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Abstract001

Knowledge base question answering (KBQA)002
aims to answer user questions in natural lan-003
guage using rich human knowledge stored in004
large KBs. As current KBQA methods strug-005
gle with unseen knowledge base elements and006
their novel compositions at test time, we intro-007
duce SG-KBQA — a novel model that injects008
schema contexts into entity retrieval and logical009
form generation to tackle this issue. It exploits010
information about the semantics and structure011
of the knowledge base provided by schema012
contexts to enhance generalizability. We show013
that SG-KBQA achieves strong generalizabil-014
ity, outperforming state-of-the-art models on015
two commonly used benchmark datasets across016
a variety of test settings. Our source code017
is available at https://anonymous.4open.018
science/r/SG-KBQA-7895.019

1 Introduction020

Knowledge base question answering (KBQA) aims021

to answer user questions expressed in natural022

language with information from a knowledge023

base (KB). This offers user-friendly access to024

rich human knowledge from large KBs such as025

Freebase (Bollacker et al., 2008), DBPedia (Auer026

et al., 2007) and Wikidata (Vrandečić and Krötzsch,027

2014), and it has broad applications in QA (Zhou028

et al., 2018), recommendation (Guo et al., 2022),029

and information retrieval (Jalota et al., 2021).030

Semantic parsing (SP) has been shown to be an031

effective method for KBQA, where the core idea032

is to translate the input natural language question033

into a structured logical form (e.g., SPARQL or034

S-Expression (Gu et al., 2021)), which is then exe-035

cuted to yield the question answer.036

A key challenge here is to learn a mapping be-037

tween mentions of entities and relations in the input038

question to corresponding KB elements to form the039

logical form. Given a large number of entities and040

relations in ambiguous surface forms, and the flex-041
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Who is the author of Harry Potter ?

w schema:  (AND book.author (JOIN (R book.literary_series.author ) m.078ffw ))
w/o schema:  (AND book.author (JOIN (R book.works_written ) m.078ffw ))
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m.03467x
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book.literary_series.author
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Schema-guided Entity Retrieval
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Figure 1: Schema-guided entity retrieval (top) and
logical form generation (bottom). Green arrows and
boxes highlight schema-level connections (overlapping
classes) among KB elements. “w schema” and “w/o
schema” logical forms denote whether the composition
of KB elements adheres to the KB schema, respectively.

ibility in questions expressed in natural language, 042

this mapping process typically yields a set of candi- 043

date entities (relations) for each mentions of entities 044

(relations). The challenge then becomes to uncover 045

the right composition of entities and relations from 046

the sets of candidates. 047

Figure 1 shows an example. Two entities named 048

Harry Potter (a book series and a main character 049

in them) and two authorship relations of similar 050

names were identified as candidates. Combining 051

the top-ranked entity (the book series) with the top- 052

ranked relation book.author.works_written (book 053

authorship) yields an invalid and unexecutable logi- 054

cal form, as the entity is a book series, not a book. 055

Due to the vast number of KB elements and their 056

compositions, it is difficult (if not impossible) to 057

train a model with all feasible compositions of KB 058

elements that might be queried. For example, Free- 059

base (Bollacker et al., 2008) has over 39 million 060

entities, 8,000 relations, and 4,000 classes. Further- 061

more, some KBs (e.g., NED (Mitchell et al., 2018)) 062
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are not static as they continue to grow. When a KB063

element composition is unseen at training, errors064

like the example above may occur.065

A few studies consider model generalizability066

to non-I.I.D. settings, where the test set contains067

schema items (i.e., relations, classes and functions)068

or their compositions that are unseen during train-069

ing (i.e., zero-shot and compositional generaliza-070

tion, respectively). They propose retrieval methods071

to retrieve KB elements or compositions more rele-072

vant to input questions, and use them to construct073

logical forms (Shu et al., 2022; Gu et al., 2023).074

Despite these efforts, achieving compositional075

and zero-shot generalization remains challenging:076

(1) Entity retrieval is a bottleneck. Current en-077

tity retrieval methods often fail to accurately detect078

entities mentioned in questions containing schema079

items unseen at training. This is because such items080

introduce novel contextual patterns in questions,081

making it difficult to identify the correct boundary082

of entity mentions. The resulting entity retrieval083

errors propagate and lead to errors in the logical084

forms generated. (2) Schema-level connection be-085

tween KB elements have been missed. Existing086

methods are not explicitly trained to capture com-087

positions of KB elements that are feasible based on088

their schema. Instead, they tend to reproduce KB089

element compositions observed at training, making090

them difficult to generalize to unseen compositions.091

To address these challenges, we propose a092

schema-guided model for KBQA (SG-KBQA), that093

incorporates KB schema to guide both entity re-094

trieval and logical form generation. Unlike previ-095

ous approaches that initiate the pipeline with entity096

retrieval, SG-KBQA adopts a schema-first princi-097

ple, prioritizing schema understanding as the foun-098

dation for downstream logical form generation.099

SG-KBQA begins with relation retrieval, em-100

ploying a pre-trained language model (PLM)-101

based (Devlin et al., 2019) retriever to retrieve102

top-ranked relations from the KB that are most103

relevant to the input question. Benefiting from the104

generalization capability of pre-trained language105

models (and that there are much fewer relations106

and their surface form variants than entities in a107

KB), relations that are semantically similar to the108

question—yet unseen at training—can still be in-109

cluded among the top-ranked retrieved relations110

(as validated in our study). Then, as illustrated111

in Figure 1, we introduce a schema-guided entity112

retrieval (SER) module. This module employs a113

logical form sketch parser that converts the input114

question and retrieved relations into logical form 115

sketches by a Seq2Seq model. These top-ranked 116

relations provide schema context that is relevant 117

to the question but not observed at training, hence 118

helping the model distinguish actual entity men- 119

tions from unseen schema items in the question. 120

More precise entity mentions are then extracted 121

from the generated sketches, thereby improving the 122

zero-shot generalizability of entity retrieval. 123

To further mitigate error propagation between 124

the retrieval and generation stages, we defer entity 125

disambiguation to the logical form generation stage. 126

For each entity mention, all top-ranked matched 127

candidates are retained as candidate entities for the 128

preceding generation stage. 129

Further exploiting the schema-guided idea, we 130

propose a schema-guided logical form generation 131

(SLFG) module that fine-tunes a large language 132

model (LLM) to reason over feasible compositions 133

of KB elements based on their underlying schema 134

contexts. As Figure 1 shows, we feed the input 135

question, the retrieved candidate relations and enti- 136

ties, plus their corresponding schema contexts, i.e., 137

the (domain and range) classes of the relations and 138

entities, into the LLM for logical form generation. 139

The domain and range classes of a relation refer to 140

the classes to which its subject and object entities 141

belong. Together with the class of the candidate 142

entities, they provide explicit training signals to 143

guide the LLM to look for KB elements that can 144

be connected together (and hence are more likely 145

to form executable logical forms). As a result, our 146

SLFG module generalizes to compositions of KB 147

elements unseen at training. 148

To summarise: (1) We introduce SG-KBQA to 149

solve the KBQA problem under non-I.I.D. settings, 150

where test input contains unseen schema items or 151

their compositions during training. (2) We intro- 152

duce schema-guided modules for entity retrieval 153

and logical form generation with deferring entity 154

disambiguation to enhance both compositional and 155

zero-shot generalization. These modules can also 156

be incorporated into existing SP-based KBQA sys- 157

tems to improve their generalization performance. 158

(3) We conduct experiments on two popular bench- 159

mark datasets and find SG-KBQA outperforming 160

SOTA models on both datasets. In particular, on 161

non-i.i.d GrailQA our model tops all three leader- 162

boards for the overall, zero-shot, and compositional 163

generalization settings, outperforming SOTA mod- 164

els by 3.3%, 2.9%, and 4.0% (F1) respectively. 165
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2 Related Work166

Knowledge Graph Question Answering Early167

KBQA solutions can be widely categorized as infor-168

mation retrieval-based (IR-based) (He et al., 2021;169

Zhang et al., 2022) or semantic parsing-based (SP-170

based) solutions (Cao et al., 2022; Ye et al., 2022).171

Benefiting from the strong natural language un-172

derstanding and reasoning abilities of LLMs, recent173

LLM-based KBQA methods have achieved promis-174

ing results. A branch of work employs LLMs to175

produce reasoning trajectories or step-by-step tool176

invocation over a question-specific subgraph to ob-177

tain question answers, assuming that topic entities178

are given (Sun et al., 2024; Luo et al., 2024b; Sui179

et al., 2025).180

Others follow the SP-based paradigm, us-181

ing LLMs to generate approximate logical form182

sketches through few-shot in-context learning or183

fine-tuning (Cao et al., 2022; Li et al., 2023, 2024;184

Luo et al., 2024a; Wang and Qin, 2024). The in-185

accurate or ambiguous KB elements in the gener-186

ated sketches are further refined through a retrieval187

stage, aligning them with actual KB elements to188

construct complete logical forms.189

However, these methods often fail to general-190

ize over test questions that refer to KB elements191

or their compositions unseen during training, or192

when the topic entities are not known. Our SG-193

KBQA improves KBQA generalizability through a194

schema-guided approach. While we also use LLMs195

to generate logical form sketches, we incorporate196

retrieved relations to guide sketch generation for197

entity mention extraction, thereby improving the198

generalizability of entity retrieval, while we do not199

refine these sketches to produce the final output200

logical forms.201

KBQA under Non-I.I.D. Settings Studies con-202

sidering non-I.I.D. settings can be largely classified203

into ranking-based and generation-based methods.204

Ranking-based methods (Gu et al., 2021, 2023)205

start from retrieved entities, traverse the KB, and206

construct the target logical form by ranking the207

traversed paths.208

Generation-based methods transform an input209

question into a logical form using a Seq2Seq model210

(e.g., T5 (Raffel et al., 2020)). They often use211

additional contexts beyond the question to augment212

the input of the Seq2Seq model and enhance its213

generalizability. For example, Ye et al. (2022) use214

the top-5 candidate logical forms enumerated from215

the retrieved entities. Shu et al. (2022) further use216

top-ranked relations, disambiguated entities, and 217

classes (retrieved separately). Zhang et al. (2023) 218

use connected pairs of retrieved KB elements. 219

Our SG-KBQA adopts a generation-based ap- 220

proach, training the LLM to reason over candidate 221

entities and relations, using their schema contexts 222

(i.e., classes) to infer connectivity. This enables 223

the model to compose novel logical forms without 224

seeing them at training, hence generalizing better 225

in larger, noisier search spaces. Additionally, we 226

defer entity disambiguation to the generation stage, 227

mitigating error propagation caused by early dis- 228

ambiguation without context. 229

KBQA Entity Retrieval KBQA entity retrieval 230

typically has three steps: entity mention detection, 231

candidate entity retrieval, and entity disambigua- 232

tion. BERT (Devlin et al., 2019)-based named en- 233

tity recognition is used for entity mention detection 234

from input questions. To retrieve KB entities for the 235

entity mentions, the FACC1 dataset (Gabrilovich 236

et al., 2013) is often used, with over 10 billion 237

surface forms and popularity scores of Freebase 238

entities. Gu et al. (2021) use popularity scores for 239

entity disambiguation, while Ye et al. (2022) and 240

Shu et al. (2022) adopt a BERT reranker. 241

3 Preliminaries 242

A graph structured-KB G is composed of a set of 243

relational facts {⟨s, r, o⟩|s ∈ E , r ∈ R, o ∈ E ∪ 244

L} and an ontology {⟨cd, r, cr⟩|cd, cr ∈ C, r ∈ 245

R}. Here, E denotes a set of entities, R a set of 246

relations, and L a set of literals, e.g., textual labels 247

or numerical values. In a relational fact ⟨s, r, o⟩, 248

s ∈ E is the subject, o ∈ E ∪ L is the object, and 249

r ∈ R represents the relation between the two. 250

The ontology defines the rules governing the 251

composition of relational facts within G: C denotes 252

a set of classes, each of which defines a set of 253

entities (or literals) sharing common properties (re- 254

lations). Note that an entity can belong to multiple 255

classes. In an ontology triple ⟨cd, r, cr⟩, cd is the 256

domain class, i.e., the class of subject entities that 257

satisfy relation r; cr is the range class, i.e., the 258

class of object entities or literals satisfying r. Each 259

ontology triple can be instantiated a set of relational 260

facts, with an example provided in Appendix A. 261

Problem Statement Given a KB G and a ques- 262

tion q expressed in natural language, i.e., a se- 263

quence of word tokens, KBQA aims to find a subset 264

(the answer set) A ⊆ E∪L of elements from G that 265
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Question q:  Who is the author of Harry Potter?

     Logical Form Sketch Parser Logical Form Sketches
(AND <class> (JOIN (R 

<relation> ) [ Harry Potter ] ))
       Candidate Entity Retrieval

Harry Potter   m.078ffw    literary_series
Harry Potter   m.03647x   characterEntity Ranker

Schema-guided Entity Retrieval

Schema-guided Logical Form Generation

q [D]   cd   [N]   r   [R]   cr [ID]   ide   [N]   namee   [C]   Ce     CR    

 Logical Form: (AND book.author (JOIN (R book.literary_series.author ) m.078ffw ))

Relation 1
Domain Class
Range Class

book.author.works_written
book.author
book.written_work

book.literary_series.author
book.literary_series
book.author

Relation 2
Domain Class
Range Class

Relation Retrieval

Large Language Model

Rq

Eq

1
2

3

4

5

Defer Entity Disambiguation

Figure 2: Overview of SG-KBQA. The model consists of two novel modules: schema-guided entity retrieval
(SER) and schema-guided logical form generation (SLFG). Given a question q, the model first retrieves and ranks
candidate relations ( 1⃝). In SER, q and the top-ranked relations Rq are used to generate logical form sketches and
extract entity mentions ( 2⃝). Based on these mentions and Rq , the model retrieves and ranks candidate entities ( 3⃝),
producing the top entities Eq ( 4⃝). Entity disambiguation is deferred by directly passing Eq to SLFG. In SLFG, q,
Rq , Eq , and their class contexts are fed into a fine-tuned language model for logical form generation ( 5⃝).

— with optional application of some aggregation266

functions (e.g., COUNT) — answers q.267

Logical Form We approach the KBQA problem268

by translating question q into a structured query269

that can be executed on G to fetch the answer set270

A. Following previous works (Shu et al., 2022;271

Gu et al., 2023; Zhang et al., 2023), we use logical272

form as the structured query language, expressed in273

S-expression (Gu et al., 2021). S-expression offers274

a readable representation well-suited for KBQA. It275

uses set semantics where functions operate on enti-276

ties or entity tuples without requiring variables (Ye277

et al., 2022), with more details in Appendix A.278

4 The SG-KBQA Model279

SG-KBQA takes a generation-based approach280

overall. It introduces two novel modules: Schema-281

guided Entity Retrieval (SER) and Schema-guided282

Logical Form Generation (SLFG), designed to en-283

hance generalizability and shown in Figure 2.284

SG-KBQA starts with relation retrieval, where285

a BERT-based relation ranking model retrieves can-286

didate relations and entities from the KB G that are287

potentially relevant to the question q.288

In SER, q and the top-ranked candidate relations289

are passed into a logical form parser (i.e. a Seq2Seq290

model) to generate logical form sketches that con-291

tain entity mentions while masking out relations292

and classes. The retrieved relations provide the293

most relevant—and potentially unseen—relations294

as additional schema context, enabling the model 295

to identify boundaries of entity mentions more ac- 296

curately as explained in Section 1. We then har- 297

vest these entity mentions and use them to retrieve 298

candidate entities from G, thereby improving the 299

non-I.I.D. generalizability of entity retrieval. 300

To further improve the accuracy of entity re- 301

trieval, we propose a combined schema-based prun- 302

ing strategy to filter out unlikely candidates, as a 303

single mention may correspond to multiple enti- 304

ties. The remaining entities are then ranked by 305

a BERT-based model, which estimates the likeli- 306

hood of each entity being the correct match for a 307

mention. Leveraging relations—a type of schema 308

item—to guide both entity mention extraction and 309

candidate entity pruning enhances model generaliz- 310

ability over entities unseen at training. This in turn 311

helps logical form generation to filter false positive 312

matches for unseen relations or their compositions. 313

In SLFG, SG-KBQA feeds q, the top-ranked 314

relations and entities (corresponding to each men- 315

tion), and the schema contexts, i.e., their class in- 316

formation, into an adapted LLM to generate the 317

logical form and produce answer set A. SLFG is 318

novel in that it takes (1) multiple candidate enti- 319

ties (instead of one in existing models) for each 320

mention and (2) the schema contexts as the input. 321

By deferring entity disambiguation to the gener- 322

ation stage, our approach helps mitigate error prop- 323

agation that often arises from early-stage disam- 324
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biguation. This strategy also brings challenges, as325

the extra candidate entities (which often share the326

same or similar names) introduce noise in SLFG.327

To address this and enhance generalizability to328

unseen compositions of KB elements, we incorpo-329

rate schema context in SLFG. The LLM is fine-330

tuned to generate logical forms that consist of valid331

KB element compositions, as connected based on332

the (domain and range) classes of the relations and333

entities. As a result, the model is able to select cor-334

rect compositions from a noisy KB element space,335

even under non-i.i.d settings.336

4.1 Relation Retrieval337

For relation retrieval, we follow TIARA (Shu et al.,338

2022) for its high accuracy. We extract a set Rq339

of top-kR (system parameter) relations with the340

highest semantic similarity to q. This is done by341

a BERT-based cross-encoder to learn the semantic342

similarity between q and a relation r ∈ R:343

sim(q, r) = LINEAR(BERTCLS([q; r])), (1)344

where ‘;’ denotes concatenation. This model is345

trained with the sentence-pair classification objec-346

tive (Devlin et al., 2019), where a relevant question-347

relation pair has a similarity of 1, and 0 otherwise.348

4.2 Schema-guided Entity Retrieval349

Entity Mention Detection Given Rq, we pro-350

pose a schema-guided logical form sketch parser351

to parse q into a logical form sketch s. Entity men-352

tions in q are extracted from s.353

The parser is an adapted Seq2Seq model. The354

model input of each training sample takes the355

form of “q <relation> r1; r2; . . . ; rkR” (ri ∈ Rq,356

hence “relation-guided”). In the ground-truth log-357

ical form corresponding to q, we mask the rela-358

tions, classes, and literals with special tokens ‘<re-359

lation>’, ‘<class>’, and ‘<literal>’, to form the360

ground-truth logical form sketch s. Entity IDs are361

also replaced by the corresponding entity names362

(entity mentions), to enhance the Seq2Seq model’s363

understanding of the semantics of entities.364

At model inference, from the output top-kL (sys-365

tem parameter) logical form sketches (using beam366

search), we extract the entity mentions.367

Candidate Entity Retrieval We follow previ-368

ous studies (Faldu et al., 2024; Luo et al., 2024a;369

Shu et al., 2022) and use an entity name dictionary370

FACC1 (Gabrilovich et al., 2013) to map extracted371

entity mentions to entities (i.e., their IDs in KB),372

Figure 3: Candidate entity retrieval for ‘Harry Potter’.
The candidate entity in red is the ground-truth.

although other retrieval models can be used. Since 373

different entities may share the same name, the en- 374

tity mentions may be mapped to many entities. For 375

pruning, existing studies use popularity scores of 376

the entities (Shu et al., 2022; Ye et al., 2022). 377

To improve the recall, we propose a combined 378

pruning strategy based on both popularity and rela- 379

tions. As Figure 3 shows, we first select the top-kE1 380

(system parameter) entities for each mention based 381

on popularity and then extract kE2 (system parame- 382

ter) entities from the remaining candidates that are 383

connected to the retrieved relations Rq. Together, 384

these form the candidate entity set Ec. 385

Entity Ranking We follow existing works (Shu 386

et al., 2022; Ye et al., 2022) to score and rank each 387

candidate entity in Ec by jointly encoding q and the 388

context (entity name and its linked relations) of the 389

entity using a cross-encoder (like Eq. 1). We select 390

the top-kE3 (system parameter) ranked entities for 391

each mention as the entity set Eq for each question. 392

4.3 Schema-Guided Logical Form Generation 393

Given relations Rq and entities Eq, we fine-tune an 394

open-souce LLM (LLaMA3.1-8B (Touvron et al., 395

2023) by default) to generate the final logical form. 396

Before being fed into the model, each relation 397

and entity is augmented with its class information 398

to help the model learn their connections and gen- 399

eralize to unseen entities, relations, or their compo- 400

sitions. The context of a relation r is described by 401

concatenating its domain class cd and range class 402

cr, formatted as “[D] cd [N] r [R] cr”. For an entity 403

e, its context is described by its ID (“ide”), name 404

(“namee”), and the intersection between its set 405

of classes Ce and the set of all domain and range 406

classes CR of all relations in Rq, formatted as “[ID] 407

ide [N] namee [C] class(Ce ∩ CR)”. 408

As Figure 2 shows, we construct the input to the 409

logical form generation model by concatenating 410

q with the context of each relation in Rq and the 411
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context of each entity in Eq. The model is fine-412

tuned with a cross-entropy-based objective:413

Lgenerator = −
n∑

t=1

log p (lt | l<t, q,Kq) , (2)414

where l denotes a logical form of n tokens and lt415

is its t-th token, and Kq is the retrieved knowledge416

(i.e., relations and entities with class contexts) for q.417

At inference, the model runs beam search to gener-418

ate top-kO logical forms – the executable one with419

the highest score is the output. See Appendix B for420

a prompt example used for inference.421

It is possible that no generated logical forms422

are executable. In this case, we fall back to fol-423

lowing Shu et al. (2022) and Ye et al. (2022) and424

retrieve candidate logical forms in two stages: enu-425

meration and ranking. During enumeration, we426

traverse the KB starting from the retrieved entities.427

Due to the exponential growth in the candidate428

paths with each hop, we start from the top-1 entity429

for each mention and examine its neighborhood for430

up to two hops. The paths are converted into log-431

ical forms. During ranking, a BERT-based ranker432

scores q and each logical form l (like Eq. 1). We433

train the ranker using a contrastive objective:434

L = − exp(sim(q, l∗))

exp(sim(q, l∗)) +
∑

l∈Cl∧l ̸=l∗ exp(sim(q, l))
, (3)435

where l∗ is the ground-truth logical form and Cl436

is the set of enumerated logical forms. The top-437

ranked, executable logical form is returned.438

5 Experiments439

We run experiments to answer: Q1: How does SG-440

KBQA improve generalizability compared with441

SOTA models? Q2: How do model components442

contribute to generalizability? Q3: How can our443

techniques enhance existing models?444

5.1 Experimental Setup445

Datasets Following SOTA competitors (Shu446

et al., 2022; Gu et al., 2023; Zhang et al., 2023), we447

use two benchmark datasets built upon Freebase.448

GrailQA (Gu et al., 2021) is a dataset for evalu-449

ating the generalizability of KBQA models. It has450

64,331 questions with target S-expressions, includ-451

ing complex questions requiring up to 4-hop reason-452

ing over the KG. The dataset comes with training453

(70%), validation (10%), and test (20%, hidden and454

only known by the leaderboard organizers) sets. In455

the validation and the test sets, 50% of the ques-456

tions include KB elements that are unseen in the457

training set (zero-shot generalization tests), 25% 458

consist of unseen compositions of KB elements 459

seen in the training set (compositional generaliza- 460

tion tests), and the remaining 25% are randomly 461

sampled from the training set (I.I.D. tests). 462

WebQuestionsSP (WebQSP) (Yih et al., 2016) 463

is a dataset for the I.I.D. setting. While our focus 464

is on non-I.I.D. settings, we include results on this 465

dataset to show the general applicability of SG- 466

KBQA. WebQSP contains 4,937 questions. More 467

details of WebQSP are included in Appendix C. 468

Competitors We compare with both IR-based 469

and SP-based methods including the SOTA models. 470

On GrailQA, we compare with models that top 471

the leaderboard1, including RnG-KBQA (Ye et al., 472

2022), TIARA (Shu et al., 2022), DecAF (Yu 473

et al., 2023), Pangu (SOTA before SG-KBQA, 474

as of 19th May, 2025) (Gu et al., 2023), FC- 475

KBQA (Zhang et al., 2023), TIARA+GAIN (Shu 476

and Yu, 2024), and RetinaQA (Faldu et al., 477

2024). We also compare with few-shot LLM-based 478

(training-free) methods: KB-BINDER (6)-R (Li 479

et al., 2023), Pangu (Gu et al., 2023), and FlexK- 480

BQA (Li et al., 2024). These models are SP-based. 481

On the non-I.I.D. GrailQA, IR-based methods are 482

uncompetitive and excluded. 483

On WebQSP, we compare with IR-based models 484

SR+NSM (Zhang et al., 2022), UNIKGQA (Jiang 485

et al., 2023), and EPR+NSM (Ding et al., 486

2024), plus LLM-based supervised fine-tuning 487

(SFT) models including ChatKBQA (SOTA) (Luo 488

et al., 2024a), TFS-KBQA (SOTA) (Wang and 489

Qin, 2024) and RoG (Luo et al., 2024b). We 490

also compare with few-shot LLM-based meth- 491

ods: KB-Binder (6)-R, Pangu (Codex), FlexKBQA, 492

ToG (Sun et al., 2024) and FiDeLiS (Sui et al., 493

2025). Appendix D details these models. The base- 494

line results are collected from their papers or the 495

GrailQA leaderboard (when available). 496

Implementation Details All our experiments are 497

run on a machine with an NVDIA A100 GPU 498

and 120 GB of RAM. For each dataset, a T5-base 499

model is fine-tuned for 5 epochs as our logical 500

form sketch parser. We fine-tune a LLaMA3.1- 501

8B with LoRA (Hu et al., 2022a) for 5 epochs on 502

GrailQA and 20 epochs on WebQSP to serve as 503

the logical form generator. Our system parameters 504

are selected empirically. There are only a small 505

number of parameters to consider. As shown in 506

1https://dki-lab.github.io/GrailQA/
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Overall I.I.D. Compositional Zero-shot
Model EM F1 EM F1 EM F1 EM F1

SP-based
(SFT)

RnG-KBQA (ACL 2021) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
TIARA (EMNLP 2022) 73.0 78.5 87.8 90.6 69.2 76.5 68.0 73.9
Decaf (ICLR 2023) 68.4 78.7 84.8 89.9 73.4 81.8 58.6 72.3
Pangu (T5-3B) (ACL 2023) 75.4 81.7 84.4 88.8 74.6 81.5 71.6 78.5
FC-KBQA (ACL 2023) 73.2 78.7 88.5 91.2 70.0 76.7 67.6 74.0
TIARA+GAIN (EACL 2024) 76.3 81.5 88.5 91.2 73.7 80.0 71.8 77.8
RetinaQA (ACL 2024) 74.1 79.5 - - 71.9 78.9 68.8 74.7

SP-based
(Few-shot)

KB-Binder (6)-R (ACL 2023) 53.2 58.5 72.5 77.4 51.8 58.3 45.0 49.9
Pangu (Codex) (ACL 2023) 56.4 65.0 67.5 73.7 58.2 64.9 50.7 61.1
FlexKBQA (AAAI 2024) 62.8 69.4 71.3 75.8 59.1 65.4 60.6 68.3

Ours
(SFT)

SG-KBQA 79.1 84.4 88.6 91.6 77.9 85.1 75.4 80.8
- Improvement +3.6% +3.3% +0.1% +0.4% +4.4% +4.0% +5.0% +2.9%

Table 1: Hidden test results (%) on GrailQA (best results are in boldface; best baseline results are underlined; “SFT”
means supervised fine-tuning; “few-shot” means few-shot in-context learning).

Model F1

IR-based
SR+NSM (ACL 2022) 69.5
UniKGQA (ICLR 2023) 75.1
EPR+NSM (WWW 2024) 71.2

LLM-based
(SFT)

Pangu (T5-3B) (ACL 2023) 79.6
RoG (ICLR 2024) 69.8
ChatKBQA (ACL 2024) 79.8
TFS-KBQA (LREC-COLING 2024) 79.9

LLM-based
(Few-shot)

KB-Binder (6)-R (ACL 2023) 53.2
Pangu (Codex) (ACL 2023) 54.5
FlexKBQA (AAAI 2024) 60.6
ToG (ICLR 2024) 69.5
FiDeLiS (ACL 2025) 78.3

Ours
(SFT)

SG-KBQA 80.3
- Improvement +0.5%

Table 2: Test results (%) on WebQSP (I.I.D.).

the parameter study in Appendix H, our model per-507

formance shows stable patterns against the choice508

of parameter values. The parameter values do not509

take excessive fine-tuning. More implementation510

details are in Appendix E.511

Evaluation Metrics On GrailQA, we report the512

exact match (EM) and F1 scores, following the513

leaderboard. EM counts the percentage of test sam-514

ples where the model generated logical form (an515

S-expression) that is semantically equivalent to the516

ground truth. F1 measures the answer set correct-517

ness, i.e., the F1 score of each answer set, average518

over all test samples. On WebQSP, we report the F1519

score as there are no ground-truth S-expressions.520

5.2 Overall Results (Q1)521

Tables 1 and 2 show the overall comparison of SG-522

KBQA with the baseline models for GrailQA and523

WebQSP, respectively. SG-KBQA shows the best524

results across both datasets. 525

Results on GrailQA On the overall hidden test 526

set of GrailQA, SG-KBQA outperforms the best 527

baseline Pangu by 4.9% and 3.3% in EM and F1 528

scores. While the performance improvement in the 529

I.I.D. setting is smaller, SG-KBQA achieves sub- 530

stantial gains in non-i.i.d scenarios. For example, 531

under the compositional generalization setting, it 532

increases EM by 4.4% and F1 by 4.0% over the best 533

baseline models. Notably, under non-I.I.D. settings, 534

the improvement in EM is consistently larger than 535

that in F1, indicating that SG-KBQA is more capa- 536

ble of generating logical forms that precisely match 537

both the questions and the KB schema, thanks to 538

the class information that indicate the connections 539

between the KB elements. 540

Most few-shot LLM-based competitors are gen- 541

erally not very competitive, especially under the 542

non-I.I.D. settings. FiDeLiS, a recent work, 543

achieves results that are close to the SOTA super- 544

vised fine-tuning model under the I.I.D. setting 545

(within 2 F1 points). This suggests that LLMs, 546

when guided with appropriate intermediate reason- 547

ing steps, hold promising potential for KBQA. 548

Results on WebQSP On WebQSP, which has 549

an I.I.D. test set, the performance gap of different 550

models are closer. Even in this case, SG-KBQA 551

still performs the best, showing its applicability. 552

Comparing with TFS-KBQA (SOTA) and ChatK- 553

BQA, SG-KBQA improves the F1 score by 0.5%. 554

Among IR-based methods, UniKGQA (SOTA) still 555

performs much worse than SG-KBQA. The lower 556

performance of IR-based methods is consistent 557

with existing results (Gu et al., 2022). 558
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Model

GrailQA WebQSP

Overall I.I.D. Comp. Zero. Overall

SG-KBQA 88.5 94.6 83.6 87.9 80.3
w/o SER 84.9 91.9 79.6 84.0 78.1
w/o DED 87.8 94.0 82.4 87.2 78.2
w/o SC 79.2 92.9 77.4 73.9 77.1

Table 3: Ablation study results (F1 score) on the valida-
tion set of GrailQA and the test set of WebQSP.

5.3 Ablation Study (Q2)559

Next, we run an ablation study with the follow-560

ing variants of SG-KBQA: w/o SER replaces our561

schema-guided entity retrieval with the entity link-562

ing results from TIARA (Shu et al., 2022) which is563

commonly used in the baselines (Gu et al., 2023;564

Faldu et al., 2024); w/o DED uses the top-1 candi-565

date entity for each entity mention without defer-566

ring entity disambiguation; w/o SC omits schema567

contexts (classes) from logical form generation.568

Table 3 shows the results on the validation set569

of GrailQA and the test set of WebQSP. Only F1570

scores are reported for conciseness, as the EM571

scores on GrailQA exhibit similar comparative572

trends and are provided in Appendix F.573

Schema-guided Entity Retrieval SG-KBQA574

w/o SER results drops in F1 by 4.0 and 3.9 points575

under the compositional and zero-shot generaliza-576

tion settings, respectively. This indicates that incor-577

porating retrieved relations helps the model more578

accurately identify them and entity mention bound-579

aries in questions involving unseen relations. Since580

the entity retrieval results directly serve as input581

to the generation stage, this improvement further582

enhances the model’s overall generalization perfor-583

mance under non-I.I.D. settings. More discussion584

on entity retrieval results and a case study are pro-585

vided in Appendix L and Appendix J, respectively.586

Schema-guided Logical Form Generation SG-587

KBQA w/o DED (with schema contexts) reduces588

the F1 scores on both datasets, demonstrating the589

effectiveness of our DED strategy in reducing error590

propagation between the retrieval and generation591

stages. Meanwhile, SG-KBQA w/o SC (with de-592

ferred entity disambiguation but no class informa-593

tion) has the most significant drops in F1 under the594

compositional (7.2) and zero-shot (14.0) tests. This595

highlights the contribution of class information in596

enabling the model to understand the connections597

among retrieved KB elements, thereby facilitating598

the generation of correct logical forms. A case599

Model Overall I.I.D. Comp. Zero.

TIARA (T5-base) 81.9 91.2 74.8 80.7
w SER 84.3 92.3 78.1 83.3
w DED & SC 85.6 92.3 79.8 85.0

SG-KBQA 88.5 94.6 83.6 87.9
w T5-base 84.9 92.6 81.0 83.3

Table 4: Module applicability results (F1 score) on the
validation set of GrailQA. EM scores are in Appendix G.

study illustrating the schema-guided logical form 600

generation module is provided in Appendix J. 601

5.4 Module Applicability (Q3) 602

Our entity retrieval module SER and logical form 603

generation module DED & SC can be applied to 604

existing models to improve their generalizability 605

under non-I.I.D. settings. We showcase such appli- 606

cability with TIARA. As shown in Table 4, replac- 607

ing TIARA’s retrieval and generation modules with 608

our schema-guided counterparts leads to F1 score 609

improvements of up to 5.0 and 4.3 points in the 610

compositional and zero-shot settings, respectively. 611

Table 4 further reports F1 scores of SG- 612

KBQA when replacing LLaMA3.1-8B with T5- 613

base (which is used by TIARA) for logical form 614

generation. We see that, even with the same T5- 615

base model for the logical form generator, SG- 616

KBQA outperforms TIARA consistently. This 617

further confirms that the performance gains come 618

from the incorporation of the class contexts instead 619

of a more advanced backbone model. 620

We also have results on parameter impact, model 621

running time, a case study, and error analyses. They 622

are documented in Appendices H to K. 623

6 Conclusion 624

We proposed SG-KBQA for the KBQA task. Our 625

core innovations include: (1) using relation to guide 626

the retrieval of entities; (2) deferring entity disam- 627

biguation to the logical form generation stage; and 628

(3) enriching logical form generation with schema 629

(class) contexts indicate KB element connections. 630

Together, we achieve a model that tops the leader- 631

board of a popular non-I.I.D. dataset GrailQA, out- 632

performing SOTA models by 4.0%, 2.9%, and 3.3% 633

in F1 under compositional generalization, zero-shot 634

generalization, and overall test settings, respec- 635

tively. Our model also performs well in the I.I.D. 636

setting, outperforming SOTA models on WebQSP. 637
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Limitations638

Like any other supervised models, SG-KBQA re-639

quires annotated samples for training which may640

be difficult to obtain for many domains. Exploit-641

ing LLMs to generate synthetic training data is a642

promising direction to address this issue.643

Also, as discussed in the error analysis in Ap-644

pendix K, errors can still arise from the relation re-645

trieval, entity retrieval, and logical form generation646

modules. There are rich opportunities in further647

strengthening these modules. As we start from rela-648

tion extraction, the overall model accuracy relies on649

highly accurate relation extraction. It would be in-650

teresting to explore how well SG-KBQA performs651

on even larger KBs with more relations.652

We further noted several recent works in this653

highly competitive area, e.g., READS (Xu et al.,654

2025a) and MemQ (Xu et al., 2025b), which fine-655

tune LLMs for reasoning trajectory generation or656

step-wise tool invocation based on given topic enti-657

ties. These studies represent parallel efforts to ours658

with a focus on I.I.D. settings. We plan to evalu-659

ate their performance in future work, particularly660

under settings where the topic entity is unavailable661

and in our non-I.I.D. scenarios.662

Ethics Statement663

This work adheres to the ACL Code of Ethics and664

is based on publicly available datasets, used in665

compliance with their respective licenses. As our666

data contains no sensitive or personal information,667

we foresee no immediate risks. To promote re-668

producibility and further research, we also open-669

source our code.670
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki- 798
data: A free collaborative knowledgebase. Commu- 799
nications of the ACM, 57(10):78–85. 800

Shouhui Wang and Biao Qin. 2024. No need for large- 801
scale search: Exploring large language models in 802
complex knowledge base question answering. In 803
LREC-COLING, pages 12288–12299. 804

Mufan Xu, Kehai Chen, Xuefeng Bai, Muyun Yang, 805
Tiejun Zhao, and Min Zhang. 2025a. LLM- 806
based Discriminative Reasoning for Knowledge 807
Graph Question Answering. arXiv preprint 808
arXiv:2412.12643. 809

Mufan Xu, Gewen Liang, Kehai Chen, Wei Wang, Xun 810
Zhou, Muyun Yang, Tiejun Zhao, and Min Zhang. 811
2025b. Memory-augmented Query Reconstruction 812
for LLM-based Knowledge Graph Reasoning. arXiv 813
preprint arXiv:2503.05193. 814

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, 815
and Caiming Xiong. 2022. RnG-KBQA: Genera- 816
tion augmented iterative ranking for knowledge base 817
question answering. In ACL, pages 6032–6043. 818

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming- 819
Wei Chang, and Jina Suh. 2016. The value of se- 820
mantic parse labeling for knowledge base question 821
answering. In ACL, pages 201–206. 822

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, 823
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William 824
Wang, Zhiguo Wang, and Bing Xiang. 2023. De- 825
cAF: Joint decoding of answers and logical forms for 826
question answering over knowledge bases. In ICLR. 827

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie 828
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph 829
retrieval enhanced model for multi-hop knowledge 830
base question answering. In ACL, pages 5773–5784. 831

Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao, 832
Xinmei Huang, Cuiping Li, Hong Chen, and Juanzi 833
Li. 2023. FC-KBQA: A fine-to-coarse composition 834
framework for knowledge base question answering. 835
In ACL, pages 1002–1017. 836

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, 837
Jingfang Xu, and Xiaoyan Zhu. 2018. Commonsense 838
knowledge aware conversation generation with graph 839
attention. In IJCAI, pages 4623–4629. 840

10



A Basic Concepts841

book.written_work.part_of_series

book.literary_series.author

book.literary_series.author
book.literary_series book.author

J. K. Rolwing
m.042xh

Harry Potter
m.078ffw

book.written_work.author
Harry Potter and..... 

m.01m5g

book.written_work.part_of_series book.written_work.author

book.written_work

Knowledge Base:

Ontology:

Figure 4: A subgraph of Freebase (top) and its corre-
sponding ontology (bottom).

Ontology As shown in Figure 4, an ontology842

triple example is:843

book.literary_series,844
book.literary_series.author,845
book.author846

An instance of it is:847

Harry Potter,848
book.literary_series.author,849
J.K. Rowling850

Here, Harry Potter is an entity that belongs to851

class book.literary_series; J.K. Rowling is an852

entity that belongs to class book.author.853

S-expressions S-expressions (Gu et al., 2021)854

use set-based semantics defined over a set of oper-855

ators and operands. The operators are represented856

as functions. Each function takes a number of argu-857

ments (i.e., the operands). Both the arguments and858

the return values of the functions are either a set of859

entities or entity tuples (or tuples of an entity and860

a literal). The functions available in S-expressions861

are listed in Table 5, where a set of entities typically862

refers to a class (recall that a class is defined as a863

set of entities sharing common properties) or indi-864

vidual entities, and a binary tuple typically refers865

to a relation.866

B Prompt Example867

We show an example prompt to our fine-tuned868

LLM-based logical form generator containing top-869

20 relations and top-2 entities per mention retrieved870

by our model in Table 6.871

C Additional Details on the WebQSP 872

Dataset 873

WebQuestionsSP (WebQSP) (Yih et al., 2016) is 874

an I.I.D. dataset. It contains 4,937 questions col- 875

lected from Google query logs, including 3,098 876

questions for training and 1,639 for testing, each 877

annotated with a target SPARQL query. We follow 878

GMT-KBQA (Hu et al., 2022b), TIARA (Shu et al., 879

2022) to separate 200 questions from the training 880

questions to form the validation set. 881

D Baseline Models 882

The following models are tested against SG- 883

KBQA on the GrailQA dataset: 884

• RnG-KBQA (Ye et al., 2022) enumerates and 885

ranks all possible logical forms within two 886

hops from the entities retrieved by an entity 887

retrieval step. It uses a Seq2Seq model to 888

generate the target logical form based on the 889

input question and the top-ranked candidate 890

logical forms. 891

• TIARA (Shu et al., 2022) shares the same 892

overall procedure with RnG-KBQA. It further 893

retrieves entities, relations, and classes based 894

on the input question and feeds these KB ele- 895

ments into the Seq2Seq model together with 896

the question and the top-ranked candidate log- 897

ical forms to generate the target logical form. 898

• TIARA+GAIN (Shu and Yu, 2024) enhances 899

TIARA using a training data augmentation 900

strategy. It synthesizes additional question- 901

logical form pairs for model training to en- 902

hance the model’s capability to handle more 903

entities and relations. This is done by a graph 904

traversal to randomly sample logical forms 905

from the KB and a PLM to generate questions 906

corresponding to the logical forms (i.e., the 907

“GAIN” module). TIARA+GAIN is first tuned 908

using the synthesized data and then tuned on 909

the target dataset, for its retriever and genera- 910

tor modules which both use PLMs. 911

• Decaf (Yu et al., 2023) uses a Seq2Seq model 912

that takes as input a question and a linearized 913

question-specific subgraph of the KG and 914

jointly decodes into both a logical form and 915

an answer candidate. The logical form is then 916

executed, which produces a second answer 917

candidate if successful. The final answer is 918
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Function Return value Description

(AND u1 u2) a set of entities The AND function returns the intersection of two sets u1 and u2

(COUNT u) a singleton set of integers The COUNT function returns the cardinality of set u
(R b) a set of (entity, entity) tuples The R function reverses each binary tuple (x, y) in set b to (y, x)
(JOIN b u) a set of entities Inner JOIN based on entities in set u and the second element of tuples in set b
(JOIN b1 b2) a set of (entity, entity) tuples Inner JOIN based on the first element of tuples in set b2 and the second element

of tuples in set b1
(ARGMAX u b)
(ARGMIN u b) a set of entities These functions return x in u such that (x, y) ∈ b and y is the largest / smallest

(LT b n)
(LE b n)
(GT b n)
(GE b n)

a set of entities These functions return all x such that (x, v) ∈ b and v < / ≤ / > / ≥ n

Table 5: Functions (operators) defined in S-expressions (u: a set of entities, b: a set of (entity, entity or literal) tuples,
n: a numerical value).

determined from these two answer candidates919

with a scorer model.920

• Pangu (Gu et al., 2023) formulates logical921

form generation as an iterative enumeration922

process starting from the entities retrieved923

by an entity retrieval step. At each iteration,924

partial logical forms generated so far are ex-925

tended following paths in the KB to generate926

more and longer partial logical forms. A lan-927

guage model is used to select the top partial928

logical forms to be explored in the next itera-929

tion, under either fined-tuned models (T5-3B)930

or few-shot in-context learning (Codex).931

• FC-KBQA (Zhang et al., 2023) employs an932

intermediate module to test the connectivity933

between the retrieved KB elements, and it934

generates the target logical form using the935

connected pairs of the retrieved KB elements936

through a Seq2Seq model.937

• RetinaQA (Faldu et al., 2024) is a two-branch938

model where one follows a ranking-based ap-939

proach while the other follows a sketch-filling-940

based logical form construction method. It941

then uses a discriminator to determine the final942

output logical form from the two branches.We943

note that while we also generate logical form944

sketches. Such sketches are used for entity945

mention detection only and is not used to form946

the final output logical forms directly, i.e., our947

method is not sketch-filling-based.948

• KB-BINDER (Li et al., 2023) uses a training-949

free few-shot in-context learning model based950

on LLMs. It generates a draft logical form by951

showcasing the LLM examples of questions952

and logical forms (from the training set) that953

are similar to the given test question. Subse- 954

quently, a retrieval module grounds the sur- 955

face forms of the KB elements in the draft 956

logical form to specific KB elements. 957

• FlexKBQA (Li et al., 2024) considers lim- 958

ited training data and leverages an LLM to 959

generate additional training data. It samples 960

executable logical forms from the KB and uti- 961

lizes an LLM with few-shot in-context learn- 962

ing to convert them into natural language ques- 963

tions, forming synthetic training data. These 964

data, together with a few real-world training 965

samples, are used to train a KBQA model. 966

Then, the model is used to generate logical 967

forms with more real world questions (with- 968

out ground truth), which are filtered through 969

an execution-guided module to prune the er- 970

roneous ones. The remaining logical forms 971

and the corresponding real-world questions 972

are used to train a new model. This process is 973

repeated, to align the distributions of synthetic 974

training data and real-world questions. 975

The following models are tested against SG- 976

KBQA on the WebQSP dataset: 977

• Subgraph Retrieval (SR) (Zhang et al., 2022) 978

focuses on retrieving a KB subgraph relevant 979

to the input question. It does not concern re- 980

trieving the exact question answer by reason- 981

ing over the subgraph. Starting from the topic 982

entity, it performs a top-k beam search at each 983

step to progressively expand into a subgraph, 984

using a scorer module to score the candidate 985

relations to be added to the subgraph next. 986

• Evidence Pattern Retrieval (EPR) (Ding et al., 987

2024) aims to extract subgraphs with fewer 988
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Example Prompt

Please translate the following question into logical form using the provided relations and entities.

Question: Strong lyrics is the description of which video game rating?

Candidate relations with their corresponding Domain [D], Name [N], Range [R]:

[D] cvg.game_version
[N] cvg.game_version.rating
[R] cvg.computer_game_evaluation;

[D] cvg.computer_game_rating
[N] cvg.computer_game_rating.rating_system
[R] cvg.computer_game_rating_system;

[D] cvg.computer_game_rating_system
[N] cvg.computer_game_rating_system.content_descriptors
[R] cvg.computer_game_content_descriptors

...(Continue in the same manner for additional relations)

Candidate entities with their corresponding id [ID], Name [N], Class [C]:

[ID] m.042zlv3
[N] Strong lyrics
[C] cvg.computer_game_content_descriptors

...(Continue in the same manner for additional entities)

Table 6: Example prompt to our fine-tuned LLM-based logical form generator for an input question: Strong lyrics
is the description of which video game rating?

noise entities. It starts from the topic entities989

and expands by retrieving and ranking atomic990

(topic entity-relation or relation-relation) pat-991

terns relevant to the question. This forms a992

set of relation path graphs (i.e., the candidate993

evidence patterns). The relation path graphs994

are then ranked to select the most relevant995

one. By further retrieving the entities on the996

selected relation path graph, EPR obtains the997

final subgraph relevant to the input question.998

• Neural State Machine (NSM) (He et al., 2021)999

is a reasoning model to find answers for the1000

KBQA problem from a subgraph (e.g., re-1001

trieved by SR or EPR). It address the issue of1002

lacking intermediate-step supervision signals1003

when reasoning through the subgraph to reach1004

the answer entities. This is done by training1005

a so-called teacher model that follows a bidi-1006

rectional reasoning mechanism starting from1007

both the topic entities and the answer entities.1008

During this process, the “distributions” of en-1009

tities, which represent their probabilities to1010

lead to the answer entities (i.e., intermediate-1011

step supervision signal), are propagated. A1012

second model, the so-called student model,1013

learns from the teacher model to generate the 1014

entity distributions, with knowledge of the in- 1015

put question and the topic entities but not the 1016

answer entities. Once trained, this model can 1017

be used for KBQA answer reasoning. 1018

• UniKGQA (Jiang et al., 2023) integrates both 1019

retrieval and reasoning stages to enhance the 1020

accuracy of multi-hop KBQA tasks. It trains a 1021

PLM to learn the semantic relevance between 1022

every relation and the input question. The 1023

semantic relevance information is propagated 1024

and aggregated through the KB to form the 1025

semantic relevance between the entities and 1026

the input question. The entity with the highest 1027

semantic relevance is returned as the answer. 1028

• ChatKBQA (Luo et al., 2024a) fine-tunes an 1029

open-source LLM to map questions into draft 1030

logical forms. The ambiguous KB items in the 1031

draft logical forms are replaced with specific 1032

KB elements by a separate retrieval module. 1033

• TFS-KBQA (Wang and Qin, 2024) fine-tunes 1034

an LLM for more accurate logical form gener- 1035

ation with three strategies. The first strategy 1036

directly fine-tunes the LLM to map natural 1037
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language questions into draft logical forms1038

containing entity names instead of entity IDs.1039

The second strategy breaks the mapping pro-1040

cess into two steps, first to generate relevant1041

KB elements, and then to generate draft log-1042

ical forms using the KB elements. The third1043

strategy fine-tunes the LLM to directly gen-1044

erate the answer to an input question. After1045

applying the three fine-tuning strategies, the1046

LLM is used to map natural language ques-1047

tions into draft logical forms at model infer-1048

ence. A separate entity linking module is used1049

to further map the entity names in draft logical1050

forms into entity IDs.1051

• RoG (Luo et al., 2024b) fine-tunes an LLM1052

to generate relation paths grounded in the KB,1053

given an input question. These generated rela-1054

tion paths are then used to retrieve valid rea-1055

soning paths from the KB, enabling faithful1056

reasoning to derive the final answers.1057

• ToG (Sun et al., 2024) performs step-by-step1058

relation path selection using an LLM via few-1059

shot in-context learning. At each step, based1060

on newly extended paths, the model prompts1061

the LLM to either answer the question based1062

on the reasoning paths extended so far or con-1063

tinue with another step of path extension.1064

• FiDeLiS (Sui et al., 2025) combines semantic1065

similarity metrics with graph-based connec-1066

tivity to incrementally retrieve and extend rea-1067

soning paths. It further proposes Deductive-1068

Verification Beam Search (DVBS), which con-1069

verts the question into a declarative statement1070

and uses an LLM to verify — by combining1071

this statement with the current tail node of the1072

reasoning path — whether the current node1073

can be directly output as the answer or the1074

path should be further extended.1075

E Implementation Details1076

All our experiments are run on a machine with1077

an NVDIA A100 GPU and 120 GB of RAM. We1078

fine-tuned three bert-base-uncased models for1079

a maximum of three epochs each, for relation re-1080

trieval, entity ranking, and fallback logical form1081

ranking. For relation retrieval, we randomly sam-1082

ple 50 negative samples for each question to train1083

the model to distinguish between relevant and irrel-1084

evant relations.1085

For each dataset, a T5-base model is fine-tuned 1086

for 5 epochs as our logical form sketch parser, with 1087

a beam size of 3 (i.e., kL = 3) for GrailQA, and 4 1088

for WebQSP. For candidate entity retrieval, we use 1089

the same number (i.e., kE1 + kE2 = 10) of candi- 1090

date entities per mention as that used by the base- 1091

line models (Shu et al., 2022; Ye et al., 2022). The 1092

retrieved candidate entities for a mention consist of 1093

entities with the top-kE1 popularity scores and kE2 1094

entities connected to the top-ranked relations in Rq, 1095

where kE1 = 1, kE2 = 9 for GrailQA, kE1 = 3, 1096

kE2 = 7 for WebQSP. We select the top-20 (i.e., 1097

kR = 20) relations and the top-2 (i.e., kE3 = 2) 1098

entities (for each entity mention) retrieved by our 1099

model. For WebQSP, we also use the candidate 1100

entities obtained from the off-the-shelf entity linker 1101

ELQ (Li et al., 2020). 1102

Finally, we fine-tune LLaMA3.1-8B with 1103

LoRA (Hu et al., 2022a) for logical form gener- 1104

ation. On GrailQA, LLaMA3.1-8B is fine-tuned 1105

for 5 epochs with a learning rate of 0.0001. On We- 1106

bQSP, it is fine-tuned for 20 epochs with the same 1107

learning rate (as it is an I.I.D. dataset where more 1108

epochs are beneficial). During inference, we gener- 1109

ate logical forms by beam search with a beam size 1110

of 10 (i.e., KO = 10). The generated logical forms 1111

are executed on the KB to filter non-executable 1112

ones. If none of the logical forms are executable, 1113

we check candidate logical forms from the fallback 1114

procedures, and the result of the first executable 1115

one is returned as the answer set. 1116

Following our baselines (Shu et al., 2022; Gu 1117

et al., 2023; Faldu et al., 2024), all retrieval and 1118

generation models used in our approach are trained 1119

separately on the training sets of GrailQA and We- 1120

bQSP, and then evaluated on their respective vali- 1121

dation and test sets. Specifically, for GrailQA, we 1122

follow previous works (Shu et al., 2022; Gu et al., 1123

2023; Faldu et al., 2024) and adopt the official data 1124

splits described in Section 5.1 to evaluate general- 1125

ization under non-I.I.D. settings. For WebQSP, we 1126

use the same data splits (described in Appendix C) 1127

as in previous studies (Shu et al., 2022; Gu et al., 1128

2023; Luo et al., 2024a; Wang and Qin, 2024) to 1129

ensure fair comparison. 1130

Our system parameters are selected empirically. 1131

There are only a small number of parameters to 1132

consider. As shown in the parameter study later, our 1133

model performance shows stable patterns against 1134

the choice of parameter values. The parameter 1135

values do not take excessive fine-tuning. 1136
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Overall I.I.D. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1

SG-KBQA 85.1 88.5 93.1 94.6 78.4 83.6 84.4 87.9
w/o SER 81.0 84.9 90.1 91.9 73.9 79.6 80.0 84.0
w/o DED 84.3 87.8 92.6 94.0 77.1 82.4 83.7 87.2
w/o SC 76.6 79.2 91.7 92.9 72.3 77.4 71.7 73.9
w/o Fallback LF 81.8 84.6 92.8 94.1 77.3 81.8 78.7 81.5

Table 7: Ablation study results on the validation set of GrailQA.

Overall I.I.D. Compositional Zero-shot
Model EM F1 EM F1 EM F1 EM F1

TIARA (T5-base) 75.3 81.9 88.4 91.2 66.4 74.8 73.3 80.7
w SER 79.5 84.3 90.3 92.3 71.2 78.1 78.3 83.3
w DED & SC 79.9 85.6 88.6 92.3 72.7 79.8 79.0 85.0

SG-KBQA 85.1 88.5 93.1 94.6 78.4 83.6 84.4 87.9
w T5-base 80.6 84.9 89.9 92.6 73.8 81.0 79.4 83.3

Table 8: Full module applicability results on the validation set of GrailQA.

F Full Ablation Study Results (GrailQA)1137

Table 7 presents the full ablation study results on1138

the validation set of GrailQA. We observe a similar1139

trend to that of the F1 score results reported earlier1140

– all ablated model variants yield lower EM scores1141

compared to the full model.1142

For the schema-guieded entity retrieval mod-1143

ules, SER improves the F1 score by 3.7 points1144

and the EM score by 4.1 points on GrailQA (i.e.,1145

SG-KBQA vs. SG-KBQA w/o SER for overall1146

results), while achieving a 1.9-point increase in the1147

F1 score on WebQSP (see Table 7 earlier). It yields1148

an improvement of at least 3.9 F1 points and 4.51149

EM points on the compositional and zero-shot test1150

sets, which exceeds the gains observed on the I.I.D.1151

test set (2.5 F1 points and 3 EM points). This shows1152

that SER effectively enhances the generalization1153

capability of KBQA entity retrieval.1154

For the schema-guided logical form generation1155

module, SG-KBQA w/o DED negatively impacts1156

the F1 scores on both GrailQA and WebQSP, con-1157

firming that deferring entity disambiguation effec-1158

tively mitigate error propagation between the re-1159

trieval and generation stages. For SG-KBQA w/o1160

SC, it reduces the F1 score by 1.7 points and 3.21161

points on the GrialQA I.I.D. tests and on WebQSP.1162

The drop is more significant on the compositional1163

and zero-shot tests, i.e., by 6.2 points and 14.01164

points, respectively. This indicates that schema1165

context (classes) is essential for guiding the LLM to1166

reason over and identify the correct combinations1167

of KB elements that were unseen during training.1168

In Table 7, we present an additional model vari- 1169

ant, SG-KBQA w/o Fallback LF, which removes 1170

the fall back logical form generation strategy from 1171

SG-KBQA. We see that SG-KBQA has lower 1172

accuracy without the strategy. We note that this 1173

fallback strategy is not the reason why SG-KBQA 1174

outperforms the baseline models. TIARA also uses 1175

this fallback strategy, while RetinaQA uses the top 1176

executable logical form from the fallback strategy 1177

as one of the options to be selected by its discrimi- 1178

nator to determine the final logical form output. 1179

G Full Module Applicability Results 1180

To evaluate the applicability of our proposed mod- 1181

ules, we conduct a module applicability study with 1182

TIARA (an open-source baseline) and a different 1183

generation model T5-base. 1184

Table 8 reports the results. Replacing TIARA’s 1185

entity retrieval module with ours (TIARA w SER) 1186

helps boost the EM and F1 scores by 4.2 and 1187

2.4 points overall, comparing against the origi- 1188

nal TIARA model. This improvement is primarily 1189

from the tests with KB elements or compositions 1190

that are unseen at training, as evidenced by the 1191

larger performance gains on the compositional and 1192

zero-shot tests, i.e., 3.3 and 2.6 points in F1, respec- 1193

tively. Similar patterns are observed for TIARA 1194

w DED & SC that replaces TIARA’s logical form 1195

generation module with ours. These results demon- 1196

strate that our proposed modules can enhance the 1197

retrieval and generation steps of other compatible 1198

models, especially under non-I.I.D. settings. 1199

15



Further, using the same language model (i.e., T5-1200

base in TIARA) to form logical form generation1201

modules, our model SG-KBQA w T5-base still1202

outperforms TIARA by 5.3 points 3.0 points in1203

the EM and F1 scores for the overall tests. This1204

confirms that the overall effectiveness of our model1205

stems from its design rather than the use of a larger1206

model for logical form generation.1207

H Parameter Study1208

We conduct a parameter study to investigate the1209

impact of the choice of values for our system pa-1210

rameters. When the value of a parameter is varied,1211

default values as mentioned in Appendix E are used1212

for the other parameters.1213
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Figure 5: Impact of kL and kE1 on the recall of candi-
date entity retrieval.
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Figure 6: Impact of kR and kE3 on the overall F1 score.

Figure 5 presents the impact of kL and kE1 on1214

the recall of candidate entity retrieval (i.e., the av-1215

erage percentage of ground-truth entities returned1216

by our candidate entity retrieval module for each1217

test sample). Here, for the GrailQA dataset, we1218

report the results on the overall tests (same below).1219

Recall that kL means the number of logical form1220

sketches from which entity mentions are extracted,1221

while kE1 refers to the number of candidate entities1222

retrieved based on the popularity scores.1223

As kL increases, the recall of candidate entity1224

retrieval grows, which is expected. The growth1225

diminishes gradually. This is because a small num-1226

ber of questions contain complex entity mentions1227

that are difficult to handle (see error analysis in 1228

Appendix K). As kL increases, the precision of 1229

the retrieval also reduces, which brings noise into 1230

the entity retrieval results and additional computa- 1231

tional costs. To strike a balance, we set kL = 3 1232

for GrailQA and kL = 4 for WebQSP. We also 1233

observe that the recall on WebQSP is lower than 1234

that on GrailQA. This is because WebQSP has a 1235

smaller training set to learn from. 1236

As for kE1, when its value increases, the candi- 1237

date entity recall generally drops. This is because 1238

an increase in KE1 means to select more candi- 1239

date entities based on popularity while fewer from 1240

those connected to the top retrieved relations but 1241

with lower popularity scores. Therefore, we default 1242

kE1 at 1 for GrailQA and 3 for WebQSP, which 1243

yield the highest recall for the two datasets, re- 1244

spectively. Recall that we set the total number of 1245

candidate entities for each entity mention to 10 1246

(KE1 +KE2 = 10), following our baselines (e.g., 1247

TIARA, RetinaQA, and Pangu). Therefore, we 1248

omit another study on KE2, as it varies with KE1. 1249

Figure 6 further shows the impact of kR and 1250

kE3 – recall that kR is the number of top candi- 1251

date relations considered, and kE3 is the number of 1252

candidate entities matched for each entity mention. 1253

Now we show the F1 scores, as these parameters 1254

are used by our schema-guided logical form gener- 1255

ation module. They directly affect the accuracy of 1256

the generated logical form and the corresponding 1257

question answers. 1258

On GrailQA, increasing either kR or kE3 leads 1259

to higher F1 scores, although the growth becomes 1260

marginal eventually. On WebQSP, the F1 scores 1261

peak at kR = 25 and kE3 = 4. These results sug- 1262

gest that feeding an excessive number of candidate 1263

entities and relations to the logical form generator 1264

module has limited benefit. To avoid the extra com- 1265

putational costs (due to more input tokens) and to 1266

limit the input length for compatibility with smaller 1267

Seq2Seq models (e.g., T5-base), we use kR = 20 1268

and kE3 = 2 on both datasets. 1269

I Model Running Time 1270

SG-KBQA takes 26 hours to train on the GrailQA 1271

dataset and 13.6 seconds to run inference for a 1272

test sample. It is faster on WebQSP which is a 1273

smaller dataset. Note that more than 10 hours of 1274

the training time were spent on the fallback logical 1275

form generation. If this step is skipped (which does 1276

not impact our model accuracy substantially as 1277
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Question: What is the name for the atomic units of length?

SpanMD (span classification): length (✗)

Ours (extracting from generated logical form sketches):
Retrieved Relations: measurement_unit.measurement_system.length_units,

measurement_unit.time_unit.measurement_system,
measurement_unit.measurement_system.time_units...

Generated Logical Form Sketch: (AND <class> (JOIN <relation> [ atomic units ])) (✓)
w/o SER: (AND <class> (JOIN <relation> [ length ])) (✗)

Table 9: Case study of entity mention detection by our model and SpanMD (a mention detection method commonly
used by SOTA KBQA models) on the GrailQA validation set. The incorrect entity mention detected is colored in
red, while the correct entity mention detected is colored in blue.

Relation 1
Domain Class
Range Class

cvg.game_version.rating
cvg.game_version
cvg.computer_game_evaluation

Relation 2
Domain Class
Range Class
Relation 3
Domain Class
Range Class

Entity 1
ID
Class

Strong lyrics
m.042zlv3
cvg.computer_game_content_descriptors

cvg.computer_game_rating_system.content_descriptors
cvg.computer_game_rating_system
cvg.computer_game_content_descriptors

cvg.computer_game_rating.rating_system
cvg.computer_game_rating
cvg.computer_game_rating_system

Candidate Relations: Candidate Entities:

Question: Strong lyrics is the description of which video game rating ?

Unseen during training

SG-KBQA w T5-base (ours):  (AND cvg.computer_game_rating (JOIN cvg.computer_game_rating.rating_system 
(JOIN cvg.computer_game_rating_system.content_descriptors m.042zlv3)))

SG-KBQA wo SC: (AND cvg.game_version (JOIN cvg.game_version.rating m.042zlv3))

TIARA & PANGU: (AND cvg.computer_game_rating_system 
(JOIN cvg.computer_game_rating_system.content_descriptors m.042zlv3))

schema-level interactions
(overlapping classes)

Figure 7: Case study of logical form generation by SG-KBQA and two representative competitors TIARA and
PANGU on the GrailQA validation set. Green arrows and boxes highlight schema-level interactions (overlapping
classes) among KB elements.

shown earlier), SG-KBQA can be trained in about1278

half a day. Another five hours were spent on fine-1279

tuning the LLM for logical form generation, which1280

can also be reduced by using a smaller model.1281

As there is no full released code for the base-1282

line models, it is infeasible to benchmark against1283

them on model training time. For model inference1284

tests, TIARA has a partially released model (with1285

a closed-source mention detection module). The1286

model takes 11.4 seconds per sample (excluding1287

the entity mention detection module) for inference1288

on GrailQA, which is close to that of SG-KBQA.1289

Therefore, we have achieved a model that is more1290

accurate than the baselines while being at least as1291

fast in inference as one of the top performing base-1292

lines (i.e., TIARA+GAIN which shares the same1293

inference procedure with TIARA).1294

J Case Study1295

To further show SG-KBQA’s generalizability to1296

non-I.I.D. KBQA applications, we include a case1297

study from the GrailQA validation set as shown in 1298

Table 9 and Figure 7. 1299

Entity Mention Detection Figure 9 shows an 1300

entity mention detection example, comparing our 1301

entity detection module with SpanMD which is 1302

a mention detection method commonly used by 1303

SOTA KBQA models (Shu et al., 2022; Ye et al., 1304

2022; Faldu et al., 2024). In this case, SpanMD 1305

incorrectly detects length as an entity mention, 1306

which is actually part of the ground-truth relation 1307

(measurement_unit.. . ..length_units) that is un- 1308

seen in the training data. Our schema-guided entity 1309

retrieval module, on the other hand, leverages the 1310

retrieved relations as additional KB schema con- 1311

texts to generate a logical form sketch. 1312

By retrieving the unseen relation measure- 1313

ment_unit.measurement_system.length_units 1314

from the question through our relation retrieval 1315

module, the model is provided with schema-level 1316

information not encountered during training. This 1317

enables it to accurately identify the correct entity 1318

17



mention, atomic units, from surrounding relation1319

tokens—even when both the mention and relation1320

are novel. Moreover, removing schema guidance1321

(i.e., using a Seq2Seq model without SER) results1322

in the same incorrect entity detection as SpanMD,1323

highlighting the importance of schema-guidance in1324

improving entity retrieval in non-I.I.D. scenarios.1325

Logical Form Generation Figure 7 shows a log-1326

ical form generation example. Here, SG-KBQA1327

and TIARA (a representative generation-based1328

model) and PANGU (a representative ranking-1329

based SOTA model) have both retrieved the same1330

sets of relations and entities in the retrieval stage1331

which include false positives and unseen ground-1332

truth relation. Meanwhile, the three models also1333

share the same retrieved entity m.042zlv3. Despite1334

accessing the correct entity and relevant relations,1335

both TIARA and PANGU fail to generate the cor-1336

rect logical form, instead producing a logical form1337

that consists of a relation composition seen at train-1338

ing. In contrast, SG-KBQA successfully generates1339

the correct logical form by leveraging schema con-1340

text (i.e. the entity’s class as well as the domain1341

and range classes of the retrieved relations which1342

overlap). This enables SG-KBQA to reason about1343

the connectivity between the unseen ground-truth1344

relation and the seen elements, demonstrating its1345

superiority in generalizing to novel compositions1346

of KB elements.1347

K Error Analysis1348

Following TIARA (Shu et al., 2022) and Pangu (Gu1349

et al., 2023), we analyze 200 incorrect predictions1350

randomly sampled from each of the GrailQA val-1351

idation set and the WebQSP test set where our1352

model predictions are different from the ground1353

truth. The errors of SG-KBQA largely fall into1354

the following three types:1355

• Relation retrieval errors (35%). Failures1356

in the relation retrieval step (e.g., failing to1357

retrieve any ground-truth relations) can im-1358

pinge the capability of our entity mention1359

detection module to generate correct logical1360

form sketches, which in turn leads to incorrect1361

entity mention detection and entity retrieval.1362

• Entity retrieval errors (32%). Errors in1363

the entity mentions generated by the logical1364

form sketch parser can still occur even when1365

the correct relations are retrieved, because1366

some complex and unseen entity mentions1367

require domain-specific knowledge. An ex- 1368

ample of such entity mentions is ‘Non-SI 1369

units mentioned in the SI’, which refers 1370

to units that are not part of the International 1371

System (SI) of Units but are officially recog- 1372

nized for use alongside SI units. This entity 1373

mention involves two concepts that are very 1374

similar in their surface forms (Non-SI and 1375

SI). Without a thorough understanding of the 1376

domain knowledge (SI standing for Interna- 1377

tional System of Units), it is difficult for the 1378

entity mention detection module to identify 1379

the correct entity boundaries. 1380

• Logical form generation errors (31%). Gen- 1381

eration of inaccurate or inexecutable logical 1382

forms can still occur when the correct enti- 1383

ties and relations are retrieved. The main 1384

source of such errors is questions involving 1385

operators rarely seen in the training data (e.g., 1386

ARGMIN and ARGMAX). Additionally, there 1387

are highly ambiguous candidate entities that 1388

may confuse the model, leading to incorrect 1389

selections of entity-relation combinations. For 1390

example, for the question Who writes twilight 1391

zone, two candidate entities m.04x4gj and 1392

m.0d_rw share the same entity name twilight 1393

zone. The former refers to a reboot of the 1394

TV series The Twilight Zone produced by 1395

Rod Serling and Michael Cassutt, while the 1396

latter is the original version of The Twilight 1397

Zone independently produced by Rod Serling. 1398

They share the same entity name and class 1399

(tv.tv_program). There is insufficient contex- 1400

tual information for our logical form generator 1401

to differentiate between the two. The gen- 1402

erator eventually selected the higher-ranked 1403

entity which was incorrect, leading to produc- 1404

ing an incorrect answer to the question Rod 1405

Serling and Michael Cassutt. 1406

• The remaining errors (2%) stem from incor- 1407

rect annotations of comparative questions in 1408

the dataset. For example, larger than in a 1409

question is annotated as LE (less equal) in the 1410

ground-truth logical form. 1411

L Retrieval Performance 1412

Entity Retrieval We report entity retrieval re- 1413

sults under both I.I.D. and non-I.I.D. settings in 1414

Table 11, comparing our schema-guided entity 1415

retrieval module against baseline methods. Our 1416
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Steps\Models SG-KBQA TIARA RnG-KBQA

Relation Retrieval BERT-base-uncased BERT-base-uncased BERT-base-uncased
Logical Form Sketch Generation T5-base — —
Entity Mention Detection — BERT-base-uncased BERT-base-uncased
Entity Ranking BERT-base-uncased BERT-base-uncased BERT-base-uncased
Logical Form Generation LLaMA3.1-8B T5-base T5-base

Table 10: Backbone models used by SG-KBQA and baselines at each pipeline step

Model Overall I.I.D. Comp. Zero.

RnG-KBQA 80.4 86.6 83.3 76.5
TIARA 85.4 91.3 86.9 82.2
SG-KBQA 90.5 94.0 90.8 88.8
w/o SER 86.9 92.5 88.1 83.9

Table 11: F1 scores of KBQA entity retrieval methods
under different generalization scenarios.

method consistently outperforms the strongest base-1417

line (TIARA), with larger performance gains ob-1418

served in non-I.I.D. scenarios. Specifically, com-1419

pared to a 2.7-point improvement in F1 score under1420

the I.I.D. setting, our method achieves gains of 3.91421

and 6.6 points under the compositional and zero-1422

shot generalization settings, respectively. Further-1423

more, removing schema guidance from our logical1424

form parser leads to F1 drops of 2.7 points in the1425

compositional setting and 4.9 points in the zero-1426

shot setting. These results further highlight the1427

effectiveness of our schema-guided entity retrieval1428

in enhancing overall model generalizability.1429

For ease of comparison, we summarize the back-1430

bone models used by SG-KBQA and the baselines1431

at each step of the pipeline in Table 10. In Sec-1432

tion G, we report results showing that even when1433

using the same backbone model (T5-base) as the1434

baselines (TIARA), our SG-KBQA still outper-1435

forms them.1436
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Figure 8: Recall of top-k relation retrieval on validation
set of GrailQA and test set of WebQSP.

Relation Retrieval Figure 8 presents the recall 1437

of relation retrieval in SG-KBQA under different 1438

top-k settings. Overall, as k increases, the recall 1439

improves but with diminishing gains. Notably, even 1440

when k = 20, the relation recall on the GrailQA 1441

validation set remains above 94%, despite some 1442

question containing relations that were unseen dur- 1443

ing training. These results indicate that the cross- 1444

encoder-based retrieval model achieves high cover- 1445

age of relevant relations, effectively retrieving both 1446

seen and unseen relations. 1447

Although a larger k introduces more noise (neg- 1448

ative relations), our SG-KBQA does not rely on 1449

highly precise relation retrieval. It leverages the 1450

top-20 retrieved relations to provide auxiliary con- 1451

text for the logical form sketch parser, and uses 1452

schema context to guide the LLM in selecting valid 1453

compositions of KB elements. Our experimental 1454

results show that SG-KBQA is capable of identi- 1455

fying the correct relations and their compositions 1456

from a noisy candidate set, thereby improving ro- 1457

bustness and generalization. 1458
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