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ABSTRACT

Graph Convolutional Networks (GCNs) have gained an increasing attention
thanks to their state-of-the-art (SOTA) performance in graph-based learning tasks.
However, their sheer number of node features and large adjacency matrix limit
their deployment into real-world applications, as they impose the following chal-
lenges: (1) prohibitive inference cost, especially for resource-constrained appli-
cations and (2) low trainability of deep GCNs. To this end, we aim to develop
low-cost GCNs with improved trainability, as inspired by recent findings in deep
neural network optimization which show that not all data/(model components) are
equally important. Specifically, we propose a Data-Dependent GCN framework
dubbed D2-GCN which integrates data-dependent dynamic skipping at multiple
granularities: (1) node-wise skipping to bypass aggregating features of unimpor-
tant neighbor nodes and their corresponding combinations; (2) edge-wise skipping
to prune the unimportant edge connections of each node; and (3) bit-wise skipping
to dynamically adapt the bit-precision of both the node features and weights. Our
D2-GCN is achieved by identifying the importance of node features via a low-cost
indicator, and thus is simple and generally applicable to various graph-based learn-
ing tasks. Extensive experiments and ablation studies on 6 GCN model and dataset
pairs consistently validate that the proposed D2-GCN can (1) largely squeeze out
unnecessary costs from both the aggregation and combination phases (e.g., re-
duce the inference FLOPs by ↓1.1×∼ ↓37.0× and shrink the energy cost of GCN
inference by ↓1.6× ∼ ↓8.4×), while offering a comparable or an even better ac-
curacy (e.g., ↓0.5% ∼ ↑5.6%); and (2) help GCNs to go deeper by boosting their
trainability (e.g., providing a ↑0.8%∼ ↑5.1% higher accuracy when increasing the
model depth from 4 layers to 64 layers) and thus achieving a comparable or even
better accuracy of GCNs with more layers over SOTA techniques (e.g., a ↓0.4%∼
↑38.6% higher accuracy for models with 64 layers). All the codes and pretrained
models will be released upon acceptance.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have drawn increasing attention thanks to their performance
breakthroughs in graph-based learning tasks. In particular, the success of GCNs are attributed to
their excellent capability to learn from non-Euclidean graph structures with irregular graph neigh-
borhood connections via two execution phases: (1) aggregation, during which the features from the
neighbor nodes are aggregated, and (2) combination, in which further updates of the features of each
node are made via feed-forward layers to extract more useful features.

Despite their promising performance, the unique structure of GCNs imposes prohibitive challenges
for applying them to more extensive real-world applications especially those with large-scale graphs.
First, GCNs’ prohibitive inference cost limits their deployment into resource-constrained devices.
For example, a 2-layer GCN model requires 19 Giga (G) Floating Point Operations (FLOPs) to
process the Reddit graph (Tailor et al., 2021) and a latency of 2.94×105 milliseconds, when being
executed on an Intel Xeon E5-2680 CPU platform (Geng et al., 2020), which is 2× and 5000×
over that of a 50-layer powerful Convolutional Neural Network (CNN) (Awan et al., 2017), ResNet-
50, respectively; Second, while CNNs with more layers are known to consistently favor a higher
accuracy (Belkin et al., 2019), deeper GCNs suffer from accuracy drops compared with shallower
ones (Kipf & Welling, 2016), making it difficult to unleash their full potential.
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Aiming at tackling both of the aforementioned challenges, we draw inspirations from recent works.
First, previous CNN works (Katharopoulos & Fleuret, 2018; Johnson & Guestrin, 2018; Coleman
et al., 2018) show that not all samples are equally important during training and training on more
informative samples can improve the model accuracy, motivating us to consider allocating GCN
computational budgets adapting to the sample complexity. In addition, (Zhang et al., 2019) finds
that not all the CNN layers equally contribute to the final model accuracy and (Wang et al., 2018)
demonstrates that skipping some of the layers even helps boost the accuracy while reducing the
inference cost of CNNs. Meanwhile, recent GCN works show that not all the nodes contribute
equally to the feature extraction (Veličković et al., 2018) and some neighbor nodes can be randomly
abandoned without affecting the task performance (Hamilton et al., 2017).

The above prior arts motivate us to consider data-dependent dynamic GCNs for (1) pushing forward
their achievable accuracy-efficiency frontier and (2) improving the trainability of deeper GCNs. To
this end, we adopt a new perspective as compared to existing GCN compression works and ex-
plore data-dependent dynamic GCNs on top of SOTA GCNs. Specifically, we identify the potential
data-dependent patterns that are unique to GCNs at different granularitis, and then leverage them to
largely squeeze out unnecessary costs within GCNs to boost their inference efficiency and trainabil-
ity. Specifically, we make the following contributions:

• We propose a Data-Dependent GCN framework dubbed D2-GCN, the first dynamic infer-
ence framework dedicated to GCNs. D2-GCN integrates data-dependent dynamic skipping
at multiple granularities: node-wise, edge-wise, and bit-wise, via a low-cost indicator to no-
tably reduce the GCN inference cost, while offering a comparable or even better accuracy.

• D2-GCN is found to naturally alleviate the over-smoothing issue in GCNs and thus im-
proves the trainability of deeper GCNs, which we conjecture is because D2-GCN intro-
duces more flexibility into the models. Hence, D2-GCN opens up a new knob to not only
boost GCNs’ inference efficiency but also provide a promising perspective towards deeper
and more powerful GCNs.

• Extensive experiments and ablation studies on top of various SOTA GCNs and datasets
consistently validate the effectiveness and advantages of the proposed D2-GCN. In particu-
lar, D2-GCN can achieve ↓1.1×∼ ↓37.0× inference FLOPs reduction and ↓1.6×∼ ↓8.4×
lower energy cost, while leading to a comparable or even better accuracy (↓0.5%∼ ↑5.6%).

2 RELATED WORKS

Graph Convolutional Networks. GCNs are one of the most widely adopted algorithms for non-
Euclidean and irregular graph structures (Wu et al., 2020) to categorize the nodes in the same
graph (Sen et al., 2008) or predict the class of graphs (Hu et al., 2020). They can mainly be divided
into two categories: spectral-based (Kipf & Welling, 2016) and spatial-based (Gao et al., 2019). For
the spectral-based GCNs, graph convolution which is based on the spectral graph theory (Chung &
Graham, 1997) is firstly proposed by (Bruna et al., 2013) and improved in (Kipf & Welling, 2016;
Defferrard et al., 2016; Li et al., 2018b) for wider applications and better accuracy. Meanwhile, the
spatial-based GCNs (Hamilton et al., 2017) directly perform the convolution in the graph domain
by aggregating the neighbor nodes’ features and recent works further improve their accuracy via
clustering-based graph sampling (Chiang et al., 2019), more expressive aggregation scheme (Zeng
et al., 2019), and attention mechanism (Veličković et al., 2018). Orthogonal to those prior works,
we explore and develop data-dependent dynamic GCNs on top of SOTA spatial-based GCNs for
improving their efficiency and scalability.

Efficient GCNs. Motivated by the fact that the prohibitive computational cost and memory us-
age of GCNs, which will even expeditiously increase with the graph size, limit the development
of more powerful GCNs and their deployment into real-world applications, various compression
techniques has been developed, which mainly fall into three categories: pruning graphs (i.e., sim-
pler graphs), pruning weights (i.e., sparser weights), and quantization (i.e., lower bit-precision for
hidden features and weights). For pruning graphs, (Li et al., 2020b) introduces a sparse regularizer
for pruning the graph connections (i.e., the graph adjacency matrix) and leverages an alternating
direction method of multipliers (ADMM) training method to make the regularization differentiable;
for pruning weights, (Chen et al., 2021) prunes the graph adjacency matrix and the model weights
simultaneously, generalizing the lottery ticket hypothesis (Frankle & Carbin, 2018) to GCNs; for
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quantization, (Tailor et al., 2021) for the first time trains GCNs with 8-bits integer arithmetic for-
warding without sacrificing the classification accuracy. Our proposed D2-GCN considers an unex-
plored and orthogonal perspective, and explores data-dependent dynamic GCNs on multiple granu-
larity levels for achieving better accuracy-efficiency trade-offs and improving GCNs’ scalability.

Deeper GCNs. One challenge in designing GCNs is their scalablity of deeper GCNs for (1) han-
dling real-world large graphs and (2) unleashing the potential of more sophisticated GCN architec-
tures, motivating various techniques along this direction. A pioneering work (Kipf & Welling, 2016)
attempts to build deeper GCNs through a residual mechanism, and finds that such a design is only ef-
fective for GCNs with no more than 2 layers. Then, (Li et al., 2018a) argues that the over-smoothing
issue (i.e., connected nodes in deeper layers have more similar hidden features) prevent GCN ar-
chitectures from going deeper, and thus, several following works strive to design deeper GCNs by
alleviating this issue. For example, (Rong et al., 2020) proposes to tackle the over-smoothing issue
by randomly removing a certain number of edges from the input graph at each training epoch; (Li
et al., 2019b;a) further explore a generalized aggregation function and normalization layers to boost
the performance of GCNs on large-scale graph learning tasks. Our proposed D2-GCN distinguishes
itself as the first to explore deeper GCNs from the data-dependent aspect by incorporating automated
data-dependent gating functions to alleviate the over-smoothing issue and facilitate deeper GCNs.

Dynamic inference. Dynamic inference methods have been developed in the context of CNNs
for adapting model complexity to input data for reducing overall average inference costs. Early
works (Teerapittayanon et al., 2016; Huang et al., 2017) equip DNNs with extra branch classifiers
to enforce a portion of inputs to exit at earlier branches. Later works incorporate a finer-grained
layer-wise skipping policy via selectively executing a subset of layers conditioned on each input
data. In particular, SkipNet (Wang et al., 2018) adopts reinforcement learning to learn the layer-
wise skipping policy and BlockDrop (Wu et al., 2018) trains one global policy network to skip
residual blocks. The following works extend this idea to even finer-grained granularity levels, e.g.,
the filter level (Lin et al., 2017; Chen et al., 2018) or the bit level (Shen et al., 2020; Fu et al., 2020).
Different from previous works, our D2-GCN framework is the first attempt at dynamic inference
in the context of GCNs. More importantly, D2-GCN leverages the unique structures of GCNs to
exploit GCN-specific data-dependent strategies from three different granularities, i.e., node-wise,
edge-wise, and bit-wise, to largely boost the accuracy-efficiency trade-offs frontiers of GCNs, and
further makes these strategies to facilitate the development of deeper GCNs.

3 THE PROPOSED D2-GCN FRAMEWORK

In this section, we first introduce the preliminaries of GCNs and the motivating analysis to support
our D2-GCN framework, and then present the detailed design of D2-GCN and its training pipeline.

3.1 PRELIMINARIES OF GCNS

GCN general formulation. For a given graph G = (V, E) with n nodes vi ∈ V , m edges (vi, vj) ∈
E , and an adjacent matrix A ∈ RN×N to represent the connectivity information, where the non-zero
entries represent the existing connections among different nodes. Also, the node degree for each
node vi ∈ V is defined as di =

∑
j Aij and the diagonal degree matrix D is formed with Dii = di.

For each layer l of a GCN, the hidden features of the nodes are represented by the feature matrix
xl ∈ RN×H , where H denotes the hidden feature dimension of each node. Thus, a GCN layer can
be formulated as:

xl+1 = ACTl

(
ÂxlWl

)
, (1)

where Â is the normalized version of A: Â = D−
1
2AD−

1
2 , ACTl represents the activation function

of layer l, and Wl represents the weights of layer l. The inference process of one GCN layer can
be viewed as two separated phases: Aggregation and Combination. Âxl represents the Aggregation
phase which aggregates the 1-hop neighbors of each node into a unified feature vector; after that,
during the Combination phase, Âxl is transformed to ÂxlWl via a feed-forward layer. Meanwhile,
there are also some works that define the combination phase inside the aggregation phase, thus
merging the two phases into a single message passing process with the self-loop (Hamilton, 2020).
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Complexity analysis of GCNs. The computational complexity of GCN inferences can be repre-
sented as:

O(LmH + LnH2), (2)

where L is the total number of GCN layers, n is the total number of nodes, m is the total number of
edges, and H is hidden feature dimension of each node (Chiang et al., 2019).

3.2 D2-GCN: MOTIVATING ANALYSIS

Causes of GCNs’ prohibitive inference cost. The inefficiency of GCNs mainly comes from two
aspects: First, graphs are often very large as exacerbated by their complex and irregular neighbor
connections, which lead to a prohibitive amount of nodes and edges, i.e., m and n in Eq. 2, re-
spectively. For example, a graph dataset can come with as many as 169,343 nodes and 39,561,252
edges (Hu et al., 2020), which can cause both large computational and data movement costs. Sec-
ond, the dimension of GCNs’ node feature vectors, i.e., H in Eq. 2, can be very large, e.g., each
node in the Citeseer graph has a feature dimension of 3,703, leading to a high workload during the
feed-forward computation in the combination step, especially when the computations are conducted
with full precision (i.e., 32-bits float point). Accordingly, a straightforward way to reduce the afore-
mentioned costs associated with GCN inference is to reduce the number of (1) nodes, i.e., n in Eq. 2,
(2) connections between nodes, i.e., edges,m in Eq. 2, and (3) features of each node, i.e.,H in Eq. 2,
whereas naively reducing these parameters can hurt GCNs’ model capacity and thus their achievable
task accuracy.

Causes of deeper GCNs’ training difficulty. Deeper GCNs are consistently observed to suffer
from accuracy drop as compared to their shallower counterparts, regardless of the adopted GCN
designs (Kipf & Welling, 2016; Pham et al., 2017; Rahimi et al., 2018; Xu et al., 2018). (Li et al.,
2018a; Zhao & Akoglu, 2019) propose that the accuracy drop is resulted from the GCN’s over-
smoothing issue, i.e., repeatedly applying GCN layers many times will make the hidden features
of different nodes converge to similar values. Based on that, some regularizations are proposed to
enable a deeper GCN to achieve a higher accuracy, e.g., randomly drop out certain edges of the input
graph during each training iteration in (Rong et al., 2020).

Not all data/(model components) are equally important. Recent works in both
CNNs (Katharopoulos & Fleuret, 2018; Wang et al., 2018) and GCNs (Veličković et al., 2018;
Hamilton et al., 2017) show that not all data samples, e.g., input images or graphs, and model com-
ponents, e.g., specific Convolutional or Graph Convolutional layers, for the same model are equally
important for a given task in terms of the achievable accuracy vs. efficiency trade-offs. For example,
some of data/(model components) can be skipped without hurting or even boosting the accuracy due
to the increased model flexibility. These observations motivate us to consider boosting both GCNs’
efficiency and scalability by processing the graphs in a comprehensive data-dependent manner, i.e.,
for different data, only a fraction of the graph’s components, e.g., parts of nodes, edges, or bit-
width, are involved into the computations based on the corresponding features of the given graph.
The resulting benefits come from two aspects: (1) such a data-dependent design can dynamically
allocate more computational budgets to difficult data samples and smaller budgets for simpler data
samples to reduce the total inference cost while maintaining the accuracy; and (2) the increased
model flexibility resulting from the dynamic inference models can naturally provide a certain reg-
ularization effect since different components of a graph may work together or independently in an
data-dependent manner to alleviate GCNs’ over-smoothing issue discussed in (Li et al., 2020a). As
such, deeper GCNs can be more effectively trained thanks to the improved learning capacity enabled
by the increased model flexibility.

3.3 D2-GCN: SKIPPING STRATEGY DESIGN

Overview. Motivated by the analysis in the above subsection, we propose the D2-GCN framework
that can dynamically process each graph with a complexity adapting to the data difficulty at three
granularities, i.e., node/edge/bit-wise, as shown in Fig. 1. We hypothesize that such a coarse-to-fine
strategy can achieve more efficient GCN inference without hurting the accuracy, and maximize the
flexibility of GCN structures to provide effective regularizations for training deeper GCNs. Based
on the GCN layer formulation in Eq. 1, we can represent each layer of our proposed D2-GCN as:
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xl+1 = gnl � xgb
l
+ (1− gnl )� xl (3)

xgb
l
=

K∑
k=1

gb,kl � (Âge
l
QBk

(xl)QBk
(wl)) (4)

Âge
l
= (gel )

T � Â (5)

Figure 1: An illustration of our proposed D2-GCN technique in one
layer. Specially, X1 ∼ X4 are the 4 nodes in the graph. In this exam-
ple, the aggregation and combination phases ofX0 andX2 are skipped
(i.e., node-wise skipping as illustrated in Eq. 3) and the hidden fea-
tures of X0 and X2 are also skipped in the aggregation phases of their
neighbors (i.e., edge-wise skipping as illustrated in Eq. 5), while the
aggregation and combination phases ofX1 andX3 are processed with
a precision lower than 32-bits float point (i.e., bit-wise skipping as
illustrated in Eq. 4).

where xl+1 and xl ∈
Rn×H denote the feature
matrix of layer l + 1 and
layer l, respectively, wl ∈
RH×H is the weights for
the Combination phase in
layer l, Â ∈ Rn×n is the
normalized adjacency ma-
trix, and � represents the
element-wise matrix mul-
tiplication (broadcast will
be performed if the ma-
trix shapes do not match).
All the variables above
share the same definition
as in Eq. 1. Specif-
ically, in Eq. 3, gnl ∈
{0, 1}n×1 represents the
output of the gating func-
tion for node-wise skip-
ping, and xgb

l
is the fea-

ture matrix after enabling
the gating function for bit-
wise skipping in layer l;
in Eq. 4, gbl ∈ {0, 1}n×K

(gb,kl ∈ {0, 1}n×1 is the k-th entry of gbl ) represents the output of the gating function for bit-wise
skipping, QBk

() is the quantization function to quantize weights wl and feature matrix xl into Bk-
bits following the pre-defined quantization bit-width options B = {B1, ..., BK}, and Âge

l
is the

normalized adjacency matrix after enabling the gating function for edge-wise skipping in layer l;
and in Eq. 5, gel ∈ {0, 1}n×1 represents the output of the gating function for edge-wise skipping.
We elaborate more on how they work in GCNs and how they tackle the causes of GCNs’ inference
cost below.

Node-wise skipping (i.e., Eq. 3). gnl makes a binary decision for each node regarding whether
to skip its aggregation and combination phases based on its hidden features. In this way, a set of
less important nodes identified by gnl will not participate the feed-forward computation during each
GCN inference and the corresponding hidden features in the feature matrix xl will be directly passed
to the next layer to construct xl+1, so that the inference cost (FLOPs, latency, and energy) will be
reduced thanks to the smaller n and m in the computational complexity, as analyzed in Eq. 2.

Bit-wise skipping (i.e., Eq. 4). gbl determines the quantization precision in both the aggregation and
combination phases for each node according to its hidden features. Since quantization reduces the
feed-forward computation from the most fine-grained bit level, the computational cost for updating
each feature can be aggressively reduced, making it feasible to deal with large node feature vectors
even on resource constrained platforms.

Edge-wise skipping (i.e., Eq. 5). gel determines whether the connection between two nodes will be
removed based on the hidden features of the corresponding nodes. Specifically, the connection will
be removed when the corresponding item is zero in Âge

l
, as defined in Eg. 5, and thus result in a

smaller inference cost (FLOPs, latency, and energy) thanks to the resulting smaller m in Eq. 2.
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Gating function design. Inspired by the gating function designs from dynamic CNNs (Wang et al.,
2018), we adopt a single feed-forward layer (i.e., fully-connected layer) to map each node’s feature
(a vector with the shape of 1 × H) to the output of the gating functions. For the node-wise and
edge-wise skipping, the output of the gating functions is only an element with the shape of 1 × 1.
For the bit-wise skipping, the output of the gating functions is a vector with the shape of 1 × K.
K represents the number of bit-width options and we set K = 4 in our experiments. Additionally,
we follow (Wang et al., 2018) to make the training of the gating functions differentiable via straight
through estimators (Bengio et al., 2013). After building the gate functions following the design
described above, we surprisingly find that such a simple design can effectively capture the dynamic
patterns with very low computational overhead. In our design, it is less than 0.07% of the GCN
model’s cost in terms of FLOPs, while the gating functions in CNNs can cause an overhead of as
large as 12.5% (↑179×) (Wang et al., 2020).

3.4 D2-GCN: TRAINING PIPELINE DESIGN

Learning objective. The learning objective of D2-GCN, LD2−GCN (W,WG), can be formulated
as:

LD2−GCN (W,WG) = LGCN (W,WG) + αLcomp (6)

where W = {w0, w1, w2, ...} is the total set of model weights, WG = {wgn
0
, wge

0
, wgb

0
, wgn

1
, ...} is

the total set of the gating functions’ weights, LGCN is the commonly adopted loss function of graph-
based learning tasks like node classification (Kipf & Welling, 2016) or graph classification (Hu
et al., 2020), α is a trade-off parameter to balance task performance and efficiency, and Lcomp is
the computational cost determined by the gating functions. If we use FLOPs as its metric, it can be
written as:

Lcomp =

∑L
l=1(||Age

l
||0H

∑K
k=1 ||g

b,k
l ||0

Bk
32

n + ||gnl ||0H2
∑K

k=1 ||g
b,k
l ||0(

Bk
32 )2

n )∑L
l=1(mH + nH2)

(7)

The variables in Eq. 7 share the same definition as those in Eq. 1, 2, 3, 4, and 5, i.e., n is the total
number of nodes, m is the total number of edges, H is the feature dimensions of each node, Age

l

is the adjacency matrix after enabling the gating function for edge-wise skipping in layer l, gb,kl is
the k-th entry of gbl which is the output of the bit-wise skipping’s gating function, and gnl represents
the output of the gating function for node-wise skipping. It is worth noting that Eq. 7 also indicates
how our data-dependant dynamic skipping techniques reduce the inference cost. Specifically, the
node-wise skipping will squeeze the cost via reducing the number of nodes (n) to ||gnl ||0 < n. The
edge-wise skipping will shrink the the number of edges (m) to ||Age

l
||0 < m to reduce the inference

cost. The bit-wise skipping will reduce the cost of each matrix multiplication/addition by using a
smaller bit-width instead of full precision (32-bits), which can be regarded as further multiplying a

factor to the inference cost (i.e.,
∑K

k=1 ||g
b,k
l ||0

Bk
32

n < 1 and
∑K

k=1 ||g
b,k
l ||0(

Bk
32 )2

n < 1)

Three-stage training pipeline. Jointly training the GCN and gating functions from scratch could
lead to both lower task performance and inferior gating decisions since the gating functions with
random initializations in the early training stages may harm the learning process via improper gating
strategies. Therefore, we propose a three-stage training pipeline to stabilize the training of D2-GCN.

Stage 1: We pretrain the GCN model with the gating functions fixed and unused. We find this step is
indispensable for a decent D2-GCN design since the gating functions can hardly learn a meaningful
gating strategy on top of an under-performed GCN model.

Stage 2: We fix the GCN model and train the gating functions only to maximize the task performance
by setting the trade-off parameter α in Eq. 6 to be 0. Since randomly initialized gating functions
may generate improper gating strategies which may deteriorate the pretrained GCN’s performance,
this step contributes to generate a decent initialization for the gating functions’ weights.

Stage 3: We jointly train the GCN model and gating functions based on Eq. 6 to optimize both the
task performance and computational cost. After this step, the D2-GCN trained model is ready to be
delivered and deployed onto the target platform.
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4 EXPERIMENTS RESULTS

In this section, we first introduce the experiment setup and then verify our hypothesis that (1) D2-
GCN can boost the efficiency, i.e., achieving better accuracy vs. efficiency trade-offs than both
vanilla models and models with SOTA efficient GCN techniques; and (2) D2-GCN can boost the
scalability, i.e., achieving a higher accuracy when being applied to deeper GCNs than both vanilla
models and models with SOTA scalable GCN techniques. Finally, we perform ablation study on
the effectiveness of skipping at different granularities, i.e., how the node-wise, edge-wise, and bit-
wise skipping individually affect the achieved accuracy vs. efficiency trade-offs, and visualize the
skipping patterns to provide more insights.

4.1 EXPERIMENTS SETUP

Model, datasets, and training hyperparameters. We evaluate our proposed D2-GCN over 6
GCN model and dataset pairs (i.e., 3 GCNII (Chen et al., 2020) models on Cora, Citeseer,
and Pubmed (Sen et al., 2008) and 3 DeeperGCN (Li et al., 2020a) models on ogbg-molhiv,
ogbn-arxiv, and ogbn-proteins (Hu et al., 2020)), as summarized in Table 1. All the training hy-
perparameters follow the original implementation in (Chen et al., 2020; Li et al., 2020a), and
we sweep α, which is described in Eq. 6, ranging from 0.1 to 10 in all experiments, and set
K = 4, B1 = 2, B2 = 4, B3 = 8, B4 = 16, which are defined in Eq. 4.

Baselines and evaluation metrics. We compare our proposed D2-GCN over two types baselines to
verify its efficiency and scalability (to deeper GCNs), respectively.

Efficiency baselines: Degree-Quant (Tailor et al., 2021), QAT (Fan et al., 2021), and UGS (Chen
et al., 2021) are included into the benchmark to verify that our proposed D2-GCN can boost the
efficiency in terms of accuracy vs. FLOPs/latency/energy trade-offs.

Scalability baselines: We compare our proposed D2-GCN with DropEdge (Rong et al., 2020) and
GCNII (Chen et al., 2020), which are the SOTA method to improve the scalability of GCN, aiming
at achieving better accuracy with more number of layers.

Specifically, the accuracy is reported as the average over 10 runs with different random seeds, the
FLOPs metric follows the computation complexity analyzed in (Chiang et al., 2019) and the adapta-
tion to quantized models in (Fu et al., 2020), and latency/energy is simulated using the architecture
described in (Qin et al., 2020).

4.2 D2-GCN BOOSTS THE EFFICIENCY

By comparing our D2-GCN with SOTA efficient GCN techniques on different models and datasets
in Table 2, we can observe the consistent effectiveness of D2-GCN in boosting the efficiency of
GCNs. Specifically, our proposed D2-GCN consistently surpasses all the competitors by achieving
↓1.1× ∼ ↓37.0× FLOPs/↓1.6× ∼ ↓8.4× latency/↓1.6× ∼ ↓8.4× energy reduction, while achiev-
ing a comparable or even higher accuracy (↓0.5% ∼ ↑5.6%). We conjecture that this is because
(1) UGS (Chen et al., 2021) only considers the redundancy from edge-wise and node-wise while
Degree-Quant (Tailor et al., 2021) or QAT (Fan et al., 2021) only considers the redundancy from
bit-wise; In contrast, our proposed D2-GCN simultaneously squeezes out unnecessary costs of
GCNs from the edge-wise, node-wise, and bit-wise level; and (2) UGS (Chen et al., 2021), Degree-
Quant (Tailor et al., 2021), and QAT (Fan et al., 2021) do not leverage the assumption that not
all data/model components are equally important, which has been verified by (Wang et al., 2020;
Katharopoulos & Fleuret, 2018), thus they may only achieve sub-optimal accuracy vs. efficiency
trade-offs because hard/easy samples are assigned insufficient/redundant computational resource,

Table 1: The statistics of the GCN models and datasets.
Model #Layers Dataset Dataset Type #Graphs Avg. #Nodes Avg. #Edges

GCNII (Chen et al., 2020)
64 Cora (Sen et al., 2008)

Node classification
1 2,708 5,429

32 Citeseer (Sen et al., 2008) 1 3,327 4,732
16 Pubmed (Sen et al., 2008) 1 19,717 44,338

DeeperGCN (Li et al., 2020a)
112 ogbn-proteins (Hu et al., 2020) Node classification 1 132,534 39,561,252
28 ogbn-arxiv (Hu et al., 2020) 1 169,343 1,166,243
7 ogbg-molhiv (Hu et al., 2020) Graph classification 41,127 25.5 27.5
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Table 2: Comparison between D2-GCN and SOTA efficient GCN techniques in terms of accuracy vs.
efficiency trade-offs, where vanilla is the original setting of the corresponding models and datasets
without any efficient GCN techniques.

Method Accuracy (%) FLOPs (G) Normalized
Latency (%) Energy (%)

GCNII@Cora
Vanilla 85.5 0.74 100.0 100.0
UGS 82.4 0.59 99.9 99.9
QAT 85.1 0.06 20.0 20.0

Degree-Quant 81.0 0.12 20.0 20.0
D2-GCN 85.6 0.02 12.6 12.2

D2-GCN Improv. ↑0.1∼ ↑4.6 ↓3.0×∼ ↓37.0× ↓1.6×∼ ↓7.9× ↓1.6×∼ ↓8.2×
GCNII@Citeseer

Vanilla 73.4 7.05 100.0 100.0
UGS 72.1 5.65 99.9 99.8
QAT 73.4 0.48 22.0 22.0

Degree-Quant 69.5 1.13 22.0 22.0
D2-GCN 73.4 0.22 13.3 13.3

D2-GCN Improv. ↑0.0∼ ↑3.9 ↓2.2×∼ ↓32.0× ↓1.7×∼ ↓7.5× ↓1.7×∼ ↓7.5×
GCNII@Pubmed

Vanilla 80.2 20.86 100.0 100.0
UGS 78.8 16.71 99.9 99.9
QAT 79.5 1.34 24.7 24.7

Degree-Quant 77.8 3.29 24.7 24.7
D2-GCN 79.7 1.13 14.9 14.8

D2-GCN Improv. ↓0.5∼ ↑1.7 ↓1.2×∼ ↓18.5× ↓1.7×∼ ↓6.7× ↓1.7×∼ ↓6.8×
DeeperGCN@ogbg-molhiv

Vanilla 78.6 483.14 100.0 100.0
UGS 75.8 386.81 97.1 99.9
QAT 72.9 30.58 21.1 21.1

Degree-Quant 78.2 75.83 21.1 21.1
D2-GCN 78.5 28.73 12.3 12.4

D2-GCN Improv. ↓0.1∼ ↑5.6 ↓1.1×∼ ↓16.8× ↓1.7×∼ ↓8.1× ↓1.7×∼ ↓8.1×
DeeperGCN@ogbn-arxiv

Vanilla 71.9 81.87 100.0 100.0
UGS 71.4 66.12 98.2 98.2

D2-GCN 72.2 12.37 14.7 14.5
D2-GCN Improv. ↑0.3∼ ↑0.8 ↓5.3×∼ ↓6.6× ↓6.7×∼ ↓6.8× ↓6.8×∼ ↓6.9×

DeeperGCN@ogbn-proteins
Vanilla 85.8 405.17 100.0 100.0
UGS 85.2 366.67 97.7 97.8

Degree-Quant 85.1 111.16 23.2 23.4
D2-GCN 85.3 72.24 11.9 11.9

D2-GCN Improv. ↓0.5%∼ ↑0.2% ↓1.5×∼ ↓5.6× ↓1.9×∼ ↓8.4× ↓2.0×∼ ↓8.4×

whereas our proposed D2-GCN is a data-dependent framework that processes each data sample
with an adaptive model capacity/cost, maximizing the accuracy vs. efficiency trade-offs.

4.3 D2-GCN BOOSTS THE SCALABILITY Table 3: Comparison between D2-GCN and
SOTA scalable GCN techniques, where vanilla is
the original setting used in (Kipf & Welling, 2016)
without any scalable GCN techniques, which
achieves a lower acccuracy when going deeper.

Dataset Method Accuracy (%) with Num. layers
4 16 64

Cora

Vanilla 80.4 64.9 28.7
DropEdge 82.0 75.7 49.5

GCNII 82.6 84.2 85.5
D2-GCN 80.5 84.2 85.6

D2-GCN Improv. ↓2.1∼ ↑0.1 ↑0.0∼ ↑19.3 ↑0.1∼ ↑56.9

Citeseer

Vanilla 67.6 18.3 20.0
DropEdge 70.6 57.2 34.4

GCNII 68.9 72.9 73.4
D2-GCN 69.7 73.1 73.0

D2-GCN Improv. ↓0.9∼ ↑2.1 ↑0.2∼ ↑54.8 ↓0.4∼ ↑53.0

Pubmed

Vanilla 76.5 40.9 35.3
DropEdge 79.4 78.5 61.5

GCNII 78.8 80.2 79.7
D2-GCN 79.0 79.5 79.8

D2-GCN Improv. ↓0.4∼ ↑2.5 ↓0.7∼ ↑38.6 ↑0.1∼ ↑44.5

As summarized in Table 3, by varying the num-
ber of layers from 4 to 64 on different datasets,
our proposed D2-GCN (1) achieves a higher
accuracy as we increase the number of lay-
ers (i.e., ↑0.8% ∼ ↑5.1% accuracy boost) and
(2) is on par with SOTA techniques for a bet-
ter GCN scalability (i.e., GCNII (Chen et al.,
2020) and DropEdge (Rong et al., 2020)) with
a comparable or even better accuracy under the
same number of layers, especially on deeper
models (↓0.4% ∼ ↑38.6% for models with 64
layers). This set of experiments indicates that
with the proposed node-wise, edge-wise, and
bit-wise skipping at different granularities, our
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proposed D2-GCN can alleviate the over-smoothing issue, as discussed in (Li et al., 2018a), and thus
facilitate GCNs to achieve a higher accuracy when going deeper. This matches our hypothesis that
such data-dependent skipping techniques can enforce a regularization effect since different com-
ponents of a graph may work together or independently in an data-dependent manner to facilitate
the removal of the over-smoothing issue.

4.4 ABLATION STUDY: EFFECTIVENESS OF SKIPPING AT DIFFERENT GRANULARITIES

Table 4: Comparison among node-wise, edge-wise, and bit-wise skip-
ping at different granularities in the proposed D2-GCN, where vanilla
is the original setting of the corresponding models and datasets with-
out any efficient GCN techniques.

Method Accuracy (%) FLOPs (G) Normalized
Latency (%) Energy (%)

GCNII@Cora
Vanilla 85.5 0.74 100.0 100.0

D2-GCN w/o node-wise skipping 85.6 (↑0.1) 0.03 (↓24.7×) 13.6 (↓7.4×) 13.7 (↓7.3×)
D2-GCN w/o edge-wise skipping 85.6 (↑0.1) 0.03 (↓24.7×) 13.6 (↓7.4×) 13.6 (↓7.4×)
D2-GCN w/o bit-wise skipping 85.5 (↑0.0) 0.67 (↓1.1×) 88.2 (↓1.1×) 88.5 (↓1.1×)

D2-GCN 85.6 (↑0.1) 0.02 (↓37.0×) 12.6 (↓7.9×) 12.2 (↓8.2×)
DeeperGCN@ogbg-molhiv

Vanilla 78.6 484.14 100.0 100.0
D2-GCN w/o node-wise skipping 75.5 (↓3.1) 40.87 (↓11.8×) 14.2 (↓7.0×) 14.2 (↓7.0×)
D2-GCN w/o edge-wise skipping 77.7 (↓0.9) 28.91 (↓16.7×) 13.0 (↓7.7×) 13.2 (↓7.6×)
D2-GCN w/o bit-wise skipping 77.5 (↓1.1) 338.2 (↓1.4×) 91.0 (↓1.1×) 91.5 (↓1.1×)

D2-GCN 78.5 (↓0.1) 28.7 (↓16.9×) 12.3 (↓8.1×) 12.4 (↓8.1×)

As introduced in Figure 1,
D2-GCN integrates node-
wise, edge-wise, and bit-
wise skipping, which tar-
get different granularities.
For a better understand-
ing of the proposed D2-
GCN, we conduct an abla-
tion study on the effective-
ness of each skipping tech-
nique on both node classi-
fication (Cora (Sen et al.,
2008)) and graph clas-
sification datasets (ogbn-
molhiv (Hu et al., 2020)),
i.e., disabling one skipping
technique of our proposed D2-GCN each time, and summarize the results in Table 4. We can make
the following observations: (1) only incorporating one skipping technique corresponding to one
granularity can still reduce the inference cost (e.g., FLOPs, energy, and latency) of GCN mod-
els but leading to an obviously lower accuracy (↓1.1× ∼ ↓24.7× less FLOPs/↓1.1× ∼ ↓7.7×
less latency/↓1.1× ∼ ↓7.6× less energy, but ↓3.1% ∼ ↑0.1% accuracy decrease) than the baselines;
and (2) D2-GCN integrating node-wise, edge-wise, and bit-wise skipping simultaneously can
achieve better accuracy vs. efficiency trade-offs than its vanilla baselines disabling one/two of
the three (↓1.5× ∼ ↓33.5× less FLOPs/↓1.1× ∼ 7.4× less latency/1.1× ∼ 7.4× less energy, and
↑0.0% ∼ ↑3.0% higher accuracy), validating the importance of skipping at all the three different
granularities, as described in Section 3.3.

4.5 MORE INSIGHTS FROM VISUALIZATION OF THE SKIPPING PATTERNS

To better understand and illustrate why D2-GCN surpasses all the efficient GCN competitors in terms
of accuracy vs. efficienct trade-offs, as demonstrated in Table 2, we visualize the layer-wise FLOPs

Layer Index
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Figure 2: Visualization of the FLOPs remaining ratio (i.e., the ratio between FLOPs of GCNs w/
and w/o our proposed D2-GCN) of different layers when our proposed D2-GCN is added on top of
a GCNII model with the (a) Cora, (b) Citeseer, and (c) Pubmed datasets.
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remaining ratio (the lower means the more FLOPs reduction is enabled by our proposed D2-GCN)
in Figure 2. We can extract the following insights: (1) the imbalance FLOPs remaining ratios among
different layers verify that the hypothesis, not all data/model components are equally important,
also holds for GCNs; (2) such imbalance FLOPs remaining ratios play an important role in enabling
the proposed D2-GCN to achieve SOTA accuracy vs. efficient trade-offs by dynamically allocating
more computational budgets to difficult data samples and/or important model components
and lower budgets for simple data samples and/or unnecessary model components to reduce
the total inference cost while maintaining the accuracy, because the SOTA efficient GCN baseline
techniques in Section 4.2 are using either the same node and edge relationships (i.e. adjacency
matrix A in Eq. 1) (Tailor et al., 2021; Fan et al., 2021) or the same bit-widths (Chen et al., 2021)
along all layers; and (3) the latter layers (i.e., closer to the final classifier) tend to maintain
higher FLOPs remaining ratios, i.e., they are less redundant and more important than the former
layers, which can provides insights for more efficient GCN architecture design.

5 CONCLUSION

In this paper, we propose a Data-Dependent GCN framework, D2-GCN, which is the first dynamic
inference framework dedicated to GCNs. Specifically, three types of low-cost gating functions are
integrated to realize data-dependent dynamic skipping at multiple granularities: node-wise, edge-
wise, and bit-wise, targeting fewer nodes to combine, fewer edges to aggregate, and lower bit-
precision to compute. Besides achieving SOTA accuracy vs. efficiency trade-offs to facilitate the
deployment of GCNs onto resource-constrained applications, our proposed D2-GCN can also help
on alleviating the over-smoothing issue of GCNs to improve the accuracy of GCNs when they go
deeper, thus removing the barriers of handling real-world large graphs and unleashing the potential
of more sophisticated GCN architectures. As such, D2-GCN opens up a new knob to not only
boost GCNs’ inference efficiency but also help to build deeper and more powerful GCNs in the
data-dependant manner.

6 REPRODUCIBILITY STATEMENT

Regarding our efforts that have been made to ensure reproducibility, we provide the implementation
details in Appendix A.
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A IMPLEMENTATION DETAILS

We provide the implementation details of our experiments here, including our D2-GCN (1) on Cora,
Citeseer and Pubmed datasets (Sen et al., 2008) on top of GCNII models (Chen et al., 2020) and
(2) ogbg-molhiv, obgn-arXiv, and ogbn-proteins dataset (Hu et al., 2020) on top of DeeperGCN
models (Li et al., 2020a) in Section 4.2 ∼ 4.5.

D2-GCN models on Cora, Citeseer and Pubmed datasets. All the reported D2-GCN models
on these 3 datasets on top of GCNII models (Chen et al., 2020) follow the same training recipe
(including data pre-processing) with the one proposed in (Chen et al., 2020). For Cora dataset, the
number of layers and hidden dimensions are both 64, the dropout rate is 0.6, the weight decay
of graph convolutional layers is 0.01, and the weight decay of the fully-connected layers at the
beginning and the end is 5e-4. For Citeseer dataset, the number of layer is 32, the hidden dimensions
is 256, the dropout rate is 0.7, and the weight decay setting is the same with the one for Cora dataset.
For Pubmed dataset, the number of layers is 16, hidden dimension is 256, the dropout rate is 0.7,
the weight decay of all layers is 5e-4. Note that, the α described in Eq. 6 sweeps from [0.1, 0.2,
0.5, 1.0, 2.0, 5.0, 10.0], and the best α for Cora, Citeseer, and Pubmed datasets are 10, 0.2, and 1.0,
respectively.

D2-GCN models on ogbg-molhiv, ogbn-arxiv, and ogbn-proteins dataset. All the reported
D2-GCN models on these 3 datasets on top of DeeperGCN models (Li et al., 2020a) follow the
same training recipe (including data pre-processing) as the one proposed in (Li et al., 2020a).
For ogbg-molhiv dataset, the model (1) is built with the block type as res+, the normalizatio type
as BatchNorm, the number of layers as 7, the hidden dimension as 256, and the graph convolution
aggregation type is softmax; (2) is trained with the learning rate as 0.0001 and the dropout rate
as 0.2. For ogbn-arxiv dataset, the model (1) shares the same architecture configurations as the one
for ogbg-molhiv dataset except stacking for 28 layers instead of 7 layers, decreasing the hidden di-
mensions from 256 to 128, and using softmaxsg as the graph convolution aggregation type; (2) is
trained with the learning rate as 0.001 and the dropout rate as 0.5. For ogbn-proteins dataset, the
model (1) is built with the block type as res+, the normalizatio type as LayerNorm, the number of
layers as 112, the hidden dimension as 64, and the graph convolution aggregation type is softmax;
(2) is trained with the learning rate as 0.001 and the dropout rate as 0.1. Same with the setting in
D2-GCN models on Cora, Citeseer and Pubmed datasets, the α described in Eq. 6 sweeps from [0.1,
0.2, 0.5, 1.0, 2.0, 5.0, 10.0], and the best α for ogbg-molhiv, ogbn-arxiv, and ogbn-proteins datasets
are 1.0, 1.0, and 10.0, respectively.
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