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Abstract001

Dependency parsing is a fundamental task in002
natural language processing (NLP), aiming to003
identify syntactic dependencies and construct a004
syntactic tree for a given sentence. Traditional005
dependency parsing models typically construct006
embeddings and utilize additional layers for007
prediction. We propose a novel dependency008
parsing method that relies solely on an encoder009
model with a text-to-text training approach. To010
facilitate this, we introduce a structured prompt011
template that effectively captures the structural012
information of dependency trees. Our experi-013
mental results demonstrate that the proposed014
method achieves outstanding performance com-015
pared to traditional models, despite relying016
solely on a pre-trained model. Furthermore,017
this method is highly adaptable to various pre-018
trained models across different target languages019
and training environments, allowing easy inte-020
gration of task-specific features.021

1 Introduction022

Dependency parsing is a fundamental task in natu-023

ral language processing (NLP) that analyzes syn-024

tactic relationships between words in a sentence.025

Figure 1 illustrates the traditional dependency pars-026

ing pipeline. Traditionally, dependency parsing is027

performed in two steps: (1) creating word-level028

embeddings, and (2) identifying the head word of029

each word along with its dependency relation using030

the generated embeddings.031

Previously, dependency parsing primarily re-032

lied on simple pre-processed contextual vectors033

to initialize embeddings (Li et al., 2018; Strzyz034

et al., 2019; Vacareanu et al., 2020). With the035

advent of powerful pre-trained language models036

such as BERT (Devlin et al., 2019), recent depen-037

dency parsing approaches leverage these models038

to initialize word embeddings, achieving superior039

performance compared to earlier methods (Amini040

et al., 2023). In the second step of dependency041

Figure 1: A figure shows that pipeline of traditional
dependency parsing

parsing, previous studies have shown that graph- 042

based methods, such as biaffine (Dozat and Man- 043

ning, 2017), yield good performance in identify- 044

ing relations. Consequently, this approach was 045

extended to learn the subtree information of the 046

dependency tree (Yang and Tu, 2022). Since the 047

structural characteristics of dependency trees in- 048

creased training complexity and difficulties, some 049

studies use the sequence tagging method for pars- 050

ing (Li et al., 2018; Amini and Cotterell, 2022). 051

These approaches add simple layers after embed- 052

ding construction and label the words into struc- 053

tural information sequentially. In particular, the 054

hexatagging method achieved state-of-the-art per- 055

formance by generating structural information with 056

a finite set of tags through decoding (Amini et al., 057

2023). In addition, Lin et al. (2022) demonstrated 058

that encoder-decoder models effectively generate 059

relation unit texts from input texts, highlighting that 060

dependency parsing can be performed solely using 061

pre-trained language models. This study is particu- 062

larly significant as it explores dependency parsing 063

by transforming modified text input into structured 064

dependency output. However, the notable limita- 065
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tion of this approach lies in the increased computa-066

tional time required for parsing, as the number of067

tokens grows due to the generation-based method.068

In this paper, we propose a novel method to per-069

form dependency parsing solely on pre-trained en-070

coder models that are constructed by prompt en-071

gineering using additional tokens as soft prompts.072

We hypothesize that prompt engineering can ef-073

fectively convert the text-to-structure task in de-074

pendency parsing to the text-to-text task by pre-075

trained language models, just like the sequence076

labeling method. Hence, the output text sequence077

of the proposed method has to reflect the tree struc-078

ture of dependency parsing well. To achieve this,079

we design several soft prompts so that our model080

can identify the structural information of the tree081

structure, and then apply the Structuralized Prompt082

Template (SPT) for each processing unit of de-083

pendency parsing using the developed soft prompt.084

We believe that prompt learning with the structural-085

ized prompt template enables effective and efficient086

dependency parsing only on the pre-trained lan-087

guage models. Eventually, by learning through the088

structuralized prompt template, the Structuralized089

Prompt Template based Dependency Parsing (SPT-090

DP) method achieves the high performance and091

simplified training by reducing the gap between092

pre-training and fine-tuning because it is based on093

only the pre-trained language models for the text-094

to-text task. As a result, the performance of the095

proposed method surpasses most of existing meth-096

ods: 96.95 (UAS) and 95.89 (LAS) on English097

Penn Treebank (PTB; Marcus et al. (1993)). On098

the 2.2 version of Universal Dependencies (UD 2.2;099

Nivre et al. (2018)), it obtains the state-of-art per-100

formance in 2 languages out of 12 languages when101

using the cross-lingual Roberta model (Liu et al.,102

2019). Since our method utilizes only a single en-103

coder model, our approach is faster than existing104

methods. In particular, it achieves a 40x speed105

improvement compared to DPSG, which employs106

a similar text-to-text approach. Furthermore, our107

method achieves a performance comparable to that108

of the SOTA model with a complicated and heavy109

architecture in the Korean Sejong dataset.110

2 Preliminaries111

2.1 Dependency Parsing112

Dependency parsing is the process of identifying113

dependency relationships among words in a sen-114

tence. Given a sentence S = (w1, w2, . . . , wn),115

the task is to derive the dependency relations, 116

RS = (r1, r2, . . . , rn), for each word. Each re- 117

lation, ri = (Hi, L(wi,wHi
)), consists of two com- 118

ponents: (1) the index of the head word Hi and 119

(2) the dependency relation label L(wi,wHi
), be- 120

tween wi and wHi , where L(wi,wHi
) ∈ L and L 121

is the set of predefined dependency relation la- 122

bels. This study focuses on syntactic dependency 123

parsing that analyzes grammatical dependency rela- 124

tions within sentences. Depending on the definition 125

of the syntactic dependency tree, each word has 126

exactly one parent node, ensuring a hierarchical 127

structure. Therefore, the ultimate goal of depen- 128

dency parsing is to analyze the sentence S into the 129

form Sdep = {(wi, ri) | ri = (Hi, L(wi,wHi
)), i ∈ 130

{1, 2, . . . , n}}, where each word wi is paired with 131

its corresponding dependency relation ri. 1 132

S = (He, loves, his, rabbits)

Word : wi Index : i Head : Hi Label : L(wi,wHi
)

he 1 2 [nsubj]

loves 2 0(root) [root]

his 3 4 [poss]

rabbits 4 2 [dobj]

Figure 2: Dependency Parsing Example

2.2 Prompt based tuning 133

Initially, the concept of a prompt emerged as 134

a method for training models, particularly to 135

bridge the gap between the pre-training and fine- 136

tuning stages. PET (Pattern-Exploiting Training) 137

proposed a method to reduce the gap between 138

pre-training and fine-tuning by using cloze-style 139

patterns instead of the traditional [CLS] token- 140

based classification approach in BERT (Schick and 141

Schütze, 2021). This allows the pre-trained lan- 142

guage model to naturally adapt to classification 143

tasks. For example, in sentiment analysis, a sen- 144

tence like "This movie is really [MASK]." is used, 145

and the predicted probability of the [MASK] token 146

is used to determine its sentiment. 147

Subsequently, prompts have been explored in 148

combination with methods like PEFT (Parameter- 149

Efficient Fine-Tuning) to improve model efficiency 150

1Table 10 for a list of notations along with explanations.
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and task performance (Li and Liang, 2021; Lester151

et al., 2021). In generative models like GPT-3152

(Brown et al., 2020), text-based prompts are used153

to guide and shape the outputs into task-specific154

outputs.155

In this study, prompts are used to provide addi-156

tional linguistic hints, such as grammatical struc-157

tures or contextual information, necessary for de-158

pendency parsing. Specifically, prompts are added159

to the encoder model through preprocessing. This160

is done by concatenating prompt phrases, such as161

task-specific instructions, to the original input sen-162

tence. Prompts are applied to each word in the163

input sentence as shown in the following formula-164

tion:165

P (S) = (T (w1), T (w2), . . . , T (wn)) (1)166

where P (S) represents the transformed sentence167

and T (wi) is the prompt template applied to the168

i-th word wi.169

2.3 Pre-trained Language Model170

Transformer-based pre-trained models are built171

upon the following architectures:172

• Encoder-based Models: These models en-173

code input text to perform tasks like masked174

token prediction or classification by adding175

a linear layer. They are also widely used in176

Dense Passage Retrieval (DPR) (Karpukhin177

et al., 2020) to extract representative embed-178

dings for documents. X → X ′179

• Decoder-based Models: These models take180

an initial token or prompt and generate tokens181

sequentially through autoregressive decoding.182

X → Y183

The traditional approach to dependency parsing184

involves extracting token-level embeddings from185

encoder-based pre-trained models, integrating them186

at the word level, and constructing word em-187

beddings. These embeddings are then analyzed188

through various methods to perform dependency189

parsing. In this process, the performance of depen-190

dency parsing heavily depends on how effectively191

the encoder provides information relevant to syn-192

tactic structures.193

3 Structuralized Prompt Template194

As aforementioned, traditional methods approach195

dependency parsing by utilizing predefined embed-196

dings processed through specific modules. How-197

ever, Dependency Parsing via Sequence Generation198

(DPSG) departed from this paradigm and intro- 199

duced a text-to-text dependency parsing method 200

(Lin et al., 2022). Despite its innovative nature, 201

DPSG faced limitations due to its generation-based 202

approach, which could produce unintended outputs. 203

In addition, the need to generate tokens one by one 204

resulted in slower processing speeds, especially 205

when processing additional tokens. To overcome 206

these challenges, we propose a novel approach that 207

leverages encoder models. Inspired by the ability of 208

encoders to facilitate text-to-text learning through 209

pre-training tasks such as Masked Language Mod- 210

eling (MLM), we devised a method to represent 211

dependency parsing information as text and apply it 212

during training. We call this method Structuralized 213

Prompt Template (SPT). Unlike traditional depen- 214

dency parsing, which treats text and dependency 215

structures as separate levels, SPT integrates de- 216

pendency information directly into text sequences. 217

This approach enables dependency parsing entirely 218

within the textual level by eliminating additional 219

integration steps and improving overall efficiency. 220

3.1 Dependency Parsing with Text 221

Representation 222

Basically, dependency parsing is the task of finding 223

a word with a dependency relation and determin- 224

ing its corresponding dependency relation label for 225

each word. To express the structured dependency 226

relationships through the prompt template for each 227

word, several conditions should be satisfied: 1) 228

each template must be distinguished by its pattern 229

through whole training, 2) it must be able to in- 230

dicate its index, 3) it must be able to refer to the 231

other word template with dependency relationship 232

through the output, and 4) it must be able to express 233

the dependency relation label through the output. 234

In the first condition, we ensure that the language 235

model can distinctly recognize each template by 236

following a consistent pattern rather than a spe- 237

cific token through all the training process. To 238

satisfy the second and third conditions, we add in- 239

dex prompts Pidx that serve two roles: representing 240

the template and indicating the referred template’s 241

index. Because the Pidx prompts represent the in- 242

dex of templates in a formatted text sequence, each 243

template can refer to another template within a de- 244

pendency relation regardless of the input sequence 245

using the Pidx prompts. Finally, the fourth condi- 246

tion is resolved by adding the dependency relation 247

labels as prompt PL. In addition, we add PPOS to 248

reflect information for part-of-speech (POS) analy- 249
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Figure 3: Overview of the Structuralized Prompt Template based Dependency Parsing (SPT-DP) method.

sis. However, several challenges arise when using250

this prompt approach for dependency parsing:251

1. Semantic Representation Issues: If the252

prompts are directly integrated into the253

model’s existing vocabulary without introduc-254

ing new tokens, it may disrupt the original255

vocabulary structure, making it difficult to cap-256

ture meaningful semantics.257

2. Variability in Length: The explicit addition258

of prompts, such as numerical indices and de-259

pendency relation labels, causes variations in260

the length of the enhanced sentence. Masking261

these components can lead to further inconsis-262

tencies in sequence length, which is critical263

for learning in encoder models.264

To address these issues, we propose to add each265

prompt as a new token to the vocabulary. The above266

prompts are individually added to the vocabulary267

enclosed in []. This action allows them to be added268

independently to the existing vocabulary without269

any duplications. This approach allows the model’s270

training process to be examined at the text level.271

To avoid confusion, we clarify that the notations272

Pidx , PL , PPOS , and PMASK
2 represent string273

text encapsulated in square brackets [].274

T (wi) = “

Pidx︷ ︸︸ ︷
[ i ]︸︷︷︸
Pabs

[Hi]︸︷︷︸
Pref

PL︷ ︸︸ ︷
[L(wi,wHi

)]

PPOS︷ ︸︸ ︷
[POSwi ]wi”

(2)275276

D = (T (w1), T (w2), ..., T (wn)) (3)277

The final word-level prompt template is rep-278

resented by Equation 2: for each word wi, four279

prompts are added. In the first prompt [ i ] is Pabs,280

2to be explained in Section 3.2.

which represents the absolute index token indicat- 281

ing the index of each word in the sentence. The sec- 282

ond prompt [Hi] is Pref that specifies the index of 283

the word referenced by the given word wi. The only 284

distinction between Pabs and Pref is their positions 285

in the template; they serve different roles but share 286

the same tokens. That is why they are grouped 287

under Pidx. The third is the dependency relation 288

label [L(wi,wHi
)], and the fourth contains [POSwi ] 289

that is POS-tag of wi. The proposed Structuralized 290

Prompt Template (SPT) can effectively incorpo- 291

rate the dependency parsing information into input 292

sentence using these prompts. That is, by applying 293

this template to every word in the sentence, we 294

construct a modified sentence D that encapsulates 295

dependency parsing information. From a certain 296

perspective, performing dependency parsing can 297

be regarded as transforming the original sentence 298

S into a Prompted sentence D. 299

Figure 4: A figure of word level SPT example

3.2 Prediction Task using Soft Prompts 300

PMASK : [HEAD] and [DEP] 301

For the training, PMASK , which contains the 302

[HEAD] and [DEP] tokens, serves as a soft prompt 303
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and plays a role similar to the masked token in304

the Masked Language Model (MLM) task. Since305

performing dependency parsing involves predict-306

ing [Hi] and [L(wi,wHi
)], the corresponding parts307

in the equation are masked to enable the model to308

learn by making predictions. In this process, [Hi]309

is masked as [HEAD] and [L(wi,wHi
)] is masked as310

[DEP], respectively. The PMASK are also added311

in the tokenizer’s vocab for prompt engineering.312

M(T (wi)) = “

Pabs︷︸︸︷
[ i ]

PMASK︷ ︸︸ ︷
[HEAD][DEP ][POSwi ]wi”

(4)313314

DM = (M(T (w1)),M(T (w2)), ...,M(T (wn)))
(5)315

As aforementioned, the PMASK are used to infer316

two main prediction tasks for the head word and317

the dependency relation label. They are arranged in318

the second and third positions of the structuralized319

prompt templates, forming a consistent pattern in320

the input text sequence. In our approach, the model321

is fine-tuned to predict head word and dependency322

relation labels by the [HEAD] and [DEP] prompts.323

Ultimately, the goal is to learn to reconstruct324

the D from the masked input DM , which has been325

structured using prompts. This involves different326

prediction mechanisms for encoder and decoder327

models:328

Encoder-only Models The encoder model learns329

by reconstructing the masked input DM into its330

original form D. Since the output sequence retains331

the same structure as the input sequence, the model332

effectively maps DM back to D: Enc(DM ) → D333

Decoder-based Models In encoder-decoder334

models, the encoder processes the masked input335

DM to generate a latent representation and the336

decoder uses it to reconstruct D. On the other337

hand, DM of decoder-only models serves as a338

prefix and it guides the decoder to generate the339

unmasked D, autoregressively: Gen(DM ) → D340

4 Prompt-based Training341

As mentioned earlier, in the encoder model, train-342

ing is conducted in an MLM manner, where the343

input masked with PMASK :[HEAD] and [DEP]344

are used to predict reference indices Pref :[Hi] and345

dependency relation label PL:[L(wi,wHi
)] prompts.346

Since we have added each prompt to the tokenizer,347

the model is trained to output the corresponding348

prompt IDs through the LM head. In the de-349

coder model, the training process involves provid-350

ing masked input and learning to generate the un- 351

masked text. 352

The loss function for training is calculated by 353

the following equations. In Equation 6, Xinput is 354

the tokenized DM that is a concatenated sequence 355

of SPTs where [Hi] and [L(wi,wHi
)] are replaced by 356

[HEAD] and [DEP] prompts. In Equation 7, Ylabel 357

is the tokenized D that is the prompted sequence 358

based on SPT. 359

Since all the prompts are added to the tokenizer’s 360

vocabulary, the lengths of Xinput and Ylabel are 361

always the same, which is a crucial condition in 362

encoder-only models. In summary, the models 363

are trained with DM as input and D as the label. 364

Encoder-only models are trained with Lenc, which 365

optimizes token prediction based on Xinput follow- 366

ing BERT’s masked language modeling (MLM) for 367

bidirectional contextual learning. Decoder-based 368

models use Ldec, where each token yi is generated 369

sequentially based on Xinput and previous outputs 370

Y<i, following an autoregressive approach similar 371

to GPT. θ is the parameter of model. 372

The objective function is based on Cross- 373

Entropy Loss, defined as follows: 374

Tokenize(DM ) = Xinput = [x1, x2, ..., xN ]
(6) 375376

Tokenize(D) = Ylabel = [y1, y2, ..., yN ] (7) 377
378

Lenc = −
N∑
i=1

logP (yi|Xinput; θ) (8) 379

380

Ldec = −
N∑
i=1

logP (yi|Xinput, Y<i; θ) (9) 381

In summary, Lenc and Ldec correspond to Cross- 382

Entropy Loss, where the model optimizes token 383

prediction probabilities. In encoder-only models, 384

Lenc applies token-wise classification in an MLM 385

setting, while in decoder-based models, Ldec fol- 386

lows an autoregressive generation paradigm. 387

5 Experiments 388

We first apply our approach to two datasets used in 389

previous studies, including PTB (Penn Treebank) 390

and UD 2.2 (Nivre et al., 2018) covering 12 lan- 391

guages. Since these datasets primarily consist of fu- 392

sional languages in which a single morpheme can 393

encode multiple grammatical features, we extended 394

our experiments to agglutinative languages. Un- 395

like fusional languages, agglutinative languages ex- 396

press grammatical relationships through sequences 397

of distinct morphemes, which are carrying out their 398
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bg ca cs de en es fr it nl no ro ru Avg.
Dozat and Manning (2017)♢ 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Wang and Tu (2020)♢ 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Yang and Tu (2022)♢ 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
Lin et al. (2022)* 93.92 93.75 92.97 84.84 91.49 92.37 90.73 94.59 92.03 95.30 88.76 95.25 92.17
Amini et al. (2023)♢ 92.87 93.79 92.82 85.18 90.85 93.17 91.50 94.72 91.89 93.95 87.54 94.03 91.86
SPT-DP (multilingual BERT) 91.20 90.81 92.22 79.68 87.36 90.33 88.31 92.00 89.37 90.64 86.12 93.17 89.27
SPT-DP (XLNet-large) - - - - 90.58 - - - - - - - -
SPT-DP (XLM-RoBERTa-large) 93.11 92.54 94.14 82.11 88.50 91.69 88.02 93.16 91.15 93.13 88.87 95.12 90.90
SPT-DP (global) 93.91 92.85 93.27 82.91 89.27 92.03 89.96 93.24 92.28 92.81 88.84 94.39 91.31

Table 1: 12 languages’ LAS scores on the test sets in UD 2.2. ♢ use multilingual BERT for embedding and * uses
T5-base model for sequence generation parsing. Best and second-best scores are in bold and underlined

PTB
Model UAS LAS
Zhou and Zhao (2019)* 97.0 95.43
Mrini et al. (2020)* 97.42 96.26
Dozat and Manning (2017) 95.74 94.08
Wang and Tu (2020) 96.91 95.34
Yang and Tu (2022) 97.24 95.73
Lin et al. (2022) 96.64 95.82
Amini et al. (2023) 97.4 96.4
SPT-DP (XLNet-large) 96.95 95.88

Table 2: Results on PTB dataset. * use additional con-
stituency parsing information so they are not compara-
ble to other methods.

individual function. For this, we select the Sejong399

corpus, a Korean language dataset, as an agglutina-400

tive language dataset.401

5.1 Datasets402

PTB This English data is preprocessed by Stan-403

ford Parser v3.3.0 (de Marneffe and Manning,404

2008) to convert it into CoNLL format, following405

the approach of Mrini et al. (2020).406

UD 2.2 This is composed of 12 languages from407

UD dataset v2.2 and we follow previous work408

(Amini et al., 2023) for data splitting and orga-409

nizing. The POS tag information is not used for the410

experiments by omitting PPOS in the template.411

Sejong This is the Korean dataset and only the412

POS tags of the first and last morphemes are used413

for this experiment because Korean words consist414

of multiple morphemes.415

5.2 Pre-trained Language Models416

Encoder-based Models XLNet-large, Multilin-417

gual BERT, XLM-RoBERTa-large, and RoBERTa418

Decoder-based Models T5-base, BART-large,419

LLaMA3.2-3B, and Qwen2.5-3B420

5.3 Comparison Models 421

Zhou and Zhao (2019) and Mrini et al. (2020) 422

used additional constituency parsing information 423

so they are not comparable to other methods di- 424

rectly. Dozat and Manning (2017) introduced a bi- 425

affine model as a graph-based dependency parsing 426

approach. Wang and Tu (2020) proposed a second- 427

order graph-based method with message passing. 428

Yang and Tu (2022) developed a projective parsing 429

method based on headed spans. Lin et al. (2022) 430

introduced a sequence generation-based parsing 431

method, while Amini et al. (2023) leveraged struc- 432

tural tags and sequential tag decoding. Park et al. 433

(2019) and Lim and Kim (2021) constructed a de- 434

pendency parser using the Korean morpheme ver- 435

sion of BERT. 436

Model UAS LAS
Park et al. (2019) 94.06 92.00
Lim and Kim (2021) 94.76 92.79
SPT-DP 94.52 92.36

Table 3: Results on Sejong dataset

5.4 Experimental Results 437

Table 2 presents the performance comparison of 438

different models on the PTB dataset. Our pro- 439

posed method achieves competitive performance 440

compared to state-of-the-art (SOTA) models in 441

spite of relying solely on a pre-trained language 442

model without additional complex modules. That 443

is, despite its lightweight and efficient design, 444

our method is ranked among the top-performing 445

models. 446

As shown in Table 1, our method exhibits lower 447

performance with multilingual BERT on UD 2.2. 448

However, using a larger model, XLM-RoBERTa- 449

large, leads to significant performance improve- 450

ments across most languages and it eventually 451

achieves SOTA results on two languages. Simi- 452
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bg ca cs de en es fr it nl no ro ru Avg.
base 93.11 92.54 94.14 82.11 88.50 91.69 88.02 93.16 91.15 93.13 88.87 95.12 90.90

global 93.91 92.85 93.27 82.91 89.27 92.03 89.96 93.24 92.28 92.81 88.84 94.39 91.31
unseen 81.12 88.49 79.83 75.80 72.59 87.26 81.30 79.63 78.17 77.86 77.80 77.05 79.74

Table 4: LAS scores for the UD2.2 dataset. The first row lists the languages in the test set. base represents the
performance of a model trained individually for each language. global represents the performance of a single
multilingual model trained on all languages. unseen represents the performance of individual models trained on all
languages except for the test language, evaluating zero-shot transfer performance.

larly, our approach with XLNet-large on UD 2.2453

English data shows more improved performance454

depending on its English-only pre-training. We can455

think that the larger models with richer contextual456

representations we can use, the better performance457

our method can obtain. This is because we can ef-458

fectively leverages their expressiveness to enhance459

parsing performance. In addition, we construct the460

global3 model by training on the entire languages461

of UD 2.2 dataset and it leads to overall improve-462

ments in parsing accuracy across many languages.463

Notably, in Dutch (nl), our approach achieves an464

additional SOTA result. On the other hand, the465

results on the Sejong dataset (Table 3) demonstrate466

that our method achieves performance on par with467

more complex SOTA models, even though it is468

based on lighter and more efficient architecture469

for agglutinative languages.470

6 Analysis471

6.1 Unified Cross-lingual Dependency Parsing472

Furthermore, our evaluation of language-specific473

experiments on the UD 2.2 dataset is expanded474

to cross-lingual experiments. Since the composi-475

tion of dependency relation labels varies across476

languages, we integrate dependency relation labels477

from 12 languages into a shared vocabulary to con-478

struct a unified model for cross-lingual dependency479

parsing. Then we train a single model using a480

unified training dataset based on integrated depen-481

dency relation labels and we refer to it as the global482

model in Table 4. This cross-lingual model exhibits483

robust performance and it demonstrates its ability484

to generalize multi-languages while maintaining485

competitive results. As you can see in Table 4, it486

outperforms the base4 model in many languages.487

In addition, we evaluate a model trained by exclud-488

ing the training set of the target test language, re-489

ferred to as the unseen model, for an out-of-domain490

evaluation. This unseen model achieves meaning-491

3This approach will be discussed in detail in 6.1
4A trained model where the test language and train lan-

guage are the same.

ful performance even on languages for which it was 492

not explicitly trained in dependency parsing. This 493

highlights cross-lingual correlations in dependency 494

parsing and shows that our approach provides flex- 495

ibility and scalability, particularly in multilingual 496

or resource-constrained scenarios. 497

6.2 Length Robustness 498

In previous studies, dependency parsing first at- 499

tempt to represent the syntactic information of 500

words in a sentence by feeding the final hidden 501

states from the pre-trained model into additional 502

modules and classifies each embedding or directly 503

compares the output embeddings of each word 504

to find dependency relations. In contrast, our 505

study newly defines and utilizes index prompts, 506

Pidx(Pabs, Pref ); Pref in SPT of a word indirectly 507

refer to the Pabs in SPT of another word to repre- 508

sent their dependency relations. Therefore, we have 509

to check out how the relations between Pidx tokens 510

are well trained by the proposed method. Table 511

5 presents the performance according to sentence 512

length, showing a tendency for performance to de- 513

crease as sentence length increases. Furthermore, 514

as shown in Table 6, which details performances 515

based on the index range of templates, predictions 516

for dependency relations in higher indices tend to 517

have lower accuracy. Statistically, because longer 518

sentences have relatively small population, prompts 519

corresponding to higher indices may not have been 520

sufficiently learned. In future work, we should fo- 521

cus on developing improved training strategies to 522

enhance performances for high indexed words in 523

longer sentences. 524

6.3 Decoder-based Models 525

The proposed SPT-DP method entirely operates at 526

the text level and it enables our model to have both 527

of the easily applicable and trainable abilities. In 528

this section, we validate its feasibility on different 529

language model architectures, including encoder- 530

decoder models and decoder-only models. In these 531

models, their decoders generate dependency pars- 532

7



Sentence Length Range # of Sentences UAS LAS
1-10 270 97.24 96.30

11-20 764 97.54 96.35
21-30 778 96.87 95.83
31-40 433 96.73 95.69
41-50 135 97.19 96.12
51-60 28 94.89 93.77
61-70 8 94.65 94.26

all 2416 96.95 95.88

Table 5: A Table of statistics and performance according
to sentence length (based on word count)

Index range # of Indices UAS LAS
1-10 23269 97.77 96.84
11-20 18283 96.39 95.14
21-30 10124 96.32 95.22
31-40 3829 96.63 95.59
41-50 966 96.07 95.13
51-60 188 95.74 95.21
61-70 25 92.00 88.00

all 56684 96.95 95.88

Table 6: A Table of statistics and performance according
to index range

ing results of Pref and PL along with other input533

sequence. As you can see in Table 7, decoder-based534

models achieve lower performance than encoder-535

only models. One possible reason for this lower536

performance is that this decoding method relies on537

previously generated tokens and it can lead to error538

propagation; mistakes in earlier tokens are accumu-539

lated and it can degrade the accuracy of subsequent540

predictions.541

Decoder-based Model UAS LAS
XLNet-large(encoder) 96.95 95.88
T5-base 95.30 93.86
Bart-large 95.84 94.73
Llama3.2-3B 94.55 93.27
Qwen2.5-3B 94.97 93.81

Table 7: Results on PTB with Decoder-based models

6.4 Ablation Study for Prompts542

First, we aim to examine the impact of each pro-543

posed prompt on parsing performance. We conduct544

additional experiments by excluding each of Pabs545

and PPOS to verify how important they are for de-546

pendency parsing. As shown in the Table 8, the547

role of POS information is not critical but Pabs has548

a significant impact on performance. Intuitively,549

when a physically referable index prompt Pabs ex-550

ists in the input, the model can effectively refer551

it through transformer’s attention mechanism. A552

Method UAS LAS
SPT-DP 96.95 95.88
SPT-DP (w/o Pabs) 94.28 (-2.67) 92.63(-3.25)
SPT-DP (w/o PPOS) 96.76(-0.19) 95.66(-0.22)

Table 8: Effect of prompts on PTB dataset.

detailed analysis is provided in Appendix E. 553

6.5 Inference Efficiency 554

Hexatagging (Amini et al., 2023), which is utilizing 555

sequential labeling, achieves a processing speed 10 556

times faster than the biaffine model because it does 557

not require additional modules, and similarly to 558

our model, DPSG (Lin et al., 2022) also adopts a 559

text-to-text approach on generative model. As a 560

result, although our approach has to increase sen- 561

tence length due to added prompts, it obtains faster 562

inference speed than other conventional methods 563

because it relies solely on a pre-trained model. 564

Dataset
Speed(sent/s)

SPT-DP Hexatagging DPSG
PTB-test 39.77 28.42 -
UD 2.2 (bg-dev) 38.58 - 0.85

Table 9: Processing speed (sentences per second) of
different models on PTB (test) and UD 2.2 (bg-dev)

7 Conclusions 565

In this paper, we introduce SPT-DP, as a structural- 566

ized prompt template-based dependency parsing 567

method. Our approach enables text-to-text depen- 568

dency parsing through prompt engineering by uti- 569

lizing additional tokens while relying solely on 570

pre-trained encoder models without requiring any 571

additional modules. Despite relying solely on a 572

pre-trained encoder model, our proposed method 573

achieves performance comparable to existing mod- 574

els. Through experiments on the UD 2.2, we in- 575

tegrated dependency relation labels to develop a 576

universal model applicable across 12 languages. 577

This model not only enables multi-language de- 578

pendency parsing within a single model but also 579

demonstrates the ability to generalize to unseen 580

languages to some extent. Finally, we applied our 581

method to decoder-based models, demonstrating its 582

applicability across different model types. There- 583

fore, our method has several strong points; it can 584

be easily applied to various pre-trained models ap- 585

propriate for the target language or training envi- 586

ronments, and it achieves fast inference speeds. 587

8



Limitations588

In our method, there is a limitation with sequence589

length. Although sentences with too many words590

are occurred in rare cases, additional prompts also591

increase linearly with the number of words, which592

can make it difficult to use for encoder models with593

a short maximum length. In addition, additional594

research is needed to perform semantic dependency595

parsing with a dynamic number of relationships.596

Ethics Statement597

We perform dependency parsing using a pre-trained598

model. The datasets may contain ethical issues or599

biased sentences, but the model does not influence600

them through dependency parsing.601
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A Notations 752

B Implementation Details 753

For experiments for PTB, xlnet-large-cased5 754

are used. For experiments for UD 2.2, bert- 755

multilingual-cased6, xlm-roberta-large7 and xlnet- 756

large-cased are used. For decoder-based models, 757

T5-base8, Bart-large9, Qwen2.5-3B10, Llama3.2- 758

3B11 are used. For the Korean Sejong dataset, 759

RoBERTa-large12, a pre-trained model for the Ko- 760

rean language, is used. Experiments are conducted 761

on an NVIDIA RTX A6000. The models are fine- 762

tuned with a batch size of 8, a learning rate of 1e-5, 763

and 10 training epochs. Training is performed us- 764

ing the linear scheduler and AdamW optimizer. 765

C Efficiency test 766

For the efficiency test between Hexatagging and 767

SPT-DP, we used the PTB test dataset to evaluate 768

the speed of dependency parsing. For the efficiency 769

test between DPSG and SPT-DP, we used the UD 770

2.2-bg dev dataset to evaluate the speed of depen- 771

dency parsing. We set the batch size to 1 and con- 772

ducted the experiment under the same conditions 773

using a single A6000 GPU. 774

D Decoder-based Model 775

Unlike encoders, the decoder-based model required 776

constrained generation. During the inference stage, 777

contents other than Pref and PL were forcibly in- 778

serted into the sequence at intervals, allowing the 779

model to perform accurate dependency parsing in 780

a restricted environment. 781

E Analysis : Ablation Study for Prompts 782

To elaborate further, in experiments without Pabs, 783

the order of the template implicitly replaced Pabs 784

and was used for prediction. The experimental re- 785

sults (Table 8) indicate that the explicit presence 786

of Pabs (physically exists), allowing for direct ref- 787

erence, plays a crucial role in dependency parsing 788

through attention. In Figure 5, presents a heatmap 789

5https://huggingface.co/xlnet-large-cased
6https://huggingface.co/

bert-base-multilingual-cased
7https://huggingface.co/FacebookAI/

xlm-roberta-large
8https://huggingface.co/google-t5/t5-base
9https://huggingface.co/facebook/bart-large

10https://huggingface.co/Qwen/Qwen2.5-3B
11https://huggingface.co/meta-llama/Llama-3.

2-3B
12https://huggingface.co/klue/roberta-large
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Notations Components Type Description
wi - String Text representation of i’th word in sentence
S wi String Sentence
Hi - Integer Index of the head word
L(wi,wHi

) - String Dependency relation label between wiwHi

ri Hi, L(wi,wHi
) Set Dependency relation of wi

RS ri Set Dependency relations of sentence S
L L(wi,wHi

) Set Predefined dependency relation labels
Sdep wi, ri Set Sentence that include dependency parsing information
Pabs "[1]","[2]",. . . ,"[n]" Set of strings absolute index prompts that located at the first position of the prompt set.
Pref "[H1]","[H2]",. . . ,"[Hn]" Set of strings reference index prompts that located in the second position of the prompt set.
Pidx {Pabs, Pref} Set of strings String form of index prompts, indies are encapsulated with "[]"
PL "[acomp]", "[advcl]", . . . , "[xcomp]" Set of strings Prompt tokens of Dependency relation labels , string of labels are encapsulated with "[]"
PPOS "[NN]", "[NNP]", . . . , "[WRB]" Set of strings Prompt tokens of pos-tags P , string of pos-tags are encapsulated with "[]"
PMASK "[HEAD]","[DEP]" Set of strings Masking prompts for training
D Pidx,PL,PPOS ,S String Structuralized Prompt Template
DM PMASK ,PPOS ,S String Masked Structuralized Prompt Template

Table 10: Notations

representation of attention scores across layers and790

the cosine similarity of each hidden state. The at-791

tention scores on the left show that as the layers792

progress, the values converge, with the token in793

Pref exhibiting high attention scores toward Pabs ,794

which it is supposed to reference.795

F Licenses796

The PTB dataset is licensed under LDC User Agree-797

ment. The UD 2.2 dataset is licensed under the798

Universal Dependencies License Agreement.799
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Figure 5: A heatmap of Attention scores and cosine
similarities in hidden layer
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