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Abstract

Dynamical systems minimizing an energy are ubiquitous in geometry and physics.1

We propose a gradient flow framework for GNNs where the equations follow the2

direction of steepest descent of a learnable energy. This approach allows to analyse3

the GNN evolution from a multi-particle perspective as learning attractive and4

repulsive forces in feature space via the positive and negative eigenvalues of a5

symmetric ‘channel-mixing’ matrix. We perform spectral analysis of the solutions6

and conclude that gradient flow graph convolutional models can induce a dynamics7

dominated by the graph high frequencies, which is desirable for heterophilic8

datasets. We also describe structural constraints on common GNN architectures9

allowing to interpret them as gradient flows. We perform thorough ablation studies10

corroborating our theoretical analysis and show competitive performance of simple11

and lightweight models on real-world homophilic and heterophilic datasets.12

1 Introduction and motivations13

Graph neural networks (GNNs) [38, 20, 21, 36, 7, 15, 27] and in particular their Message Passing14

formulation (MPNN) [19] have become the standard ML tool for dealing with different types of15

relations and interactions, ranging from social networks to particle physics and drug design. One16

of the often cited drawbacks of traditional GNN models is their poor ‘explainability’, making it17

hard to know why and how they make certain predictions [46, 47], and in which situations they18

may work and when they would fail. Limitations of GNNs that have attracted attention are over-19

smoothing [29, 30, 8], over-squashing and bottlenecks [1, 40], and performance on heterophilic data20

[31, 51, 13, 4, 45] – where adjacent nodes usually have different labels.21

Figure 1: GRAFF dynamics:
attractive and repulsive forces
lead to a non-smoothing pro-
cess able to separate labels.

Contributions. We propose a Gradient Flow Framework22

(GRAFF) where the GNN equations follow the direction of steep-23

est descent of a learnable energy. Thanks to this framework we can24

(i) interpret GNNs as a multi-particle dynamics where the learned25

parameters determine pairwise attractive and repulsive potentials26

in the feature space. This sheds light on how GNNs can adapt to27

heterophily and explains their performance and the smoothness of28

the prediction. (ii) GRAFF leads to residual convolutional models29

where the channel-mixing W is performed by a shared symmet-30

ric bilinear form inducing attraction and repulsion via its positive31

and negative eigenvalues, respectively. We theoretically investi-32

gate the interaction of the graph spectrum with the spectrum of the33

channel-mixing, proving that if there is more mass on the negative34

eigenvalues of W, then the dynamics is dominated by the graph-35

high frequencies, which could be desirable on heterophilic graphs.36

We also extend results of [29, 30, 8] by showing that when we drop37

the residual connection intrinsic to the gradient flow framework,38
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graph convolutional models always induce a low-frequency dominated dynamics independent of the39

sign and magnitude of the spectrum of the channel-mixing. We also discuss how simple choices40

make common architectures fit GRAFF and conduct thorough ablation studies to corroborate the the-41

oretical analysis on the role of the spectrum of W. (iii) We crystallize an instance of our framework42

into a linear, residual, convolutional model that achieves competitive performance on homophilic and43

heterophilic real world graphs whilst being faster than GCN.44

Related work. Our analysis is related to studying GNNs as filters on the graph spectrum [15, 24,45

2, 25] and over-smoothing [29, 30, 8, 50] and partly adopts techniques similar to [30]. The key46

difference is that we also consider the spectrum of the ‘channel-mixing’ matrix. The concept of47

gradient flows has been a standard tool in physics and geometry [16], from which they were adopted48

for image processing [26], and recently used in ML [35] for the analysis of Transformers [41] – see49

also [18] for discussion of loss landscapes. Our continuous-time evolution equations follows the spirit50

of Neural ODES [22, 12, 3] and the study of GNNs as continuous dynamical systems [44, 10, 17, 9].51

Outline. In Section 2, we review the continuous and discrete Dirichlet energy and the associated52

gradient flow framework. We formalize the notion of over-smoothing and low(high)-frequency-53

dominated dynamics to investigate GNNs and study the dominant components in their evolution. We54

extend the graph Dirichlet energy to allow for a non-trivial norm for the feature edge-gradient. This55

leads to gradient flow equations that diffuse the features and over-smooth in the limit. Accordingly,56

in Section 3 we introduce a more general energy with a symmetric channel-mixing matrix W giving57

rise to attractive and repulsive pairwise terms via its positive and negative eigenvalues and show58

that the negative spectrum can induce high-frequency-dominant dynamics. In Section 4 we first59

compare with continuous GNN models and then discretize the equations and provide a ‘recipe’ for60

making standard GNN architectures fit a gradient flow framework. We adapt the spectral analysis to61

discrete-time showing that gradient flow convolutional models can generate a dynamics dominated by62

the high frequencies via the negative eigenvalues of W while this is impossible if we drop the residual63

connection. In Section 5 we corroborate our theoretical analysis on the role of the spectrum of W64

via ablation studies on graphs with varying homophily. Experiments on real world datasets show a65

competitive performance of our model despite its simplicity and reduced number of parameters.66

2 Gradient-flow formalism67

Notations adopted throughout the paper. Let G = (V,E) be an undirected graph with n nodes.68

We denote by F 2 Rn⇥d the matrix of d-dimensional node features, by fi 2 Rd its i-th row69

(transposed), by f
r
2 Rn its r-th column, and by vec(F) 2 Rnd the vectorization of F obtained70

by stacking its columns. Given a symmetric matrix B, we let �B
+
,�B� denote its most positive and71

negative eigenvalues, respectively, and ⇢B be its spectral radius. If B ⌫ 0, then gap(B) denotes the72

positive smallest eigenvalue of B. ḟ(t) denotes the temporal derivative, ⌦ is the Kronecker product73

and ‘a.e.’ means almost every w.r.t. Lebesgue measure and usually refers to data in the complement74

of some lower dimensional subspace in Rn⇥d. Proofs and additional results appear in the Appendix.75

Starting point: a geometric parallelism. To motivate a gradient-flow approach for GNNs, we start76

from the continuous case (see Appendix A.1 for details). Consider a smooth map f : Rn
! (Rd, h)77

with h a constant metric represented by H ⌫ 0. The Dirichlet energy of f is defined by78

E(f, h) =
1

2

Z

Rn

krfk2h dx =
1

2

dX

q,r=1

nX

j=1

Z

Rn

hqr@jf
q@jf

r
(x)dx (1)

and measures the ‘smoothness’ of f . A natural approach to find minimizers of E - called harmonic79

maps - was introduced in [16] and consists in studying the gradient flow of E , wherein a given map80

f(0) = f0 is evolved according to ḟ(t) = �rfE(f(t)). These type of evolution equations have81

historically been the core of variational and PDE-based image processing; in particular, gradient82

flows of the Dirichlet energy were shown [26] to recover the Perona-Malik nonlinear diffusion [32].83

Motivation: GNNs for node-classification. We wish to extend the gradient flow formalism to node84

classification on graphs. Assume we have a graph G, node-features F0 and labels {yi} on Vtrain ⇢ V,85

and that we want to predict the labels on Vtest ⇢ V. A GNN typically evolves the features via some86
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parametric rule, GNN✓(G,F0), and uses a decoding map for the prediction y =  DE(GNN✓(G,F0)).87

In graph convolutional models [15, 27], GNN✓ consists of two operations: applying a shared linear88

transformation to the features (‘channel mixing’) and propagating them along the edges of the graph89

(‘diffusion’). Our goal consists in studying when GNN✓ is the gradient flow of some parametric class90

of energies E✓ : Rn⇥d
! R, which generalize the Dirichlet energy. This means that the parameters91

can be interpreted as ‘finding the right notion of smoothness’ for our task. We evolve the features by92

Ḟ(t) = �rFE✓(F(t)) with prediction y =  DE(F(T )) for some optimal time T .93

Why a gradient flow? Since Ė✓(F(t)) = �||rFE✓(F(t))||2, the energy dissipates along the gradient94

flow. Accordingly, this framework allows to explain the GNN dynamics as flowing the node features95

in the direction of steepest descent of E✓. Indeed, we find that parametrizing an energy leads to96

equations governed by attractive and repulsive forces that can be controlled via the spectrum of97

symmetric ‘channel-mixing’ matrices. This shows that by learning to distribute more mass over the98

negative (positive) eigenvalues of the channel-mixing, gradient flow models can generate dynamics99

dominated by the higher (respectively, lower) graph frequencies and hence tackle different homophily100

scenarios. The gradient flow framework also leads to sharing of the weights across layers (since we101

parametrize the energy rather than the evolution equations, as usually done in GNNs), allowing us to102

reduce the number of parameters without compromising performance (see Table 1).103

Analysis on graphs: preliminaries. Given a connected graph G with self-loops, its adjacency104

matrix A is defined as aij = 1 if (i, j) 2 E and zero otherwise. We let D = diag(di) be the degree105

matrix and write Ā := D
�1/2

AD
�1/2. Let F 2 Rn⇥d be the matrix representation of a signal. Its106

graph gradient is (rF)ij := fj/
p

dj � fi/
p
di. We define the Laplacian as � := �

1

2
divr (the107

divergence div is the adjoint of r), represented by � = I� Ā ⌫ 0. We refer to the eigenvalues of108

� as frequencies: the lowest frequency is always 0 while the highest frequency is ⇢�  2 [14]. As109

for the continuum case, the gradient allows to define a (graph) Dirichlet energy as [49]110

E
Dir

(F) :=
1

4

X

i

X

j:(i,j)2E

||(rF)ij ||
2
⌘

1

4

X

(i,j)2E

||
fi

p
di

�
fjp
dj

||
2
=

1

2
trace(F

>
�F), (2)

where the extra 1

2
is for convenience. As for manifolds, EDir measures smoothness. If we stack the111

columns of F into vec(F) 2 Rnd, the gradient flow of EDir yields the heat equation on each channel:112

vec(Ḟ(t)) = �rvec(F)E
Dir

(vec(F(t))) = �(Id ⌦�)vec(F(t)) () ḟ
r
(t) = ��f

r
(t), (3)

for 1  r  d. Similarly to [8], we rely on E
Dir to assess whether a given dynamics t 7! F(t) is a113

smoothing process. A different choice of Laplacian L = D �A with non-normalized adjacency114

induces the analogous Dirichlet energy E
Dir

L (F) =
1

2
trace(F

>
LF). Throughout this paper, we rely115

on the following definitions (see Appendix A.3 for further equivalent formulations and justifications):116

Definition 2.1. Ḟ(t) = GNN✓(F(t), t) initialized at F(0) is smoothing if EDir
(F(t))  C + '(t),117

with C a constant only depending on E
Dir

(F(0)) and '̇(t)  0. Over-smoothing occurs if either118

E
Dir

(F(t)) ! 0 or EDir

L (F(t)) ! 0 for t ! 1.119

Our notion of ‘over-smoothing’ is a relaxed version of the definition in [34] – although in the linear120

case one always finds an exponential decay of EDir. We note that EDir
(F(t)) ! 0 iff �f

r
(t) ! 0 for121

each column f
r. As in [30], this corresponds to a loss of separation power along the solution where122

nodes with equal degree become indistinguishable since we converge to ker(�) (if we replaced �123

with L then we would not even be able to separate nodes with different degrees in the limit).124

To motivate the next definition, consider Ḟ(t) = ĀF(t). Despite ||F(t)|| being unbounded for a.e.125

F(0), the low-frequency components are growing the fastest and indeed F(t)/||F(t)|| ! F1 s.t.126

�f
r
1 = 0 for 1  r  d. We formalize this scenario – including the opposite case of high-frequency127

components being dominant – by studying E
Dir

(F(t)/||F(t)||), i.e. the Rayleigh quotient of Id ⌦�.128

Definition 2.2. Ḟ(t) = GNN✓(F(t), t) initialized at F(0) is Low/High-Frequency-Dominant129

(L/HFD) if EDir
(F(t)/||F(t)||) ! 0 (respectively, EDir

(F(t)/||F(t)||) ! ⇢�/2) for t ! 1.130

We report a consequence of Definition 2.2 and refer to Appendix A.3 for additional details and131

motivations for the characterizations of LFD and HFD.132

Lemma 2.3. GNN✓ is LFD (HFD) iff for each tj ! 1 there exist tjk ! 1 and F1 s.t.133

F(tjk)/||F(tjk)|| ! F1 and �f
r
1 = 0 ( �f

r
1 = ⇢�f

r
1, respectively).134
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If a graph is homophilic, adjacent nodes are likely to share the same label and we expect a smoothing135

or LFD dynamics enhancing the low-frequency components to be successful at node classification136

tasks [43, 28]. In the opposite case of heterophily, the high-frequency components might contain more137

relevant information for separating classes [4, 5] – the prototypical example being the eigenvector of138

� associated with largest frequency ⇢� separating a regular bipartite graph. In other words, the class139

of heterophilic graphs contain instances where signals should be sharpened by increasing E
Dir rather140

than smoothed out. Accordingly, an ideal framework for learning on graphs must accommodate both141

of these opposite scenarios by being able to induce either an LFD or a HFD dynamics.142

Parametric Dirichlet energy: channel-mixing as metric in feature space. In eq. (1) a constant143

nontrivial metric h in Rd leads to the mixing of the feature channels. We adapt this idea by considering144

a symmetric positive semi-definite H = W
>
W with W 2 Rd⇥d and using it to generalize E

Dir as145

E
Dir

W (F) :=
1

4

dX

q,r=1

X

i

X

j:(i,j)2E

hqr(rf
q
)ij(rf

r
)ij =

1

4

X

(i,j)2E

||W(rF)ij ||
2. (4)

We note the analogy with eq. (1), where the sum over the nodes replaces the integration over the146

domain and the j-th derivative at some point i is replaced by the gradient along the edge (i, j) 2 E.147

We generally treat W as learnable weights and study the gradient flow of EDir

W :148

Ḟ(t) = �rFE
Dir

W (F(t)) = ��F(t)W>
W. (5)

We see that eq. (5) generalizes eq. (3). Below ‘smoothing’ is intended as in Definition 2.1.149

Proposition 2.4. Let P ker

W be the projection onto ker(W
>
W). Equation (5) is smoothing since150

E
Dir

(F(t))  e�2tgap(W>W)gap(�)
||F(0)||

2
+ E

Dir
((P ker

W ⌦ In)vec(F(0))), t � 0.

In fact F(t) ! F1 s.t. 9 �1 2 Rd: for each i 2 V we have (f1)i =
p
di�1 + P ker

W fi(0).151

Proposition 2.4 implies that no weight matrix W in eq. (5) can separate the limit embeddings F(1)152

of nodes with same degree and input features. If W has a trivial kernel, then nodes with same degrees153

converge to the same representation and over-smoothing occurs as per Definition 2.1. Differently154

from [29, 30, 8], over-smoothing occurs independently of the spectral radius of the ‘channel-mixing’155

if its eigenvalues are positive – even for equations which lead to residual GNNs when discretized156

[12]. According to Proposition 2.4, we do not expect eq. (5) to succeed on heterophilic graphs where157

smoothing processes are generally harmful – this is confirmed in Figure 2 (see prod-curve). To158

remedy this problem, we generalize eq. (5) to a gradient flow that can be HFD as per Definition 2.2.159

3 A general parametric energy for pairwise interactions160

We first rewrite the energy E
Dir

W in eq. (4) as161

E
Dir

W (F) =
1

2

X

i

hfi,W
>
Wfii �

1

2

X

i,j

āijhfi,W
>
Wfji. (6)

We then define a new, more general energy by replacing the occurrences of W
>
W with new162

symmetric matrices ⌦,W 2 Rd⇥d since we also want to generate repulsive forces:163

E
tot

(F) :=
1

2

X

i

hfi,⌦fii �
1

2

X

i,j

āijhfi,Wfji ⌘ E
ext

⌦ (F) + E
pair

W (F), (7)

with associated gradient flow of the form (see Appendix B)164

Ḟ(t) = �rFE
tot

(F(t)) = �F(t)⌦+ ĀF(t)W. (8)

Note that eq. (8) is gradient flow of some energy F 7! E
tot

(F) iff both ⌦ and W are symmetric.165

A multi-particle system point of view: attraction vs repulsion. Consider the d-dimensional166

node-features as particles in Rd with energy E
tot. While the term E

ext

⌦ is independent of the graph167

topology and represents an external field in the feature space, the second term E
pair

W constitutes a168

potential energy, with W a bilinear form determining the pairwise interactions of adjacent node169
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representations. Given a symmetric W, we write W = ⇥
>
+
⇥+ � ⇥

>
�⇥�, by decomposing the170

spectrum of W in positive and negative values.We can rewrite E
tot

= E
ext

⌦�W + E
Dir

⇥+
� E

Dir

⇥�
, i.e.171

E
tot

(F) =
1

2

X

i

hfi, (⌦�W)fii+
1

4

X

i,j

||⇥+(rF)ij ||
2
�

1

4

X

i,j

||⇥�(rF)ij ||
2. (9)

The gradient flow of Etot minimizes E
Dir

⇥+
and maximizes E

Dir

⇥�
. The matrix W encodes repulsive172

pairwise interactions via its negative-definite component ⇥� which lead to terms ||⇥�(rF)ij ||173

increasing along the solution. The latter affords a ‘sharpening’ effect desirable on heterophilic graphs174

where we need to disentangle adjacent node representations and hence ‘magnify’ the edge-gradient.175

Spectral analysis of the channel-mixing. We will now show that eq. (8) can lead to a HFD176

dynamics. To this end, we assume that ⌦ = 0 so that eq. (8) becomes Ḟ(t) = ĀF(t)W. According177

to eq. (9) the negative eigenvalues of W lead to repulsion. We show that the latter can induce HFD178

dynamics as per Definition 2.2. We let P ⇢�
W be the orthogonal projection into the eigenspace of179

W ⌦ Ā associated with the eigenvalue ⇢� := |�W� |(⇢� � 1). We define ✏HFD explicitly in eq. (24).180

Proposition 3.1. If ⇢� > �W
+

, then Ḟ(t) = ĀF(t)W is HFD for a.e. F(0): there exists ✏HFD s.t.181

E
Dir

(F(t)) = e2t⇢�
⇣⇢�

2
||P ⇢�

W F(0)||
2
+O(e�2t✏HFD)

⌘
, t � 0,

and F(t)/||F(t)|| converges to F1 2 Rn⇥d such that �f
r
1 = ⇢�f

r
1, for 1  r  d.182

Proposition 3.1 shows that if enough mass of the spectrum of the ‘channel-mixing’ is distributed over183

the negative eigenvalues, then the evolution is dominated by the graph high frequencies. This analysis184

is made possible in our gradient flow framework where W must be symmetric. The HFD dynamics185

induced by negative eigenvalues of W is confirmed in Figure 2 (neg-prod-curve in the bottom chart).186

A more general energy. Equations with a source term may have better expressive power [44, 11, 39].187

In our framework this means adding an extra energy term of the form E
source

W̃
(F) := �hF,F(0)W̃i188

to eq. (7) with some learnable � and W̃. This leads to the following gradient flow:189

Ḟ(t) = �F(t)⌦+ ĀF(t)W � �F(0)W̃. (10)
We also observe that one could replace the fixed matrix Ā with a more general symmetric graph190

vector field A satisfying Aij = 0 if (i, j) /2 E, although in this work we focus on the case A = Ā.191

We also note that when ⌦ = W, then eq. (8) becomes Ḟ(t) = ��F(t)W. We perform a spectral192

analysis of this case in Appendix B.2.193

Non-linear activations. In Appendix B.3 we discuss non-linear gradient flow equations. Here194

we study what happens if the gradient flow in eq. (10) is activated pointwise by � : R ! R. We195

show that although we are no longer a gradient flow, the learnable multi-particle energy E
tot is still196

decreasing along the solution, meaning that the interpretation of the channel-mixing W inducing197

attraction and repulsion via its positive and negative eigenvalues respectively is preserved.198

Proposition 3.2. Consider a non-linear map � : R ! R such that the function x 7! x�(x) � 0. If199

t 7! F(t) solves the equation200

Ḟ(t) = �
⇣
�F(t)⌦+ ĀF(t)W � �F(0)W̃

⌘
,

where � acts elementwise, then201

dEtot
(F(t))

dt
 0.

A proof of this result and more details and discussion are reported in Appendix E. We emphasize202

here that differently from previous results about behaviour of ReLU wrt EDir [30, 8], we deal with a203

much more general energy that can also induce repulsion and a more general family of activation204

functions (that include ReLU, tanh, arctan and many others).205

4 Comparison with GNNs206

In this Section, we study standard GNN models from the perspective of our gradient flow framework.207
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4.1 Continuous case208

Continuous GNN models replace layers with continuous time. In contrast with Proposition 3.1,209

we show that three main linearized continuous GNN models are either smoothing or LFD as210

per Definition 2.2. The linearized PDE-GCND model [17] corresponds to choosing � = 0 and211

⌦ = W = K(t)>K(t) in eq. (10), for some time-dependent family t 7! K(t) 2 Rd⇥d:212

ḞPDE�GCND
(t) = ��F(t)K(t)>K(t).

The CGNN model [44] can be derived from eq. (10) by setting ⌦ = I� ⌦̃,W = W̃ = I,� = 1:213

ḞCGNN(t) = ��F(t) + F(t)⌦̃+ F(0).

Finally, in linearized GRAND [10] a row-stochastic matrix A(F(0)) is learned from the encoding214

via an attention mechanism and we have215

ḞGRAND(t) = ��RWF(t) = �(I�A(F(0)))F(t).

We note that if A is not symmetric, then GRAND is not a gradient flow.216

Proposition 4.1. PDE�GCND, CGNN and GRAND satisfy the following:217

(i) PDE�GCND is a smoothing model: ĖDir
(FPDE�GCND

(t))  0.218

(ii) For a.e. F(0) it holds: CGNN is never HFD and if we remove the source term, then219

E
Dir

(FCGNN(t)/||FCGNN(t)||)  e�gap(�)t.220

(iii) If G is connected, FGRAND(t) ! µ as t ! 1, with µr
= mean(f

r
(0)), 1  r  d.221

By (ii) the source-free CGNN-evolution is LFD independent of ⌦̃. Moreover, by (iii), over-smoothing222

occurs for GRAND as per Definition 2.1. On the other hand, Proposition 3.1 shows that the negative223

eigenvalues of W can make the source-free gradient flow in eq. (8) HFD. Experiments in Section 5224

confirm that the gradient flow model outperforms CGNN and GRAND on heterophilic graphs.225

4.2 Discrete case226

We now describe a discrete version of our gradient flow model and compare it to ‘discrete’ GNNs227

where discrete time steps correspond to different layers. In the spirit of [12], we use explicit Euler228

scheme with step size ⌧  1 to solve eq. (10) and set W̃ = I. In the gradient flow framework we229

parametrize the energy rather than the actual equations, which leads to symmetric channel-mixing230

matrices ⌦,W 2 Rd⇥d that are shared across the layers. Since the matrices are square, an encoding231

block  EN : Rn⇥p
! Rn⇥d is used to process input features F0 2 Rn⇥p and generally reduce the232

hidden dimension from p to d. Moreover, the iterations inherently lead to a residual architecture233

because of the explicit Euler discretization:234

F(t+ ⌧) = F(t) + ⌧
�
�F(t)⌦+ ĀF(t)W + �F(0)

�
, F(0) =  EN(F0), (11)

with prediction y =  DE(F(T )) produced by a decoder  DE : Rn⇥d
! Rn⇥k, where k is the235

number of label classes and T integration time of the form T = m⌧ , so that m 2 N represents the236

number of layers. Although eq. (11) is linear, we can include non-linear activations in  EN, DE237

making the entire model generally non-linear. We emphasize two important points:238

• Since the framework is residual, even if the message-passing is linear, this is not equivalent239

to collapsing the dynamics into a single layer with diffusion matrix Ā
m, with m the number240

of layers, see eq. (27) in the appendix where we derive the expansion of the solution.241

• We could also activate the equations pointwise and maintain the physics interpretation thanks242

to Proposition 3.2 to gain greater expressive power. In the following though, we mainly243

stick to the linear discrete gradient flow unless otherwise stated.244

Are discrete GNNs gradient flows? Given a (learned) symmetric graph vector field A 2 Rn⇥n245

satisfying Aij = 0 if (i, j) /2 E, consider a family of linear GNNs with shared weights of the form246

F(t+ 1) = F(t)⌦+AF(t)W + �F(0)W̃, 0  t  T. (12)

Symmetry is the key requirement to interpret GNNs in eq. (12) in a gradient flow framework.247
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Lemma 4.2. Equation (12) is the unit step size discrete gradient flow of Eext

I�⌦ + E
pair

A,W � E
source

W̃
,248

with E
pair

A,W defined by replacing Ā with A in eq. (7), iff ⌦ and W are symmetric.249

Lemma 4.2 provides a recipe for making standard architectures into a gradient flow, with symmetry250

being the key requirement. When eq. (12) is a gradient flow, the underlying GNN dynamics is251

equivalent to minimizing a multi-particle energy by learning attractive and repulsive directions in252

feature space as discussed in Section 3. In Appendix C.2, we show how Lemma 4.2 covers linear253

versions of GCN [27, 43], GAT [42], GraphSAGE [23] and GCNII [11] to name a few.254

Over-smoothing analysis in discrete setting. By Proposition 3.1 we know that the continuous255

version of eq. (11) can be HFD thanks to the negative eigenvalues of W. The next result represents a256

discrete counterpart of Proposition 3.1 and shows that residual, symmetrized graph convolutional257

models can be HFD. Below P ⇢�
W is the projection into the eigenspace associated with the eigenvalue258

⇢� := |�W� |(⇢� � 1) and we report the explicit value of �HFD in eq. (28) in Appendix C.3. We let:259

�W
+
(⇢� � 1))

�1 < |�W� | < 2(⌧(2� ⇢�))
�1. (13)

Theorem 4.3. Given F(t+ ⌧) = F(t) + ⌧ĀF(t)W, with W symmetric, if eq. (13) holds then260

E
Dir

(F(m⌧)) = (1 + ⌧⇢�)
2m

 
⇢�
2

||P ⇢�
W F(0)||

2
+O

 ✓
1 + ⌧�HFD

1 + ⌧⇢�

◆2m
!!

, �HFD < ⇢�,

hence the dynamics is HFD for a.e. F(0) and in fact F(m⌧)/||F(m⌧)|| ! F1 s.t. �f
r
1 = ⇢�f

r
1.261

Conversely, if G is not bipartite, then for a.e. F(0) the system F(t + ⌧) = ⌧ĀF(t)W, with W262

symmetric, is LFD independent of the spectrum of W.263

Theorem 4.3 shows that linear discrete gradient flows can be HFD due to the negative eigenvalues of264

W. This differs from statements that standard GCNs act as low-pass filters and thus over-smooth in265

the limit. Indeed, in these cases the spectrum of W is generally ignored [43, 11] or required to be266

sufficiently small in terms of singular value decomposition [29, 30, 8] when no residual connection267

is present. On the other hand, Theorem 4.3 emphasizes that the spectrum of W plays a key role to268

enhance the high frequencies when enough mass is distributed over the negative eigenvalues provided269

that a residual connection exists – this is confirmed by the neg-prod-curve in Figure 2.270

The residual connection from a spectral perspective. Given a sufficiently small step-size so271

that the right hand side of inequality 13 is satisfied, F(t+ ⌧) = F(t) + ⌧ĀF(t)W is HFD for a.e.272

F(0) if |�W� |(⇢� � 1) > �W
+

, i.e. ‘there is more mass’ in the negative spectrum of W than in the273

positive one. This means that differently from [29, 30, 8], there is no requirement on the minimal274

magnitude of the spectral radius of W coming from the graph topology as long as �W
+

is small275

enough. Conversely, without a residual term, the dynamics is LFD for a.e. F(0) independently of the276

sign and magnitude of the eigenvalues of W. This is also confirmed by the GCN-curve in Figure 2.277

Over-smoothing vs LFD. We highlight how in general a linear GCN equation as F(t + ⌧) =278

⌧ĀF(t)W may avoid over-smoothing in the sense of Definition 2.1, meaning that EDir
(F(t)) ! 1279

as soon as there exist ��i 2 (0, 1) and the spectral radius of W is large enough. However, this280

will not lead to over-separation since the dominating term is the lowest frequency one: in other281

words, once we re-set the scale right as per the normalization in Theorem 4.3, we encounter loss of282

separability even with large (and possibly negative) spectrum of W.283

5 Experiments284

In this section we evaluate the gradient flow framework (GRAFF). We corroborate the spectral285

analysis using synthetic data with controllable homophily. We confirm that having negative (positive)286

eigenvalues of the channel-mixing W are essential in heterophilic (homophilic) scenarios where the287

gradient flow should align with HFD (LFD) respectively. We show that the gradient flow in eq. (11)288

– a linear, residual, symmetric graph convolutional model – achieves competitive performance on289

heterophilic datasets.290
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Methodology. We crystallize GRAFF in the model presented in eq. (11) with  EN, DE im-291

plemented as single linear layers or MLPs, and we set ⌦ to be diagonal. For the real-world292

experiments we consider diagonally-dominant (DD), diagonal (D) and time-dependent choices293

for the structure of W that offer explicit control over its spectrum. In the (DD)-case, we consider294

a W
0
2 Rd⇥d symmetric with zero diagonal and w 2 Rd defined by w↵ = q↵

P
� |W

0

↵� | + r↵,295

and set W = diag(w) + W
0. Due to the Gershgorin Theorem the eigenvalues of W belong to296

[w↵ �
P

� |W
0

↵� |,w↵ +
P

� |W
0

↵� |], so the model ‘can’ easily re-distribute mass in the spectrum of297

W via q↵, r↵. This generalizes the decomposition of W in [11] providing a justification in terms of298

its spectrum and turns out to be more efficient w.r.t. the hidden dimension d as shown in Figure 4 in299

the Appendix. For (D) we take W to be diagonal, with entries sampled U [�1, 1] and fixed – i.e., we300

do not train over W – and only learn  EN, DE. We also include a time-dependent model where Wt301

varies across layers. To investigate the role of the spectrum of W on synthetic graphs, we construct302

three additional variants: W = W
0
+ W

0>, W = ±W
0>
W

0 named sum, prod and neg-prod303

respectively where prod (neg-prod) variants have only non-negative (non-positive) eigenvalues.304

Complexity and number of parameters. If we treat the number of layers as a constant, the discrete305

gradient flow scales as O(|V|pd + |E|d2), where p and d are input feature and hidden dimension306

respectively, with p � d usually. Note that GCN has complexity O(|E|pd) and in fact our model is307

faster than GCN as confirmed in Figure 5 in Appendix D. Since  EN, DE are single linear layers308

(MLPs), we can bound the number of parameters by pd+ d2 + 3d+ dk, with k the number of label309

classes, in the (DD)-variant while in the (D)-variant we have pd+ 3d+ dk. Further ablation studies310

appear in Figure 4 in the Appendix showing that (DD) outperforms sum and GCN – especially in the311

lower hidden dimension regime – on real-world benchmarks with varying homophily.312

Figure 2: Experiments on synthetic datasets
with controlled homophily.

Synthetic experiments and ablation studies.313

To investigate our claims in a controlled environ-314

ment we use the synthetic Cora dataset of [51, Ap-315

pendix G]. Graphs are generated for target levels316

of homophily via preferential attachment – see317

Appendix D.3 for details. Figure 2 confirms the318

spectral analysis and offers a better understanding319

in terms of performance and smoothness of the320

predictions. Each curve – except GCN – repre-321

sents one version of W as in ‘methodology’ and322

we implement eq. (11) with � = 0, ⌦ = 0. Fig-323

ure 2 (top) reports the test accuracy vs true label324

homophily. Neg-prod is better than prod on low-325

homophily and viceversa on high-homophily. This326

confirms Proposition 3.1 where we have shown327

that the gradient flow can lead to a HFD dy-328

namics – that are generally desirable with low-329

homophily – through the negative eigenvalues of330

W. Conversely, the prod configuration (where we331

have an attraction-only dynamics) struggles in low-332

homophily scenarios even though a residual connection is present. Both prod and neg-prod are333

‘extreme’ choices and serve the purpose of highlighting that by turning off one side of the spectrum334

this could be the more damaging depending on the underlying homophily. In general though ‘neutral’335

variants like sum and (DD) are indeed more flexible and better performing. In fact, (DD) outperforms336

GCN especially in low-homophily scenarios, confirming Theorem 4.3 where we have shown that337

without a residual connection convolutional models are LFD – and hence more sensitive to underlying338

homophily – irrespectively of the spectrum of W. This is further confirmed in Figure 3.339

In Figure 2 (bottom) we compute the homophily of the prediction (cross) for a given method and we340

compare with the homophily (circle) of the prediction read from the encoding (i.e. graph-agnostic).341

The homophily here is a proxy to assess whether the evolution is smoothing, the goal being explaining342

the smoothness of the prediction via the spectrum of W as per our theoretical analysis. For neg-prod343

the homophily after the evolution is lower than that of the encoding, supporting the analysis that344

negative eigenvalues of W enhance high-frequencies. The opposite behaviour occurs in the case of345

prod and explains that in the low-homophily regime prod is under-performant due to the prediction346
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Texas Wisconsin Cornell Film Squirrel Chameleon Citeseer Pubmed Cora

Hom level 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81

#Nodes 183 251 183 7,600 5,201 2,277 3,327 18,717 2,708
#Edges 295 466 280 26,752 198,493 31,421 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

GGCN 84.86± 4.55 86.86± 3.29 85.68± 6.63 37.54± 1.56 55.17± 1.58 71.14± 1.84 77.14± 1.45 89.15± 0.37 87.95± 1.05
GPRGNN 78.38± 4.36 82.94± 4.21 80.27± 8.11 34.63± 1.22 31.61± 1.24 46.58± 1.71 77.13± 1.67 87.54± 0.38 87.95± 1.18
H2GCN 84.86± 7.23 87.65± 4.98 82.70± 5.28 35.70± 1.00 36.48± 1.86 60.11± 2.15 77.11± 1.57 89.49± 0.38 87.87± 1.20
GCNII 77.57± 3.83 80.39± 3.40 77.86± 3.79 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.33± 1.48 90.15± 0.43 88.37± 1.25
Geom-GCN 66.76± 2.72 64.51± 3.66 60.54± 3.67 31.59± 1.15 38.15± 0.92 60.00± 2.81 78.02± 1.15 89.95± 0.47 85.35± 1.57
PairNorm 60.27± 4.34 48.43± 6.14 58.92± 3.15 27.40± 1.24 50.44± 2.04 62.74± 2.82 73.59± 1.47 87.53± 0.44 85.79± 1.01
GraphSAGE 82.43± 6.14 81.18± 5.56 75.95± 5.01 34.23± 0.99 41.61± 0.74 58.73± 1.68 76.04± 1.30 88.45± 0.50 86.90± 1.04
GCN 55.14± 5.16 51.76± 3.06 60.54± 5.30 27.32± 1.10 53.43± 2.01 64.82± 2.24 76.50± 1.36 88.42± 0.50 86.98± 1.27
GAT 52.16± 6.63 49.41± 4.09 61.89± 5.05 27.44± 0.89 40.72± 1.55 60.26± 2.50 76.55± 1.23 87.30± 1.10 86.33± 0.48
MLP 80.81± 4.75 85.29± 3.31 81.89± 6.40 36.53± 0.70 28.77± 1.56 46.21± 2.99 74.02± 1.90 75.69± 2.00 87.16± 0.37
CGNN 71.35± 4.05 74.31± 7.26 66.22± 7.69 35.95± 0.86 29.24± 1.09 46.89± 1.66 76.91± 1.81 87.70± 0.49 87.10± 1.35
GRAND 75.68± 7.25 79.41± 3.64 82.16± 7.09 35.62± 1.01 40.05± 1.50 54.67± 2.54 76.46± 1.77 89.02± 0.51 87.36± 0.96
Sheaf (max) 85.95± 5.51 89.41± 4.74 84.86± 4.71 37.81± 1.15 56.34± 1.32 68.04± 1.58 76.70± 1.57 89.49± 0.40 86.90± 1.13

GRAFF (DD) 88.38± 4.53 87.45± 2.94 83.24± 6.49 36.09± 0.81 54.52± 1.37 71.08± 1.75 76.92± 1.70 88.95± 0.52 87.61± 0.97
GRAFF (D) 88.11± 5.57 88.83± 3.29 84.05± 6.10 37.11± 1.08 47.36± 1.89 66.78± 1.28 77.30± 1.85 90.04± 0.41 88.01± 1.03
GRAFF-timedep (DD) 87.03± 4.49 87.06± 4.04 82.16± 7.07 35.93± 1.23 53.97± 1.45 69.56± 1.20 76.59± 1.53 88.26± 0.41 87.38± 1.05

Table 1: Results on heterophilic and homophilic datasets

being smoother than the true homophily. (DD) and sum variants adapt better to the true homophily.347

We note how the encoding compensates when the dynamics can only either attract or repulse (i.e. the348

spectrum of W has a sign) by decreasing or increasing the initial homophily respectively.349

Real world experiments. We test GRAFF against a range of datasets with varying homophily350

[37, 33, 31] (see Appendix D.4 for additional details). We use results provided in [45, Table 1],351

which includes standard baselines as GCN [27], GraphSAGE [23], GAT [42], PairNorm [48] and352

recent models tailored towards the heterophilic setting (GGCN [45], Geom-GCN [31], H2GCN353

[51] and GPRGNN [13]). For Sheaf [5], a recent top-performer on heterophilic datasets, we took354

the best performing variant (out of six provided) for each dataset. We also include continuous355

baselines CGNN [44] and GRAND [10] to provide empirical evidence for Proposition 4.1. Splits356

taken from [31] are used in all the comparisons. The GRAFF model discussed in ‘methodology’357

is a very simple architecture with shared parameters across layers and run-time smaller than GCN358

and more recent models like GGCN designed for heterophilic graphs (see Figure 5 in the Appendix).359

Nevertheless, it achieves competitive results on all datasets, performing on par or better than more360

complex recent models. Moreover, comparison with the ‘time-dependent’ (DD) variant confirms361

that by sharing weights across layers we do not lose performance. We note that on heterophilic362

graphs short integration time is usually needed due to the topology being harmful and the negative363

eigenvalues of W leading to exponential behaviour (see Appendix D).364

6 Conclusions365

In this work, we developed a framework for GNNs where the evolution can be interpreted as366

minimizing a multi-particle learnable energy. This translates into studying the interaction between367

the spectrum of the graph and the spectrum of the ‘channel-mixing’ leading to a better understanding368

of when and why the induced dynamics is low (high) frequency dominated. From a theoretical369

perspective, we refined existing asymptotic analysis of GNNs to account for the role of the spectrum of370

the channel-mixing as well. From a practical perspective, our framework allows for ‘educated’ choices371

resulting in a simple convolutional model that achieves competitive performance on homophilic372

and heterophilic benchmarks while being faster than GCN. Our results refute the folklore of graph373

convolutional models being too simple for heterophilic benchmarks.374

Limitations and future works. We limited our attention to a constant bilinear form W, which375

might be excessively rigid. It is possible to derive non-constant alternatives that are aware of the376

features or the position in the graph. The main challenge amounts to matching the requirement for377

local ‘heterogeneity’ with efficiency: we reserve this question for future work. Our analysis is also a378

first step into studying the interaction of the graph and ‘channel-mixing’ spectra; we did not explore379

other dynamics that are neither LFD nor HFD as per our definitions. The energy formulation points380

to new models more ‘physics’ inspired; this will be explored in future work.381

Societal impact. Our work sheds light on the actual dynamics of GNNs and could hence improve382

their understanding, which is crucial for assessing their impact on large-scale applications. We also383

show that instances of our framework achieve competitive performance on heterophilic data despite384

being faster than GCN, providing evidence for efficient methods with reduced footprint.385
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contributions and scope? [Yes]537

(b) Did you describe the limitations of your work? [Yes] , in Section 6.538

(c) Did you discuss any potential negative societal impacts of your work? [Yes] in the539

Societal impact paragraph in Section 6.540

(d) Have you read the ethics review guidelines and ensured that your paper conforms to541

them? [Yes]542
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(a) Did you state the full set of assumptions of all theoretical results? [Yes]544
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