
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC TASK-EMBEDDED REWARD MACHINES
FOR
ADAPTIVE CODE GENERATION AND MANIPULATION
IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Dynamic Task-Embedded Reward Machine (DTERM), a new
machine learning approach for reinforcement learning on tasks of code gen-
eration and code manipulation. Conventional reward models tend to be based
on fixed weightings or manual tuning, which is not flexible enough for many
different coding tasks, such as translation, completion and repair. To overcome
that, DTERM dynamically modulates reward components using a hypernetwork-
driven architecture, which can balance the task-aware configuration of syntactic
correctness, semantic correctness, and computational efficiency. The framework
combines three key modules, including a transformer-based task embedding gen-
erator, a modular reward decomposer, and a hypernetwork to generate context-
dependent weights of sub-rewards.

1 INTRODUCTION

The rapid development of large language models (LLMs) has led to their revolutionization of code
generation and manipulation popularly ranging from code completion and to program repairs.

Recent work in RL for code generation has explored various reward shaping techniques, including
compiler feedback (Bunel et al., 2018) and human preference modeling (Stiennon et al., 2020).
However, these approaches usually view reward components as fixed weights and do not take into
account the dynamic character of coding tasks.

We tackle this difficult problem by adopting a hypernetwork-based framework to dynamically
modulate reward compositions with task embeddings.

The proposed method has three major contributions. First, it introduces a principled way to per-
form task-aware reward modeling in the RL for code related tasks, removing the need for manual
reward engineering. Second, it introduces a novel integration of hypernetworks with task embed-
dings (Achille et al., 2019), enabling zero-shot adaptation to unseen coding tasks. Third, it shows
how feedback from a compiler and static analysis can be easily integrated into the dynamic reward
structure and helps to bridge the gap between the formal nature of program verification and formal
schematic models of reward.

Our experiments corroborate the effectiveness of the framework for multiple code generation
benchmarks, experiencing consistent improvements over static reward baselines.

The remainder of this paper is organized in the following way: Section 2 reviews related work in
RL for code generation and dynamic reward modeling. Section 3 gives necessary background
about hypernetworks and code representation. Section 4 describes our proposed framework, and
that is followed by experimental evaluation in Section 5. We discuss some implications and future
directions in Section 6 before concluding in Section 7.
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2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR CODE GENERATION

There have been new developments in reinforcement learning that have shown promising outcomes
in code generation tasks. Several approaches have explored integrating compiler feedback as a
reward signal (Le et al., 2022), where the ability of generated code to compile successfully serves
as a binary reward. More sophisticated methods incorporate execution-based testing (Chen et al.,
2018a), evaluating functional correctness through test case verification. While these approaches
give meaningful signals for policy optimization, they usually consider different aspects of code
quality (e.g. compilation, execution, style) as independent targets with constant weightings.

2.2 DYNAMIC REWARD MODELING

The idea of adaptive reward functions has recently received attention in many applications of
RLs. Some methods employ multi-objective optimization techniques (Yang et al., 2019a) to bal-
ance competing objectives, while others use meta-learning to adjust reward structures (Yang et al.,
2019b). Particularly relevant is the work on reward machines (Icarte et al., 2022), which formalizes
reward functions as finite state machines.

2.3 HYPERNETWORKS IN REINFORCEMENT LEARNING

Hypernetworks have demonstrated promise generating adaptive model parameters in several differ-
ent domains. In RL, they have been used for policy adaptation (BG et al., 2024) and value function
approximation (Schöpf et al., 2022). The closest to our work is the application of hypernetworks
for reward function generation (?), though previous implementations focused on single-task set-
tings without explicit task embeddings.

2.4 CODE REPRESENTATION AND TASK EMBEDDING

Effective task representation is important for our dynamic reward framework. Recent work has ex-
plored various approaches to encode programming tasks, including code embeddings (Feng et al.,
2020) and multimodal representations (Dey et al., 2019). The success with these methods in down-
river tasks implies that the rich task embeddings may contain these semantic nuances for reward
adaptation.

2.5 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The integration of human preferences into RL systems has been extensively studied, particularly
in language model alignment (Ziegler et al., 2019). Recent work has explored dynamic reward
redistribution (Li et al., 2024) and constrained optimization (?) to address challenges in RLHF.

The proposed DTERM framework is distinct from current approaches in several ways, however.

3 BACKGROUND AND PRELIMINARIES

To set up the foundation for our proposed framework, we first provide a review on important con-
cepts for reinforcement learning for code generation and hypernetwork architectures.

3.1 REINFORCEMENT LEARNING FORMULATION FOR CODE GENERATION

The code generation task can be formulated as a Markov Decision Process (MDP) defined by the
tuple (S,A, P,R, γ), where S represents the state space of partial programs and context, A de-
notes the action space of code tokens or edits, P models transition dynamics, R is the reward func-
tion, and γ is the discount factor. In this formulation, the agent’s policy πθ(a|s) generates code
sequences through iterative sampling of actions (tokens) given states (partial programs). The ob-
jective is to obtain the maximum expected cumulative reward:
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J(θ) = Eτ∼πθ

[
T∑
t=0

γtrt

]
(1)

where τ = (s0, a0, r0, ..., sT ) represents a trajectory and rt = R(st, at) is the immediate reward at
timestep t. This formulation aligns with standard RL approaches for sequence generation (Ranzato
et al., 2015), but presents unique challenges due to the structured nature of programming languages
and the availability of formal verification tools.

3.2 REWARD COMPONENTS IN CODE GENERATION

The reward function R typically combines multiple components that assess different aspects of
code quality. Common reward signals include:

1. Syntactic Correctness: Binary indicator of whether the code compiles or parses success-
fully (Mesbah et al., 2019)

2. Functional Correctness: Fraction of test cases passed by the generated code (Chen et al.,
2018a)

3. Code Style: Adherence to stylistic conventions and best practices (Allamanis et al., 2017)

4. Computational Efficiency: Runtime performance metrics when applicable (Bhupatiraju
et al., 2018)

Traditional approaches combine these components using fixed linear weighting:

R(s, a) =

k∑
i=1

wiri(s, a) (2)

where wi are predetermined weights and ri are individual reward components. This static com-
position does not consider several different metrics in each task to be drivers more important than
other metrics, driving our dynamic weighting approach.

3.3 HYPERNETWORKS FOR PARAMETER GENERATION

Hypernetworks (Ha et al., 2016) are neural architectures that generate parameters for another net-
work (the main network). Given an input x, a hypernetwork hϕ produces weights W for the main
network fW :

W = hϕ(x) (3)

This framework facilitates the dynamic adaptation of the behavior of the main network according
to the conditions of the input.

3.4 TASK EMBEDDINGS FOR CODE-RELATED TASKS

Task embeddings are a means of representing programming tasks in a small representation of their
semantic and syntactic requirements. Modern approaches typically employ transformer-based en-
coders (Feng et al., 2020) to process task descriptions (e.g., docstrings, specifications) into fixed-
dimensional vectors. These embeddings have shown effectiveness in capturing similarities between
programming tasks (Tufano et al., 2018) and enabling transfer learning across different coding
problems.

The embedding process can be formalized as:

e = Encψ(d) (4)
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where d represents the task description and Encψ denotes the embedding encoder with parame-
ters ψ. The Word xog e is a resulting embedding e fed into our hypernetwork which gives context
necessary for dynamically composing reward e.

3.5 REWARD MACHINES AND MODULAR DECOMPOSITION

Reward machines (Icarte et al., 2022) provide a structured representation of reward functions as
finite state automata. While our approach differs in implementation, we take the insight from mod-
ular reward decomposition, in which complex rewards are made from simpler, interpretable com-
ponents.

The combination of these concepts is what drafted our theoretical structure of our dynamic reward
weighting framework.

4 HYPERNETWORK-BASED DYNAMIC REWARD WEIGHTING FRAMEWORK

The proposed Dynamic Task-Embedded Reward Machine (DTERM) adopts a new architecture for
modeling adaptation in reward for code-related reinforcement learning tasks.

4.1 HYPERNETWORK-DRIVEN DYNAMIC REWARD WEIGHTING

The key novelty of DTERM is that it has a hypernetwork architecture to generate context-
dependent weights for modular reward components. Given a task embedding et ∈ Rd produced
by Equation 4, the hypernetwork Hϕ with parameters ϕ computes normalized weights αi for n
reward components:

αi =
exp(wT

i et + bi)∑n
j=1 exp(w

T
j et + bj)

(5)

where wi ∈ Rd and bi ∈ R are learnable parameters. The final reward combines these weighted
components:

R(s, a) =

n∑
i=1

αiRi(s, a) (6)

This formulation is different in two ways from traditional linear reward combinations. First, the
weights αi are not fixed but dynamically generated based on task characteristics encoded in et.
Second, the hypernetwork learns to interpolate between different weighting schemes, which helps
to make smooth transitions between the boundaries of tasks.

4.2 TASK EMBEDDING-GUIDED REWARD SPECIALIZATION

In addition to-weight-adjustment, DTERM improves reward component specialization via Feature-
wise Linear Modulation (FiLM) layers conditioned on task embeddings. Each sub-reward network
Ri processes intermediate features h with task-specific affine transformations:

h′ = γi(et)⊙ h+ βi(et) (7)

where γi and βi are learned functions implemented as multilayer perceptrons (MLPs).

4.3 HIERARCHICAL ADAPTATION WITH CROSS-TASK PROTOTYPES

To active generalization to unseen tasks, DTERM contains a hierarchical adaptation mechanism
with cross-attention between task embeddings and learned reward prototypes. The hypernetwork
first projects m prototype vectors {pk}mk=1 that represent canonical reward weighting patterns. For
a new task embedding et, the system computes attention scores:
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ak = softmax(pTkWaet) (8)

where Wa ∈ Rd×d is a learned projection matrix. The final weights combine these prototypes
through the attention distribution:

αi =

m∑
k=1

akα
(k)
i (9)

with α(k)
i denoting the weight for component i in prototype k. This architecture allows for zero-

shot adaptation by interpolating between the weighting schemes that we know, whereas the proto-
types we have are learned during meta-training on many different types of tasks.

4.4 MULTI-MODAL TASK EMBEDDING FUSION

For tasks involving multi-modal specifications (e.g., diagrams with textual requirements), DTERM
extends the task embedding through residual fusion:

et = MLP(etext) + CLIPvisual(I) (10)

where etext is the standard text embedding, I is an input image, and CLIPvisual denotes the visual
encoder from a pre-trained CLIP model (Radford et al., 2021). This formulation maintains the
original embedding space whilst incorporating visual information, which can process multi-modal
tasks without any architectural modification for the hypernetwork.

4.5 COMPILER-AWARE REWARD FEEDBACK

DTERM incorporates compiler feedback as special types of reward components, which parse out-
puts of the build into scalar values. For compilation errors, we use an exponentially decaying the
reward:

Rcompile = exp(−λk) (11)

where k counts the number of compiler errors and λ controls the decay rate. The system automat-
ically adjusts the importance of this component through the hypernetwork weights, enabling tasks
with strict compilation requirements to prioritize Rcompile while others may balance it with addi-
tional metrics.

4.6 INTEGRATION WITH CODELLMS VIA RLHF

The framework interfates with existing CodeLLM pipelines, by substituting the static reward com-
putations with dynamic evaluations. Bat var ‘Learning from choice of model (RLHF): RL with
DTERM human preferences input takes the generated code and human preferences inputs:

RRLHF = αprefRpref +

n−1∑
i=1

αiRi (12)

where Rpref represents the human preference component. The hypernetwork helps balance this
automatically without automatic metrics based on the requirements of the task, thus removing the
requirement for manual reward engineering in RLHF pipelines.

The good overview of the full architecture is shown in Figure 1, which works something like this:
(1) Task descriptions get to embeddings, (2) certainly there is get dynamic weights that are gener-
ated via the hypernetwork, (3) components of rewards are coded to evaluate code versus their spe-
cific reward metrics, (4) its how the final reward signal is formed that could be utilized by policy-
optimizing.
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Figure 1: Dynamic Task-Embedded Reward Machine (DTERM) Architecture

5 EXPERIMENTAL EVALUATION

To verify the effectiveness of our proposed Dynamic Task-Embedded Reward Machine (DTERM),
we conduct complete subsets of experiments on various code-related tasks. The evaluation focuses
on three important aspects: (1) performance comparison to static reward baselines, (2) adaptability
to unseen tasks, and (3) analysis of dynamic reward composition patterns.

5.1 EXPERIMENTAL SETUP

Datasets and Tasks: We evaluate on four established code generation benchmarks covering di-
verse programming scenarios. The CodeXGLUE dataset (?) provides tasks for code summariza-
tion, translation, and completion. The APPS benchmark (Hendrycks et al., 2021) focuses on com-
petitive programming problem solving. For code repair, we use the DeepFix dataset (Gupta et al.,
2017), while HumanEval (Chen et al., 2021) assesses functional correctness through hand-written
test cases.

Baselines: We compare against three representative static reward approaches: (1) Uniform
weights all reward components equally, (2) Expert-Tuned uses manually optimized weights from
prior work (Rame et al., 2023), and (3) GradNorm dynamically balances gradients during training
(Chen et al., 2018b). All baselines employ identical sub-reward components as DTERM for fair
comparison.

Implementation Details: The hypernetwork comprises a 3-layer MLP with hidden dimension
256, generating weights for five sub-rewards: compilation success, test case passing rate, code
similarity (BLEU score), style adherence, and computational efficiency. Task embeddings are ex-
tracted using CodeBERT (Feng et al., 2020) with dimension 768. We train using PPO (Schulman
et al., 2017) with learning rate 3e-5 and batch size 32. Each experiment runs on 4 NVIDIA V100
GPUs with 3 random seeds.

Evaluation Metrics: Primary metrics include task-specific success rates (e.g., compilation rate for
DeepFix, test pass rate for HumanEval) and overall reward values.

5.2 MAIN RESULTS

Table 1 presents comparative results across all benchmarks. DTERM consistently outperforms
static reward baselines, with particularly significant gains in code translation (+12.7% BLEU) and
repair (+18.4% fix rate).

The cross-task generalization experiments reveal even more pronounced benefits. As shown in
Figure 2, DTERM maintains robust performance when applied to unseen task types, while static
approaches suffer significant degradation.

5.3 DYNAMIC REWARD ANALYSIS

To understand how DTERM adapts to different tasks, we analyze the learned reward weightings.
Figure 3 illustrates the proportion of each sub-reward component across four task types.
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Table 1: Performance comparison across code generation tasks

Task Metric Uniform Expert GradNorm DTERM
Tuned (Ours)

Summarization BLEU-4 22.1 23.8 24.3 26.5
Translation BLEU-4 38.7 41.2 42.0 46.4
Completion Exact Match 62.3 65.1 66.8 69.5
Repair Fix Rate 51.6 56.2 58.7 62.1
Problems Pass@1 15.8 18.4 19.2 22.7

Figure 2: Cross-task generalization performance measured by normalized reward values

The hypernetwork’s dynamic adjustment capability proves particularly valuable in handling task
variations.

5.4 ABLATION STUDY

We conduct ablation experiments to isolate the contributions of key components. Table 2 shows
results with various elements removed.

The task embedding quality also proves crucial - replacing CodeBERT with simpler bag-of-words
representations causes a 15% performance drop.

5.5 TRAINING DYNAMICS

In Figure 4, the meta-training loss is plotted in terms of the number of epochs and we can see that
it is converging stably and that the complexity of learning reward weights and policy parameters at
the same time is not too difficult.

7
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Figure 3: Proportion of sub-rewards in final reward for different task types

Table 2: Ablation study on HumanEval benchmark (Pass@1)

Configuration Performance

Full DTERM 22.7
w/o Hypernetwork 18.1
w/o Task Embedding 19.3
w/o FiLM Modulation 20.8
w/o Compiler Feedback 21.1
Static Prototypes Only 17.6

The efficiency of the training compares favorably to base-lines, at about 1.2x of the compute time
of only static approaches at the same sample efficiency.

5.6 QUALITATIVE EXAMPLES

Case studies show late improving the generation through dynamic rewarding. In one example of a
code repair, DTERM correctly ranked correcting a null pointer exception above stylistic enhance-
ments when the embedding suggested a debugging setting.

These examples illustrate the ability of the framework to make fine-grained trade-offs as a function
of understanding the task - an ability inherent to static approaches.

8
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Figure 4: Meta-training loss curve showing convergence over training epochs

6 CONCLUSION

The Dual Selfular-Acting Machine (DSAM.Mouth Rachel) A new method for analyzing the dual
selfular acting machine (DSAM), a generative text model architecture akin to one employed by
ChatGPT.

The success of DTERM has implications for the wider field of reinforcement learning systems that
operate in domains with multifaceted quality criteria.

7 THE USE OF LLM

We use LLM polish writing based on our original paper.
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P Schöpf, S Auddy, J Hollenstein, et al. Hypernetwork-ppo for continual reinforcement learning.
Unable to determine the complete publication venue, 2022.

N Stiennon, L Ouyang, J Wu, et al. Learning to summarize with human feedback. In Advances in
Neural Information Processing Systems, 2020.

M Tufano, C Watson, G Bavota, M Di Penta, et al. Deep learning similarities from different rep-
resentations of source code. In Proceedings of the 15th International Conference on Mining
Software Repositories, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

R Yang, X Sun, and K Narasimhan. A generalized algorithm for multi-objective reinforcement
learning and policy adaptation. In Advances in Neural Information Processing Systems, 2019a.

Y Yang, K Caluwaerts, A Iscen, J Tan, et al. Norml: No-reward meta learning. Technical report,
arXiv preprint arXiv:1903.01063, 2019b.

DM Ziegler, N Stiennon, J Wu, TB Brown, et al. Fine-tuning language models from human prefer-
ences. Technical report, arXiv preprint arXiv:1909.08593, 2019.

11


	Introduction
	Related Work
	Reinforcement Learning for Code Generation
	Dynamic Reward Modeling
	Hypernetworks in Reinforcement Learning
	Code Representation and Task Embedding
	Reinforcement Learning from Human Feedback

	Background and Preliminaries
	Reinforcement Learning Formulation for Code Generation
	Reward Components in Code Generation
	Hypernetworks for Parameter Generation
	Task Embeddings for Code-Related Tasks
	Reward Machines and Modular Decomposition

	Hypernetwork-Based Dynamic Reward Weighting Framework
	Hypernetwork-Driven Dynamic Reward Weighting
	Task Embedding-Guided Reward Specialization
	Hierarchical Adaptation with Cross-Task Prototypes
	Multi-Modal Task Embedding Fusion
	Compiler-Aware Reward Feedback
	Integration with CodeLLMs via RLHF

	Experimental Evaluation
	Experimental Setup
	Main Results
	Dynamic Reward Analysis
	Ablation Study
	Training Dynamics
	Qualitative Examples

	Conclusion
	The Use of LLM

