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ABSTRACT
Preview recommendations serve as a crucial shortcut for attract-
ing users’ attention on various systems, platforms, and webpages,
significantly boosting user engagement. However, the variability
of preview types and the flexibility of preview duration make it
challenging to use an integrated framework for multi-preview rec-
ommendations under resource constraints. In this paper, we present
an approach that incorporates constrained Q-learning into a noti-
fication recommendation system, effectively handling both multi-
preview ranking and duration orchestration by targeting long-term
user retention. Our method bridges the gap between combinatorial
reinforcement learning, which often remains too theoretical for
practical use, and segmented modules in production, where model
performance is typically compromised due to over-simplification.
We demonstrate the superiority of our approach through off-policy
evaluation and online A/B testing using Microsoft data.

CCS CONCEPTS
• Information systems→Web interfaces; Data analytics; •
Computing methodologies→Model verification and valida-
tion; • Mathematics of computing→ Mathematical analysis.
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1 INTRODUCTION
On Windows systems, a preview tab is usually displayed in the
bottom left corner, providing users with a brief overview of the
latest news and notifications before they click for more details. The
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system regularly aggregates incoming notifications from various
sources, typically every 30 minutes (with possible variations for
different users). It then selects a subset of these previews and de-
termines their display duration. Due to time constraints, not all
candidate previews can be shown to each user. Therefore, opti-
mizing the selection and duration of these previews is essential to
maximize the effectiveness of the recommendation system.

Reinforcement Learning (RL) is a powerful tool for learning
from past experiences and continuously updating actions to opti-
mize long-term rewards. While it has been extensively studied in
academic research, its adoption in industrial applications remains
relatively limited. In recommendation systems involving multiple
previews, the decision-making process has an action space with two
dimensions: (1) selecting𝐾 previewswith the highest potential from
𝑁 candidates, and (2) determining the duration for each preview
type. This problem, often known as combinatorial RL, has garnered
increasing attention from researchers in recent years [2, 4, 7, 10, 12].
However, the complexity of action space makes it challenging to
implement at a production level.

In industry, complex decision-making problems involving multi-
dimensional action manipulation are often decomposed into several
simpler, more robust steps, each supported by a separate model.
These steps typically include: (1) ranking, where all incoming pre-
views are rated by a model based on their potential for each user,
and (2) duration time selection, where durations are chosen from a
set of possible values {0, 1, 2, . . . , 𝑆}minutes. Each step uses either a
separate modeling or rule-based algorithm to support personalized
preview recommendations.

Given the significant differences in handling complex sequen-
tial decision-making problems with an intricate action space, we
aim to propose a more integrated framework that bridges the gap
between theoretical research and real-world applications, so as to
improve overall user engagement and long-term retention. Our pro-
posed method extends classical Q-learning to handle both ranking
and duration time selection simultaneously. This approach allows
us to address complex decision-making problems within an inte-
grated RL framework in a more implementable way, while being
more motivated by long-term rewards than traditional multi-step
decomposition methods used in the industry.

2 PROBLEM FORMULATION
At each round 𝑡 (i.e. every 30 minutes), a total of P incoming
previews are available for selection. We denote the user infor-
mation available at this time as 𝑠𝑡 . For simplicity, we discretize
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Figure 1: Flowchart of ranking and duration orchestration

the duration for which each preview can be shown into values
𝑎𝑡 ∈ A = {0, 1, . . . , 𝑆}, with 𝑆 = 3 representing the maximum
number of minutes preview 𝑝 will be displayed to a user character-
ized by the state 𝑠𝑡 ∈ S. The reward for showing preview 𝑝 for 𝑎𝑡
minutes, denoted as 𝑅𝑡 , is determined based on multi-dimensional
signals, including the user’s clicks, scrolls, and dwell time on both
the preview banner and detail page.

We define a policy 𝜋 : S → A as a mapping from the state
space to the action space, which suggests the duration time for
each user based on specific information 𝑠 . Since multiple previews
𝑝 ∈ P are involved at a given stage, the Q-function for preview
𝑝 is defined as 𝑄𝜋 (𝑠, 𝑎, 𝑝), where 𝑄𝜋 (𝑠, 𝑎, 𝑝) = E

[ ∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 |
𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑝 ∈ P

]
. We refer to this as the long-term suc-

cessful session (LTSS) score specific to each preview 𝑝 , user infor-
mation 𝑠 , and duration time 𝑎. Thus, the aggregated Q-function
is 𝑄𝜋 (𝑠, 𝑎) =

∑
𝑝∈P E

[ ∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
. Simi-

larly, we define the value function for preview 𝑝 as 𝑉 𝜋 (𝑠, 𝑝) =
E
[∑∞

𝑘=0 𝛾
𝑘𝑅𝑡+𝑘 | 𝑆𝑡 = 𝑠, 𝑝 ∈ P

]
, and the aggregated value function

as 𝑉 𝜋 (𝑠) = ∑
𝑝∈P E

[∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 | 𝑆𝑡 = 𝑠
]
.

Our goal is to learn an optimal policy 𝜋∗ = {𝜋∗𝑝 }𝑝∈P , so as to
maximize

max
𝜋

E𝑠∈S
[
𝑉 𝜋 (𝑠)

]
s.t. E[𝐴𝑡 ] ≤ 𝐶.

(1)

For simplicity of implementation, we set time constraint 𝐶 to be
the same across all stages. There is existing work on constrained
Q-learning in the current literature [1, 3, 5, 9, 11]. In this paper,
we adapt the Lagrangian method to convert the constrained prob-
lem into an unconstrained optimization problem by introducing a
penalty term controlled by 𝜆. Specifically, we maximize the follow-
ing objective function:

max
𝜋

E𝑠∈S


∑︁
𝑝∈P

E
{ ∞∑︁
𝑘=0

𝛾𝑘 (𝑅𝑡+𝑘 − 𝜆𝐴𝑡+𝑘 ) | 𝑆𝑡 = 𝑠
} , (2)

which effectively redefines the reward function by penalizing with
𝑅𝑡 − 𝜆𝐴𝑡 , allowing us to control the overall duration time. Here, 𝜆
represents the expected increase in the SS score conversion rate
per unit of time, and can be adjusted by the user based on the
specific problem context and desired level of capping. Generally, a
larger 𝜆 will bias actions towards the shortest duration time, i.e.,

𝐴𝑡 = 0. Since the optimization problem in Equation (2) involves the
reward summation across all preview types P, in practice, model
training and parameter updates can be conducted separately for
each preview type to enhance training speed. This separate training
procedure also provides an additional level of flexibility by allowing
𝜆 to be set differently for each preview type, enabling practitioners
to tailor the importance of previews according to specific needs.
The detailed approach is outlined in Algorithm 1.

Algorithm 1 Multi-Preview Optimization via Constrained RL

1: Input: offline data 𝐷 = {𝑆𝑖,𝑡 , 𝐴𝑖,𝑡 , 𝑅𝑖,𝑡 , 𝑆𝑖,𝑡+1}1≤𝑖≤𝑁,1≤𝑡≤𝑇 , dis-
count factor 𝛾 , initialized parameter 𝜃0, exploration probability
𝜖𝑡 , target network updating frequency 𝐸0, number of epochs 𝐸.

2: [Step 1: Offline Warm-Up]
3: for each preview 𝑝 ∈ P do
4: for epoch 𝑒 ∈ {0, . . . , 𝐸} do
5: Sample a batch of data tuple 𝐷𝑒 ⊂ 𝐷
6: For each data tuple (𝑠, 𝑎, 𝑟, 𝑠′) ∈ 𝐷𝑒 , calculate

𝑦 (𝑒) ← 𝑟 − 𝜆𝑎 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃𝑒 )
7: Calculate 𝐿𝑜𝑠𝑠 (𝜃 ) = ∑

𝑖,𝑡

{
𝑦𝑖𝑡 (𝑒) −𝑄 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃 )}2

8: Update 𝜃𝑒+1 ← argmin𝜃 𝐿𝑜𝑠𝑠 (𝜃 )
9: end for
10: end for
11: [Step 2: Online Update]
12: Update the initial parameter in online testing by 𝜃0 ← 𝜃𝐸
13: for each stage 𝑡 ∈ {0, . . . ,𝑇 } do
14: for each preview 𝑝 ∈ P do
15: Select 𝑎𝑡 = argmax𝑎 𝑄 (𝑠𝑡 , 𝑎, 𝑝 ;𝜃𝑡 ) with probability 1 − 𝜖𝑡

and a random policy with probability 𝜖𝑡
16: Interact with the environment to obtain 𝑟𝑡 , 𝑠𝑡+1
17: Update data replay buffer 𝐷 ← 𝐷 ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)
18: Repeat step 5-8 to update 𝜃𝑡 ← argmin𝜃 𝐿𝑜𝑠𝑠 (𝜃 )
19: end for
20: end for
21: return estimated Q function parameter 𝜃𝑇

Figure 1 illustrates the use of constrained Q-learning for multi-
preview ranking, duration orchestration, and capping. At each stage
𝑡 , we start with incoming previews 𝑝 ∈ P, estimate the long-term
SS score �̂� (𝑠, 𝑎, 𝑝;𝜃𝑡 ), and proceed as follows:

a. Step 1: For each preview 𝑝𝑘 ∈ P, determine the optimal
duration 𝑎𝑘 := argmax𝑎∈A �̂� (𝑠, 𝑎, 𝑝𝑘 ;𝜃𝑡 ).

b. Step 2: Rank previews by their long-term SS scores under the
chosen durations 𝑎𝑘 . Previews are then presented to users
based on these rankings until a capping threshold is reached.

Within each Q-learning module, we update 𝜃𝑡 as described in
Algorithm 1. The process is divided into two phases: (1) using offline
data to initially train a constrained Q-learning model; and (2) using
the pre-trained model, with parameters initialized to 𝜃0 ← 𝜃𝐸 , for
online testing. If no offline data is available, training can begin
directly online with a pre-selected parameter 𝜃0.
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3 OFFLINE EVALUATION
To evaluate performance, we first conduct Off-Policy Evaluation
(OPE), then online A/B testing to compare the existing production
model, represented by the behavior policy 𝑏, with the constrained
RL model obtained in Algorithm 1, represented by the estimated
optimal policy 𝜋 .

In OPE, we first learn the behavior policy 𝑏 (𝑠 |𝑎, 𝑝) for each
preview type 𝑝 from historical data to estimate the value function
under existing productionmodel.We then use fitted-Q evaluation [6,
8] to estimate �̂�𝑏 (𝑠, 𝑎, 𝑝). Table 1 compares

∑
𝑠∈S 𝑉 (𝑠, 𝑝) across four

popular preview types. By comparison, Algorithm 1 demonstrates
a long-term successful session (LTSS) gain for all preview types
trained through offline learning, highlighting its effectiveness in
optimizing long-term rewards under specific resource constraints.

Preview Type 𝐿𝑇𝑆𝑆𝐶 𝐿𝑇𝑆𝑆𝑇 𝐿𝑇𝑆𝑆 gain
𝐹𝑖𝑛𝑎𝑛𝑐𝑒_𝐷𝑒𝑓 𝑎𝑢𝑙𝑡𝐼𝑛𝑑𝑒𝑥 0.7258 0.7536 3.83%
𝐹𝑖𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑖𝑐𝑒𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 1.1407 1.1734 2.87%
𝑆𝑝𝑜𝑟𝑡𝑠_𝑆𝑝𝑜𝑟𝑡𝑠𝑀𝑎𝑡𝑐ℎ 0.5561 0.6083 9.39%
𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑇𝑒𝑎𝑠𝑒𝑟𝑇𝑒𝑚𝑝𝑅𝑒𝑐𝑜𝑟𝑑 0.4124 0.4737 14.86%

Table 1: The comparison of of LTSS in production (group 𝐶)
and constrained Q-learning (group 𝑇 ).

To further illustrate the shift in user cohort from the production
model to the RL model, we examine the 𝐹𝑖𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑖𝑐𝑒𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡
preview type, as shown in Figure 2. In the left bar plot, yellow bars
represent the mean click counts for finance cards in the existing pro-
duction model, while blue bars represent the mean click counts in
the constrained RL model. Notably, in the last two columns, where
the duration time 𝐴 = 3, the RL model assigns users with higher
finance card click counts to longer duration time buckets. Similarly,
the right bar plot indicates that the RL model assigns more active
users to longer duration time buckets compared to the existing
model. These results demonstrate the RL model’s effectiveness in
identifying and prioritizing the most engaging users based on their
preview preferences.
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T: treatment (RL model); C: control (production model)
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Figure 2: The bar plots of preview 𝐹𝑖𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑖𝑐𝑒𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡

4 ONLINE A/B TESTING
In online testing, we tested the constrained RL model in two groups,
𝑇1 with 𝛾 = 0, i.e. focusing on short-term rewards, and 𝑇2 with
𝛾 = 0.9, which prioritize long-term rewards, and compare with
existing production model with Microsoft data. Since the algorithm

relies solely on a constraint-free loss function calculation and corre-
sponding parameter updates, it is scalable and can be trained using
any supervised learning models, such as ensemble methods or neu-
ral networks, depending on user preferences. Neural networks may
offer more flexibility for parameter updates in batched training due
to their compatibility with gradient descent. For privacy reasons,
we are unable to share the code and raw data, but the summary of
the online testing results is provided.

Group DAU DAU gain
𝐶 0.4107 0
𝑇1 0.4109 0.03%
𝑇2 0.4151 1.05%

The result of online testing is shown in the table above. Group
𝐶 serves as the control group, representing the production model
with separate ranking and duration orchestration. Group 𝑇1 uses
the RL model with 𝛾 = 0 to emphasize short-term rewards, while
Group𝑇2 employs the RL model with 𝛾 = 0.9 to prioritize long-term
rewards. The results from the online A/B testing reveal a consistent
increase in daily active users (DAU) when long-term rewards are
prioritized with the RL model. This underscores the significance of
focusing on long-term user retention to enhance daily active user
volume, and demonstrates the advantages of integrating ranking
and duration within the constrained RL model.

5 SUMMARY AND FUTUREWORK
In this paper, we adapt a constrained RL algorithm to handle a multi-
preview recommendation system, enabling simultaneous preview
selection and duration setup with the unified goal of enhancing
long-term user retention. Both offline evaluation and online testing
demonstrate the superiority of RL-based approaches.

There are several potential areas for future research. Although
the algorithm benefits from training each constrained RL model
separately for each preview type, there is potential for sharing in-
formation across different preview types. Exploring a global model
that can better adapt penalty weight selection, accommodate varia-
tions in penalty 𝜆 across preview types, and facilitate information
sharing through initial layers while training the RL models could be
a promising direction. This approach would help capture the com-
monalities among different preview types, enhancing the overall
effectiveness of the system.
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