Assume \\\\(S\\\\) a subspace of \\\\(R"3
AN AN\

"\\\"action_type\\\": \\\"assumption- assumption introduction
AN\ F\n"

"Qutput:\n"

"intro S\n"

"by_contra h_subspace"
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