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Abstract

Causal discovery from observational data is a fundamental task in artificial in-
telligence, with far-reaching implications for decision-making, predictions, and
interventions. Despite significant advances, existing methods can be broadly cate-
gorized as constraint-based or score-based approaches. Constraint-based methods
offer rigorous causal discovery but are often hindered by small sample sizes, while
score-based methods provide flexible optimization but typically forgo explicit
conditional independence testing. This work explores a third avenue: developing
differentiable d-separation scores, obtained through a percolation theory using soft
logic. This enables the implementation of a new type of causal discovery method:
gradient-based optimization of conditional independence constraints. Empirical
evaluations demonstrate the robust performance of our approach in low-sample
regimes, surpassing traditional constraint-based and score-based baselines on a
real-world dataset. Code and data of the proposed method is publicly available at
https://github.com/PurdueMINDS/DAGPA.

1 Introduction

Causal discovery—the task of inferring causal relationships from observational data—is a funda-
mental problem in machine learning and statistics with far-reaching implications across multiple
disciplines, including biology, economics, social sciences, and medicine [20, 26, 29, 34, 46]. Directed
Acyclic Graphs (DAGs) provide a powerful framework for representing causal relationships, enabling
the estimation of the effects of interventions or actions. However, in many complex systems, the
underlying causal graphs remain unknown, and conducting randomized controlled trials (RCTs) to
establish causal relationships can be prohibitively expensive or impractical. This has significant impli-
cations in various domains, including planning, explainability, and fairness [27, 48, 50], highlighting
the need for reliable methods to infer causal structures from observational data alone.

The task of causal discovery is inherently challenging, specifically under small sample sizes. Consid-
ering Markov, acyclicity, and faithfulness assumptions [26, 35], some recent works have focused on
two popular avenues [14, 40, 45]: differentiable score-based methods, which leverage differentiability
to optimize objective functions, and constraint-based approaches, which rely on conditional indepen-
dence tests to infer causal structures. Common methods for constraint-based causal discovery, such as
the PC algorithm [35], are vulnerable to errors in datasets with small sample sizes, due to uncertainty
in conditional independence tests (CI tests). More recent constraint-based methods, such as LOCI
and k-PC [19, 43] among others, have ameliorated these challenges with smaller conditioning sets.

In recent years, significant progress has been made on addressing the challenges of small sample sizes
in causal discovery via differentiable score-based methods, casting the combinatorial graph search
problem as a continuous optimization problem on weighted adjacency matrices representing directed
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graphs [4, 37, 52, 53]. These differentiable methods rely either on linear models or increasingly
complex neural networks to model the underlying functional relationship between variables.

Contributions. A promising avenue for advancing causal discovery, complementing existing ap-
proaches, is the development of hybrid methods [14, 38, 40]. Our work tackles a key challenge in
this domain by introducing differentiable functions of d-separation and d-connection, capable of
scoring conditional independencies within a probabilistic causal graph, bridging constraint-based and
gradient-based methods. To achieve this, we propose a novel framework grounded in a percolation
measure applied to a continuous relaxation of the causal graph structure. This new measure effec-
tively captures the inherent dependencies among paths in a causal graph, addressing a significant
limitation of conventional diffusion-based methods, such as matrix powers, which would be unable
to adequately model d-separation.

The distinction between diffusion and percolation lies at the heart of deriving a differentiable metric
for d-separation, which essentially boils down to measuring reachability over random graphs [17]. To
illustrate this concept, consider a typical setup in gradient-based graph optimization, where a matrix
A ∈ [0, 1]n×n represents edge probabilities [42, 52], with each entry AXY encoding the likelihood
of an edge from node X to node Y . A straightforward approach to assess connectivity between X and
Y might involve computing An

XY , which represents the sum of all path probabilities of length n from
X to Y . However, this method implicitly assumes independence between paths, akin to a diffusion
process. For instance, in the paths X → Z → Y and X → Z →W → Y , the simultaneous absence
of the sampled X → Z edge would invalidate both paths, introducing a probabilistic dependence that
is not captured by matrix powers or diffusion in general.

In contrast, a d-separation measure over A is a type of percolation measure, which bounds the
probability of sampling valid paths between X and Y , accounting for edge dependencies. Although
characterizing percolation involves combinatorial complexity, we derive a differentiable bound for d-
separation using soft logic, enabling gradient-based optimization of causal structures. We instantiate
this differentiable d-separation framework in an algorithm (DAGPA, for DAG Percolation Apartness),
where we combine CI-based scores, state-of-the-art techniques in multi-task learning, and Bayesian
sampling. While DAGPA instantiates this novel framework, we believe differentiable d-separation is
of independent interest and can be integrated into existing gradient-based methods.

Empirically, DAGPA shows that differentiable d-separation yields strong results in the small-sample
regime, demonstrating good robustness and accuracy compared to popular constraint-based and
differentiable score-based baselines. Moreover, on the real-world Sachs dataset [29], DAGPA shows
that differentiable d-separation offers accurate modeling of the independence patterns in the data,
outperforming baselines in our metrics.

2 Notation and background

Notation. We denote the integer set {1, . . . , d} as [d] and a dataset of n samples and d variables as
D. We represent a weighted directed graph with d nodes and edge weights in the range [0, 1] by a
real square matrix W ∈ [0, 1]d×d. Given a node z ∈ [d], we denote W−z the submatrix obtained
by removing the z-th row and column of W , which is equivalent to removing the node z and their
connecting edges from the graph. When the square matrix is binary, e.g. A ∈ {0, 1}d×d, we interpret
it as an unweighted directed graph. Here, we write x →A y to say “y is connected from x via a
directed edge in A, ” and x⇝A y to say “y is reachable from x via a directed path (a path where
every edge has direction from x to y) in A .” Conversely, x ̸→A y and x ̸⇝A y stand for negations
of these statements. Finally, we use ⊥⊥D for (conditional) independence statements in the dataset D
1, and if A is acyclic, ⊥⊥A for d-separation statements in the DAG A.

Constraint-based causal discovery. Methods in this category aim to identify a collection of DAGs
from a dataset D such that each DAG A in it is an I-Map of D, meaning all d-separations in A imply
conditional independencies in D with a sufficiently large dataset. Namely, ∀x, y ∈ [d],Z ⊆ [d],

(x ⊥⊥A y | Z) =⇒ (x ⊥⊥D y | Z) . (1)

The collection of all DAGs satisfying this criterion constitutes the Markov Equivalence Class (MEC).
Our method, as most methods for learning DAGs, relies on the Causal Faithfulness Assumption, which

1Assuming infinite samples in D, x ⊥⊥D y | z means P (x | y, z) = P (x | z) in the true data distribution.
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posits the unique existence of a DAG A∗ such that the observed data D exhibits only the conditional
independencies represented by the d-separations in A. This assumption is equivalent to the converse
direction of Equation (1). However, challenges emerge when dealing with large conditioning sets
Z , as statistical tests for conditional independence become increasingly unreliable. To mitigate this
issue, recent approaches like LOCI [43] and k-PC [19] restrict their search to DAGs with low-order
conditioning sets (typically limited to a cardinality of 2 or less). As a result, their solution space is
not the entire MEC, but rather the k-equivalence class (or k-essential graphs) [19], which comprises
DAGs whose low-order d-separation statements are reflected as low-order conditional independencies
in D. In a similar vein, our approach focuses on conditioning sets with a cardinality of 1 or less
(|Z| ≤ 1), allowing for more reliable and efficient causal discovery.

Continuous DAG Acyclicity Constraint. Pioneered by NOTEARS [37], recent score-based meth-
ods provide an interesting alternative in DAG search by reformulating it as a continuous optimization
problem over weighted adjacency matrices. This transformation relies on the development of DAG
acyclicity regularizers, which quantify the degree of cyclicity in weighted adjacency matrices. Our
work follows this practice and uses the log-determinant DAG regularizer introduced by DAGMA [4],
defined as:

LDAG(W , s) = − log det(sI −W ) + d log s,

where s is a hyperparameter that controls the size of the valid domain of this function, denoted as
Ws = {W ∈ Rd×d | s ≥ ρ(W )}, with ρ(W ) representing the spectral radius of W . As established
by Bello et al. [4], for W ∈Ws, the condition LDAG(W , s) = 0 implies that W maps to a DAG.

3 Differentiable d-Separation Framework

Our core contribution lies in the transformation of d-separation, which is discrete and binary computed
via combinatorial algorithms [8, 20, 33], into a continuously differentiable function over W ∈
[0, 1]d×d. This transformation satisfies three central properties: (1) it exactly recovers conventional
d-separation statements when evaluated on discrete DAGs A ∈ {0, 1}d×d, (2) it provides a principled
probabilistic interpretation when W is viewed as a parameterization of a distribution over graphs,
and (3) it is a differentiable function admitting gradient-based optimization on W .

The key insight is grounding the score in a percolation-based graph connectivity measure. Specifically,
we quantify how well a probabilistic graph structure (parameterized by W ) aligns with conditional
independence (CI) patterns observed in data, such as those measured through statistical tests yielding
p-values, which pave the way to a comprehensive set of differentiable objective functions that measure
violations of low-order I-Mapness, Faithfulness, and Acyclicity constraints.

We achieve this differentiable framework through three key steps: (1) recasting d-separation as
first-order logic (FOL) formulae operating on graph reachability (Section 3.1), (2) applying soft logic
operators to transform these discrete statements into continuously differentiable functions with valid
probabilistic interpretations (Section 3.2), and (3) combining these soft d-separation measures from
the graph with conditional independence measures from data to construct objective functions that
enforce low-order I-Mapness and Faithfulness constraints while maintaining acyclicity (Section 4).

3.1 FOL Formulation of d-Separation

Conventionally, d-separations are checked by discrete, combinatorial algorithms using data structures
such as hash sets and double-ended queues [8, 20, 33]. The inherently sequential and combinatorial
nature of these algorithms presents significant challenges in developing continuous relaxations and
enabling gradient-based optimization. To address this limitation, we introduce a First-Order Logic
(FOL) framework that provides an equivalent characterization of d-separation computations in discrete
settings while maintaining differentiability properties. This reformulation bridges discrete reasoning
and continuous optimization paradigms, as it allows us to leverage established techniques from
probabilistic soft logic and fuzzy logic systems for end-to-end differentiation of the computation.

Specifically, we observe that the conventional notion of (low-order) d-separation and d-connection
on any given discrete DAG A ∈ {0, 1}d×d can be precisely captured by FOL formulæ based
solely on graph reachability information. That is, given the graph reachability logical predicate
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(a) 0th-order d-connection
pattern: checking exis-
tence of common ancestor

backdoor  path

(b) 1st-order d-connection pattern A:
checking existence of backdoor path
that does not involve z

frontdoor  path

(c) 1st-order d-connection pattern B:
checking existence of frontdoor path
that involves z

Figure 1: Illustration of the graph connectivity patterns checked by the low-order d-separation/d-
connection FOL formulæ (Definition 3.1) to determine whether the given query ((x, y) or (x, y | z))
is d-separated or d-connected. The double-dashed line == · · · == refers to a 0th-order d-connecting
path, and the arrowed line→ · · · → refers to a directed path. In either pattern, the variable nodes a
and b could be the query node x or y themselves.

RA : [d]2 → {0, 1} defined as

RA(x, y) = 1 if and only if x⇝ y in A.

We can define the FOL formulæ expressing the 0th-order (i.e. unconditional) and 1st-order (i.e.
conditioning on one variable) d-separation and d-connection statements as follows:
Definition 3.1. (Low-order d-separation and d-connection FOL formulæ) Given a discrete directed
graph A ∈ {0, 1}d×d, the 0th-order d-separation formula S

(0)
A : [d]2 → {0, 1} and the 1st-order

d-separation formula S
(1)
A : [d]3 → {0, 1} are defined as:

S
(0)
A (x, y) := ∀a ∈ [d],¬ (RA(a, x) ∧RA(a, y)) , (2)

S
(1)
A (x, y | z) := S

(0)
A−z

(x, y) ∧
((
∀a ∈ [d] \ {z}, S(0)

A−z
(x, a) ∨ ¬RA(a, z)

)
∨
(
∀b ∈ [d] \ {z}, S(0)

A−z
(y, b) ∨ ¬RA(b, z)

))
.

(3)

Equivalently, the 0-th and 1-st order d-connection statements C(0)
A and C

(1)
A are:

C
(0)
A (x, y) := ∃a ∈ [d], RA(a, x) ∧RA(a, y), (4)

C
(1)
A (x, y | z) := C

(0)
A−z

(x, y) ∨
((
∃a ∈ [d] \ {z}, C(0)

A−z
(x, a) ∧RA(a, z)

)
∧
(
∃b ∈ [d] \ {z}, C(0)

A−z
(y, b) ∧RA(b, z)

))
.

(5)

To understand why these formulæ correctly capture d-separation and d-connection when A is a DAG,
consider first the 0th-order formulae S(0)

A (x, y) and C
(0)
A (x, y). These formulæ essentially determine

whether any node (including possibly x or y themselves) serves as a common ancestor to both x and
y (e.g. the node a? in Figure 1a). If such a common ancestor exists, it creates either a chain structure
(when a = x or a = y, meaning x is the ancestor of y or vice versa) or a fork structure (when a ̸= x
and a ̸= y, and a third node is the common ancestor). In either case, x and y are unconditionally
d-connected, yielding C

(0)
A (x, y) = 1 as expressed in Equation (4).

The 1st-order formulæ S
(1)
A (x, y | z) and C

(1)
A (x, y | z) involve more intricate logic but follow an

intuitive two-step process. Take C
(1)
A (x, y | z) for instance. It first examines, via the first term

C
(0)
A−z

(x, y), whether x and y remain d-connected in the subgraph A−z where conditioning node z

is removed — effectively checking for any backdoor path that bypasses z (Figure 1b). If no such
backdoor path exists, the formulæ then evaluate whether there exists a valid frontdoor path through
z. For this frontdoor path to d-connect x and y when conditioning on z, z must be a collider or a
descendant of a collider. This translates to checking whether there is any 0th-order d-connecting path
that does not involve z and that connects x to any ancestor of z or z itself, and similarly whether there
is such a path connecting y to any ancestor of z or z itself. As illustrated in Figure 1c, this is checking
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if the 0th-order d-connecting path x == · · · == a? and the directed path a?→ · · · → z both exist
at the same time. The following theorem formalizes the correctness of these logical characterizations.
Theorem 3.2. For any DAG A with d nodes and any three nodes x, y, z ∈ [d] that are distinct,
x ⊥⊥A y if and only if S(0)

A (x, y) = 1, and x ⊥⊥A y | z if and only if S(1)
A (x, y | z) = 1. Similarly,

x ⊥̸⊥A y if and only if C(0)
A (x, y) = 1, and x ⊥̸⊥A y | z if and only if C(1)

A (x, y | z) = 1. 2

The d-separation and d-connection formulæ presented in Theorem 3.2 rely fundamentally on the
graph reachability predicate RA. Crucially, we observe that RA itself can be expressed through FOL
formulæ that operate directly on the adjacency matrix A, by taking a recursive form analogous to the
generalized Bellman-Ford algorithm [3].
Definition 3.3. (Graph Reachability FOL formulæ) Given a discrete directed graph A ∈ {0, 1}d×d,
we define the reachability formulæ R

(l)
A (x, y) : [d]2 → {0, 1} for path lengths no greater than l

recursively as follows:

R
(0)
A (x, y) = 1(x = y), (6)

R
(l)
A (x, y) =

 ∨
u∈[d]

(
R

(l−1)
A (x, u) ∧Au,y

) ∨R
(l−1)
A (x, y). (7)

In practice, we take RA(x, y) := R
(d−1)
A (x, y) where d is the number of nodes, since the longest

directed path in a DAG with d nodes has length d− 1. The correctness of these formulæ is articulated
in the following lemma:
Lemma 3.4. For any discrete graph A ∈ {0, 1}d×d with maximum directed path length l and for all
pair of nodes x, y ∈ [d], x⇝A y if and only if R(l)

A (x, y) = 1.

By integrating the formulæ in Definition 3.1 with those in Definition 3.3, we establish a complete
framework that can systematically determine d-separation and d-connection relationships in DAGs
using purely FOL operations, laying the foundation for the differentiable relaxation that follows.

3.2 Continuous Relaxation via Soft Logic

Having established d-separation and d-connection as FOL formulæ, we can now leverage the rich
literature on probabilistic soft logic (PSL) and fuzzy logic to transform these discrete statements into
continuously differentiable functions. These soft logic frameworks systematically relax Boolean
operations (conjunction, disjunction, existential and universal quantification) into continuous func-
tions that operate over the interval [0,1] via various t-norms and t-conorms—continuous analogs
of logical AND and OR operations [2, 5, 18, 39]. In doing so, the logical semantics necessary to
defined reachability (a percolation metric) are preserved while enabling gradient-based optimization
and sampling.

In this work, we adopt the LogLTN framework proposed by Badreddine et al. [2], which implements
the product t-norm (for logical AND) and max t-conorm (for logical OR) in the logarithmic space.
Given a set of m values {xi}i∈[m], each xi ∈ [0, 1], and their logarithmic representations {x′

i}i∈[m],
each x′

i = log(xi), the standard product t-norm and max t-conorm Tm, Om : [0, 1]m → [0, 1], and
LogLTN’s logarithmic versions T̃m, Õm : Rm

− → R−, where R− := {x ∈ R | x ≤ 0}, are:

Tm({xi}i∈[m]) :=

m∏
i=1

xi , Om({xi}i∈[m]) := max{xi}i∈[m] ,

T̃m({x′
i}i∈[m]) :=

m∑
i=1

x′
i , Õm({x′

i}i∈[m]) := α

(
C + log

(∑n
i=1 e

x′
i/α−C

m

))
.

(8)

where C = max(x′
1/α, . . . , x

′
m/α) and α ∈ (0, 1] is the temperature controlling the approximation

accuracy (the closer α is to 0 the more accurate). Notably, the logarithmic t-norm T̃m exactly

2The proofs of Theorem 3.2 and all following theorems and lemmas can be found in Appendix A.
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represents its standard counterpart, i.e., T̃m(·) = log(Tm(·)) , whereas the logarithmic t-conorm
Õm implements the Log-Mean-Exponential operation that provides a lower bound approximation of
log(Om(·)) with bounded error [2]:

log(Om(x))− α log(m) ≤ Õm(x′) ≤ log(Om(x)).

Our choice of the LogLTN operators is motivated by two key considerations. First, a comparative
analysis by van Krieken et al. [39] shows that the product t-norm provides the most stable and
informative gradients for differentiable learning, while Badreddine et al. [2] shows that the Log-
MeanSum approximation of the max t-conorm in the logarithmic space further enhances gradient
stability. Second, as we will demonstrate next, this specific combination of max-product operators
consistently yields principled lower bounds on the quantities being estimated and allows us to derive
continuously differentiable functions, which we name the differentiable d-separation/d-connection,
that compute lower bounds on expected d-separation/d-connection statements over a distribution of
DAGs parameters by the weighted adjacency matrix W . Specifically, we now transform the FOL
formulæ in Definition 3.1 and Definition 3.3 into their continuous counterparts that operate on the
weighted adjacency matrices W ∈ [0, 1]d×d, using the LogLTN logical operators.
Definition 3.5. (Differentiable Graph Reachability and Unreachability Percolations) Given a
weighted adjacency matrix W ∈ [0, 1]d×d, we define the relaxed reachability and unreachabil-
ity functions, R̃(l)

W (x, y), Ũ
(l)
W (x, y) : [d]2 → R−, for path lengths no greater than l recursively as

follows:

R̃
(0)
W (x, y) := log(1(x = y)) R̃

(l)
W (x, y) := Õd+1

(
{T̃2(R̃

(l−1)
W (x, u), log(Wuy))}u∈[d] ∪ {R̃

(l−1)
W (x, y)}

)
,

Ũ
(0)
W (x, y) := log(1(x ̸= y)) Ũ

(l)
W (x, y) := T̃d+1

(
{Õ2(Ũ

(l−1)
W (x, u), log(1−Wuy))}u∈[d] ∪ {Ũ

(l−1)
W (x, y)}

)
,

where we take log(0) = −∞.

Definition 3.6. (Differentiable d-Separation and d-Connection) Given a weighted adjacency matrix
W ∈ [0, 1]d×d, we define the 0th-order differentiable d-separation and d-connection function
S̃
(0)
W (x, y), C̃

(0)
W (x, y) : [d]2 → R− and the 1st-order differentiable d-separation and d-connection

function S̃
(1)
W (x, y|z), C̃(1)

W (x, y|z) : [d]3 → R− as follows:

S̃
(0)
W (x, y) := T̃d

({
Õ2

(
Ũ

(d)
W (a, x), Ũ

(d)
W (a, y)

)}
a∈[d]

)
, C̃

(0)
W (x, y) := Õd

({
T̃2

(
R̃

(d)
W (a, x), R̃

(d)
W (a, y)

)}
a∈[d]

)
,

S̃
(1)
W (x, y|z) := T̃2

(
S̃
(0)
W−z

(x, y), Õ2

(
T̃d−1

({
Õ2

(
S̃
(0)
W−z

(x, a), Ũ
(d)
W (a, z)

)}
a∈[d]\{z}

)
, T̃d−1

({
Õ2

(
S̃
(0)
W−z

(y, b), Ũ
(d)
W (b, z)

)}
b∈[d]\{z}

)))
,

C̃
(1)
W (x, y|z) := Õ2

(
C̃

(0)
W−z

(x, y), T̃2

(
Õd−1

({
T̃2

(
C̃

(0)
W−z

(x, a), R̃
(d)
W (a, z)

)}
a∈[d]\{z}

)
, Õd−1

({
T̃2

(
C̃

(0)
W−z

(y, b), R̃
(d)
W (b, z)

)}
b∈[d]\{z}

)))
.

Notably, for the d-separation functions relying on graph unreachability, we directly derive unreacha-
bility from the negation of reachability FOL formulæ rather than computing log(1−exp(R̃

(l)
W(x, y))).

This is essential for preserving the correct probabilistic interpretation, as we now demonstrate.

Consider W as representing a parametric distribution over discrete graphs A. Namely, to sample
A, we sample each edge x→ y independently via Axy ∼ Bern(Wxy) (i.e. Bernoulli distribution).
We denote the entire graph’s sampling as A ∼ Bern(W ). We first notice that the differentiable
graph reachability and graph unreachability functions on W given in Definition 3.5 always yield a
lower bound to the expected reachability and unreachability on A respectively, when A ∼ Bern(W ).
Intuitively, this is because the max operator provides a lower bound on the probability of a union of
events (logical OR), while the product operator correctly computes the probability of an intersection
of events (logical AND) when said events are mutually independent or provides a lower bound when
they are positively correlated, which is precisely the case for overlapping paths in graphs needed
in reachability (a percolation metric). As these operators compose recursively in our reachability
computation, they preserve the lower bound properties, leading to the following lemma.
Lemma 3.7 (Reachability Percolation Lower Bound). Given a weighted adjacency matrix W ∈
[0, 1]d×d, for any 0 ≤ l < d, and for any pair of nodes x, y ∈ [d], we have

R̃
(l)
W (x, y) ≤ logEA∼Bern(W )

[
R

(l)
A (x, y)

]
and Ũ

(l)
W (x, y) ≤ logEA∼Bern(W )

[
U

(l)
A (x, y)

]
.
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The lower bound property of both our reachability and unreachability functions is critical—note that
naively computing unreachability as log(1− exp(R̃

(l)
W(x, y))) would yield an upper bound instead.

This consistency in providing lower bounds is essential for extending our theoretical guarantees to
the differentiable d-separation and d-connection functions. As the following lemma demonstrates,
these functions also preserve the lower bound property relative to their expected values:
Theorem 3.8 (Lower Bound on Expected d-Separation Statements). Given a weighted adjacency
matrix W ∈ [0, 1]d×d, for any three nodes x, y, z ∈ [d],

S̃
(0)
W (x, y) ≤ logEA∼Bern(W )

[
S
(0)
A (x, y)

]
, S̃

(1)
W (x, y | z) ≤ logEA∼Bern(W )

[
S
(1)
A (x, y | z)

]
,

C̃
(0)
W (x, y) ≤ logEA∼Bern(W )

[
C

(0)
A (x, y)

]
, C̃

(1)
W (x, y | z) ≤ logEA∼Bern(W )

[
C

(1)
A (x, y | z)

]
.

These lemmas establish that our differentiable functions provide lower bounds on the logarithm of
expected d-connection and d-separation statements when viewing W as parameterizing a distribution
over discrete graphs. This mathematical guarantee opens a principled pathway for gradient-based
optimization by maximizing these lower bounds.

4 DAGPA (DAG Percolation Apartness)

We now introduce DAGPA, a practical instantiation to demonstrate the validity of our differentiable
d-separation scores (Section 3.2). This implementation employs certain heuristics and simplifications
to facilitate optimization. The primary goal is not to claim DAGPA’s optimality, but rather to provide
empirical validation of the framework’s potential for causal discovery and open avenues for future
research exploring more sophisticated realizations of the core principles.

In DAGPA, we parameterize the weighted adjacency matrix W with parameters θ ∈ Rd×d via
the sigmoid transformation W = σ(θ). We develop objective functions that encourage alignment
between the d-separation/d-connection statements implied by the graph structure W and conditional
independence patterns in data. Rather than using binary decisions based on thresholded p-values,
DAGPA directly incorporates raw p-values from statistical independence tests as soft CI labels from
data. This approach makes the model naturally robust to uncertainty in CI testing, as gradient-based
optimization can prioritize clear cases (p-values near 0 indicating dependence or near 1 indicating
independence) over borderline ones.

Our objective functions consists of three components: Acyclicity, "True Positive," and "True Negative"
losses3. A true positive occurs when the model predicts a high probability of d-separation for variable
pairs showing high independence p-values in the data. Conversely, a true negative occurs when the
model predicts a high probability of d-connection for pairs showing low p-values (strong dependence).
Definition 4.1 (Multi-task Constraint-based CI Statement Losses of DAGPA). Given a dataset D
with n samples and d variables, and the p-values pD(·) of some statistical conditional independence
tests on all the 0th-order and 1st-order statements. Let I0 = {(x, y) | x, y ∈ [d], x > y} and
I1 = {(x, y, z) | x, y, z ∈ [d], x > y, x ̸= z, y ̸= z}. The CI Statement “true positive (TP)” losses
LTP-0 and LTP-1, the “true negative (TN)” losses LTN-0 and LTN-1, as well as the log-determinant DAG
acyclicity loss LDAG from DAGMA [4], defined on the model parameters θ ∈ Rd×d, are as follows:
LTP-0(θ,D) = −

∑
(x,y)∈I0

S̃
(0)
σ(θ)(x, y)pD(x, y), LTP-1(θ,D) = −

∑
(x,y,z)∈I1

S̃
(1)
σ(θ)(x, y | z)pD(x, y | z),

LTN-0(θ,D) = −
∑

(x,y)∈I0

C̃
(0)
σ(θ)(x, y)(M0 − pD(x, y)), LTN-1(θ,D) = −

∑
(x,y,z)∈I1

C̃
(1)
σ(θ)(x, y | z)(M1 − pD(x, y | z)),

LDAG(θ, s) = − log det(sI − σ(θ)) + d log s.

where M0 = maxI0 pD(x, y), M1 = maxI1 pD(x, y | z), σ is the sigmoid function, and s is the
hyperparameter controlling the domain of the log-determinant DAG loss of DAGMA [4].

We note that, assuming the p-values accurately reflect the true CI patterns, minimizing the “TP”
and “TN” losses maximizes S̃ and C̃ on the correct queries. Furthermore, since S̃ and C̃ are lower
bounds of the expected d-separation and d-connection statements over Bern(W ) (Theorem 3.8), we
are maximizing lower bounds - the correct optimization direction. The following lemmas show the
consistency of the losses and the validity of taking sum aggregation over individual CI queries.

3We use these terms loosely, as p-values in practice may not perfectly reflect true CI statements.
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achieves the best performance
compared to all baseline methods.

Lemma 4.2 (Consistency of Multi-Task CI Losses). Given a faithful data D, as the sample size
n→∞ and the LogMeanExp temperature α→ 0+ (Equation (8)), the optimal DAG A∗ achieves
the minimum value on each of LTP-0,LTP-1,LTN-0,LTN-1, and LDAG.

Lemma 4.3 (Mutual Independence of Low-order CI Statements). All 0th- and 1st-order CI statements
over the variable sets I0 = {(x, y) | x, y ∈ [d], x > y} and I1 = {(x, y, z) | x, y, z ∈ [d], x >
y, x ̸= z, y ̸= z} are mutually independent. In other words, none of these CI statements can be
implied from any other of these CI statements via the graphoid axioms [25].

In Appendix C, we provide the complete algorithm for DAGPA along with detailed descriptions
of additional heuristics employed to address optimization challenges, including: PCGrad [44] for
resolving conflicting gradients in multi-task learning, Discrete Langevin Proposal (DLP) [51] for
efficient exploration of the weight space, and an optimization-time DAG selection score based on CI
statement measures from the data.

5 Experiments

This section presents an empirical evaluation of DAGPA’s ability to discover DAGs whose d-
separation statements are consistent with those derived from the underlying causal structure that
generated the data. Our objective is not to test superiority over baselines in terms of exact structural
recovery (that is left to Appendix F), but rather to demonstrate that DAGPA successfully achieves its
intended purpose: learning DAGs that entail the same low-order conditional independence statements
as the ground truth. The experimental results indicate that our differentiable d-separation framework
offers a promising direction for causal discovery.

Evaluation. To evaluate causal discovery from a CI statement alignment perspective, we propose
a metric that aligns with this objective: the Low-order CI Statement Matthews Correlation
Coefficient (CI-MCC), illustrated in Figure 2. Given a model’s predicted causal graph (which
may be a DAG, PDAG, CPDAG, or k-essential graph), we derive the set of all 0th- and 1st-order
d-separation statements implied by the structure. We then compare these against the corresponding
d-separation statements derived from the ground-truth DAG that generated the data. Treating this
as a binary classification task, we compute the Matthews Correlation Coefficient, which ranges
from [−1, 1] with higher values indicating better alignment between model-predicted and ground-
truth CI statements. We select MCC over alternatives like F1 score due to its robustness to class
imbalance—a critical consideration since the true ratio of independence to dependence relationships
varies widely across different causal structures and is typically unknown in real-world settings. For
completeness, results using conventional causal discovery metrics, such as graph structure F1 and
Structural Hamming Distance (SHD) scores, are provided in Appendix F.

Baselines. We compare DAGPA with representative causal discovery methods spanning different
paradigms: constraint-based approaches including PC [35] and k-PC [19]; score-based methods such

8



Better

B
e
t
t
e
r

1.0

0.8

0.6

0.4

0.2

0.0

0.2 0.70.3 0.4 0.5 0.6

Low-order CI Statement MCC (CI-MCC)

E
m

p
ir

ic
a
l 

C
D

F

DAGPA (Ours)

DAGMA (Linear)

DAGMA (Nonlinear)

GES

(k=1) kPC

(k=2) kPC

NOTEARS (Linear)

NOTEARS (Nonlinear)

PC

(a) ER d = 10, r = 2, n = 100

Better

B
e
t
t
e
r

1.0

0.8

0.6

0.4

0.2

0.0

0.2 1.00.4 0.6 0.8

Low-order CI Statement MCC (CI-MCC)

E
m

p
ir

ic
a
l 

C
D

F

DAGPA (Ours)

DAGMA (Linear)

DAGMA (Nonlinear)

GES  

(k=1) kPC

(k=2) kPC

NOTEARS (Linear)

NOTEARS (Nonlinear)

PC

(b) ER d = 10, r = 2, n = 10000

Figure 4: The empirical cumulative distribution functions (CDFs) of the low-order CI Statement
Matthews Correlation Coefficient (CI-MCC) on two synthetic binary settings. The closer the curves
to the bottom-right (↘), the better the performance. Our method achieves on-par performance to
the constraint-based baselines in high-sample regime (Figure 4a) while demonstrating much
better robustness in low-sample regime (Figure 4b).

as GES [6]; and continuous optimization approaches including NOTEARS (linear and nonlinear) [37]
and DAGMA (linear and nonlinear) [4]. This selection provides a comprehensive comparison land-
scape across methodological families. Detailed baseline configurations are provided in Appendix D.5.

Experimental Settings. We evaluate methods on both synthetic and real-world datasets. For
synthetic data, we generate binary data requiring no normalization. We follow a protocol similar
to Kocaoglu [19], generating binary datasets from randomly constructed DAGs. We use both
Erdős–Rényi (ER) and Scale-Free (SF) graph models via the pyAgrum package [10], with varying
complexity parameters: nodes d ∈ {10, 50}, edge-to-node ratio r ∈ {2, 4}, and sample sizes
n ∈ {100, 1000, 10000, 100000}. For each configuration, we generate 10 datasets. All constraint-
based methods employ Fisher-z tests [11] (with potential of other CI tests as alternative; details
in appendix), for computing conditional independence p-values, ensuring a fair comparison. For
real-world validation, we use the Sachs dataset [29], a benchmark protein signaling network with 11
variables and a known ground-truth causal structure derived from experimental interventions. This
dataset represents a challenging real-world case where the underlying causal mechanisms are likely
nonlinear and complex. We employ the standard discretized version preprocessed via the Hartemink
discretization method, which converts continuous protein concentrations into 3-level categorical
variables (low, average, high) while preserving dependence structure.

We note that our CI-constraint-based approach offers inherent robustness to preprocessing artifacts
that can affect score-based methods: standard CI tests (e.g. Chi-squared for discrete data, Fisher-Z
for continuous data) are invariant to scaling transformations, whereas likelihood-based objectives can
exploit variance differences as spurious causal signals [28]. This makes our framework particularly
robust across different preprocessing pipelines.

Results on Sachs. To evaluate performance on real-world data with potentially complex underlying
mechanisms, we test DAGPA on the Sachs dataset [29], a benchmark protein signaling network with
11 variables and 853 samples. Figure 3 displays the empirical CDF of CI-MCC scores across methods.
DAGPA demonstrates dramatically superior performance, achieving CI-MCC scores of 0.75-0.98,
while all baseline methods cluster between 0.3-0.65. For our method, we select the 10 DAGs with
highest DAG selection scores to reflect the uncertainty inherent in causal discovery from real data. For
baselines that depend on random seeds, we run each method with 10 different initializations to ensure
fair comparison. The substantial performance gap highlights DAGPA’s ability to effectively discover
causal structures in real-world data where the underlying data-generating process is complex and
potentially nonlinear. This confirms that our differentiable d-separation framework, combined with
gradient-informed discrete sampling, provides robust causal discovery capabilities that generalize
well beyond synthetic settings to real-world applications where ground truth is available but unknown
during learning.

Results on synthetic binary data. Figure 4 presents the empirical cumulative distribution functions
(CDFs) of CI-MCC scores across methods for different sample sizes. For each baseline, we include
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one result per data instance in the batch (10 results total), while for DAGPA, we select the 5
discovered DAGs with the highest DAG selection score (Appendix C.3) per instance, yielding 50
total evaluations.

In low-sample settings (n=100, Figure 4a), DAGPA demonstrates superior performance compared
to most baselines and performs on-par with DAGMA-Nonlinear [4], with CDF curves positioned
toward the bottom-right indicating consistently higher CI-MCC scores. The advantage of DAGPA is
particularly pronounced when compared to constraint-based methods (PC, k-PC), which struggle
in low-sample regimes due to their reliance on hard conditional independence statements derived
from uncertain p-values. Most score-based methods, including DAGMA-linear and both NOTEARS
variants [37], also underperform in this setting, likely due to overfitting to limited data.

As sample size increases to n=10000 (Figure 4b), most methods improve as expected, with DAGPA
maintaining competitive performance alongside constraint-based approaches. This pattern holds
consistently across different graph structures and dimensions (see Appendix F), confirming that
DAGPA effectively addresses RQ1 by exhibiting strong robustness in low-sample settings while
maintaining competitive performance when data is abundant.

6 Related work
Constraint-based Methods. These methods discover causal structures through conditional indepen-
dence (CI) testing. The PC algorithm [34, 35] produces CPDAGs representing Markov equivalence
classes but struggles with small samples due to unreliable high-order CI tests. Recent advances like
LOCI [43] and k-PC [19] demonstrate that low-order CI statements can sufficiently identify causal
structures in many practical settings. Our work builds on these insights but uniquely transforms
discrete CI decisions into a differentiable learning framework, further enhancing robustness in the
small sample regime.

Score-based Methods. These methods optimize a score function over the DAG space. Traditional
approaches like GES [6] use greedy search with information-theoretic criteria but face scalability
challenges due to the discrete DAG space. NOTEARS [52] introduced a breakthrough with differ-
entiable acyclicity characterization, enabling gradient-based optimization on weighted adjacency
matrices and spurring extensions like nonlinear variants [53] and improved acyclicity constraints in
DAGMA [4]. Our framework builds upon these continuous optimization advances but redirects the
objective toward maximizing agreement with CI constraints rather than fitting functional models.
This creates a hybrid approach combining strengths from both paradigms and opening a new avenue
for causal discovery.

A more comprehensive discussion on related work can be found in Appendix E.

7 Conclusions
We introduced a novel causal discovery framework that bridges constraint-based and gradient-based
continuous-optimization methods through differentiable d-separation. By proposing percolation-
based differentiable d-separation scores, we enabled gradient-based learning of causal DAG structures
from conditional independence patterns in finite datasets. Our model instantiation, DAGPA, demon-
strates competitive performance across synthetic and real-world settings, with strong robustness
in low-sample regimes where traditional methods often struggle, while maintaining competitive
performance as data becomes abundant.

Limitations and Future Work. Several limitations in our current approach present opportunities
for future research. The reliance of DAGPA on p-values to measure both conditional dependence and
independence from data can be improved, as using a constant minus the p-value to assess dependence
strength is a simple heuristic. Fortunately, our framework is measurement-agnostic and supports
alternatives, which we recommend future work to investigate. In addition, our method focuses
on only low-order conditioning sets and assumes no confounding variables in the data. Future
directions include extending the framework to handle latent confounders, efficiently incorporating
higher-order CI statements, and simultaneously improving scalability. Finally, as suggested by a
reviewer, a particularly promising avenue is integrating our differentiable d-separation framework
with score-based methods like NOTEARS and DAGMA, enabling causal structure learning from
both data likelihood signals and CI statement fitness signals (case studies in Appendix G.1). These
advancements would further bridge constraint-based and score-based paradigms in causal discovery.
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A Proofs

Definition 3.1. (Low-order d-separation and d-connection FOL formulæ) Given a discrete directed
graph A ∈ {0, 1}d×d, the 0th-order d-separation formula S

(0)
A : [d]2 → {0, 1} and the 1st-order

d-separation formula S
(1)
A : [d]3 → {0, 1} are defined as:

S
(0)
A (x, y) := ∀a ∈ [d],¬ (RA(a, x) ∧RA(a, y)) , (2)

S
(1)
A (x, y | z) := S

(0)
A−z

(x, y) ∧
((
∀a ∈ [d] \ {z}, S(0)

A−z
(x, a) ∨ ¬RA(a, z)

)
∨
(
∀b ∈ [d] \ {z}, S(0)

A−z
(y, b) ∨ ¬RA(b, z)

))
.

(3)

Equivalently, the 0-th and 1-st order d-connection statements C(0)
A and C

(1)
A are:

C
(0)
A (x, y) := ∃a ∈ [d], RA(a, x) ∧RA(a, y), (4)

C
(1)
A (x, y | z) := C

(0)
A−z

(x, y) ∨
((
∃a ∈ [d] \ {z}, C(0)

A−z
(x, a) ∧RA(a, z)

)
∧
(
∃b ∈ [d] \ {z}, C(0)

A−z
(y, b) ∧RA(b, z)

))
.

(5)

Theorem 3.2. For any DAG A with d nodes and any three nodes x, y, z ∈ [d] that are distinct,
x ⊥⊥A y if and only if S(0)

A (x, y) = 1, and x ⊥⊥A y | z if and only if S(1)
A (x, y | z) = 1. Similarly,

x ⊥̸⊥A y if and only if C(0)
A (x, y) = 1, and x ⊥̸⊥A y | z if and only if C(1)

A (x, y | z) = 1. 4

Proof. First, we note that the d-separation formulæ S
(0)
A , S

(1)
A and the d-connection formulæ

C
(0)
A , C

(1)
A are the negation of each other and can be obtained from each other via De Morgan’s law.

Thus, the statement “x ⊥⊥A y if and only if S(0)
A (x, y) = 1” is equivalent to “x ⊥̸⊥A y if and only

if C(0)
A (x, y) = 1”, and vice versa, the statement “x ⊥⊥A y | z if and only if S(1)

A (x, y | z) = 1”
is equivalent to “x ⊥̸⊥A y | z if and only if C(1)

A (x, y | z) = 1.” Thus, we proceed to prove the
statements involving the d-connection formulæ C

(0)
A , C

(1)
A .

Part 1: x ⊥̸⊥A y if and only if C(0)
A (x, y) = 1.

• We show the direction x ⊥̸⊥A y =⇒ C
(0)
A (x, y) = 1.

If x ⊥̸⊥A y, i.e., x is d-connected to y with an empty conditioning set, then there exists a path
between x and y that does not contain any colliders, because otherwise the path would be blocked.
Denote the sequence of nodes in this path p = (p1, . . . , pm) with p1 = x and pm = y. In other
words, for any three consecutive nodes a, b, c ∈ p, we have either the chain structure a→ b→ c
or a← b← c, or the fork structure a← b→ c.

Because there is no collider structure in p, we will show that there must be at most one fork
structure in p. To see this by contradiction, consider if p contains more than one fork, and let
pl−2 ← pl−1 → pl and pr ← pr+1 → pr+2 be two forks (l < r) in p such that there is no other
fork between pl and pr. Then, either there are some colliders between pl and pr, or pl and pr are
connected by some directed paths, i.e., either pl ⇝ pr or pr ⇝ pl. If pl ⇝ pr, then pr is a collider,
and vice versa if pr ⇝ pl, then pl is a collider. Hence, in all scenarios, p will have at least one
collider, contradicting the fact that p should not have any collider.

Now, we discuss case by case based on whether p has no fork, or it has one fork. Figure 1a
illustrates the structure such a path p.

Case 1: Suppose there is no fork on p: If there is no fork at all, then p is a directed path. Without
loss of generality, assume p = x→ · · · → y. Then, let a = x, we have a⇝ x (a node is always

4The proofs of Theorem 3.2 and all following theorems and lemmas can be found in Appendix A.
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naively reachable from itself) and a⇝ y. Hence, (RA(a, x) ∧RA(a, y)) = 1, and therefore the
formulæ C

(0)
A (x, y) = ∃a ∈ [d], RA(a, x) ∧RA(a, y) is 1.

Case 2: Suppose there is one fork on p When there is one and only one fork, it means the center
node of the fork is the common ancestor of both x and y. In other words, let a be this center
node, then we have a⇝ x and a⇝ y. Thus, similarly, we have (RA(a, x) ∧RA(a, y)) = 1, and
therefore the formulæ C

(0)
A (x, y) = ∃a ∈ [d], RA(a, x) ∧RA(a, y) is 1.

Thus, we have shown that x ⊥̸⊥A y =⇒ C
(0)
A (x, y) = 1

• Now we show the other direction C
(0)
A (x, y) = 1 =⇒ x ⊥̸⊥A y.

Given C
(0)
A (x, y) = 1, we have ∃a ∈ [d] such that a⇝ x and a⇝ y. Let a be such a node. Thus,

a∗ is a common ancestor of x and y. Let px = a→ · · · → x be the directed path that starts at a
and ends at x, and similarly let py = a→ · · · → y. Then, the path form by the sequence of nodes
in px and py , i.e., p = (x, . . . , a, . . . , y), is clearly a path consisting of at most one fork structure
with other wise chain structures. When a = x or a = y, p is a directed path without fork, and
otherwise has one fork. In either case, p is a d-connecting path between x and y, making x ⊥̸⊥A y.

Part 2: x ⊥̸⊥A y | z if and only if C(1)
A (x, y | z) = 1.

• We show the direction x ⊥̸⊥A y | z =⇒ C
(1)
A (x, y | z) = 1.

We are given x ⊥̸⊥A y | z, i.e., x and y are d-connecting when conditioning on z. Thus, there must
exist a non-empty set of d-connecting paths P between x and y that is not blocked given z. We
proceed with a case-by-case discussion depending on whether all of these paths contain colliders.

1. First, we consider the case where there is some path in P that does not contain any collider. Let
p ∈ P be such a path. Then, z must not be on p, because otherwise, since z is not a collider
and it is being conditioned, p would be blocked and therefore p ̸∈ P .
Since p does not include z, it remains unchanged in the subgraph A−z , in which node z is
removed from the graph A, and thus it is still a d-connecting path in A−z . Hence, because of p,
we have x and y are d-connecting in the subgraph A−z . In other words, we have C(0)

A−z
(x, y) =

1. Since C
(0)
A−z

(x, y) is the one of two terms from the outmost disjunction operator ∨ in the

formula for C(1)
A (x, y | z), we have C

(0)
A−z

(x, y) = 1 renders C(1)
A (x, y | z) = 1.

In Figure 1b, this pattern is illustrated via the “backdoor path” structure.
2. Otherwise, all paths in P contain colliders. We first show that this implies that we can find a

path p∗ in P that has only one collider.
To see this, pick any path p ∈ P . If p indeed has only one collider, then we are done. Hence,
we consider the non-trivial case where p has more than one collider. We further divide the cases
depending on whether node z is included in path p.
(a) If z is included in p, then z must itself be a collider, because otherwise p would be blocked

by z.
Now, let z′ be another collider in p. Then, z must be a descendant of z′, because otherwise
p would be blocked by z′ even though z is in the conditioning set. In other words, z is
reachable from z′ with a directed path, i.e., z′ ⇝ z.
Using this knowledge, we can construct the following alternative path pz′ that still
has z as a collider but converts z′ to a non-collider. Specifically, without loss of
generality, we assume the path p consists of the following sequence of nodes: p =
(x, . . . , pl′ , z

′, pr′ , . . . , pl, z, pr, . . . , y) for some indices l, r, l′, r′ with collider structures
pl′ → z′ ← pr′ and pl → z ← pr. We have shown that z′ ⇝ z, and denote the cor-
responding directed path z′ → q1 → · · · → qm → z. We can obtain the new path as
follows:

pz′ = (x, . . . , pl′ , z
′, q1, . . . , qm, z, pr, . . . , y),

where we replace the middle section sub-path (z′, pr′ , . . . , pl, z) in p to (z′, q1, . . . , qm, z)
to form pz′ .
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Now, note that in pz′ , z′ is no longer a collider but forms a chain structure, because
pl′ → z′ → q1. Nevertheless, z is still a collider, because qm → z ← pr. Furthermore, pz′

is still a d-connecting path. This is because the sub-paths (x, . . . , pl′ , z′) and (z, pr, . . . , y)
are d-connecting conditioning on z because they are parts of the original p which is a
d-connecting path, and the “new” sub-path (z′, q1, . . . , qm, z) by definition is d-connecting
conditioning on z because it is a directed path. Hence, taken together, pz′ is d-connecting
given z, so pz′ ∈ P .
Thus, by iteratively constructing these alternative paths pz′ for any colliders z′ in p that is
not z, we can arrive at a path p∗ ∈ P that has z as the only collider.

(b) Now, suppose z is not included in p and p has more than one collider. Let z′ and z′′ be
any two such colliders, and without loss of generality, let the path consists of the sequence
of nodes p = (x, . . . , pl′ , z

′, pr′ , . . . , pl′′ , z
′′, pr′′ , . . . , y). Similarly, both z′ and z′′ must

be ancestors of z, because otherwise one of them would block the path. Hence, we know
that z′ ⇝ z and z′′ ⇝ z. Let the directed paths be z′ → q1 → · · · → qm → z and
z′′ → o1 → · · · → os → z respectively. We can construct the following new path:

pz′,z′′ = (x, . . . , pl′ , z
′, q1, . . . , qm, z, os, . . . , o1, z

′′, pr, . . . , y).

Here, note that both z′ and z′′ are no longer a collider, because pl′ → z′ → q1 and
o1 ← z′′ ← pr. Nevertheless, z is a collider since qm → z ← os. Furthermore, pz′,z′′ is
still a d-connecting path conditioned on z. As we have established in the discussion of
the previous case, that the sub-paths (x, . . . , pl′ , z′) and (z′′, pr, . . . , y) are d-connecting.
Since (z′, q1, . . . , qm, z) and (z, os, . . . , o1, z

′′) are directed paths, we have that the sub-
paths (x, . . . , qm, z) and (z, os, . . . , y) are also d-connecting. Taken together, the whole
path is d-connecting given z, i.e., pz′,z′′ ∈ P .
In other words, we have converted both colliders z′ and z′′ in the original p into non-
colliders while introducing z as a new collider. This means that the resulting path pz′,z′′

satisfies the initial condition of a path p discussed in the previous case. Hence, by further
following the procedure described in the previous case, we can eventually arrive at a path
p∗ ∈ P that has z as the only collider.

Now that we know P will necessarily include a path p∗ with only one collider, denote this
collider z∗, and we know either z∗ = z or z∗ is an ancestor of z. In other words, we have
z∗ ⇝ z. Hence, we can denote p∗ as a sequence of nodes: p∗ = (x, . . . , p∗l , z

∗, p∗r . . . , y) for
some indices l, r, where p∗l → z∗ ← p∗r .
Now, let a = x if there is no fork structure in the sub-path (x, . . . , z∗) of p∗, otherwise let a
be the rightmost fork in (x, . . . , z∗) (i.e. there is no other fork in the sub-path (a, . . . , z∗) of
p∗). Then, we have a⇝ z∗ because there is neither any fork nor any collider in the sub-path
(a, . . . , z∗), and we know it has a constituent edge p∗l → z∗ with an edge direction pointing
towards z∗. Moreover, because z∗ ⇝ z, we have a⇝ z, and equivalently RA(a, z).
On the other hand, the sub-path (x, . . . , a) is a d-connecting path conditioning on z because
its super-path p∗ ∈ P is a d-connecting path conditioning on z, does not have any collider
because z∗ is the only collider in p∗, and does not include z. Hence, in the subgraph A−z

where z is removed from the graph A, the sub-path (x, . . . , a) remains unchanged and is still a
d-connecting path, and in this case without conditioning on z. Therefore, x and a is d-connecting
in A−z , i.e., x ⊥̸⊥A−z

a. Hence, we have found a node a such that (x ⊥̸⊥A−z
a) ∧ (a⇝ z), or

equivalently, we have the following:(
∃a ∈ [d] \ {z}, (x ⊥̸⊥A−z

a) ∧RA(a, z)
)
= 1.

Similarly, let b = y if there is no fork structure in the sub-path (z, . . . , y) of p∗, otherwise let b∗
be the leftmost fork in (z, . . . , y). We then have also have the following:(

∃b ∈ [d] \ {z}, (y ⊥̸⊥A−z
b) ∧RA(b, z)

)
= 1.

Combining everything, we fulfill second term in the outermost disjunction operator in the FOL
formula and thus have C

(1)
A (x, y | z) = 1.

In Figure 1c, this pattern is illustrated as the “frontdoor path” structure.

• Now we show the other direction C
(1)
A (x, y | z) = 1 =⇒ x ⊥̸⊥A y | z.
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If C(1)
A (x, y | z) = 1, then we have

C
(0)
A−z

(x, y) = 1,

or we have((
∃a ∈ [d] \ {z}, C(0)

A−z
(x, a) ∧RA(a, z)

)
∧
(
∃b ∈ [d] \ {z}, C(0)

A−z
(y, b) ∧RA(b, z)

))
= 1.

We discuss it case by case.

1. If it is the first case, C(0)
A−z

(x, y) = 1, then there exists a d-connecting path p between x and y

in the subgraph A−z . p then does not include z, and must not include any colliders. Hence,
back in the original graph A, p is a “backdoor” path that does not involve z that renders x and
y d-connecting. Thus, we have x ⊥̸⊥A y and also x ⊥̸⊥A y | z.

2. We now consider the other case. Since the left-hand-side term is a conjunction (∧), both term in
the conjunction must be true, meaning there exists some nodes a and b satisfying either term
respectively. Taking a step further, this means that all of the four terms – C

(0)
A−z

(x, a), RA(a, z),

C
(0)
A−z

(y, b), and RA(b, z) – are true.

Using a similar reasoning as mentioned in the previous case, C(0)
A−z

(x, a) implies that we have a

d-connecting path between x and a and that x ⊥̸⊥A a | z. Similarly, C(0)
A−z

(y, b) implies that
y ⊥̸⊥A b | z. Furthermore, because RA(a, z) = 1 and RA(b, z) = 1, that is, a⇝ z and b⇝ z,
the path between a and b, formed by the corresponding directed paths that renders a⇝ z and
b⇝ z respectively, is a d-connecting path conditioning on z, as z serves as the only collider.
Hence, we have a ⊥̸⊥A b | z.
Hence, by transitivity of d-connection statements, we have that x ⊥̸⊥A y | z, finishing the entire
proof.

Lemma 3.4. For any discrete graph A ∈ {0, 1}d×d with maximum directed path length l and for all
pair of nodes x, y ∈ [d], x⇝A y if and only if R(l)

A (x, y) = 1.

Proof. We prove this lemma by induction on the maximum directed path length l.

Basecase: Suppose the maximum directed path length in A is 0. This means there is no path and A
is an empty graph. Thus, for all x ∈ [d], x⇝A x and for all x, y ∈ [d] with x ̸= z, x ̸⇝A y.

Induction: Suppose the statement in the lemma holds true with a maximum directed path length of
l − 1. We now prove the statement for l.

• We prove the direction x⇝A y =⇒ R
(l)
A (x, y) = 1.

Given that x ⇝A y, let p be such a directed path starting from x and ending at y. Let u be the
second to last node in p with an edge u → y, or equivalently, Au,y = 1. Then, we also have
x⇝A u.

Since the path from x to u will have a length smaller than or equal to l − 1, using the induction
hypothesis, we have R

(l−1)
A (x, u) = 1.

Thus, we have R
(l−1)
A (x, u) ∧ Au,y = 1, and consequently

∨
u∈d R

(l−1)
A (x, u) ∧ Au,y = 1,

satisfying the first term in the outmost disjunction in the recursive formula for R(l)
A , rendering

R
(l)
A (x, y) = 1.

• Now we prove the other direction R
(l)
A (x, y) = 1 =⇒ x⇝A y.

Given R
(l)
A (x, y) = 1, there are possible scenarios: that

∨
u∈d R

(l−1)
A (x, u) ∧Au,y = 1 or that

R
(l−1)
A (x, y) = 1. we discuss case by case.
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1. Suppose
∨

u∈d R
(l−1)
A (x, u) ∧ Au,y = 1, then there exists at least one node u such that

R
(l−1)
A (x, u) ∧Au,y = 1, meaning both R

(l−1)
A (x, u) = 1 and Au,y = 1. This means that, by

the induction hypothesis, x ⇝A u with maximum path length l − 1. Furthermore, we have
u → y is an directed edge. Thus, there exists a directed path from x to y, i.e. x ⇝A y with
maximum path length l.

2. Suppose R
(l−1)
A (x, y) = 1, then by the inductive hypothesis, x ⇝A y with a maximum path

length l − 1, which also makes the statement true under the setting of a maximum path length
of l.

Thus, in either case, we have x⇝A y.

The proof of Lemma 3.7 and subsequent Theorem 3.8 requires the following lemma showing the
lower-bound nature of LogLTN’s [2] t-norm and t-conorm logical operators. We state this lemma and
its proof as follows.

Lemma A.1. Given the t-norm and t-conorm operators of LogLTN [2], which we restate as follows,

T̃m({x′
i}i∈[m]) :=

m∑
i=1

x′
i , Õm({x′

i}i∈[m]) := α

(
C + log

(∑n
i=1 e

x′
i/α−C

m

))
.

Let x1,x2, . . . ,xm be m Bernoulli random variables that are mutually independent or positively
correlated. Denote their probabilities as p1, p2, . . . , pm, respectively. Then, we have the following:

T̃m({log(p1), . . . , log(pm)}) ≤ logP (x1 ∧ · · · ∧ xm)

Õm({log(p1), . . . , log(pm)}) ≤ logP (x1 ∨ · · · ∨ xm)

Proof. We first show the inequality involving the t-norm T̃m. We first observe that T̃m is the logarithm
of the product t-norm, meaning

exp(T̃m({log(p1), . . . , log(pm)})) =
m∏
i=1

pi.

Now, since xi’s are mutually independent or correlated, we naturally have
∏m

i=1 pi ≤
P (x1 ∧ · · · ∧ xm). This is because for any two random variables xi and xj ,

P(xi ∧ xj) = E[xi ∧ xj ] = E[xi]E[xj ] + Cov(xi,xj) = pipj + Cov(xi,xj) ≥ pipj ,

where the last inequality sign holds because Cov(xi,xj) ≥ 0 for mutually positively correlated or
independent random variables.

Thus, we have

exp(T̃m({log(p1), . . . , log(pm)})) ≤
m∏
i=1

pi ≤ P (x1 ∧ · · · ∧ xm)

T̃m({log(p1), . . . , log(pm)}) ≤ logP (x1 ∧ · · · ∧ xm) .

For the t-conorm Õm, the inequality holds because Õm is a lower bound of the logarithm of max,
and max is then also a lower bound of the union of random variables. Specifically, as shown in the
main text, Õm as the LogMeanExp operation has the following property:

exp(Õm({log(p1), . . . , log(pm)})) ≤ max{p1, . . . , pm}.

On the other hand, max is in general the lower bound of the probability of the union of random
variables,

max{log(p1), . . . , pm} ≤ P (x1 ∨ · · · ∨ xm) .
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Thus, taken together, we have

exp(Õm({log(p1), . . . , log(pm)})) ≤ max{p1, . . . , pm} ≤ P (x1 ∨ · · · ∨ xm)

Õm({log(p1), . . . , log(pm)}) ≤ logP (x1 ∨ · · · ∨ xm) .

Lemma 3.7 (Reachability Percolation Lower Bound). Given a weighted adjacency matrix W ∈
[0, 1]d×d, for any 0 ≤ l < d, and for any pair of nodes x, y ∈ [d], we have

R̃
(l)
W (x, y) ≤ logEA∼Bern(W )

[
R

(l)
A (x, y)

]
and Ũ

(l)
W (x, y) ≤ logEA∼Bern(W )

[
U

(l)
A (x, y)

]
.

Proof. We first show that R̃(l)
W (x, y) ≤ logEA∼Bern(W )

[
R

(l)
A (x, y)

]
.

Intuitively, this inequality holds because in a probabilistic graph W , where each edge x → y is a
Bernoulli random variable parameterized by Wx,y , the paths as random variables are either mutually
independent, when they consist of distinct edges, or mutually positively correlated, when they share
some common edges. Thus, using the results of Lemma A.1, the t-norm of the path probabilities
yields a lower bound to their joint probability, and the t-conorm yields a lower bound to their union
probability. Thus, the continuous reachability score R̃(l)

W , consisting of disjunctions and conjunctions
of the path and edge probabilities, also gives lower bounds.

More specifically, we can observe this fact via induction. In the base case, we obviously have

R̃
(0)
W (x, y) = log(1(x = y)) = logPA∼Bern(W )(R

(0)
A (x, y)) = PW (x→ y) = logWx,y.

In addition, we can obviously see that the random variable R
(0)
A (x, u) is independent of the random

variable Au,y for any nodes u ∈ [d].

Then, assuming the inequality holds for a graph with a maximum path length of l − 1, and that
the random variable R

(l−1)
A (x, u) is either independent of or positively correlated with the random

variable Au,y for any nodes u ∈ [d], we now aim to show that these two statements also hold for l.

First, we can see that, for any node u ∈ [d],

T̃2(R̃
(l−1)
W (x, u), log(Wuy)) ≤ logEA∼Bern(W )

[
R

(l−1)
A (x, u) ∧Au,y

]
,

from results in Lemma A.1 regarding the t-norm T̃2 and the induction hypothesis that R(l−1)
A (x, u) is

either independent of or positively correlated with Au,y .

Then, again using the result in Lemma A.1 regarding the t-conorm Õm, we have

R̃
(l)
W (x, y) = Õd+1

(
{T̃2(R̃

(l−1)
W (x, u), log(Wuy))}u∈[d] ∪ {R̃

(l−1)
W (x, y)}

)
≤ logEA∼Bern(W )

 ∨
u∈[d]

(
R

(l−1)
A (x, u) ∧Au,y

) ∨R
(l−1)
A (x, y)


= logEA∼Bern(W )

[
R

(l)
A (x, y)

]
.

Regarding the relationship between R
(l)
A (x, u) and Au,y , we can see that the probability of R(l)

A (x, u)
increases if the probability of Au,y also increases. This is because in the formula, there is no negation
and Au,y makes a possible contribution to the value of R(l)

A (x, u). Thus, R(l)
A (x, u) and Au,y are

positively correlated.

Now, we show for the unreachability inequality, Ũ (l)
W (x, y) ≤ logEA∼Bern(W )

[
U

(l)
A (x, y)

]
.

Similarly, we show by induction. In the base case, we have

Ũ
(0)
W (x, y) = log(1(x ̸= y)) = logPA∼Bern(W )(¬R

(0)
A (x, y)) = log(1−Wx,y).
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In addition, we can see that the random variable U
(0)
A (x, u) is independent of the random variable

¬R(0)
A (x, y).

Then, assuming the inequality holds for a graph with a maximum path length of l − 1, and that
the random variable U

(l−1)
A (x, u) is either independent of or positively correlated with the random

variable ¬R(0)
A (x, y). We aim to show that these two properties still hold for l.

First, using the result in Lemma A.1 regarding the t-conorm Õm, we have, for all nodes u ∈ [d],

Õ2(Ũ
(l−1)
W (x, u), log(1−Wuy)) ≤ EA∼Bern(W )

[
U

(l−1)
A (x, u) ∨ ¬R(0)

A (u, y)
]
.

Then, we note that the random variable (U
(l−1)
A (x, u) ∨ ¬R(0)

A (u, y)) for different u are mutually
independent or positively correlated. They are also independent of or positively correlated with
U

(l−1)
A (x, y). This is similar to the mutual independence or positive correlation among paths, since

for these “non-paths”, if they consist of distinct “non-edges”, then they are independent. Otherwise,
they are positively correlated, since increasing the probability of the shared “non-edge” (or decreasing
the probability of the shared edge) would simultaneously increase the probabilities of said “non-paths.”
Thus, again using the result in Lemma A.1 regarding the t-norm T̃d+1, we have

Ũ
(l)
W (x, y) = T̃d+1

(
{Õ2(Ũ

(l−1)
W (x, u), log(1−Wuy))}u∈[d] ∪ {Ũ

(l−1)
W (x, y)}

)
≤ logEA∼Bern(W )

 ∧
u∈[d]

(
U

(l−1)
A (x, u) ∨ ¬Au,y

) ∧ U
(l−1)
A (x, y)


= logEA∼Bern(W )

[
U

(l)
A (x, y)

]
.

Theorem 3.8 (Lower Bound on Expected d-Separation Statements). Given a weighted adjacency
matrix W ∈ [0, 1]d×d, for any three nodes x, y, z ∈ [d],

S̃
(0)
W (x, y) ≤ logEA∼Bern(W )

[
S
(0)
A (x, y)

]
, S̃

(1)
W (x, y | z) ≤ logEA∼Bern(W )

[
S
(1)
A (x, y | z)

]
,

C̃
(0)
W (x, y) ≤ logEA∼Bern(W )

[
C

(0)
A (x, y)

]
, C̃

(1)
W (x, y | z) ≤ logEA∼Bern(W )

[
C

(1)
A (x, y | z)

]
.

Proof. First, we reiterate that, in the computation of differentiable d-separation S̃
(0)
W and S̃

(1)
W , we use

the continuous unreachability score Ũ
(d)
W directly, rather than taking the negation of the continuous

reachability score.

Using a similar reasoning as in the proof of the previous lemma, we first observe that, when treating
S
(0)
A , S(1)

A , C(0)
A , and C

(1)
A as random variables when A ∼ Bern(W ), all terms in the d-separation/d-

connection formulæ (Definition 3.1) are either mutually independent or positively correlated. In
particular, this holds true for S(0)

A−z
(x, a) and ¬RA(a, z) for any a ∈ [d], as well as for C(0)

A−z
(y, b)

and RA(b, z) for any b ∈ [d]. Thus, using the results from Lemma A.1, we have the lower bounds as
stated in the theorem.

Lemma 4.2 (Consistency of Multi-Task CI Losses). Given a faithful data D, as the sample size
n→∞ and the LogMeanExp temperature α→ 0+ (Equation (8)), the optimal DAG A∗ achieves
the minimum value on each of LTP-0,LTP-1,LTN-0,LTN-1, and LDAG.

Proof. Let θ∗ ∈ Rd×d be the parameter that approximates the optimal binary DAG A∗ of the given
data D via σ(θ∗)→ A∗.

When the sample size n → ∞ in a faithful data D, we have pD(x, y) → 0 and pD(x, y | z) → 0
when x ⊥̸⊥A∗ y and x ⊥̸⊥A∗ y | z, and conversely pD(x, y) → 1 and pD(x, y | z) → 1 when
x ⊥⊥A∗ y and x ⊥⊥A∗ y | z for any x, y, z ∈ [d], where A∗ is the optimal causal graph of D. When
the LogMeanExp temperature α→ 0+, we have logmax{xi}mi=1 − Õm({log(xi)}mi=1)→ 0+.
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In addition, we note that when given a sequence of binary random variables x1, . . . ,xm, whose
Bernoulli probabilities approach in the limit to either 0 or 1, the product t-norm Tm and max t-
conorm Om over xi’s probabilities approach in the limit to the probability of P(x1 ∧ · · · ∧ xm) and
P(x1 ∨ · · · ∨ xm) respectively. This is because in the limit case, the random variables reduce to
constant 0’s and constant 1’s, in which case the product t-norm and t-conorm reduce to the vanilla
Boolean operations of conjunction and disjunction. Thus, combining the fact that LogLTN’s [2]
t-norm T̃m is equivalent to Tm in the logarithm, and its t-conorm Õm approaches in limit to Om in
the logarithm, we have the following:

logP (x1 ∧ · · · ∧ xm)− T̃m({logP(xi)}mi=1)→ 0+

logP (x1 ∨ · · · ∨ xm)− Õm({logP(xi)}mi=1)→ 0+.

Using this property, we can see that for the continuous reachability and unreachability, for any given
maximum path length l and any nodes x, y ∈ [d], they satisfy

R
(l)
A∗(x, y)−R

(l)
σ(θ∗)(x, y)→ 0+

U
(l)
A∗(x, y)− U

(l)
σ(θ∗)(x, y)→ 0+.

Consequently, for the differentiable d-separation and d-connection scores, for any nodes x, y, z ∈ [d],
they satisfy

S
(0)
A∗(x, y)− S̃

(0)
σ(θ∗)(x, y)→ 0+, S

(1)
A∗(x, y | z)− S̃

(1)
σ(θ∗)(x, y | z)→ 0+,

C
(0)
A∗(x, y)− C̃

(0)
σ(θ∗)(x, y)→ 0+, C

(1)
A∗(x, y | z)− C̃

(1)
σ(θ∗)(x, y | z)→ 0+.

Furthermore, recall from Theorem 3.2, since A∗ is a discrete DAG, S(0)
A∗ , S(1)

A∗ , C(0)
A∗ , and C

(1)
A∗

reduces exactly to the ground-truth d-separation and d-connection statement values in A∗. Thus,
combining with the result above, we have that

S̃
(0)
σ(θ∗)(x, y)→

{
1 when x ⊥⊥A∗ y

0 otherwise
, S̃

(1)
σ(θ∗)(x, y | z)→

{
1 when x ⊥⊥A∗ y | z
0 otherwise

,

C̃
(0)
σ(θ∗)(x, y)→

{
1 when x ⊥̸⊥A∗ y

0 otherwise
, C̃

(1)
σ(θ∗)(x, y | z)→

{
1 when x ⊥̸⊥A∗ y | z
0 otherwise

,

Therefore, combining with the values of the p-values pD, we have the following value matching
between the model’s predicted d-separation and d-connection score and the p-values. For all (x, y) ∈
I0 (I0 = {(x, y) | x, y ∈ [d], x > y}) and for all (x, y, z) ∈ I1 (I1 = {(x, y, z) | x, y, z ∈ [d], x >
y, x ̸= z, y ̸= z}),

S̃
(0)
σ(θ∗)(x, y)→

{
1 when pD(x, y)→ 1

0 when pD(x, y)→ 0
, S̃

(1)
σ(θ∗)(x, y | z)→

{
1 when pD(x, y | z)→ 1

0 when pD(x, y | z)→ 0
,

C̃
(0)
σ(θ∗)(x, y)→

{
1 when M0 − pD(x, y)→ 1

0 when M0 − pD(x, y)→ 0
, C̃

(1)
σ(θ∗)(x, y | z)→

{
1 when M1 − pD(x, y | z)→ 1

0 when M1 − pD(x, y | z)→ 0
,

where M0 = maxI0 pD(x, y) → 1, and similarly M1 = maxI1 pD(x, y | z) → 1. In other words,
the differentiable d-separation/d-connection scores over the optimal parameter θ∗) and the p-values
from the data have zero mismatch.

Thus, the TP and TN losses have the following values:

LTP-0(θ,D)→ −
∑

(x,y)∈I0

1[x ⊥⊥A∗ y], LTP-1(θ,D)→ −
∑

(x,y,z)∈I1

1[x ⊥⊥A∗ y | z],

LTN-0(θ,D)→ −
∑

(x,y)∈I0

1[x ⊥̸⊥A∗ y], LTN-1(θ,D)→ −
∑

(x,y,z)∈I1

1[x ⊥̸⊥A∗ y | z],

which are the lowest possible values that these loss functions can achieve, because any other configu-
ration of the values for the differentiable d-separation/d-connection scores would result in a larger
loss value due to possible mismatches with the p-values. Thus, the TP and TN losses are consistent.
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Finally, since A∗ is a DAG, the log-det acyclicity loss LDAG also achieves the minimum value, for
any value of the hyperparameter s. This property is proved in Bello et al. [4]. Thus, all loss functions
in Definition 4.1 are consistent.

Lemma 4.3 (Mutual Independence of Low-order CI Statements). All 0th- and 1st-order CI statements
over the variable sets I0 = {(x, y) | x, y ∈ [d], x > y} and I1 = {(x, y, z) | x, y, z ∈ [d], x >
y, x ̸= z, y ̸= z} are mutually independent. In other words, none of these CI statements can be
implied from any other of these CI statements via the graphoid axioms [25].

Proof. Let X ,Y ⊆ [d] be any non-empty node sets, and Z,W ⊆ [d] be node sets that could be empty.
The graphoid axiom [25] states the following five rules describing the relationship and dependencies
between different CI statements in a graphoid dependency model:

1. Symmetry: X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z

2. Decomposition: X ⊥⊥ Y ∪W | Z =⇒ (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z)

3. Weak Union: X ⊥⊥ Y ∪W | Z =⇒ (X ⊥⊥ Y | Z ∪W) ∧ (X ⊥⊥ W | Z ∪ Y)

4. Contraction: (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z ∪ Y) =⇒ X ⊥⊥ Y ∪W | Z

5. Intersection: (X ⊥⊥ Y | Z ∪W) ∧ (X ⊥⊥ W | Z ∪ Y) =⇒ X ⊥⊥ Y ∪W | Z

We check rule by rule whether any of the low-order CI statements considered in I0 and I1 can be
implied by any others.

1. Symmetry: No CI statement in I0 and I1 can be inferred from others via the symmetry rule. This
is because I0 and I1 consists of only asymmetric statements where always x > y.

2. Decomposition: In the non-trivial case when |Y| ≥ 1 and |W| ≥ 1, this rule does not apply
because its left-hand side (LHS) statement involves nodes set Y ∪W with cardinality of at least 2.
This type of statement is not considered in I0 or I1.

3. Weak Union: Similarly, in the non-trivial case when |Y| ≥ 1 and |W| ≥ 1, this rule does not
apply because its LHS statement is not included in I0 or I1.

4. In the non-trivial case when |Y| ≥ 1 and |W| ≥ 1, the LHS applies, but the right-hand-side (RHS)
involve node set Y ∪W with cardinality of at least 2, which is not included in I0 or I1.

5. Intersection: Similarly, in the non-trivial case when |Y| ≥ 1 and |W| ≥ 1, the RHS involve node
set Y ∪W with cardinality of at least 2, which is not included in I0 or I1.

Thus, no CI statements in I0 and I1 can be inferred from other statements in I0 and I1 via the graphoid
axioms. Thus, the CI statements we considered in our approach are mutually independent from the
perspective of the graphoid dependency structure, justifying the use of the sum aggregation over these
CI statements in the TP and TN losses.

B Further Discussions on Percolation versus Diffusion

The distinction between graph percolation and graph diffusion is fundamental to understanding
the probabilistic interpretation of our differentiable d-separation framework. Percolation theory
studies graph properties (such as connectivity or reachability) when the graph structure itself is
randomized [13, 17]. In contrast, diffusion theory typically assumes a fixed graph structure, with
randomness arising from particles making probabilistic traversal decisions across this deterministic
environment.

In the context of our weighted adjacency matrix W ∈ Rd×d, these perspectives offer different
interpretations. From a percolation standpoint, each entry Wx,y represents the probability that edge
x → y exists in the graph. The reachability question then becomes: what is the probability that a
directed path exists from one node to another, considering all possible graph configurations? From a
diffusion perspective, W would instead represent transition probabilities on a complete graph, where
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Max-Product Bellman-Ford is Lower  Bound:
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Figure 5: Example random graph to illustrate that the Max-Product Bellman-Ford reachability
computes a lower bound of the true percolation-based reachability probability, whereas diffusion-
based random walk computes an upper bound. Marked numbers are the edge probabilities. For the
random walk computation, we assume a model with self-loop probabilities, e.g. P (x→ x) = 0.6 so
that the transition probabilities to other nodes and the self-loop probabilities sum to one.

at node x, the weights {Wx,u}u∈[d] (possibly normalized) determine the probability distribution of
a particle’s next position. The key distinction is that percolation randomizes the environment (the
graph structure), while diffusion randomizes the trajectory through a fixed environment.

It is therefore most appropriate to frame our problem as a graph percolation problem. Given a
weighted adjacency matrix W, we interpret it as parametrizing a distribution Bern(W) from which
random discrete graphs are sampled, A ∼ Bern(W). Our goal is to estimate the expected reachability
(with path lengths up to d), EA∼Bern(W)

[
R

(d)
A (x, y)

]
, where the randomness comes from the graph

structure itself.

This insight guides our estimation approach for the percolation-based reachability. We observe
that our generalized Bellman-Ford-based differentiable reachability score (Definition 3.5) provides
a lower bound on this expectation, while graph diffusion methods like Random Walk algorithms
typically yield upper bounds. This distinction becomes clear when considering two potential paths p1

and p2 from node x to node y that share some edges. In percolation theory, reachability requires only
that at least one path forms completely. Our Bellman-Ford approach with max operators captures this
intuition—when one path’s formation probability approaches 1, additional paths contribute minimally
to the overall reachability probability. The lower bound property stems from the approximation gap
between product-max t-norms/t-conorms and the true intersection/union of events, combined with
the approximation in LogLTN’s [2] LogMeanExp operator (Equation (8)). Formal proof of this lower
bound property can be found in the proof for Lemma 3.7 in Appendix A. Consequently, our method
will systematically underestimate true percolation-based reachability.

Conversely, in diffusion models, particles make independent decisions at each node. When two
paths overlap, the probability of a particle reaching the target via either path is treated additively
rather than as a union probability. This independence assumption fails to account for the correlation
between overlapping paths in the percolation setting, causing diffusion methods to overestimate the
true percolation-based reachability.

Figure 5 provides a concrete example illustrating the distinction between our max-product Bellman-
Ford reachability and graph diffusion scores. The example shows a weighted adjacency matrix W
with 5 nodes, where edge weights are as indicated in the figure (with zeros elsewhere). For the
diffusion-based method, we choose the typical Random Walk algorithm, where we assume self-loops
at each node so that the sum of self-loop probability and outgoing edge probabilities equals 1 (e.g.,
node x has a self-loop probability of 0.6).

Consider two possible paths from x to y: path p1 = x → z → v → y and path p2 = x → z →
w → y. p1 and p2 are two random variables under the graph distribution Bern(W ). The true
percolation-based reachability probability, denoted by P(x ⇝ y), is computed as the union of the
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events of these two paths forming: P(p1 ∨ p2). Since these paths share the edge x→ z but diverge
afterward, we must carefully apply probability theory on union of events. For the divergent segments,
the probability is:

P((z → v → y) ∨ (z → w → y)) = P(z → v → y) + P(z → w → y)− P((z → v → y) ∧ (z → w → y))

Because these two sub-paths share no edges, they are independent, giving P((z → v → y) ∧
(z → w → y)) = P(z → v → y) · P(z → w → y). Calculating the full expression yields
P(x⇝ y) = 0.1592.

Our max-product Bellman-Ford approach approximates this union using the max operator: for the
divergent sub-paths from z to y, we compute R

(2)
W (z, y) = max{P(z → v → y),P(z → w → y)}.

Since the max operator always provides a lower bound for the union of events, our approach yields
the final value R

(3)
W (x, y) = 0.12, which underestimates the true reachability probability. In contrast,

the diffusion-based Random Walk method, denoted by P(RW)(x⇝ y), adds probabilities additively
across possible paths: P(RW)(x⇝ y) = P(p1) + P(p2). This leads to an overestimation of the true
reachability probability, giving P(RW)(x⇝ y) = 0.176. This example clearly demonstrates why our
max-product approach provides a principled lower bound on percolation-based reachability, while
diffusion-based methods typically yield upper bounds.

Our max-product Bellman-Ford approach is thus particularly well-suited for our proposed model
instantiation, DAGPA, as it provides consistent lower bounds throughout computation, ensuring
a coherent probabilistic interpretation. While we focus on lower-bound estimation, an alternative
approach could theoretically estimate upper bounds on expected d-separation/d-connection statements.
For such a method, diffusion-based approaches like Random Walk would be more appropriate for
estimating graph reachability. However, this would require identifying a different pair of t-norm/t-
conorm differentiable logical operators that yield upper bounds instead of lower bounds. Based on
van Krieken et al. [39]’s comprehensive analysis of t-norm and t-conorm suitability for differentiable
learning, we have not identified a configuration that simultaneously provides upper bounds and
maintains gradient stability comparable to our max-product operators. This represents an interesting
direction for future research, potentially expanding the theoretical foundations of differentiable
d-separation frameworks, and we encourage future work to explore this avenue.

C Full Algorithm and Implementation Details of DAGPA

DAGPA, our proposed instantiation of the differentiable d-separation framework, employs multiple
techniques to address optimization challenges and result validation. This section provides comprehen-
sive implementation details for all techniques used in our approach. We first discuss the multi-task
gradient conflict resolution technique (Section C.1) and the Bayesian sampling method for enhanced
weight space exploration (Section C.2). Since DAGPA uses Bayesian sampling, each optimization
step generates a new candidate causal graph. Consequently, we require a principled procedure to
select the best DAGs from those sampled, using only information available from the input data. We
present this DAG selection heuristic in Section C.3. Finally, we provide the complete algorithm
pseudocode in Section C.4.

C.1 Multitask optimizer to address conflicting gradients

Algorithm 1 PCGrad [44] Gradient Projection

Require: Model parameters θ, number of tasks K,
loss functions {Lk}Kk=1

1: gk ← ∇θLk(θ) ∀k ∈ [K]
2: gPC

k ← gk ∀k ∈ [K]
3: for i = 1 : K do
4: for j

uniformly∼ [K] \ i in random order do
5: if gPC

i · gj < 0 then
6: ▷ Subtract projection of gPC

i onto gj

7: gPC
i ← gPC

i −
gPC
i ·gj

∥gj∥2 gj

8: return update ∆θ(PC) = gPC =
∑K

i=1 g
PC
i

The five distinct loss functions—0th and 1st-
order TP/TN losses plus the DAG acyclicity
constraint (Definition 4.1)—render our opti-
mization a multi-objective problem. Recent
research in multi-task learning has demon-
strated that naively summing these loss func-
tions leads to theoretically suboptimal con-
vergence, as contradictory gradient direc-
tions among tasks can impede optimization
progress [21, 23, 32, 41, 44]. This challenge
is particularly pronounced in our framework,
where the TP losses encouraging d-separation
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naturally conflict with the TN losses that require d-connection. To address these inherent gradient
conflicts, we adopt PCGrad [44], a gradient projection technique that resolves conflicting directions
by projecting one gradient onto the normal plane of the other when they conflict. We reproduce the
PCGrad algorithm [44] adopted to our setting in Algorithm 1.

C.2 Gradient-informed discrete Bayesian sampling of W

Rather than using conventional stochastic gradient descent (SGD), we adopt Discrete Langevin
Proposal (DLP) [51], a gradient-informed discrete Bayesian sampling technique, to sample parameters
θ that yield low-loss configurations5. Our choice of DLP is motivated by several key factors. First,
our empirical observations show that SGD often becomes trapped in local minima, possibly due to
the highly non-convex loss landscape, in which case Bayesian sampling can naturally escape local
minima and explores the weight space more effectively. Second, we favor discrete over continuous
sampling because the most likely DAG A from a weighted adjacency matrix W is obtained via
thresholding at 0.5. This threshold divides the parameter space into discrete regions, and continuous
optimization or sampling approaches spend significant computational effort exploring within a single
region, repeatedly yielding the same causal graph structure. In contrast, DLP’s discrete support
enables efficient exploration across different regions while leveraging gradient information from the
continuous space to guide proposals.

To adopt DLP for DAGPA, we first restrict the parameter space from the real space Rd×d to a space
of discrete supports, Dd×d, where D = {D1, . . . , Dm | Di < Dj ,∀i < j} is a finite set of values.
Furthermore, we require D1 < 0 and Dm > 0, so that for any pair of nodes (x, y), if θx,y = D1,
then Wx,y = σ(θx,y) < 0.5, which allows us to interpret x, y as more likely to not having an edge.
Similarly, if θx,y = Dm, then Wx,y = σ(θx,y) > 0.5, which allows us to interpret x, y as more
likely to have an edge x→ y.

In reality through empirical experiments, we found that D = {−2.0, 0.0, 2.0} works quite well. We
hypothesize this could be due to−2.0 and 2.0 as sigmoid logits are not too extreme so that they enable
smooth and meaningful gradients, while also sufficiently far apart for the differentiable d-separation
formulæ. Furthermore, the “middle point” 0.0 allows DAGPA to model uncertain edges, whose final
values can only to be decided after other edges are settled.

Algorithm 2 DLP (DMALA) [51] Sampling Step

Require: Model parameters θ, step size β, gradient
∆θ(PC), current energy U(θ)

1: // Proposal Step
2: for i = 1 : d do ▷ Can be done in parallel
3: construct qi(· | θ) as in Equation (9)
4: sample θ′i ∼ qi(· | θ)
5: // MH Acceptance Step
6: compute U(θ′)
7: compute ∆θ′(PC) via PCGrad (Algorithm 1)
8: compute q(θ′ | θ) =

∏
i qi(θ

′
i | θ)

9: compute q(θ | θ′) =
∏

i qi(θi | θ′)
10: set θ ← θ′ with probability in Equation (10)
11: return new sample θ′

The next step to adopt DLP [51] is to de-
fine the proposal sampling distribution and the
Metrpolis-Hastings(MH) acceptance-rejection
step [16, 22]. This is the discrete Metropolis-
adjusted Langevin algorithm (DMALA) vari-
ant of DLP algorithm [51]. One of DLP’s
novel innovations is the parallel sampling of
the parameters θ when its proposal distribu-
tion can be factorized along the dimensions,
meaning at every step, multiple θi for differ-
ent i’s may have their values updated. This
technique significantly enhances DLP’s effi-
ciency compared to other discrete sampling
methods. DAGPA fits this requirement as we
can formulate a factorizable proposal distribu-
tion. Specifically, we adopt Equation (2) from
Zhang et al. [51], but change the gradients to
those obtained via PCGrad [44] from Algo-
rithm 1. That is, let q(θ′ | θ) be the proposal distribution. It can be factorized along the d dimensions,
q(θ′ | θ) =

∏d
i=1 qi(θ

′
i | θ), where qi(θ

′
i | θ) is a categorical distribution of the form:

qi(θ
′
i | θ) := Categorical

(
Softmax

(
1

2
∆θ(PC)(θi − θ′i)−

(θi − θ′i)
2

2β

))
, (9)

where ∆θ(PC) is the projected gradients given by the PCGrad algorithm (Algorithm 1), and β is a
hyperparameter controlling the DLP step size.

5Note that this differs from the discrete DAG sampling A ∼ Bern(W) in Section 3.2, which serves to
theoretically establish the probabilistic interpretation of our continuous d-separation and d-connection values.
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After a proposal θ′ is sampled from θ according to Equation (9), we perform an MH acceptance-
rejection step. Intuitively, this step is to ensure that we are not taking a step too far and landing into
a “bad region” in the parameter space. Mathematically, this step is to ensure the Markov chain is
reversible. Here, we adopt Equation (3) from Zhang et al. [51], but for the (negative) energy function,
we simply adopt the heuristic of summing the multi-task losses (Definition 4.1). Thus, for DAGPA,
we accepts the proposal θ′ with probability

min

(
1, exp(U(θ)− U(θ′))

q(θ | θ′)
q(θ′ | θ)

)
, (10)

where U(θ) = LTP-0(θ,D) + LTP-1(θ,D) + LTN-0(θ,D) + LTN-1(θ,D) + LDAG(θ, s) with D the
dataset.

We reproduce the DLP sampling algorithm adopted to DAGPA in Algorithm 2. We note, however,
that the combination of PCGrad[44] projected gradients ∆θ(PC) and the energy function U(θ) as the
sum of multi-task losses may not form a mathematically well-defined and reversible Markov chain
for the sampling, because the gradients are not directly derived from U(θ) but have been post-hoc
modified via gradient projections. Nevertheless, we argue both theoretically and from empirical
observations that the gradient modification step with either PCGrad or some alternative multi-task
learning method is essential, as it addresses gradient conflicts and navigates the gradient landscape
much more efficiently. Furthermore, we empirically found that the MH acceptance step using the
energy function U(θ) obtained via summing the multi-task losses is sufficiently performative and,
more importantly, provides the acceptance rate as an important indicator for adjusting the DLP step
size β, which is one of the most important hyperparameters in DAGPA. We detail the hyperparameter
choice in Appendix D.4. We invite future research to tackle this challenging of integrating multi-task
gradients with MH acceptance step in a more principled way.

C.3 Training-time DAG Selection

Finally, DAGPA employs a heuristic score to evaluate the quality of causal graphs obtained from
sampled model parameters. This evaluation step is essential because DAGPA adopts DLP [51], and
each DLP sampling iteration generates new model parameters and corresponding causal graphs,
making it necessary to identify the highest-quality DAGs for final output. Importantly, this score is not
a traditional "validation score" since it requires neither a separate validation dataset nor knowledge of
the ground-truth causal structure. Instead, it operates solely on the input dataset D that is already
used during optimization and sampling. This approach offers a practical advantage over model-based
methods like NOTEARS [52] and DAGMA [4], which typically require splitting the dataset to create
separate validation sets, thereby reducing the amount of data available for model training. Our score
makes full use of all available data while providing a principled mechanism for DAG selection.

We name this score the “TPTN Ratio score”, as it essentially checks the ratio of weighted true positive
(TP) and true negative (TN) d-separation / CI statements predicted by the model, while treating the
p-values from the dataset as the soft ground-truth labels. Specifically, given the current sampled
model parameter θ, we obtain the weighted adjacency matrix via W = σ(θ), and then threshold it
to convert it to a binary graph Â, Âx,y = 1[Wx,y > 0.5],∀x, y ∈ [d]. Additionally, we would like
to ensure that at every step of sampling, we are evaluating a DAG, as the graph Â converted from
the model parameters θ found by the DLP sampling algorithm may not fully satisfy the acyclicity
constraint. This requirement can be achieved by pruning Â to form an acyclic A. In DAGPA, we
proceed by finding a feedback arc set (ARC) from Â and remove all the edges in it to construct A.
We use the ARC method provided in the igraph package [7].

Then, setting the LogMeanExp temperature α (Equation (8)) to a very small value (e.g. α = 1e− 5),
we use the differentiable d-separation scores (Definition 3.6) on A to obtain S̃

(0)
A and S̃

(1)
A . Since α

is small but not exactly 0, exp(S̃(0)
A ) and exp(S̃

(0)
A ) are close to but not exactly 0’s or 1’s. Thus, we

threshold again to obtain the binary d-separation statements, S(0)
A (x, y) = 1[exp(S̃

(0)
A )(x, y) > 0.5]

and S
(1)
A (x, y | z) = 1[exp(S̃

(1)
A )(x, y | z) > 0.5]. We treat these as the binary d-separation

statements predicted by the model.
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Then, given the p-values pD from the data, we compute the true positives (TP), true negatives (TN),
false positives (FP), and false negative (FN) scores as:

TP(A,D) =
∑

x,y∈[d]

S
(0)
A (x, y | z)pD(x, y) +

∑
x,y,z∈[d]

S
(1)
A (x, y | z)pD(x, y | z)

TN(A,D) =
∑

x,y∈[d]

(1− S
(0)
A (x, y | z))(1− pD(x, y)) +

∑
x,y,z∈[d]

(1− S
(1)
A (x, y | z))(1− pD(x, y | z))

FP(A,D) =
∑

x,y∈[d]

S
(0)
A (x, y | z)(1− pD(x, y)) +

∑
x,y,z∈[d]

S
(1)
A (x, y | z)(1− pD(x, y | z))

FN(A,D) =
∑

x,y∈[d]

(1− S
(0)
A (x, y | z))pD(x, y) +

∑
x,y,z∈[d]

(1− S
(1)
A (x, y | z))pD(x, y | z).

And then the TPTN Ratio score is computed as

TPTN-Ratio(A,D) = TP(A,D) + TN(A,D)
TP(A,D) + TN(A,D) + FP(A,D) + FN(A,D)

, (11)

which ranges in [0, 1] and the higher the score, the better the causal graph in matching the low-order
CI statements found in the data.

C.4 Full algorithm of DAGPA

Combining all techniques together, DAGPA’s full algorithm is given in Algorithm 3.

Algorithm 3 DAGPA

Require: Data D, initial parameter θ0, number of steps T , number of best DAGs K, step size β
1: for t = 0 : T − 1 do
2: Wt ← σ(θt)
3: for (x, y) ∈ [d]2 do ▷ Can be done in parallel
4: compute S̃

(0)
Wt

and C̃
(0)
Wt

as in Definition 3.6
5: for (x, y, z) ∈ [d]3 do ▷ Can be done in parallel
6: compute S̃

(1)
Wt

and C̃
(1)
Wt

as in Definition 3.6
7: compute LTP-0, LTP-1, LTN-0, LTN-1, LDAG as in Definition 4.1
8: U(θt)← LTP-0 + LTP-1 + LTN-0 + LTN-1 + LDAG

9: compute ∆θ
(PC)
t via PCGrad [44] (Algorithm 1)

10: compute θt+1 via DLP [51] (Algorithm 2)
11: compute At+1 by converting θt+1 to a discrete DAG (Appendix C.3)
12: compute TPTN-Ratio(At+1,D)
13: return K DAGs from {At}Tt=1 with the Top-K highest TPTN-Ratio(At,D) score

C.5 Computation Complexity Analysis

The computational bottleneck of DAGPA is the p-values computation for all low-order CI statements
and the reachability computation required by the differentiable d-separation formulae.

The complexity of p-values computation (which we GPU-accelerate) depends on the specific choice of
statistical independence test. Take the Chi-squared test for example. Given n data points, computing
each single Chi-squared p-value takes O(n) as this is the time required for iterating over all data
points and building the contingency. Thus, the overall time required is O(d3n) as we obtain a total of
d2 + d3 number of p-values for the unconditional and first-order conditional statements.

For the differentiable d-separation formulae: the reachability subroutine (Definition 3.3) involves a
maximum of d recursive steps, and each all-pairs Bellman-Ford update step operates on O(d3) matrix
entries (Equation (7)). Thus, the total computation time is O(d4). The resulting all-pairs reachability
matrix will be cached and accessed by the d-connection/d-separation score computation. Now, since
in the 1st-order d-connection/d-separation scores (Equations (3) and (5)), we need reachability on
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the node-deleted subgraph A−z for all conditioning node z, this requires a total of d+ 1 all-pairs
reachability matrices, thus rendering the total runtime of this part O(d5).

For the 0th-order d-separation/d-connection formulae (Equations (2) and (4)), computing
S(0)_A(x, y) or C(0)_A(x, y) for each (x, y) takes O(d) time, since it iterates over d possible
common ancestors and accessing the reachability cache takes O(1). Thus, computing all-pairs 0th-
order d-separation/d-connection scores take O(d3) time. Now, since later in the 1th-order formulae,
we need all-pairs 0th-order d-separation/d-connection scores for the node-deleted subgraphs A−z for
all conditioning node z, this adds another d dimension. Thus, the total time is O(d4).

For the 1st-order d-separation/d-connection formulae (Equations (3) and (5)), similarly, computing
the result for each query triple (x, y | z) takes O(d) time. Thus, getting the results for all triple of
nodes takes a total of O(d4) computations.

Thus in summary, computing all-pairs p-values takes O(d3n) computations, computing reachability
matrix (and cache for later use) takes O(d5) computations, and computing 0th-order and 1st-order
d-separation/d-connection scores each take O(d4) computations. The total will be dominated by the
reachability computation, which is O(d5).

Acceleration in Practice The total O(d5) time complexity notwithstanding, we seize many promis-
ing opportunities for acceleration in the code implementation of DAGPA.

First, we note that all computations of reachability and d-separation/d-connection scores are matrix-
vector operations, which can benefit from GPU vectorization. In practice, we leverage PyTorch GPU
tensor library for all such computations, avoiding any explicit for-loops and significantly improving
the speed of optimization.

Second, in practice one can limit the reachability computation to only consider paths of a constant
maximum length k, reducing the time complexity from O(d5) to O(d4k), rendering the entire pipeline
O(d4). In the experiments for larger graphs with d = 50 number of nodes (Appendix F.2), we limit
the path length to k = 25. Observations during earlier method development suggest negligible
performance degradation with significantly improved computational efficiency.

Third, the all-pairs p-values computation can be massively parallelized and then cached and reused.
This is particularly useful in the case where one wishes to obtain multiple output causal graphs for
the same input dataset to enhance solution diversity and exploration of the Markov equivalence class.
In this case, the computation time for the all-pairs p-values step can be amortized as it can be reused
in subsequent runs.

Finally, we expect future work to further examine how to incorporate sparsity assumptions into the
graph to further reduce the time complexity. For example, instead of assuming each node can connect
to all d− 1 other nodes, one reasonable assumption is to restrict to a maximum of constant k degree.
In that case, the reachability computation subroutine computation can drastically speed up.

D Experiment Details

D.1 Code and dataset release

We release our code and data in

https://github.com/PurdueMINDS/DAGPA

D.2 Dataset creation and conversion

We generated synthetic binary datasets following the approach introduced in the k-PC codebase [19].
We simulated DAGs using both Erdős–Rényi (ER) and Scale-Free (SF) graph models with d ∈
{10, 50} nodes and expected edge-to-node ratios r ∈ {2, 4}. For ER graphs, we set edge probability
p = r/d to achieve the desired arc ratio. For SF graphs, we used the Barabási-Albert preferential
attachment model with attachment parameter m = ⌊r/2⌋ to generate undirected graphs, then
randomly oriented edges to form DAGs.

For each generated DAG adjacency matrix A, we constructed a binary Bayesian network using
pyAgrum [10]. Each variable Xi takes values in {0, 1}, and we randomly generated conditional
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probability tables (CPTs) for all nodes. For root nodes (variables with no parents), we sampled
marginal probabilities P (Xi = 1) ∼ Uniform(0.2, 0.8) to avoid extreme probabilities. For non-root
nodes with parent set PA(i), we sampled conditional probabilities P (Xi = 1 | PA(i) = c) ∼
Uniform(0.2, 0.8) independently for each parent configuration c ∈ {0, 1}|PA(i)|. From these fully
specified Bayesian networks, we drew n ∈ {100, 1000, 10000, 100000} independent samples via
ancestral sampling (forward sampling from the topological order). Since the data is binary, no
normalization or scaling preprocessing was needed.

We also generated continuous data with simulated ER and SF DAG following the approach introduced
in [4]. Specifically, for each DAG adjacency matrix A, we generated structural equation models of the
form Xi =

∑
j∈PA(i) wjifj(Xj)+ ϵi, where PA(i) denotes the parent set of node i, edge weights wji

are sampled uniformly from [−2.0,−0.5] ∪ [0.5, 2.0], and noise terms ϵi ∼ N (0, 1) are independent
Gaussian. For linear continuous data, we set fj(x) = x. For nonlinear continuous data, we randomly
assigned each fj to one of four nonlinear functions: fj(x) ∈ {x2, x3, sin(x), cos(x)} with equal
probability. We generated datasets with the same sample sizes n ∈ {100, 1000, 10000, 100000} and
graph structures (ER and SF with d ∈ {10, 50} nodes and arc ratios r ∈ {2, 4}) as the binary setting
to enable direct comparison across data types.

For experiments on real-world dataset, we benchmarked our method and baselines over the Sachs
dataset [29] and the LUCAS (LUng CAncer Simple set) dataset [15]. The Sachs dataset is a widely
recognized benchmark in causal discovery research, consisting of protein signaling pathway data
collected through flow cytometry experiments. It contains measurements of 11 phosphorylated
proteins and phospholipids derived from thousands of individual primary immune system cells,
gathered under various experimental conditions. What makes this dataset particularly valuable
for benchmarking causal learning methods is that the pathways between these proteins are well-
established in scientific literature, providing a reliable ground truth causal graph against which
algorithms can be evaluated. The dataset has been extensively used in numerous studies to assess
the performance of causal discovery algorithms, including recent work that demonstrates how less
restrictive modeling approaches can capture complex causal relationships in this data that traditional
methods assuming additive noise often fail to identify. We obtained and did benchmark on the
subset of Sachs data containing approximately 800 samples with no perturbation. We used the
standard discretized version preprocessed using the Hartemink discretization method, which converts
the original continuous protein concentration measurements into 3-level categorical variables (low,
average, high) while preserving the underlying dependence structure. The LUCAS dataset is an
artificially generated benchmark specifically designed to evaluate causal discovery algorithms under
different conditions. It features binary variables in a causal Bayesian network structure and comes
in several variants that present increasing levels of challenge. Among all experiments introduced in
LUCAS, we used LUCAS0 (baseline unmanipulated data) of size 2000.

D.3 Evaluation metrics

The primary metric we adopt in this work is the Conditional Independence Matthews Correlation
Coefficient (CI-MCC), which we describe in detail in Section 5 with a visual illustration in Figure 2.

Additionally, we evaluate our method and baselines using the following standard graph structure-based
metric:

• CPDAG Arrowhead F1: We compare predicted causal graphs with the ground-truth CPDAG
derived from the ground-truth DAG. Since different methods produce varying graph types, we
standardize all outputs by converting them to CPDAGs. For methods like NOTEARS [52] and
DAGMA [4] that return DAGs, we convert their outputs to CPDAGs using the utility method
from the causal-learn package [54]. For k-PC [19], which returns k-essential graphs containing
circle-marked edges (in addition to directed and undirected edges), we treat circle-marked edges as
undirected edges in the CPDAG conversion. This treatment is appropriate because circle-marked
edges in k-essential graphs denote edges whose directions cannot be determined from low-order
CI statements alone. Once both predicted and ground-truth graphs are converted to CPDAGs, we
compute the arrowhead F1 score exclusively over the directed edges in the CPDAGs.

• CPDAG Skeleton F1: Following the same standardization process as CPDAG Arrowhead F1, we
convert all predicted causal graphs to CPDAGs. We then further convert all directed edges in both
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predicted and ground-truth CPDAGs to undirected edges, creating graph skeletons. The F1 score is
computed on these undirected skeleton graphs.

• CPDAG Structural Hamming Distance (SHD): After standardizing predicted causal graphs
by converting them to CPDAGs, we compute the structural Hamming distance (SHD) between
predicted and ground-truth CPDAGs. Each unit of SHD corresponds to a single edge difference
between the two CPDAGs, including: missing edges, extra edges, incorrect edge orientations
(directed vs. undirected), or incorrect edge directions.

• DAG F1: We also evaluate methods that directly output DAGs by comparing them with the
ground-truth DAG. Since constraint-based methods like GES [6], PC [34], and k-PC [19] return
CPDAGs or k-essential graphs rather than DAGs, this metric only applies to score-based methods:
our approach, NOTEARS (linear and nonlinear) [52, 53], and DAGMA [4].

We note that these graph structure-based metrics may pose an inherent disadvantage to our method
compared to CI-MCC. Through empirical observation, we have identified cases where DAGPA
produces DAGs with similarly high CI-MCC scores but vastly different performance on structure-
based metrics. For instance, one sampled DAG may achieve both high CI-MCC and high structure-
based scores, while another DAG with comparable CI-MCC performance may score poorly on
structure-based metrics. This suggests that while DAGPA consistently samples DAGs that align
well with conditional independence patterns (as measured by CI-MCC), this alignment does not
necessarily translate to high performance on traditional graph structure metrics. We provide detailed
analysis of this phenomenon in Appendix F.1.

D.4 DAGPA model details and hyperparameters

The most important and sensitive hyperparameter in DAGPA is the DLP sampling step size β
(Equation (9)). To this end, we first find values for all other hyperparameters through preliminary
experimentations then fix them, and only vary in the step size for the experiments on the synthetic
binary dataset and the real-world datasets.

Some of the other important hyperparameters and their values:

• DLP support logit set D: This hyperparameter controls the support logits that the model parameter
θ can take during sampling. We use D = [−2.0, 0.0, 2.0].

• LogMeanExp temperature α: This hyperparameter controls the approximation accuracy of the
t-conorm operator (Equation (8)) and thus the accuracy of differentiable d-separation scores. Setting
this value too large will lose approximation accuracy, while setting it too low will induce unstable
and unsmooth gradients. Thus, during training or parameter update cycles, we use a αtrain = 0.01,
while during evaluation when computing the DAG selection score, we use a αeval = 1e− 5.

• DAGMA’s [4] log-det acyclicity constraint hyperparameter s: This hyperparameter controls
the valid region of M-matrices in which the log-det acyclicity loss is well-defined. Setting this
value too large will risk model parameters stepping out of this region and causing undefined
gradients, whereas setting this value too large will cause the gradient to have very small norm. In
our experiments, for small graphs (include n = 10 synthetic binary dataset and both Sachs [29]
and Lucas [15]) we use s = 3.0, while for large graphs (n = 50 synthetic binary dataset) we use
s = 8.0.

Finally, for the DLP step size β, for each dataset we choose a different range to run hyperpa-
rameter search and choose the best sampled DAGs therein according to the DAG selection score
(Appendix C.3). The specific value range of β is chosen according to the acceptance rate in the
DLP’s Metropolis-Hastings acceptance-rejection step. Specifically, we choose the lowest β value to
be the one that can roughly achieve 0.8 acceptance rate, and the highest β value to be the one that can
roughly achieve 0.2 acceptance rate.

• n = 10 graphs in synthetic binary dataset: β ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.

• n = 50 graphs in synthetic binary dataset: β ∈ {0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38}.

• Sachs and Lucas: β ∈ {0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88, 0.90}
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D.5 Baseline model details and hyperparameters

We tested our method against 5 methods from the table in the following section. For PC and
kPC, we used chi-square independence test and chose significance level threshold at 0.05, and we
tested with both first and second order conditional independence tests for kPC. We used the causal-
learn implementation[54] for PC and GES algorithms. For GES we used the local BIC score. For
NOTEARS and DAGMA linear mode, we used the l2 loss for non-linear mode, and we followed the
default dimensions for the MLP layer as used in the authors’ original code. Rest of parameters all
followed default settings.

D.6 Compute resources used

For the baselines, we ran PC, kPC, GES and linear version of NOTEARS, DAGMA on a 64-core
AMD Epyc 7662 "Rome" processor with 16 CPU cores and 32 GB memory requested. The non-linear
version of NOTEARS and DAGMA were run on one A30 with same CPU and memory requirement.
Every experiment is completed in 4 hours.

For DAGPA, we run all experiments on an AMD GPU cluster, equipped with 32GB MI108 and
64GB MI210 and EPYC 7V13 cpu with 64 cores. Experiments on small graphs (n = 10 synthetic
binary, Sachs, and Lucas) terminate within 1.5 hours, whereas experiments on large graphs (n = 50)
terminates within 12 hours.

E Related Work

The methodological evolution of causal discovery has progressed through two primary
paradigms—constraint-based and score-based approaches—with recent advances bridging their
complementary strengths.

Constraint-Based Methods Pioneered by [35], constraint-based methods leverage conditional
independence (CI) tests to reconstruct causal graphs. The PC algorithm [34] established core
principles: (1) infer conditional independencies via statistical tests, (2) eliminate edges violating
d-separation rules, and (3) orient edges using collider detection. While effective in principle, finite-
sample reliability suffered from error propagation in high-order CI tests [9]. Extensions like FCI [47]
addressed latent confounding through more sophisticated separation criteria, and Kernel CI Test
(KCIT) [49] enabled nonparametric testing via Hilbert space embeddings. Modern variants like
LOCI [43] demonstrated that low-order CI statements suffice for structure recovery under specific
faithfulness conditions, while k-PC [19] provided theoretical guarantees for bounded-order testing.

Score-Based Methods Score-based methods reformulated causal discovery as a combinatorial
optimization problem, maximizing score functions (e.g., BIC [30]) over DAG spaces. These methods
can be broadly divided into those that search the discrete graph space and those that leverage
continuous optimization. Among discrete methods, GES [6] advanced this paradigm through greedy
equivalence class search, Another major family consists of Bayesian methods, such as BayesDAG [1],
which define a prior distribution over DAG structures and a likelihood function. By applying Bayes’
rule, they compute a posterior distribution over DAGs, typically using sampling methods like MCMC
to explore the structure space and average over models. While powerful for uncertainty quantification,
these methods, like greedy search, are computationally intensive and constrained by the discrete
search space. The field transformed with [52]’s NOTEARS framework, which redefined acyclicity
through a differentiable constraint:

tr(eW◦W )− d = 0,

where W is the weighted adjacency matrix. This enabled continuous gradient-based optimization,
spawning derivatives like DAGMA [4] with improved learning stability and enhanced gradient
behavior via a log-determinant characterization,

− log det(sI −W ) + d log s = 0,

and GOLEM [24] using likelihood-based objectives. Nonlinear extensions [53] incorporated neural
networks to model complex functional relationships while preserving acyclicity.
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F Full Experiment Results

F.1 Analysis of CI-MCC versus graph structure metrics

In this work we primarily showcase the conditional independence Matthews Correlation Coefficient
(CI-MCC) metric, along with auxiliary graph-structure-based metrics like CPDAG Arrowhead F1,
CPDAG Skeleton F1, CPDAG SHD, and DAG F1. We notice, however, that the graph-structure-based
metrics may pose an unfair challenging to DAGPA. In particular, we found that the graph-structure
metrics may not always align with DAGPA’s objective of matching the causal DAG’s predicted
d-separation statements with the low-order CI statements found in the dataset. There are many cases
where the DAGs returned by DAGPA made few mistakes in aligning the CI statements, yet are still
scored badly by the graph-structure-based metrics. We provide concrete evidence in this section.
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Figure 6: DAG selection score versus CI-MCC.
There is a strong positive correlation.

Here, we pick one experiment run of DAGPA
on one of the synthetic binary dataset gener-
ated by an ER graph with n = 10 nodes with
in total N = 10000 samples. This particular
run performed 1000 sampling steps, thus giv-
ing us 1000 sampled DAGs. For each sampled
DAG, we compute the DAG selection score (Ap-
pendix C.3) and the CI-MCC metric score, as
well as the scores of all graph-structure-based
metrics. To recall, the DAG selection score is
used by DAGPA to select the best DAGs out
of all that were sampled during training and
requires only the input data to compute. It is
not a test metric. Figure 8 shows the scatter
plots of comparing CI-MCC to graph-structure-
based metrics, Figure 7 shows the scatter plots
of comparing the DAG selection score to graph-
structure-based method, and finally Figure 6 shows the relationship between the DAG selection score
with CI-MCC.

From Figure 8, we can observe that, although the graph-structure-based metrics have generally
positive correlation with CI-MCC, there are many samples concentrated in the bottom-right - the
region where these sampled DAGs achieves high CI-MCC but low graph-structure-based metric
values. Moreover, especially on regions of high CI-MCC values, the samples vary a lot on their
graph-structure-based metric values. This implies that there is a misalignment between CI-MCC
and the graph-structure-based metric, where performing well on matching model’s d-separation with
data’s low-order CI statements do not translate to similarity on the graph structure.

Figure 7 reveals a similar story. In this case, the x-axis is the score actually used by DAGPA during
training. The similar pattern shows that, even if DAGPA discovers a high-quality DAG with high
DAG selection score, which in turn translates to making minimal false positive and false negative
mistakes on the low-order CI statements (Appendix C.3), it may still have a drastically different
structure than the ground-truth DAG or CPDAG, yielding a very low graph-structure-based metric
value such as a low CPDAG Arrowhead F1 value. We leave the problem of proposing an alternative
DAG selection score that may yield much more positive correlation with graph-structure-based metric
to future research.

As a sanity check, Figure 6 shows the relationship between DAGPA’s DAG selection score and the
CI-MCC metric. Here, we can finally observe a strong correlation, demonstrating the validity of
our proposed DAG selection score - it is correctly doing what it is designed to do, i.e., checking
alignments of low-order CI statements between the model and input data.

Finally, throughout all three figures, we visualize the sampling step numbers in color scale, where
the darker colors corresponds to early stages in the sampling, and lighter colors corresponds to later
stages. We can observe that, in general, there exists a gradual transition from darker color to lighter
color when going from bottom-left to top-right. This pattern suggests that DAGPA is indeed gradually
approaching the regions in the weight space that have better and better performance, across all types
of metrics.
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Figure 7: Scatter plots of CI-MCC metric versus standard graph-structure-based metrics of DAGs
sampled by an exemplar DAGPA run on a n = 10 synthetic binary data. The graph-structure-
based metrics are not strongly positively correlated with CI-MCC. Many DAGs have similarly good
CI-MCC values, but vary significantly in their graph-structure-based metric values. Thus, the graph-
structure-based metrics pose an unfair challenge to DAGPA that focuses on aligning low-order CI
statements.
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Figure 8: Scatter plots of DAGPA’s DAG selection score (Appendix C.3) versus standard graph-
structure-based metrics of DAGs sampled by an exemplar DAGPA run on a n = 10 synthetic binary
data. Similar to the case of CI-MCC, many DAGs with similarly good DAG selection score may have
vastly different values on the graph-strcture-based score.

F.2 Results on synthetic binary data

We present the full suite of results on the synthetic binary dataset in Tables 1 to 4.

F.3 Results on real-world data

We show the results with additional metrics on Sachs [29] dataset and on an additional real-world
dataset Lucas [15] in Figure 9.

G Future Work Discussions

G.1 Integration with Score-Based Causal Discovery Methods

Our differentiable d-separation framework provides a novel optimization objective based on con-
ditional independence constraints, which can potentially be integrated with existing score-based
methods like NOTEARS and DAGMA as a structured regularization technique. This section briefly
discusses potential strategies for integrating our approach with existing score-based methods, particu-
larly NOTEARS [52] and DAGMA [4]. We focus on the key technical challenge: ensuring parameter
compatibility between score-based and CI-constraint objectives.

The challenge is ensuring compatibility between the model parameters θ used in score-based methods
and the probabilistic edge weights W ∈ [0, 1]d×d required by our framework. For example, for
NOTEARS linear models, applying sigmoid activation σ(θ) naturally produces valid probability
measures. However, for nonlinear variants where the weighted adjacency matrix is derived from
neural network parameters (e.g.,

√
(θ(1))T θ(1) for the first MLP layer), additional normalization is

needed to map unnormalized non-negative values to [0, 1] while preserving meaningful probabilistic
semantics. Once this parameterization is established, the score-based prediction loss (e.g., MSE
reconstruction loss) can be added as an additional task in our multi-task optimization framework,
combining functional relationship learning with explicit CI constraint enforcement. While this
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Table 1: Experimental results on Synthetic binary ER, r = 2

(a) Synthetic binary ER, r = 2

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2319 ± 0.0351 0.2259 ± 0.0370 0.2465 ± 0.0502 0.2380 ± 0.0305 0.0925 ± 0.0198 0.0867 ± 0.0144 0.0850 ± 0.0264 0.0904 ± 0.0150

DAGMA (Nonlinear) [4]: 0.5133 ± 0.1653 0.3544 ± 0.0682 0.5225 ± 0.2650 0.4707 ± 0.1433 0.2668 ± 0.1312 0.1535 ± 0.0466 0.1725 ± 0.0652 0.1990 ± 0.0713

NOTEARS (Linear) [52]: 0.2626 ± 0.0517 0.2276 ± 0.0333 0.2689 ± 0.0483 0.2586 ± 0.0363 0.1049 ± 0.0215 0.0881 ± 0.0211 0.0915 ± 0.0273 0.0983 ± 0.0178

NOTEARS (Nonlinear) [53]: 0.1949 ± 0.0288 0.1810 ± 0.0265 0.2023 ± 0.0276 0.1901 ± 0.0216 0.0758 ± 0.0125 0.0727 ± 0.0112 0.0718 ± 0.0190 0.0734 ± 0.0144

GES [6]: 0.2983 ± 0.0899 0.6102 ± 0.1428 0.8546 ± 0.1076 0.7783 ± 0.0864 -0.1131 ± 0.0794 0.0178 ± 0.1155 0.1844 ± 0.1689 0.0387 ± 0.0235

PC [34]: 0.2847 ± 0.0541 0.6227 ± 0.1281 0.8666 ± 0.1004 0.7922 ± 0.0988 -0.1931 ± 0.0740 0.0081 ± 0.1172 0.1073 ± 0.1358 0.0325 ± 0.0291

kPC (k=1) [19]: 0.3135 ± 0.0706 0.7585 ± 0.1540 0.8923 ± 0.1001 0.8205 ± 0.0906 -0.1049 ± 0.1208 0.0512 ± 0.0925 0.0837 ± 0.1375 0.0258 ± 0.0224

kPC (k=2) [19]: 0.2941 ± 0.0694 0.7100 ± 0.1484 0.8667 ± 0.0954 0.8109 ± 0.0900 -0.1679 ± 0.0961 0.0590 ± 0.0910 0.1139 ± 0.1408 0.0292 ± 0.0229

DAGPA (Ours) 0.4679 ± 0.1285 0.6848 ± 0.0817 0.8223 ± 0.0970 0.7971 ± 0.0849 0.0604 ± 0.0163 0.2156 ± 0.0555 0.0601 ± 0.0199 0.3844 ± 0.0974

(b) Synthetic binary ER, r = 2, CPDAG F1 Arrowhead

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.0273 ± 0.0862 0.0000 ± 0.0000 0.0211 ± 0.0666 0.0000 ± 0.0000 0.0085 ± 0.0179 0.0214 ± 0.0348 0.0143 ± 0.0214 0.0146 ± 0.0241

DAGMA (Nonlinear) [4]: 0.2143 ± 0.1470 0.2244 ± 0.0624 0.1921 ± 0.1522 0.3070 ± 0.2069 0.1914 ± 0.0334 0.1791 ± 0.0781 0.2194 ± 0.0972 0.2749 ± 0.0581

NOTEARS (Linear) [52]: 0.0296 ± 0.0655 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0696 ± 0.0705 0.0273 ± 0.0355 0.0239 ± 0.0437 0.0231 ± 0.0250

NOTEARS (Nonlinear) [53]: 0.0424 ± 0.0912 0.0000 ± 0.0000 0.0133 ± 0.0422 0.0000 ± 0.0000 0.0214 ± 0.0212 0.0387 ± 0.0407 0.0519 ± 0.0455 0.0102 ± 0.0141

GES [6]: 0.0915 ± 0.1322 0.3860 ± 0.1894 0.3900 ± 0.1013 0.4866 ± 0.1802 0.2006 ± 0.0870 0.5226 ± 0.0646 0.6921 ± 0.0943 0.7022 ± 0.0897

PC [34]: 0.1025 ± 0.1618 0.3607 ± 0.2217 0.5673 ± 0.1444 0.7620 ± 0.1541 0.1242 ± 0.0499 0.4024 ± 0.0553 0.5938 ± 0.0590 0.7325 ± 0.0687

kPC (k=1) [19]: 0.0824 ± 0.1370 0.1991 ± 0.1077 0.2435 ± 0.1380 0.3359 ± 0.1664 0.1039 ± 0.0453 0.2255 ± 0.0575 0.2595 ± 0.0419 0.2797 ± 0.0435

kPC (k=2) [19]: 0.0942 ± 0.1650 0.2298 ± 0.1473 0.4042 ± 0.1623 0.5329 ± 0.2219 0.0923 ± 0.0551 0.2788 ± 0.0520 0.4137 ± 0.0559 0.5561 ± 0.0658

DAGPA (Ours) 0.1057 ± 0.0766 0.1882 ± 0.0786 0.2041 ± 0.0912 0.2684 ± 0.1081 0.0005 ± 0.0034 0.0347 ± 0.0267 0.0015 ± 0.0071 0.0541 ± 0.0156

(c) Synthetic binary ER, r = 2, CPDAG F1 Skeleton

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2921 ± 0.1183 0.2629 ± 0.1052 0.3034 ± 0.1501 0.2682 ± 0.1128 0.2953 ± 0.0285 0.2417 ± 0.0405 0.2431 ± 0.0419 0.2428 ± 0.0747

DAGMA (Nonlinear) [4]: 0.5418 ± 0.0967 0.5362 ± 0.0742 0.6114 ± 0.1816 0.6341 ± 0.1375 0.3667 ± 0.0307 0.5542 ± 0.0338 0.5701 ± 0.0356 0.5989 ± 0.0491

NOTEARS (Linear) [52]: 0.3535 ± 0.1174 0.2791 ± 0.0958 0.3692 ± 0.1524 0.3252 ± 0.1058 0.3574 ± 0.0378 0.3135 ± 0.0544 0.3057 ± 0.0398 0.3036 ± 0.0741

NOTEARS (Nonlinear) [53]: 0.1415 ± 0.1327 0.0807 ± 0.1433 0.1991 ± 0.1278 0.0694 ± 0.1124 0.1434 ± 0.0518 0.1347 ± 0.0482 0.1319 ± 0.0812 0.1047 ± 0.0501

GES [6]: 0.3845 ± 0.1305 0.7013 ± 0.0945 0.8038 ± 0.0643 0.8271 ± 0.0500 0.4303 ± 0.0401 0.7213 ± 0.0434 0.8588 ± 0.0278 0.8627 ± 0.0343

PC [34]: 0.4202 ± 0.1054 0.8121 ± 0.0899 0.9314 ± 0.0420 0.9717 ± 0.0322 0.4011 ± 0.0272 0.7401 ± 0.0414 0.8871 ± 0.0184 0.9626 ± 0.0161

kPC (k=1) [19]: 0.4270 ± 0.0956 0.7831 ± 0.0745 0.7793 ± 0.0442 0.8004 ± 0.0536 0.4278 ± 0.0243 0.7488 ± 0.0361 0.7860 ± 0.0273 0.6889 ± 0.0602

kPC (k=2) [19]: 0.4202 ± 0.1054 0.8069 ± 0.0806 0.8968 ± 0.0332 0.8950 ± 0.0670 0.4024 ± 0.0276 0.7496 ± 0.0411 0.8827 ± 0.0154 0.9139 ± 0.0292

DAGPA (Ours) 0.4062 ± 0.0985 0.4273 ± 0.0813 0.4442 ± 0.0945 0.4452 ± 0.0867 0.0062 ± 0.0146 0.0826 ± 0.0347 0.0079 ± 0.0142 0.1043 ± 0.0300

(d) Synthetic binary ER, r = 2, CPDAG SHD

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 17.8000 ± 1.8135 17.5000 ± 1.0801 17.1000 ± 2.0248 16.1000 ± 1.5239 97.5000 ± 1.7159 96.2000 ± 2.6162 97.7000 ± 1.8886 96.7000 ± 2.4060

DAGMA (Nonlinear) [4]: 17.4000 ± 2.2706 15.6000 ± 0.9661 16.4000 ± 2.6750 13.4000 ± 2.4585 152.9000 ± 15.3511 88.1000 ± 4.9989 85.4000 ± 6.2752 81.7000 ± 3.4010

NOTEARS (Linear) [52]: 17.7000 ± 1.5670 17.5000 ± 1.0801 17.3000 ± 1.8288 16.1000 ± 1.4491 96.6000 ± 3.6878 95.8000 ± 2.8983 96.6000 ± 2.9136 95.9000 ± 2.2828

NOTEARS (Nonlinear) [53]: 18.1000 ± 2.0248 18.1000 ± 1.2867 18.3000 ± 1.7029 17.2000 ± 1.6193 99.8000 ± 1.1353 98.0000 ± 2.3570 97.9000 ± 2.5144 98.6000 ± 1.5055

GES [6]: 17.5000 ± 2.0683 13.7000 ± 3.9172 16.1000 ± 2.8848 13.9000 ± 5.8963 93.1000 ± 5.7436 61.4000 ± 6.2752 43.2000 ± 11.2921 48.8000 ± 13.9507

PC [34]: 17.5000 ± 2.5495 12.8000 ± 4.3153 9.6000 ± 1.8974 4.9000 ± 2.8848 95.0000 ± 3.3333 70.1000 ± 4.7011 49.1000 ± 6.3675 31.0000 ± 8.8066

kPC (k=1) [19]: 17.8000 ± 2.1499 14.4000 ± 2.8363 19.5000 ± 4.2230 16.9000 ± 4.1486 94.9000 ± 2.6854 77.4000 ± 5.3166 88.0000 ± 8.2999 134.8000 ± 28.9858

kPC (k=2) [19]: 17.4000 ± 2.6331 12.5000 ± 3.2059 12.0000 ± 2.3094 10.9000 ± 4.7947 94.5000 ± 3.6286 69.2000 ± 3.9101 55.5000 ± 5.4416 50.3000 ± 11.3534

DAGPA (Ours) 21.4800 ± 2.6972 23.8200 ± 2.2740 25.5600 ± 3.3022 24.1400 ± 2.8357 103.6200 ± 10.4664 180.8400 ± 8.3626 106.2000 ± 15.9796 220.7800 ± 21.7596

(e) Synthetic binary ER, r = 2, DAG F1

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.1706 ± 0.1091 0.1225 ± 0.0616 0.2137 ± 0.1476 0.1677 ± 0.1313 0.2020 ± 0.0328 0.1682 ± 0.0327 0.1766 ± 0.0490 0.1791 ± 0.0485

DAGMA (Nonlinear) [4]: 0.3243 ± 0.1575 0.2734 ± 0.0819 0.3190 ± 0.1602 0.4432 ± 0.1806 0.2243 ± 0.0269 0.3087 ± 0.0649 0.3452 ± 0.0670 0.3829 ± 0.0546

NOTEARS (Linear) [52]: 0.2076 ± 0.1263 0.1192 ± 0.0676 0.2304 ± 0.1460 0.1905 ± 0.1282 0.2304 ± 0.0583 0.1878 ± 0.0441 0.2027 ± 0.0489 0.2091 ± 0.0354

NOTEARS (Nonlinear) [53]: 0.0688 ± 0.0805 0.0179 ± 0.0378 0.0564 ± 0.0778 0.0327 ± 0.0743 0.0583 ± 0.0178 0.0665 ± 0.0391 0.0725 ± 0.0426 0.0507 ± 0.0273

DAGPA (Ours) 0.1557 ± 0.1036 0.2333 ± 0.1026 0.2176 ± 0.0971 0.2603 ± 0.1145 0.0088 ± 0.0117 0.0372 ± 0.0230 0.0091 ± 0.0143 0.0559 ± 0.0163
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Table 2: Experimental results on Synthetic binary ER, r = 4

(a) Synthetic binary ER, r = 4, CI-MC

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2398 ± 0.0631 0.2085 ± 0.0347 0.2120 ± 0.0400 0.2226 ± 0.0584 0.0428 ± 0.0064 0.0398 ± 0.0039 0.0398 ± 0.0039 0.0395 ± 0.0051

DAGMA (Nonlinear) [4]: 0.5724 ± 0.1213 0.4450 ± 0.1860 0.5007 ± 0.1535 0.4624 ± 0.1775 0.2658 ± 0.0818 0.0591 ± 0.0169 0.0735 ± 0.0181 0.0623 ± 0.0132

NOTEARS (Linear) [52]: 0.2798 ± 0.0848 0.2197 ± 0.0391 0.2344 ± 0.0665 0.2294 ± 0.0273 0.0506 ± 0.0081 0.0419 ± 0.0049 0.0434 ± 0.0046 0.0423 ± 0.0057

NOTEARS (Nonlinear) [53]: 0.1882 ± 0.0371 0.1804 ± 0.0290 0.2091 ± 0.0469 0.1894 ± 0.0278 0.0369 ± 0.0045 0.0350 ± 0.0026 0.0342 ± 0.0040 0.0361 ± 0.0063

GES [6]: 0.3341 ± 0.1212 0.5932 ± 0.1362 0.9135 ± 0.1097 0.9251 ± 0.0568 -0.3803 ± 0.1331 -0.1514 ± 0.0513 -0.0267 ± 0.0469 0.0000 ± 0.0000

PC [34]: 0.3282 ± 0.0842 0.7071 ± 0.1704 0.8897 ± 0.1385 0.9317 ± 0.0444 -0.3514 ± 0.0755 -0.0181 ± 0.0608 -0.0049 ± 0.0138 -0.0100 ± 0.0155

kPC (k=1) [19]: 0.4053 ± 0.1859 0.8818 ± 0.1073 0.9469 ± 0.0775 0.9372 ± 0.0443 -0.1670 ± 0.0624 -0.0027 ± 0.0514 0.0053 ± 0.0147 0.0000 ± 0.0000

kPC (k=2) [19]: 0.3307 ± 0.0878 0.8546 ± 0.1099 0.9469 ± 0.0775 0.9378 ± 0.0437 -0.2243 ± 0.0834 -0.0036 ± 0.0517 0.0054 ± 0.0153 0.0000 ± 0.0000

DAGPA (Ours) 0.6214 ± 0.1562 0.8299 ± 0.1328 0.9493 ± 0.0537 0.9484 ± 0.0357 0.2341 ± 0.0501 0.3292 ± 0.0720 0.2669 ± 0.1632 0.7209 ± 0.1333

(b) Synthetic binary ER, r = 4, CPDAG F1 Arrowhead

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.0160 ± 0.0506 0.0000 ± 0.0000 0.0333 ± 0.1054 0.0000 ± 0.0000 0.0041 ± 0.0087 0.0051 ± 0.0086 0.0050 ± 0.0108 0.0040 ± 0.0085

DAGMA (Nonlinear) [4]: 0.1844 ± 0.1478 0.1668 ± 0.1707 0.0857 ± 0.1173 0.1994 ± 0.1346 0.1193 ± 0.0338 0.0643 ± 0.0368 0.1158 ± 0.0564 0.0976 ± 0.0409

NOTEARS (Linear) [52]: 0.0490 ± 0.0871 0.0000 ± 0.0000 0.0333 ± 0.1054 0.0000 ± 0.0000 0.0190 ± 0.0232 0.0061 ± 0.0109 0.0130 ± 0.0182 0.0020 ± 0.0063

NOTEARS (Nonlinear) [53]: 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0847 ± 0.1208 0.0314 ± 0.0529 0.0109 ± 0.0125 0.0010 ± 0.0032 0.0101 ± 0.0157 0.0070 ± 0.0125

GES [6]: 0.0685 ± 0.0793 0.2782 ± 0.1766 0.3504 ± 0.2241 0.4993 ± 0.1762 0.0684 ± 0.0327 0.2896 ± 0.0465 0.5302 ± 0.0599 0.1253 ± 0.2657

PC [34]: 0.1049 ± 0.0729 0.3096 ± 0.1615 0.4223 ± 0.1233 0.4759 ± 0.1242 0.0819 ± 0.0301 0.2572 ± 0.0454 0.3632 ± 0.0439 0.4153 ± 0.0472

kPC (k=1) [19]: 0.1014 ± 0.0858 0.1965 ± 0.1176 0.2402 ± 0.1230 0.2588 ± 0.1050 0.0377 ± 0.0116 0.0264 ± 0.0224 0.0262 ± 0.0136 0.0200 ± 0.0115

kPC (k=2) [19]: 0.1034 ± 0.0874 0.1984 ± 0.1402 0.3077 ± 0.1590 0.3455 ± 0.1079 0.0385 ± 0.0132 0.0417 ± 0.0287 0.0532 ± 0.0236 0.0684 ± 0.0296

DAGPA (Ours) 0.1392 ± 0.0984 0.1788 ± 0.0976 0.2733 ± 0.0832 0.2589 ± 0.1219 0.0424 ± 0.0204 0.0572 ± 0.0228 0.0392 ± 0.0232 0.0648 ± 0.0131

(c) Synthetic binary ER, r = 4, CPDAG F1 Skeleton

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2706 ± 0.1085 0.2260 ± 0.0935 0.2053 ± 0.0892 0.2292 ± 0.0902 0.0982 ± 0.0344 0.0732 ± 0.0204 0.0952 ± 0.0135 0.0731 ± 0.0159

DAGMA (Nonlinear) [4]: 0.5460 ± 0.0904 0.5399 ± 0.0802 0.5137 ± 0.1327 0.5488 ± 0.1238 0.2296 ± 0.0323 0.1997 ± 0.0491 0.2653 ± 0.0517 0.2288 ± 0.0490

NOTEARS (Linear) [52]: 0.3598 ± 0.1345 0.2533 ± 0.0884 0.2489 ± 0.1027 0.2722 ± 0.0854 0.1388 ± 0.0521 0.0915 ± 0.0266 0.1193 ± 0.0138 0.0960 ± 0.0197

NOTEARS (Nonlinear) [53]: 0.1435 ± 0.1318 0.0848 ± 0.0995 0.1779 ± 0.1279 0.1492 ± 0.1253 0.0519 ± 0.0353 0.0188 ± 0.0109 0.0408 ± 0.0281 0.0352 ± 0.0166

GES [6]: 0.3903 ± 0.0991 0.6616 ± 0.0774 0.8165 ± 0.0861 0.7991 ± 0.0475 0.1820 ± 0.0589 0.4372 ± 0.0445 0.7155 ± 0.0350 0.1574 ± 0.3320

PC [34]: 0.4194 ± 0.0577 0.7178 ± 0.1084 0.8209 ± 0.0830 0.8080 ± 0.0550 0.2193 ± 0.0340 0.5469 ± 0.0404 0.7493 ± 0.0295 0.7816 ± 0.0204

kPC (k=1) [19]: 0.4421 ± 0.0710 0.7346 ± 0.1041 0.7659 ± 0.0614 0.7724 ± 0.0304 0.2317 ± 0.0337 0.5565 ± 0.0406 0.6894 ± 0.0297 0.6425 ± 0.0286

kPC (k=2) [19]: 0.4194 ± 0.0577 0.7178 ± 0.1084 0.8137 ± 0.0830 0.7958 ± 0.0502 0.2198 ± 0.0333 0.5530 ± 0.0403 0.7416 ± 0.0310 0.7458 ± 0.0208

DAGPA (Ours) 0.4217 ± 0.1182 0.4490 ± 0.0858 0.5309 ± 0.0943 0.5036 ± 0.0678 0.1057 ± 0.0277 0.1254 ± 0.0348 0.0837 ± 0.0329 0.1449 ± 0.0270

(d) Synthetic binary ER, r = 4, CPDAG SHD

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 21.1000 ± 2.5144 20.4000 ± 3.9497 22.0000 ± 3.3665 21.2000 ± 3.3267 197.7000 ± 2.4518 197.7000 ± 1.6364 196.9000 ± 2.1318 197.9000 ± 1.2867

DAGMA (Nonlinear) [4]: 21.1000 ± 2.9231 18.3000 ± 3.8887 21.0000 ± 3.8006 19.0000 ± 3.2660 228.8000 ± 6.9889 191.7000 ± 5.8128 185.7000 ± 5.3552 188.4000 ± 4.0879

NOTEARS (Linear) [52]: 19.9000 ± 3.2128 20.4000 ± 3.9777 21.6000 ± 3.7476 21.1000 ± 3.3483 198.2000 ± 3.0111 197.6000 ± 2.1187 196.1000 ± 1.5239 197.9000 ± 1.2867

NOTEARS (Nonlinear) [53]: 21.9000 ± 2.3781 21.3000 ± 4.1379 22.1000 ± 3.4140 21.6000 ± 2.8752 198.5000 ± 1.7795 199.1000 ± 0.8756 198.6000 ± 1.8974 198.9000 ± 1.1972

GES [6]: 21.2000 ± 2.6998 18.3000 ± 5.0122 19.6000 ± 6.3281 18.4000 ± 7.2602 196.3000 ± 4.3218 164.5000 ± 7.7782 130.2000 ± 12.6474 24.6000 ± 52.7977

PC [34]: 20.7000 ± 2.7909 17.9000 ± 5.0870 17.3000 ± 4.9227 17.4000 ± 4.7656 205.0000 ± 5.8119 177.3000 ± 9.0437 164.4000 ± 8.8343 171.1000 ± 14.3717

kPC (k=1) [19]: 21.1000 ± 2.6854 17.7000 ± 5.1865 22.3000 ± 4.4234 22.4000 ± 5.1683 205.3000 ± 4.2701 184.5000 ± 7.7782 211.6000 ± 9.7091 282.7000 ± 26.8620

kPC (k=2) [19]: 20.5000 ± 2.8382 17.6000 ± 5.4610 18.0000 ± 5.9815 18.3000 ± 3.4657 204.4000 ± 4.4771 177.3000 ± 8.1384 173.2000 ± 8.4564 198.9000 ± 14.1142

DAGPA (Ours) 26.6400 ± 3.6854 27.2800 ± 4.2859 27.5600 ± 3.1826 28.2400 ± 3.6397 258.5600 ± 4.5273 268.3000 ± 10.5313 254.2000 ± 18.9737 307.2400 ± 24.4361

(e) Synthetic binary ER, r = 4, DAG F1

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.1661 ± 0.1206 0.1406 ± 0.1301 0.1428 ± 0.0775 0.1365 ± 0.1200 0.0671 ± 0.0271 0.0569 ± 0.0181 0.0618 ± 0.0236 0.0452 ± 0.0191

DAGMA (Nonlinear) [4]: 0.2813 ± 0.1782 0.3242 ± 0.1300 0.2824 ± 0.1015 0.3234 ± 0.1329 0.1476 ± 0.0287 0.1280 ± 0.0440 0.1739 ± 0.0548 0.1441 ± 0.0466

NOTEARS (Linear) [52]: 0.2563 ± 0.0874 0.1505 ± 0.1279 0.1517 ± 0.0926 0.1492 ± 0.1050 0.0903 ± 0.0424 0.0668 ± 0.0261 0.0761 ± 0.0162 0.0512 ± 0.0224

NOTEARS (Nonlinear) [53]: 0.0772 ± 0.0767 0.0238 ± 0.0385 0.1082 ± 0.1006 0.0730 ± 0.0905 0.0279 ± 0.0208 0.0079 ± 0.0078 0.0195 ± 0.0156 0.0196 ± 0.0103

DAGPA (Ours) 0.2017 ± 0.1142 0.2056 ± 0.0526 0.2874 ± 0.0891 0.3427 ± 0.1043 0.0483 ± 0.0176 0.0608 ± 0.0245 0.0433 ± 0.0207 0.0681 ± 0.0153
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Table 3: Experimental results on Synthetic binary SF, r = 2

(a) Synthetic binary SF, r = 2, CI-MC

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2279 ± 0.0372 0.2247 ± 0.0472 0.2256 ± 0.0285 0.2167 ± 0.0328 0.1413 ± 0.0206 0.1483 ± 0.0215 0.1475 ± 0.0186 0.1560 ± 0.0178

DAGMA (Nonlinear) [4]: 0.4979 ± 0.1539 0.3630 ± 0.0893 0.4339 ± 0.1296 0.4195 ± 0.1210 0.1170 ± 0.0571 0.2208 ± 0.0521 0.2464 ± 0.0610 0.2867 ± 0.0398

NOTEARS (Linear) [52]: 0.2716 ± 0.0877 0.2422 ± 0.0590 0.2548 ± 0.0466 0.2556 ± 0.0563 0.1433 ± 0.0233 0.1551 ± 0.0168 0.1614 ± 0.0249 0.1659 ± 0.0188

NOTEARS (Nonlinear) [53]: 0.2018 ± 0.0362 0.1919 ± 0.0342 0.1960 ± 0.0298 0.1847 ± 0.0270 0.1263 ± 0.0190 0.1286 ± 0.0176 0.1263 ± 0.0161 0.1341 ± 0.0149

GES [6]: 0.3288 ± 0.1263 0.6257 ± 0.1922 0.7965 ± 0.1152 0.8394 ± 0.1061 0.0031 ± 0.0431 0.1955 ± 0.0926 0.2143 ± 0.1380 0.1430 ± 0.1201

PC [34]: 0.3359 ± 0.1207 0.7139 ± 0.1368 0.7956 ± 0.1502 0.8635 ± 0.0748 -0.0206 ± 0.0445 0.1634 ± 0.0986 0.0462 ± 0.0724 0.0537 ± 0.0733

kPC (k=1) [19]: 0.3899 ± 0.1479 0.8032 ± 0.1781 0.8170 ± 0.1356 0.8687 ± 0.0740 -0.0009 ± 0.0737 0.1036 ± 0.1189 0.0579 ± 0.0835 0.0392 ± 0.0693

kPC (k=2) [19]: 0.3435 ± 0.1270 0.7805 ± 0.1662 0.8199 ± 0.1342 0.8681 ± 0.0732 -0.0261 ± 0.0723 0.1487 ± 0.1267 0.0495 ± 0.0990 0.0356 ± 0.0518

DAGPA (Ours) 0.5491 ± 0.1461 0.7731 ± 0.1272 0.8684 ± 0.1128 0.8659 ± 0.0624 0.0728 ± 0.0278 0.0906 ± 0.0262 0.1057 ± 0.0361 0.1938 ± 0.0784

(b) Synthetic binary SF, r = 2, CPDAG F1 Arrowhead

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.0000 ± 0.0000 0.0125 ± 0.0395 0.0000 ± 0.0000 0.0426 ± 0.0904 0.0087 ± 0.0183 0.0000 ± 0.0000 0.0044 ± 0.0139 0.0084 ± 0.0178

DAGMA (Nonlinear) [4]: 0.1950 ± 0.1364 0.2072 ± 0.1209 0.2012 ± 0.1235 0.1725 ± 0.1522 0.1465 ± 0.0501 0.1891 ± 0.0760 0.2219 ± 0.0531 0.2210 ± 0.0975

NOTEARS (Linear) [52]: 0.0495 ± 0.1267 0.0211 ± 0.0666 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0273 ± 0.0312 0.0148 ± 0.0248 0.0132 ± 0.0212 0.0149 ± 0.0202

NOTEARS (Nonlinear) [53]: 0.0451 ± 0.0832 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0190 ± 0.0602 0.0284 ± 0.0367 0.0210 ± 0.0262 0.0106 ± 0.0150 0.0167 ± 0.0214

GES [6]: 0.0686 ± 0.0922 0.3097 ± 0.1616 0.5025 ± 0.1347 0.5590 ± 0.2118 0.0801 ± 0.0622 0.4695 ± 0.0836 0.7163 ± 0.0728 0.7741 ± 0.0545

PC [34]: 0.1330 ± 0.1174 0.3398 ± 0.0895 0.4687 ± 0.1326 0.4592 ± 0.1445 0.1093 ± 0.0673 0.3793 ± 0.0854 0.4883 ± 0.0582 0.5647 ± 0.1108

kPC (k=1) [19]: 0.1301 ± 0.0959 0.1593 ± 0.1036 0.2905 ± 0.1309 0.2411 ± 0.1627 0.0757 ± 0.0320 0.1542 ± 0.0634 0.2068 ± 0.0310 0.2871 ± 0.0657

kPC (k=2) [19]: 0.1131 ± 0.0897 0.1612 ± 0.1402 0.3378 ± 0.1372 0.2496 ± 0.1216 0.0729 ± 0.0341 0.1670 ± 0.0556 0.2671 ± 0.0434 0.4013 ± 0.0787

DAGPA (Ours) 0.1363 ± 0.0942 0.1919 ± 0.0815 0.2266 ± 0.1236 0.2374 ± 0.1035 0.0037 ± 0.0076 0.0186 ± 0.0185 0.0078 ± 0.0100 0.0387 ± 0.0178

(c) Synthetic binary SF, r = 2, CPDAG F1 Skeleton

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2159 ± 0.1017 0.1933 ± 0.0984 0.2072 ± 0.1170 0.2296 ± 0.1284 0.2210 ± 0.0413 0.2187 ± 0.0249 0.2148 ± 0.0467 0.1912 ± 0.0305

DAGMA (Nonlinear) [4]: 0.5808 ± 0.0988 0.4768 ± 0.1131 0.5342 ± 0.1081 0.5834 ± 0.1504 0.3076 ± 0.0528 0.5308 ± 0.0508 0.5412 ± 0.0557 0.5433 ± 0.0681

NOTEARS (Linear) [52]: 0.2836 ± 0.1490 0.2358 ± 0.1330 0.2683 ± 0.1199 0.3141 ± 0.1574 0.2857 ± 0.0257 0.2748 ± 0.0333 0.2745 ± 0.0516 0.2630 ± 0.0405

NOTEARS (Nonlinear) [53]: 0.1153 ± 0.1130 0.0641 ± 0.0741 0.0815 ± 0.0977 0.0776 ± 0.1300 0.1159 ± 0.0571 0.1063 ± 0.0485 0.0860 ± 0.0648 0.0817 ± 0.0381

GES [6]: 0.3601 ± 0.1194 0.6713 ± 0.0849 0.8113 ± 0.0427 0.8196 ± 0.0875 0.2684 ± 0.1460 0.6875 ± 0.0449 0.8637 ± 0.0173 0.8839 ± 0.0322

PC [34]: 0.4474 ± 0.0788 0.7446 ± 0.0904 0.8168 ± 0.0510 0.8004 ± 0.0827 0.2942 ± 0.1584 0.7039 ± 0.0399 0.8277 ± 0.0306 0.8505 ± 0.0269

kPC (k=1) [19]: 0.4685 ± 0.0839 0.7454 ± 0.0918 0.7774 ± 0.0494 0.7737 ± 0.0593 0.3689 ± 0.0323 0.6872 ± 0.0304 0.7782 ± 0.0238 0.7501 ± 0.0268

kPC (k=2) [19]: 0.4474 ± 0.0788 0.7404 ± 0.0882 0.8120 ± 0.0508 0.7894 ± 0.0759 0.3612 ± 0.0344 0.7025 ± 0.0374 0.8231 ± 0.0281 0.8361 ± 0.0281

DAGPA (Ours) 0.4003 ± 0.0897 0.4746 ± 0.0788 0.4839 ± 0.1013 0.4846 ± 0.0975 0.0282 ± 0.0194 0.0389 ± 0.0183 0.0357 ± 0.0277 0.0851 ± 0.0264

(d) Synthetic binary SF, r = 2, CPDAG SHD

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 19.1000 ± 1.1972 19.2000 ± 0.6325 19.2000 ± 1.0328 18.7000 ± 1.4181 97.2000 ± 1.3166 96.5000 ± 1.2693 95.9000 ± 2.2336 96.7000 ± 1.1595

DAGMA (Nonlinear) [4]: 18.2000 ± 2.0976 17.2000 ± 1.1353 17.1000 ± 1.9692 16.9000 ± 2.1833 147.7000 ± 15.9865 86.1000 ± 4.8408 83.6000 ± 5.1251 85.2000 ± 6.9889

NOTEARS (Linear) [52]: 18.6000 ± 1.7764 19.2000 ± 0.6325 18.9000 ± 0.9944 18.7000 ± 0.8233 98.9000 ± 1.6633 95.2000 ± 1.9889 94.7000 ± 2.9458 95.9000 ± 1.6633

NOTEARS (Nonlinear) [53]: 19.3000 ± 0.8233 19.8000 ± 0.4216 19.8000 ± 0.4216 19.6000 ± 0.6992 98.8000 ± 2.1499 98.6000 ± 2.4129 99.0000 ± 0.8165 98.5000 ± 1.4337

GES [6]: 18.8000 ± 1.6193 15.9000 ± 2.7264 13.8000 ± 3.2249 14.0000 ± 6.0736 79.4000 ± 41.9952 66.3000 ± 7.2885 40.5000 ± 8.3832 36.7000 ± 8.9821

PC [34]: 18.3000 ± 1.9465 15.7000 ± 1.3375 14.2000 ± 3.1552 15.6000 ± 3.4383 84.7000 ± 44.7314 82.8000 ± 9.8070 71.8000 ± 10.0421 65.1000 ± 14.4795

kPC (k=1) [19]: 18.0000 ± 1.8257 16.6000 ± 1.7127 17.7000 ± 5.3759 20.1000 ± 3.0714 120.0000 ± 26.6041 88.6000 ± 9.2999 90.5000 ± 7.7496 106.1000 ± 10.4823

kPC (k=2) [19]: 18.1000 ± 1.7288 16.1000 ± 1.5951 15.3000 ± 4.2701 17.5000 ± 3.3082 118.0000 ± 26.5330 83.1000 ± 8.5434 75.7000 ± 7.2732 74.3000 ± 12.7632

DAGPA (Ours) 24.7800 ± 2.4436 25.7400 ± 2.4562 25.6400 ± 3.6576 25.8600 ± 3.3382 119.7500 ± 5.5366 124.3200 ± 6.9765 130.7000 ± 4.4366 192.3400 ± 31.3106

(e) Synthetic binary SF, r = 2, DAG F1

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.1383 ± 0.0889 0.0978 ± 0.0642 0.1394 ± 0.0736 0.1697 ± 0.1112 0.1275 ± 0.0364 0.1529 ± 0.0301 0.1451 ± 0.0566 0.1372 ± 0.0341

DAGMA (Nonlinear) [4]: 0.3603 ± 0.1203 0.2724 ± 0.0810 0.3587 ± 0.1040 0.3766 ± 0.1507 0.1845 ± 0.0362 0.3204 ± 0.0741 0.3446 ± 0.0670 0.3594 ± 0.0663

NOTEARS (Linear) [52]: 0.2089 ± 0.1474 0.1266 ± 0.1081 0.1872 ± 0.0802 0.2016 ± 0.1147 0.1648 ± 0.0436 0.1801 ± 0.0434 0.1849 ± 0.0516 0.1733 ± 0.0365

NOTEARS (Nonlinear) [53]: 0.0788 ± 0.1022 0.0281 ± 0.0453 0.0451 ± 0.0628 0.0265 ± 0.0605 0.0402 ± 0.0375 0.0450 ± 0.0233 0.0281 ± 0.0306 0.0438 ± 0.0268

DAGPA (Ours) 0.1689 ± 0.0987 0.2409 ± 0.0858 0.2662 ± 0.1244 0.2682 ± 0.0969 0.0061 ± 0.0080 0.0205 ± 0.0187 0.0163 ± 0.0195 0.0410 ± 0.0116
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Table 4: Experimental results on Synthetic binary SF, r = 4

(a) Synthetic binary SF, r = 4, CI-MC

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.2029 ± 0.0485 0.1665 ± 0.0130 0.1764 ± 0.0243 0.1886 ± 0.0233 0.0527 ± 0.0119 0.0516 ± 0.0093 0.0454 ± 0.0075 0.0543 ± 0.0063

DAGMA (Nonlinear) [4]: 0.4897 ± 0.1854 0.3381 ± 0.1350 0.3735 ± 0.1415 0.3296 ± 0.0864 0.2058 ± 0.0892 0.0811 ± 0.0204 0.0708 ± 0.0374 0.0781 ± 0.0315

NOTEARS (Linear) [52]: 0.2459 ± 0.0949 0.1940 ± 0.0335 0.1831 ± 0.0328 0.2024 ± 0.0238 0.0613 ± 0.0173 0.0548 ± 0.0068 0.0494 ± 0.0080 0.0577 ± 0.0100

NOTEARS (Nonlinear) [53]: 0.1762 ± 0.0327 0.1559 ± 0.0209 0.1734 ± 0.0326 0.1763 ± 0.0394 0.0494 ± 0.0096 0.0456 ± 0.0058 0.0417 ± 0.0069 0.0462 ± 0.0042

GES [6]: 0.2012 ± 0.1185 0.7465 ± 0.1809 0.9963 ± 0.0078 0.9938 ± 0.0111 -0.3315 ± 0.0820 -0.1133 ± 0.0631 0.0046 ± 0.1675 -0.0089 ± 0.0175

PC [34]: 0.4374 ± 0.2841 0.8618 ± 0.1168 0.9601 ± 0.0637 0.9950 ± 0.0065 -0.2749 ± 0.0535 -0.0404 ± 0.0358 -0.0052 ± 0.0131 -0.0013 ± 0.0023

kPC (k=1) [19]: 0.4708 ± 0.2792 0.9846 ± 0.0166 0.9987 ± 0.0027 0.9975 ± 0.0033 -0.1443 ± 0.0624 -0.0175 ± 0.0295 -0.0014 ± 0.0031 0.0000 ± 0.0000

kPC (k=2) [19]: 0.4528 ± 0.2777 0.9731 ± 0.0295 0.9987 ± 0.0027 0.9975 ± 0.0033 -0.1893 ± 0.0730 -0.0266 ± 0.0386 -0.0014 ± 0.0031 0.0000 ± 0.0000

DAGPA (Ours) 0.7190 ± 0.1381 0.9629 ± 0.0264 0.9899 ± 0.0079 0.9927 ± 0.0051 0.0907 ± 0.0570 0.1031 ± 0.0610 0.1851 ± 0.0615 0.3492 ± 0.1561

(b) Synthetic binary SF, r = 4, CPDAG F1 Arrowhead

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0091 ± 0.0111 0.0020 ± 0.0063 0.0000 ± 0.0000 0.0010 ± 0.0032

DAGMA (Nonlinear) [4]: 0.1100 ± 0.1109 0.1141 ± 0.0839 0.0759 ± 0.1125 0.0713 ± 0.0985 0.1244 ± 0.0284 0.0727 ± 0.0527 0.0943 ± 0.0360 0.0954 ± 0.0361

NOTEARS (Linear) [52]: 0.0125 ± 0.0395 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0191 ± 0.0120 0.0040 ± 0.0084 0.0041 ± 0.0085 0.0051 ± 0.0087

NOTEARS (Nonlinear) [53]: 0.0105 ± 0.0333 0.0061 ± 0.0192 0.0000 ± 0.0000 0.0053 ± 0.0166 0.0100 ± 0.0114 0.0080 ± 0.0103 0.0051 ± 0.0086 0.0000 ± 0.0000

GES [6]: 0.0253 ± 0.0544 0.1724 ± 0.1392 0.2427 ± 0.0730 0.4408 ± 0.1339 0.0663 ± 0.0216 0.2716 ± 0.0383 0.5297 ± 0.0529 0.3611 ± 0.3114

PC [34]: 0.0223 ± 0.0300 0.2349 ± 0.1248 0.3093 ± 0.1109 0.3147 ± 0.1203 0.0730 ± 0.0231 0.2456 ± 0.0320 0.3968 ± 0.0569 0.4005 ± 0.0362

kPC (k=1) [19]: 0.0211 ± 0.0361 0.0528 ± 0.0543 0.1813 ± 0.1249 0.1299 ± 0.0942 0.0360 ± 0.0192 0.0333 ± 0.0136 0.0169 ± 0.0154 0.0211 ± 0.0137

kPC (k=2) [19]: 0.0159 ± 0.0349 0.0452 ± 0.0656 0.1128 ± 0.0828 0.1637 ± 0.1004 0.0400 ± 0.0157 0.0427 ± 0.0150 0.0430 ± 0.0229 0.0590 ± 0.0226

DAGPA (Ours) 0.1558 ± 0.0800 0.2338 ± 0.0763 0.2589 ± 0.1168 0.2731 ± 0.1252 0.0172 ± 0.0164 0.0276 ± 0.0155 0.0331 ± 0.0118 0.0476 ± 0.0197

(c) Synthetic binary SF, r = 4, CPDAG F1 Skeleton

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.1182 ± 0.0801 0.0625 ± 0.0319 0.0846 ± 0.0569 0.1074 ± 0.0528 0.0957 ± 0.0156 0.0722 ± 0.0154 0.0637 ± 0.0199 0.0785 ± 0.0248

DAGMA (Nonlinear) [4]: 0.3830 ± 0.0892 0.2930 ± 0.1131 0.2995 ± 0.0944 0.3001 ± 0.0924 0.2290 ± 0.0240 0.2179 ± 0.0538 0.2149 ± 0.0313 0.2347 ± 0.0506

NOTEARS (Linear) [52]: 0.1631 ± 0.1014 0.1159 ± 0.0605 0.0980 ± 0.0618 0.1341 ± 0.0477 0.1305 ± 0.0223 0.1040 ± 0.0249 0.0922 ± 0.0249 0.1112 ± 0.0195

NOTEARS (Nonlinear) [53]: 0.0739 ± 0.0750 0.0284 ± 0.0504 0.0791 ± 0.0714 0.0817 ± 0.0957 0.0405 ± 0.0246 0.0293 ± 0.0205 0.0294 ± 0.0171 0.0245 ± 0.0206

GES [6]: 0.1416 ± 0.1132 0.4808 ± 0.0780 0.7679 ± 0.0314 0.8424 ± 0.0302 0.1747 ± 0.0148 0.4210 ± 0.0358 0.7082 ± 0.0507 0.4682 ± 0.4031

PC [34]: 0.3141 ± 0.1136 0.5696 ± 0.0531 0.7348 ± 0.0409 0.7840 ± 0.0457 0.1984 ± 0.0180 0.5263 ± 0.0269 0.7387 ± 0.0342 0.7675 ± 0.0187

kPC (k=1) [19]: 0.3237 ± 0.1185 0.6298 ± 0.0675 0.8036 ± 0.0174 0.8551 ± 0.0264 0.2114 ± 0.0244 0.5395 ± 0.0290 0.6921 ± 0.0280 0.6553 ± 0.0214

kPC (k=2) [19]: 0.3141 ± 0.1136 0.5836 ± 0.0662 0.7538 ± 0.0483 0.8036 ± 0.0361 0.2005 ± 0.0206 0.5344 ± 0.0268 0.7307 ± 0.0329 0.7388 ± 0.0135

DAGPA (Ours) 0.5007 ± 0.0512 0.5889 ± 0.0564 0.6445 ± 0.0586 0.6512 ± 0.0560 0.0435 ± 0.0249 0.0677 ± 0.0178 0.0726 ± 0.0265 0.0956 ± 0.0358

(d) Synthetic binary SF, r = 4, CPDAG SHD

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 38.6000 ± 0.8433 39.1000 ± 0.7379 38.6000 ± 1.1738 38.3000 ± 1.0593 197.9000 ± 1.6633 198.0000 ± 1.2472 198.6000 ± 1.7764 197.8000 ± 1.4757

DAGMA (Nonlinear) [4]: 36.4000 ± 2.0656 37.1000 ± 1.8529 36.8000 ± 3.0478 36.1000 ± 2.7669 221.4000 ± 10.6999 190.5000 ± 4.3525 189.6000 ± 3.6878 188.4000 ± 3.9497

NOTEARS (Linear) [52]: 38.5000 ± 1.5092 38.4000 ± 1.4298 38.3000 ± 1.3375 38.1000 ± 1.3703 198.9000 ± 2.4244 197.4000 ± 1.3499 198.0000 ± 2.1602 197.1000 ± 1.5239

NOTEARS (Nonlinear) [53]: 39.5000 ± 1.0801 39.8000 ± 0.4216 39.5000 ± 1.2693 39.5000 ± 0.7071 199.8000 ± 1.8135 199.1000 ± 1.3703 199.4000 ± 0.8433 199.4000 ± 1.2649

GES [6]: 31.2000 ± 16.4776 35.9000 ± 2.8067 35.4000 ± 2.9136 28.1000 ± 5.0870 197.6000 ± 3.4705 167.4000 ± 5.8916 127.0000 ± 12.9013 75.6000 ± 65.6374

PC [34]: 39.6000 ± 1.3499 34.7000 ± 2.8304 33.0000 ± 4.1366 32.0000 ± 4.7376 206.9000 ± 2.3310 181.4000 ± 8.2892 158.6000 ± 15.1526 177.7000 ± 11.6433

kPC (k=1) [19]: 39.8000 ± 1.3166 33.9000 ± 3.6040 32.7000 ± 4.7152 34.1000 ± 4.3063 207.8000 ± 2.1499 188.9000 ± 11.5609 196.5000 ± 13.1085 270.3000 ± 20.3309

kPC (k=2) [19]: 39.9000 ± 1.2867 34.2000 ± 2.5734 33.5000 ± 3.4721 32.2000 ± 4.8944 205.7000 ± 2.5841 181.6000 ± 9.2280 167.9000 ± 14.4564 203.5000 ± 7.9757

DAGPA (Ours) 37.1250 ± 2.8482 36.0000 ± 2.2315 35.1600 ± 3.6609 34.7400 ± 3.7022 233.0000 ± 19.1066 244.4800 ± 10.0249 250.1000 ± 8.9972 272.6444 ± 21.6671

(e) Synthetic binary SF, r = 4, DAG F1

Method Dataset Settings
d=10, n=100 d=10, n=1k d=10, n=10k d=10, n=100k d=50, n=100 d=50, n=1k d=50, n=10k d=50, n=100k

DAGMA (Linear) [4]: 0.0682 ± 0.0555 0.0433 ± 0.0271 0.0517 ± 0.0409 0.0651 ± 0.0493 0.0673 ± 0.0142 0.0530 ± 0.0128 0.0406 ± 0.0086 0.0603 ± 0.0218

DAGMA (Nonlinear) [4]: 0.2486 ± 0.0855 0.1928 ± 0.1048 0.1950 ± 0.0860 0.1987 ± 0.0994 0.1565 ± 0.0358 0.1362 ± 0.0558 0.1259 ± 0.0300 0.1475 ± 0.0555

NOTEARS (Linear) [52]: 0.1008 ± 0.0867 0.0882 ± 0.0547 0.0608 ± 0.0435 0.0879 ± 0.0382 0.0845 ± 0.0229 0.0738 ± 0.0156 0.0628 ± 0.0174 0.0763 ± 0.0203

NOTEARS (Nonlinear) [53]: 0.0369 ± 0.0560 0.0096 ± 0.0203 0.0276 ± 0.0385 0.0497 ± 0.0714 0.0144 ± 0.0149 0.0127 ± 0.0131 0.0118 ± 0.0077 0.0098 ± 0.0080

DAGPA (Ours) 0.2219 ± 0.0624 0.2752 ± 0.0778 0.3358 ± 0.1050 0.3581 ± 0.0739 0.0235 ± 0.0144 0.0334 ± 0.0174 0.0416 ± 0.0110 0.0532 ± 0.0150
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integration direction is promising and could leverage complementary strengths of both paradigms,
the normalization challenge for nonlinear models and comprehensive empirical evaluation remain
important future work.

G.2 Alternative Conditional Independence Measurements and Tradeoffs

Our framework uses p-values from statistical conditional independence (CI) tests as soft measures
of independence strength. This section discusses the motivation for CI-based measurements and
compares different CI measurement approaches.

G.2.1 Motivation: Robustness and Interpretability

Robustness to Data Preprocessing. Many statistical CI tests offer inherent robustness due to their
scale-invariance properties. Standard CI tests remain reliable across different preprocessing pipelines:
Fisher-z test statistics are invariant under linear transformations since partial correlations ρXY |Z are
preserved when variables are standardized; chi-square tests operate on frequency counts which are
unaffected by scaling; kernel-based tests use normalized embeddings providing scale-invariance by
design. We empirically verified this: DAGPA maintains CI-MCC scores with low variance of ≈ 0.12
across unnormalized, standardized, min-max normalized, and robust-scaled versions of the same
dataset (n = 100, d = 10 ER-2 synthetic data), demonstrating stability that is valuable when data
sources have heterogeneous scales or different preprocessing conventions.

Interpretability via Direct Hypothesis Testing. CI-based measurements provide direct interpretabil-
ity through testable hypotheses. Each structural decision corresponds to specific CI tests with
p-values, enabling transparent explanations. For example, when removing edge X → Y , we can
justify: “Edge removed because unconditional test shows X ⊥̸⊥ Y with p-value 0.001 and conditional
test shows X ⊥⊥ Y |Z with p-value 0.82, indicating X influences Y likely through Z but does not
have direct causal link to Y .” Domain experts can independently verify these claims by examining
raw data, running alternative tests, or checking whether distributional assumptions hold. This trans-
parency is particularly valuable in high-stakes applications (medical diagnosis, policy making) where
algorithmic decisions require human oversight and regulatory approval.

G.2.2 Overview of CI Measurement Methods

Different CI tests present tradeoffs across multiple dimensions. Table 5 summarizes key characteris-
tics:

Table 5: Comparison of CI measurement methods. “Small-n” indicates performance with n < 200.
Method Assumptions Complexity Small-n Nonlinearity p-value

Fisher-z [12] Gaussian, linear O(n) Excellent Poor Native
Chi-square Categorical O(n) Good Arbitrary Native
KCIT [49] Nonparametric O(n2) Poor Excellent Approximate
RCIT [36] Nonparametric O(n logn) Moderate Good Approximate
CMI (k-NN) Nonparametric O(n logn) Poor Good Requires transform

Fisher-z Test: Tests whether partial correlation ρXY |Z equals zero using transformation z =
1
2

√
n− |Z| − 3 log 1+ρ̂

1−ρ̂ ∼ N (0, 1). Strengths include excellent sample efficiency (reliable with
n ≥ 50 for |Z| ≤ 1), O(n) computational cost, and native p-values. Limitations: designed for
Gaussian data and primarily detects linear relationships. Our default choice for continuous data in
low-sample regime.

Chi-square Test: Tests independence via contingency table using χ2 =
∑

i,j
(Oij−Eij)

2

Eij
. Strengths

include no distributional assumptions, detection of arbitrary associations, and good small-sample
performance. Limitations: only applicable to categorical variables, requires sufficient cell counts
(Eij ≥ 5), and exponential complexity with |Z|. Our default for binary/categorical data.

Kernel CI Test (KCIT): Tests independence via kernel embeddings using Hilbert-Schmidt Inde-
pendence Criterion. Strengths include detecting arbitrary nonlinear dependencies and no parametric
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assumptions. Limitations: O(n2) complexity, requires n > 500 for reliable results, and kernel band-
width selection affects performance. Recommended for large datasets (n > 1000) with suspected
nonlinear relationships.

Randomized CI Test (RCIT): Approximates KCIT using random Fourier features, reducing com-
plexity to O(n log n). Provides middle ground between Fisher-z (fast, linear) and KCIT (slow,
nonlinear) for moderate samples (500 < n < 5000).

Conditional Mutual Information (CMI): Measures I(X;Y |Z) = E
[
log p(X,Y |Z)

p(X|Z)p(Y |Z)

]
via k-NN

or kernel density estimation. Provides information-theoretic interpretation but lacks native p-values
(requires transformation like p = exp(−β · Î)) and needs n > 1000 for reliable density estimation.

Tradeoffs and Selection Guidance. For causal discovery with d variables, total CI testing requires
O(d2) order-0 tests and O(d3) order-1 tests. With d = 50, n = 1000: Fisher-z completes in ∼30
seconds, RCIT in ∼5 minutes, KCIT in ∼45 minutes. Sample efficiency also varies: Fisher-z
achieves high power with n < 200 for linear relationships, while kernel methods require n > 500
but eventually match or exceed Fisher-z for nonlinear cases. Our framework is measurement-
agnostic—any function producing [0, 1] scores can be substituted via our API:

model = DAGPA(ci_test=’fisherz’) # Default
model = DAGPA(ci_test=’kcit’) # For nonlinear data
model = DAGPA(ci_test=MyCustomTest()) # Custom implementation

We recommend Fisher-z or chi-square for most applications due to sample efficiency and com-
putational scalability, with kernel methods reserved for large datasets with confirmed nonlinear
relationships. Practitioners should conduct sensitivity analysis across multiple tests when possible, as
edges appearing consistently provide higher confidence regardless of specific test assumptions.

H Licenses

In this work, we evaluated our method on two publicly available causal discovery benchmark datasets:

Sachs Dataset: The Sachs dataset contains simultaneous measurements of 11 phosphorylated proteins
and phospholipids derived from thousands of individual primary immune system cells, subjected to
both general and specific molecular interventions. This dataset was originally published by Sachs et
al. (2005) and is widely used as a benchmark in causal discovery research. The dataset is publicly
available through multiple repositories including bnlearn [31], other causal discovery toolboxes.

Availability: The dataset is publicly accessible for research purposes through various causal discovery
software packages and repositories.

LUCAS Dataset: The LUCAS (LUng CAncer Simple set) dataset [15] is a synthetic benchmark
dataset consisting of 12 binary variables and 2000 instances, representing 12 different causal rela-
tionships in a medical diagnosis problem for identifying patients with lung cancer. This dataset was
created as part of the Causality Workbench project to provide standardized benchmarks for testing
causal discovery algorithms.

Availability: The dataset is publicly available for research and educational purposes through the
Causality Workbench repository.

Usage Declaration: Both datasets were used in accordance with their respective terms of use for
academic research purposes. No additional permissions were required for their use in this study.

I Societal Impact Statement

Our differentiable d-separation framework for causal discovery has potential positive impacts in
healthcare (identifying causal factors in disease), public policy (evaluating intervention effective-
ness), scientific discovery (understanding complex systems), and algorithmic fairness (distinguishing
causation from correlation in decision systems). However, several risks must be acknowledged: (1)
incorrect causal discoveries could lead to harmful interventions if implemented without domain
expert validation; (2) causal discovery in sensitive domains may raise privacy concerns, necessi-
tating differential privacy techniques; (3) when applied to historically biased datasets, discovered
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relationships might reflect and perpetuate these biases rather than ground truth; and (4) computational
requirements might limit accessibility to well-resourced institutions. We recommend multiple mitiga-
tions: returning diverse candidate structures rather than single models, requiring expert validation
before implementation, implementing privacy-preserving techniques with sensitive data, examining
discovered relationships for bias, and developing more efficient implementations to improve acces-
sibility. Causal discovery tools require responsible application and domain expertise, especially in
high-stakes domains where incorrect inferences could lead to harmful consequences.

41



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that we contribute a novel framework for causal
discovery that bridges constraint-based and continuous-optimization score-based methods with
promising empirical results. These claims accurately reflect our work’s scope and contributions as
evidenced in: (1) Section 3, where we develop the novel differentiable d-separation framework
with theoretical guarantees and percolation-based probabilistic interpretations; (2) Section 4,
where we demonstrate one practical instantiation of this framework into the model we named
DAGPA; and (3) Section 5, where we empirically validate that our approach achieves competitive
performance compared to established methods across multiple datasets and settings.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a dedicated Limitations paragraph in Section 7 that thoroughly discusses
multiple aspects of our work’s constraints and outlines specific future research directions to address
them. Throughout the paper, we are transparent about the scope of our empirical validation and
the provisional nature of our current implementation compared to the theoretical framework’s
potential.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
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that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: In our paper, all assumptions are explicitly stated before each theorem and lemma,
and the complete proofs are provided in Appendix A, with every item properly numbered and
consistently cross-referenced throughout the paper. In addition, we precede each theoretical result
with intuitive explanations connecting the formal statements to the broader framework, and for
the most important results, such as Theorem 3.2, we provide proof sketches in the main text that
highlight the critical steps and insights.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide complete reproducibility through detailed algorithm pseudocode for
DAGPA (Appendix C), code and data release (Appendix D.1), dataset creation and preprocessing
procedures (Appendix D.2), and comprehensive hyperparameter specifications for both our method
(Appendix D.4) and all baselines (Appendix D.5). Additionally, we document the computational
resources used (Appendix D.6) and fully explain our evaluation metrics (Appendix D.3), ensuring
all aspects of our experimental pipeline can be independently reproduced.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide complete code and data access through an anonymous GitHub repository
(linked in Appendix D.1) that includes all implementation files, datasets (both synthetic generators
and real-world data), and evaluation scripts necessary to reproduce our results. The repository
contains detailed documentation with exact environment setup instructions (via Conda environment
files), step-by-step commands to run all experiments, data preprocessing pipelines, and scripts to
generate all figures and tables presented in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The main text (Section 5) provides essential experimental details including dataset
characteristics, evaluation metrics, baselines, and the overall experimental design, while Ap-
pendix D contains comprehensive information on hyperparameters, model selection criteria, data
creation and preprocessing, and computational resources. We explicitly describe our parameter
selection process and provide justification for key design choices to ensure results can be fully
understood and contextualized.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our primary results are presented as empirical cumulative distribution functions
(CDFs) over multiple (10) independent dataset instances per configuration, fully displaying perfor-
mance variability across different data realizations and allowing for direct statistical comparison
between methods. For tabular results, we report mean values with standard deviation error bars
(1-sigma), clearly labeled as such, and calculated using standard statistical formulas across the
independent trials. The sources of variability (different random DAG structures and data samples)
are explicitly described in Section 5, and all statistical comparisons are appropriately referenced
in the text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: Yes. We detail the computation resources used for each experiment settings in
Appendix D.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: Yes. This research fully conforms to NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We provide a comprehensive Broader Impact Statement in Appendix I that discusses
both potential positive impacts (in healthcare, public policy, scientific discovery, and algorithmic
fairness) and potential negative impacts (misplaced trust in discovered causal relationships, privacy
concerns, potential for reinforcing biases, and accessibility challenges). For each potential negative
impact, we also suggest specific mitigation strategies that practitioners can implement when
applying our method.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: Our work presents a methodological framework for causal discovery that does not
pose the high-risk misuse concerns typically associated with generative models or scraped datasets.
We only use synthetic datasets (generated with provided code) and well-established, properly
cited benchmark datasets (e.g. Sachs) from trusted scientific sources. Our method does not learn
representations that could be misused for generating harmful content, creating fake profiles, or
similar high-risk applications that would necessitate special safeguards beyond standard research
best practices.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly cite all original papers for datasets and code libraries used in our work.
In Appendix H, we provide detailed license information for the Sachs dataset (the only external
real-world dataset used) and all third-party libraries/packages employed in our implementation,
including version numbers and URLs to their repositories. For synthetic datasets, we specify that
they are generated by our code which is released under an MIT license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our implementation of DAGPA via an anonymized GitHub repository
(linked in Appendix D.1) with comprehensive documentation including: installation instructions,
usage examples, API documentation, parameter descriptions, training/optimization/sampling
procedures, and known limitations. The repository includes a structured README file, detailed
code comments, and a clear MIT license statement.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve LLMs as any component of our core methodology,
algorithms, or experiments. LLMs were used solely for writing assistance, editing, and LaTeX
formatting, which per the NeurIPS LLM policy does not impact the scientific methodology or
originality of our work and therefore does not require declaration beyond this checklist.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.

48

https://neurips.cc/Conferences/2025/LLM


Better

B
e
t
t
e
r

1.0

0.8

0.6

0.4

0.2

0.0

0.2 0.3 0.9 1.00.4 0.5 0.6 0.7 0.8

Low-order CI Statement MCC (CI-MCC)

E
m

p
ir

ic
a
l 

C
D

F

Ours

DAGMA (Linear)

DAGMA (Nonlinear)

GES  

(k=1) kPC

(k=2) kPC

NOTEARS (Linear)

NOTEARS (Nonlinear)

PC

(a) Sachs CI-MCC

0.3 0.4 0.5 0.6 0.7 0.8
Low-order CI Statement MCC (CI-MCC)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)
DAGMA (Nonlinear)

GES
kPC (k=1)
kPC (k=2)

NOTEARS (Linear)
NOTEARS (Nonlinear)
PC

(b) Lucas CI-MCC

0.000 0.001 0.002 0.003 0.004 0.005
CPDAG Arrowhead F1

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)
DAGMA (Nonlinear)

GES
kPC (k=1)
kPC (k=2)

NOTEARS (Linear)
NOTEARS (Nonlinear)
PC

(c) Sachs CPDAG F1 Arrowhead

0.0 0.2 0.4 0.6 0.8 1.0
Low-order CI Statement MCC (CI-MCC)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)
DAGMA (Nonlinear)

GES
kPC (k=1)
kPC (k=2)

NOTEARS (Linear)
NOTEARS (Nonlinear)
PC

(d) Lucas CPDAG F1 Arrowhead

0.0 0.2 0.4 0.6 0.8
CPDAG Skeleton F1

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)
DAGMA (Nonlinear)

GES
kPC (k=1)
kPC (k=2)

NOTEARS (Linear)
NOTEARS (Nonlinear)
PC

(e) Sachs CPDAG F1 Skeleton

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CPDAG Skeleton F1

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)
DAGMA (Nonlinear)

GES
kPC (k=1)
kPC (k=2)

NOTEARS (Linear)
NOTEARS (Nonlinear)
PC

(f) Lucas CPDAG F1 Skeleton

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
DAG F1

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)

DAGMA (Nonlinear)
NOTEARS (Linear)

NOTEARS (Nonlinear)

(g) Sachs DAG F1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
DAG F1

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l C

D
F

Ours
DAGMA (Linear)

DAGMA (Nonlinear)
NOTEARS (Linear)

NOTEARS (Nonlinear)

(h) Lucas DAG F1

Figure 9: Full results on Sachs [29] and Lucas [15] real-world dataset.
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