
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JANUS: DUAL-SERVER MULTI-ROUND SECURE AG-
GREGATION WITH VERIFIABILITY FOR FEDERATED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Secure Aggregation (SA) in federated learning is essential for preserving user
privacy by ensuring that model updates are masked or encrypted and remain in-
accessible to servers. Although the advanced protocol Flamingo (S&P’23) has
made significant strides with its multi-round aggregation and optimized commu-
nication, it still faces several critical challenges: (i) Dynamic User Participation,
where Flamingo struggles with scalability due to the complex setups required
when users join or leave the training process; (ii) Model Inconsistency Attacks
(MIA), where a malicious server could infer sensitive data, which poses severe pri-
vacy risks; and (iii) Verifiability, as most schemes lack an efficient mechanism for
clients to verify the correctness of server-side aggregation, potentially allowing in-
accuracies or malicious actions. We introduce Janus, a generic privacy-enhanced
multi-round SA scheme through a dual-server architecture. A new user can par-
ticipate in training by simply obtaining the servers’ public keys for aggregation,
eliminating the need for complex communication graphs. Our dual-server model
separates aggregation tasks, which ensures that neither server has access to the fi-
nal aggregated results, thus effectively preventing MIA. Additionally, we propose
a new cryptographic primitive, Separable Homomorphic Commitment, integrated
with our dual-server approach to ensure the verifiability of aggregation results.
Extensive experiments across various models and datasets show that Janus signif-
icantly boosts security while enhancing efficiency. It reduces per-client commu-
nication and computation overhead from logarithmic to constant scale compared
to state-of-the-art methods, with almost no compromise in model accuracy.

1 INTRODUCTION

Traditional machine learning relies on centralized training, where the entire dataset is stored in a
single central location and directly accessible by the server. However, users are often reluctant
to share data, especially if it involves sensitive information like medical records, photos, or trade
secrets. Federated Learning (FL) was proposed to protect user privacy and enable the model train-
ing (McMahan et al., 2017). FL is a distributed machine learning framework that uses privacy-
preserving cryptographic techniques, which allows participants to collaborate on model training
without disclosing their private data. Unfortunately, it has been shown that an adversary can invert a
single model update from a target user, thereby revealing a great deal of sensitive information about
its local dataset (Hitaj et al., 2017; Nasr et al., 2019; Zhu et al., 2019).

To protect the user gradient information, Secure Aggregation (SA (Bonawitz et al., 2017)) is intro-
duced to enhance the security of FL, which can prevent server access to individual model updates.
SA is considered as one of the most robust defenses against gradient inversion and related inference
attacks (Huang et al., 2021). Most of the current SA schemes rely on the double-mask, which in-
volves heavy secret sharing, especially as the number of participants grows, requiring two clients to
negotiate the key and engage in frequent communication. The advanced SA protocol (BBSA (Bell
et al., 2020)) manages the aggregation with thousands of clients and high-dimensional input vectors
while tolerating device drops during execution. However, these schemes select a subset of clients
and enables aggregation for only one round. Although it is possible to run the protocol multiple
times to complete multi-round of aggregation, the Setup phase must be re-run for each round to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

maintain privacy, requiring server interaction with all clients during each step. This results in signif-
icant communication overhead and reduced efficiency.

Recently, the state-of-the-art Flamingo (Ma et al., 2023) eliminates the need for re-setup in each
round, which supports multi-round SA based on the BBSA. It also optimizes the communication
graph to improve the system performance, with introducing a set of decryptors to handle part of
the computation. While Flamingo marks significant progress, it has limitations in handling dynamic
user participation, resisting Model Inconsistency Attacks (MIA) (Pasquini et al., 2022), and ensuring
correct server-side aggregation. When users join or leave, the complex setups needed for Flamingo
lessen its practicality. The server can still exploit the MIA to infer sensitive information, and clients
have no way to verify if the server correctly performed the aggregation or omitted user data.

These vulnerabilities stem from the reliance on a single server, which is common in existing schemes
due to its simplicity. A single server inherently knows the aggregated results, providing an opportu-
nity for a malicious server to compromise the privacy by bypassing the SA protocol (Pasquini et al.,
2022). Specifically, the server distributes carefully crafted parameters to non-target users, which
can trigger the dying-ReLU effect that causes non-target users to generate zero gradients during ag-
gregation. As a result, the aggregated gradient effectively reveals the target user’s gradient. This
attack affects not only double-mask schemes but all schemes where the server can access the ag-
gregation results. While cryptographic signatures could prevent this by allowing users to verify the
consistency of received parameters. This approach involves heavy computation and requires users
to negotiate the consistency of the received information, which places a large burden on the system.

Our research indicates that preventing MIAs necessitates restricting the server’s access to the final
aggregation results. To achieve this, we propose a dual-server architecture: one server handles the
collection and aggregation of masked gradients, while the other manages the aggregation of masks.
If the servers do not collude, neither can access the final aggregated results. This assumption is
feasible in many real-world scenarios. For example, banks, financial institutions, and healthcare
organizations, despite having different interests, are generally committed to protecting user privacy
and complying with regulations. They are motivated to collaborate for the benefit of users and avoid
collusion. In the Flamingo scheme, the decryptors can be also considered as one server, with a
second server forming the dual-server architecture. This approach ensures security while leveraging
the practical willingness of institutions to cooperate for SA. Additionally, numerous studies are
relevant to our work, with detailed discussion provided in Appendix A.

Another challenge is to ensure the correctness of aggregation, particularly in a dual-server archi-
tecture where either server could miscollect or misaggregate masked gradients or masks. An ag-
gregation server might prioritize speed over accuracy, performing fast but faulty computations to
save resources, which can lead to erroneous results. Since servers are often semi-trusted, they could
also deliberately mishandle some gradients or falsify aggregation results, misleading users about the
training results (Hahn et al., 2023). Current schemes face difficulties in ensuring efficient verifiabil-
ity, typically depending on resource-intensive techniques like homomorphic hashing or signatures.
Moreover, errors in aggregation could arise from malicious client submissions, yet current methods
fail to enforce strong client-side commitments. To address these challenges, our approach introduces
a new cryptographic primitive called separable homomorphic commitment (SHC), which ensures
both server-side integrity and client-side data accuracy in the dual-server setting. Homomorphism
and separability are two important properties of SHC. The two servers aggregate the different values
in the commitment separately. SHC can separates out the part of message and compares them with
the aggregated results, thus enabling the correctness of aggregation.

Our main contributions are summarized as follows.

• Generic construction of dual-server SA with dynamic user participation for FL. We propose
Janus, the first generic construction of SA based on dual-server, which can work well for
multiple round of aggregation without re-setup in FL. Our new design avoids heavy com-
munication graphs such as complete graphs and k-regular graphs. Additionally, Janus only
involves some lightweight components, thus it can avoid the need for time-consuming op-
erations such as secret sharing, which in turn dramatically improves the system efficiency.
It also enables dynamic user participation with only the servers’ public keys.

• A new cryptographic primitive and enhanced privacy with verifiability. Our primary contri-
bution is the conceptual development of a new cryptographic primitive, termed Separable

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Homomorphic Commitment (SHC). By analyzing the algebraic properties of current com-
mitment schemes, we identify a common blueprint that can be instantiated to provide novel
verification methods for aggregation results. Furthermore, we introduce a dual-server ar-
chitecture that leverages SHC to enhance both privacy and verifiability. This architecture
ensures that aggregation results remain invisible to individual servers, making it impossi-
ble for a malicious server to bypass the SA. Consequently, our approach not only enhances
resistance to malicious inference attacks but also incorporates verifiability, providing addi-
tional security advantages.

• Implementation and evaluation. We implemented an instantiation for Janus and evaluated it
with similar classical schemes via extensive experiments on different models and datasets.
The results show that Janus outperforms in terms of both computation and communication.
It reduces per-client overhead from the logarithmic scale of current advanced methods to a
constant scale. Table 1 demonstrates that Janus surpasses other state-of-the-art schemes in
terms of security, efficiency, and functionality.

Table 1: Comparison of SA Constructions
Scheme Input Privacy Multi-round Verifiability Dynamic Versatility NS⋆ Efficience‡ MIA

SecAgg (Bonawitz et al., 2017) ✓ ✗ ✗ ✗ ✗ 1 ✗

BBSA (Bell et al., 2020) ✓ ✗ ✗ ✗ ✗ 1 ✗

Flamingo (Ma et al., 2023) ✓ ✓ ✗ ✗ ✗ 2† ✗

Janus ✓ ✓ ✓ ✓ ✓ 2 ✓

✓ Support, ✗ No support. Versatility: A generic construction. ⋆ Number of servers. † The decryptors of
this construction can be abstracted to a server. ‡ More black parts in the circle indicate better efficiency.

2 PRELIMINARIES

2.1 COMMITMENTS

Commitments (Pedersen, 1991) provide the cryptographic cornerstone for integrity and trust in var-
ious schemes. It enables participants to commit to values without compromising the confidentiality
of the information. Typically, a non-interactive secure commitment scheme consists of the following
three algorithms:

1. CSetup(1λ)→ pp. The system initialization algorithm takes as input a security parameter
λ, and it outputs the public parameter pp for the commitment scheme.

2. Commit(pp, v, r) → c. The commitment generation algorithm takes as input a message v
from the message spaceMpp and a random number (blinder) r in the randomness space
Rpp, and it outputs the commitment c in the commitment space Cpp.

3. Reveal(pp, v, c, r) → b. The revealing commitment algorithm takes as input a message v,
a commitment c and a blinder r. If it accepts then the output b = 1; otherwise, b = 0.

Normally, a secure commitment scheme must satisfy the following three properties.

• Completeness. It ensures that if both the committer and the verifier follow the protocol
correctly, the verifier will always accept the decommitment (Reveal).

Pr

 CSetup(1λ)→ pp;
Commit(pp, v, r)→ c :
Reveal(pp, v, c, r) = 1

 = 1. (1)

• Hiding. During the commitment phase, the verifier cannot infer the committed value from
the commitment. It can ensure that the committed value remains confidential until it is
revealed. For any v1, v2 of equal length, and any r, the following probability distributions
are computationally indistinguishable.

{Commit(pp, v1, r)→ c1}
c
≈ {Commit(pp, v2, r)→ c2}. (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Binding. After the commitment is made, the committer cannot change the committed
value. It can prevent the committer from cheating by ensuring the immutability of the com-
mitment. There exists a negligible function negl(λ) such that for all non-uniform Proba-
bilistic Polynomial Time (PPT ) adversaries A,

Pr


CSetup(1λ)→ pp;
A(pp)→ (c, r, v1, v2) :
Reveal(pp, c, v1, r) = 1∧
Reveal(pp, c, v2, r) = 1∧

v1 ̸= v2

 ≤ negl(λ). (3)

2.2 MASKING-BASED SECURE AGGREGATION

The One-Time Pad (OTP) is a type of classical encryption which can be perfect secrece (Katz &
Lindell, 2014). Specifically, OTP can encrypt information using either addition or multiplication.
Participants can mask their updates to preserve privacy in FL. A formal OTP scheme usually contains
the following two algorithms.

1. Masking(x, k)→ x̂. The masking algorithm takes as input a secret message x and a private
key k, and it outputs the encryption result x̂.

2. UnMasking(x̂, k)→ x. The unmasking algorithm takes as input a encrypted message x̂
and a private key k, and it outputs the plain message x.

Users can apply masking to updates via OTP before uploading to the central servers for aggrega-
tion. SA is designed not only to effectively prevent centralized servers from snooping on individual
models, but also to defend against attacks from malicious participants and ensure the robustness of
the entire FL system. Researchers have proposed several variants of SA to address different threat
models and system requirements. We focus on masking-based aggregation schemes. Specifically,
there is a set of users U where ui ∈ U has a private update xi in FL. In masking-based SA, each ui

adds a pair-wise additive mask to its private update xi to get the masked vector yi as follows:

yi = xi +
∑

uj∈U :i<j

PRG(si,j)−
∑

uj∈U :i>j

PRG(sj,i), (4)

where the pseudorandom generator (PRG) can randomly generate a sequence numbers based on
the random seed si,j . Note that the masks will be removed when all masked input updates yi are
summed, resulting in

∑
ui∈U

yi =
∑
ui∈U

xi +
∑
i<j

PRG(si,j)−
∑
i>j

PRG(sj,i)

 =
∑
ui∈U

xi. (5)

In addition, in order to deal with dropped users during protocol execution, the Shamir secret sharing
scheme (Shamir, 1979) is used to share seeds among users. The Diffie-Hellman (DH) key exchange
protocol (Diffie & Hellman, 1976) is used to negotiate the seeds si,j for each pair of users (ui, uj) ∈
U . Note that for large-scale FL applications, the above scheme is not cost-effective. For a n-user FL
system, it takes O(n2) communication rounds to run the pairwise DH key exchange protocol.

2.3 MODEL INCONSISTENCY ATTACKS

A malicious server AS intends to obtain private information about the model update of target user
Utar. It can distribute elaborately constructed parameters θi,t to the non-target users {U \ Utar}
and then send normal parameters θtar,t to the target user, where U denotes the set of all users. This
can trigger the dying-ReLU (Lu et al., 2019), where the dead layer cannot generate any gradient.
Therefore, the non-target user ends up generating tampered model updates ∆θi,t

Di,t
, where the Di,t is

the local date of Ui. While the parameters of Utar are real thus generating a right update ∆θtar,t

Dtar,t
on

its local data Dtar,t in round t. These tampered model updates can enable AS to obtain the model

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

updates ∆θtar,t

Dtar,t
of Ûtar in plaintext. Specifically, the final result of secure aggregation is as follows,

ASSA(∆
θ1,t
D1,t

, ...,∆
θi−1,t

Di−1,t
,∆

θtar,t

Dtar,t
,∆

θi+1,t

Di+1,t
, ...,∆

θn,t

Dn,t
)

= ASSA(0, ..., 0,∆
θtar,t

Dtar,t
, 0, ..., 0) = ∆

θtar,t

Dtar,t
.

(6)

Once AS gets the update ∆
θtar,t

Dtar,t
, it can get sensitive information about Dtar,t by executing any

gradient inversion attack or inference attacks.

3 PROPOSED METHODS

In this section, we design the Janus, a generic privacy-enhanced multi-round SA scheme via a dual-
server architecture, where SHC is the core cryptography for verifiability. To facilitate understanding,
we first present the new primitive SHC, followed by elaborating on the construction of Janus. Let⊙

denote the consecutive operation of ⊙. Specifically,
⊙n

i=1 xi = x1 ⊙ x2... ⊙ xn, where the
⊙ indicates addition or multiplication depending on the specific scheme. T is the total number of
rounds required for the model to converge and t denotes current round. Let n users participate in FL
training, where users are denoted by Ut = {Ui, i ∈ [1, n]}. All users negotiate a model architecture
and train the model locally on their private data sets Di. There are three types of entities in our
system which are aggregation server S0, assistant server S1, and users. We assume that each user
Ui ∈ Ut holds a private update xi of dimension m. For simplicity, we assume that the elements of
xi and

∑
Ui∈U xi are in ZR for R.

3.1 SEPARABLE HOMOMORPHIC COMMITMENT

Definition 1 (Separable Homomorphic Commitment). A secure separable homomorphic commit-
ment scheme is a cryptographic protocol that enables secure and flexible commitments. It is com-
prised of a set of algorithms denoted by the tuple (Setup,Commit,Se,PCommit,Reveal). The
formal syntax of each algorithm is described as follows:

• pp ← Setup(1λ). A PPT initialization algorithm takes as input a security parameter λ,
and it outputs a public parameters pp.

• c← Commit(pp,m, r). A PPT commitment algorithm takes as input a public parameter
pp, a message m and a random number r, and it outputs a complete commitment c, where
c = (cm, cr) and cm is the part associated with the message m and cr is related to the
random number (blinder) r.

• cm ← Se(pp, c, cr). A Decisional Polynomial Time (DPT ) separation algorithm takes as
input a public parameter pp, a complete commitment c and a blinder-related part cr, and it
outputs the message-related commitment cm.

• cm ← PCommit(pp,m). ADPT commitment algorithm takes as input a public parameter
pp, a message m, and it outputs the message-related commitment cm.

• 1/0 ← Reveal(pp, c,m, r). A DPT revealing commitment algorithm takes as input the
public parameter pp, the complete commitment c, the message m and the random blinder
r, this algorithm outputs 1 if the m is the valid committed message of c and 0 otherwise.

In addition to the completeness, binding and hiding properties possessed by traditional commitment
schemes described in Section 2, the SHC also possess the following two unique properties. The two
servers independently aggregate the different values in the commitments. SHC is able to separate
part of the message and compare it with the aggregated results, thereby ensuring the correctness of
the aggregation.

• Separability. The complete commitment c generated by Commit(m, r) can be divided
into two parts c = (cm, cr), where cm is the part associated with the commitment message
m and cr is related to the random blinder r. It can use cr to extract from the complete
commitment c only the parts that are relevant to m. Taking the classic Pdeersen commit-
ment (Pedersen, 1991) as an example, the complete commitment is c = hrgm. Given

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

�𝑥𝑥𝑖𝑖,𝑡𝑡 ← Masking(𝑥𝑥𝑖𝑖,𝑡𝑡, 𝑠𝑠𝑘𝑘𝑖𝑖,𝑡𝑡)
𝐶𝐶𝑇𝑇𝑖𝑖,𝑡𝑡 ← Enc(𝑝𝑝𝑘𝑘𝑠𝑠, 𝑠𝑠𝑘𝑘𝑖𝑖,𝑡𝑡)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

(𝑐𝑐𝑖𝑖,𝑡𝑡, 𝑐𝑐𝑖𝑖,𝑟𝑟) ← Commit(𝑥𝑥𝑖𝑖,𝑡𝑡, 𝑟𝑟𝑖𝑖,𝑡𝑡)

( �𝑋𝑋𝑡𝑡,𝐶𝐶𝑟𝑟)

(𝑆𝑆𝐾𝐾𝑡𝑡,𝐶𝐶𝑡𝑡)

𝑋𝑋𝑡𝑡 ← UnMasking( �𝑋𝑋𝑡𝑡, 𝑆𝑆𝑆𝑆𝑡𝑡)
𝐶𝐶𝑚𝑚 ← Se(𝐶𝐶𝑡𝑡,𝐶𝐶𝑟𝑟)
𝐶𝐶𝑚𝑚∗ ← PCommit(𝑋𝑋𝑡𝑡,𝑝𝑝𝑝𝑝𝑐𝑐)
𝐶𝐶𝑚𝑚 𝐶𝐶𝑚𝑚∗

 ? 

𝑆𝑆0

X �𝑋𝑋𝑡𝑡 = ⨀𝑖𝑖=1
𝑛𝑛 �𝑥𝑥𝑖𝑖,𝑡𝑡

X𝐶𝐶𝑟𝑟 = ⨀𝑖𝑖=1
𝑛𝑛 𝑐𝑐𝑖𝑖,𝑟𝑟

(𝑐𝑐𝑖𝑖,𝑟𝑟 , �𝑥𝑥𝑖𝑖,𝑡𝑡)

𝑆𝑆1

(𝑐𝑐𝑖𝑖,𝑡𝑡,𝐶𝐶𝑇𝑇𝑖𝑖,𝑡𝑡)

𝑠𝑠𝑠𝑠𝑖𝑖,𝑡𝑡 ← Dec(𝑠𝑠𝑘𝑘𝑠𝑠,𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡)
1𝑆𝑆𝑆𝑆𝑡𝑡 = ⨀𝑖𝑖=1

𝑛𝑛 𝑠𝑠𝑠𝑠𝑖𝑖,𝑡𝑡
1𝐶𝐶𝑡𝑡 = ⨀𝑖𝑖=1

𝑛𝑛 𝑐𝑐𝑖𝑖,𝑡𝑡

Figure 1: The Workflow of Janus.

cr = hr, cm = gm, we can get the cm from c and cr via c/cr. Furthermore, the cm can be
calculated from PCommit(m, pp).

• Homomorphism. Homomorphism facilitates to accomplish secure aggregation. Define
the space of message, blinder and commitment asMc,Rc, Cc respectively.

∀(m0, r0), (m1, r1) ∈Mc ×Rc :

Commit(m0 +m1; r0 + r1) = Commit(m0; r0) · Commit(m1; r1).
(7)

3.2 THE PROPOSED JANUS

Janus tackles the challenges of dynamic user participation, verifiability, and resistance to model
inconsistency attacks that are not addressed in the state-of-the-art Flamingo (S&P’23). Specifiaclly,
it has following three key high-level technical ideas:

(1) Dual-server architecture and dynamic user participation. Specifically, the Janus involves two
servers, S0 and S1. S0 is responsible for aggregating the masked updates and S1 is responsible for
aggregating the values associated with the commitments. The dual-server architecture prevents the
servers from accessing the final aggregation results, thus effectively avoids attacks such as model
reversal and model inconsistency, which are serious privacy leakage in traditional single-server.
Furthermore, there is no need to re-establish complex communication diagrams when users join
or leave. New users can participate in the new training process by simply generating their own
public/private keys and obtaining the servers’ public keys.

(2) Lightweight components and efficient aggregation. Instead of requiring the client to secretly
share the mask with all its neighbours as Flamingo and BBSA, Janus does not even require neigh-
bours and avoids the time-consuming process of negotiating keys with each other. It only applies
OTP to mask the secret updates and subsequently encrypts the masks via a secure public key encryp-
tion. The different messages are then sent to S0 and S1. Thus, no matter how the number of users
in the system increases, the operations required by Janus are fixed to the desired constant level.

(3) Verifiability and privacy enhancement. The separability of SHC allows the user to validate
the aggregated values locally, thus enabling verifiability. In addition, the binding feature of SHC
prevents the client from denying previously sent malicious messages when subsequent misbehavior
is detected. This is a feature not available in other advanced schemes. Given the hiding of the SHC
and the confidentiality of public key encryption, neither S0 nor S1 can access the received secret
information. Combined with our dual-server architecture, higher security can be achieved.

Figure 1 shows the workflow of Janus. Subsequently, we provide a detailed description of our Janus,
noting that it is a generic construction. Thus, we assume the underlying public key encryption
scheme is ΠE = (Setup, KeyGen,Enc,Dec), the OTP scheme is ΠO = (Masking, unMasking),
and the SHC scheme is ΠS = (Setup,Commit,Se,PCommit,Reveal), in which the setup parts
of these schemes are completed in the Setup phase of Janus by default. Furthermore, Appendix B

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

gives the tasks of the different entities in each phase for conciseness and an effective instantiation to
demonstrate the practicality. Specifically, Janus consists of the following four phases:

Setup. The objective of this phase is to determine the public parameters pp and specific crypto-
graphic schemes, which ensures that subsequent schemes work properly. In round t, all parties are
given the security parameter λ. All public parameters pp of the system are then generated based on
λ, e.g., the setup phase and public parameters generation in ΠE ,ΠO,ΠS . Each user will generate
their private key ski,t for the OTP. The S1 will generate its public/private key (pks, sks) and publish
its public key to all participants. Subsequent communications between the users and the servers are
encrypted with their respective public keys by default.

Masking and Report. The Ui masks its input updates xi,t via Masking(xi,t, ski,t) to get the masked
updates x̂i,t. Subsequently, Ui encrypts the ski,t using the public key of S1 via Enc(pks, ski,t) to get
the ciphertext CTi,t of ski,t. To achieve subsequent verifiability, Ui makes separable commitment
for the input updates xi,t via Commit(xi,t, ri,t) to get the full commitment ci,t, where the ri,t is the
blinder, the ci,t can be divided into (ci,r, ci,m), ci,r is the commitment of blinder and ci,m is the
commitment of updates. Then it sends (x̂i,t, ci,r) to the aggregation server S0 and (ci,t, CTi,t) to
the assistant server S1.

Collection and Aggregation. In this phase, the servers will complete the computation secure
aggregation and verification for users updates. Specifically, S0 will aggregate the masked in-
put updates from all users via Xt =

⊙n
i=1 x̂i,t = x̂1,t ⊙ x̂2,t ⊙ ... ⊙ x̂n,t. Then S0 computes

Cr =
⊙n

i=1 ci,r = c1,r ⊙ c2,r ⊙ ... ⊙ cn,r. S0 sends (X̂t, Cr) to all users. In fact, X̂t contains the
updated aggregated values for round t and Cr can assist in the validation of aggregated result. For
the S1, it first decrypts the ciphertext to get the ski,t via Dec(sks, CTi,t). Then it can aggregate the⊙n

i=1 ski,t = sk1,t ⊙ sk2,t ⊙ ... ⊙ skn,t = SKt. Furthermore, it calculates the aggregation result
of the full commitment value for subsequent users to verify the aggregation result completed by S0

via
⊙n

i=1 ci,t = c1,t ⊙ c2,t ⊙ ...⊙ cn,t = Ct. Finally, S1 sends (SKt, Ct) to all users.

UnMasking and Verification. The users compute the final update results based on the values re-
turned by the two servers and validate the aggregated result. Specifically, Ui gets the final aggrega-
tion result via Xt = UnMasking(X̂t, SKt), where the Xt is the updates aggregation result of the
round t. To verify the correctness of the aggregation result, Ui extracts the commitment value related
to the updates via Cm = Se(Ct, Cr). The user then calculates the commitment value which is only
related to the updates via C∗

m = PCommit(Xt, ppc), where the ppc is the public parameter of the
underlying SHC. Finally, Ui compares whether C∗

m and Cm are equal. If they are equal, then the
aggregated result is correct; otherwise, it is invalid, and Ui will terminate the subsequent training.

4 EVALUATION

4.1 THEORETICAL ANALYSIS

Janus offers enhanced security compared to state-of-the-art schemes. We give a formal security
analysis in appendix C, where Janus can resist MIA and achieve multi-round security. Further-
more, a key advantage of Janus over Flamingo and BBSA is its ability to complete each round
with fewer interactions. The two advanced schemes necessitate communication with neighboring
nodes to complete the elimination of the mask or decryption process. Assuming that the underlying
operations, such as commitments and encryptions, have a complexity of O(1), Janus demonstrates
superior efficiency in terms of interaction count. The remarkable property of Janus is that the system
overhead do not grow with the number of users as in previous schemes. The system is designed to
be client-friendly, minimizing computational overhead. Clients need only two interactions with the
servers to go offline, ensuring there are no issues with aggregation failures or inaccurate results due
to user disconnection. We focus on a round of aggregation, with Table 2 presenting the results in
comparison to relevant advanced schemes.

Computation Cost. The computation cost of each client consists of: 1) masking the local update by
using one-time pad; 2) encrypting the key of one-time pad by public key encryption; 3) commit-
ing the local update by using the SHC; 4) unmasking the global aggregation result; 5) separating
message-only commitments from the full commitment; 6) calculating the commitment value based
on the unmasking result and compare whether it is equal to the separated commitment value to com-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Performance Analysis

Scheme
Computation Communication

Client Server Client Server

BBSA O(A2 + lA) O(n(A2 + lA)) O(A2 + l) O(n(A2 + l))

Flamingo
Regular Client: O(L2)

O(n+ L2)
Regular Client: O(l +A+ L2)

O(L3 + n(l + L+A))
Decryptor: O(L2 + δAn+ (1− δ)n+ ϵn2) Decryptors: O(L2 + L+ δAn+ (1− δ)n)

Janus O(1 + l) O(n+ nl) O(1) O(n)

∗ Let n,L,A denote the total number of clients, the number of decryptors and the upper bound number of
neighbors of a client respectively, where A = logn in BBSA. l denotes the dimension of the update. δ
denotes the dropout rate respectively. ϵ is the parameter of graph generation.

plete the verification. All the above operations take only O(1) time each. Overall, the computational
overhead of each client is constant. The computation cost of S0 mainly consists of aggregating the
masking updates from clients and the commitment of random numbers, which both take O(n). Thus
the total computational overhead grows linearly with the number of clients. For S1, the computa-
tion cost consists of: 1) decrypting the ciphertext of the private key of one-time pad; 2) aggregating
the private keys for masking; 3) aggregating the complete commitments for subsequent verifica-
tion of the aggregation result of S0. All these operations mentioned above take O(n). Overall, the
communication overhead of servers grows linearly with the number of clients which takes O(n).

Communication Cost. Each client needs to send one masked message to S0, one encrypted and
committed message to S1. Overall, the computational overhead of each client is constant. For the
servers, S0 will send the aggregation result of the masking updates to all clients, which takes O(n).
S1 sends the aggregation result of the key used for one-time pad and the full commitment to all
clients, which also takes O(n). Overall, for servers, their communication overhead grows linearly
with the number of clients which takes O(n).

4.2 MODEL PERFORMANCE

In this section, we carried out various experiments to verify the effectiveness and efficiency of our
scheme and to compare it with similar advanced schemes. Our experimental setup includes a 13th
Gen Intel(R) Core(TM) i7-13700KF 3.40 GHz processor with 32.0 GB of RAM, a 64-bit Windows
11 operating system, and an RTX 4070Ti GPU display adapter.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 F l a m i n g o

( a )  M N I S T  ( C N N )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 F l a m i n g o

( b )  M N I S T  ( M L P )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 F l a m i n g o

( c )  C I F A R  ( C N N )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 F l a m i n g o

( d )  C I F A R  ( M L P )

Figure 2: Test accuracy across different datasets and models.

Baselines. To evaluate the impact of SA on federated learning (e.g., training effectiveness, commu-
nication time), we implemented the original FL framework (No-SA), where the server aggregates
clear updates from users in each training round (McMahan et al., 2017). Bell et al. (2020) optimized

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the communication graph of the first mask-based SA scheme (Bonawitz et al., 2017) and proposed
an advanced scheme (BBSA), which we implemented for comparison. For client dropout, we con-
struct the graph with responsive clients, yielding better results than the original. Flamingo (Ma
et al., 2023) introduced multi-round aggregation, and both Flamingo and BBSA involve waiting for
messages from at least t out of n clients.

Datasets and Models. MNIST consists of 70,000 grayscale handwritten digit images (60,000 for
training, 10,000 for testing), each 28x28 pixels. We use 100 clients, each with 600 training samples.
The global model for MNIST is a fully connected network with layers of size (784, 256, 10). CIFAR-
10 includes 60,000 color images across 10 classes (50,000 training, 10,000 testing), using a CNN
architecture with a batch size of 10, learning rate of 0.001, and 100 training epochs. We employed
SGD as the optimizer, with each client applying SGD once per global epoch (local epoch = 1).

To comprehensively evaluate the impact of the security SA in this paper on the model training effec-
tiveness, our experiments are carried out on different datasets and models. We conducted the training
with 100 clients and compare the test accuracy of our Janus with related schemes. Figure 2 shows
the comparison results. The following conclusions can be drawn from the experimental results.
Firstly, the final test accuracy at model convergence is not much different between our scheme and
the compared schemes, in which No-SA has the highest accuracy, and our scheme follows closely.

Specifically, for MNIST, the test accuracy of No-SA can reach to 94.1% under the CNN, while the
Janus can also reached about 93.18%. Additionally, the test accuracy of No-SA can reach to 85.04%
under the MLP, while the Janus can also reached about 83.95%. Compared to other schemes, Janus
has considerable accuracy. As for the CIFAR, the test accuracy of No-SA can reach to 77.8% under
the CNN, while the Janus can also reached about 75.94%. Additionally, the test accuracy of No-SA
can reach to 72.8% under the MLP, while the Janus can also reached about 71.6%.

Figure 3 shows the loss of related schemes during the training process with different datasets and
models. It can be concluded that as the number of training rounds increases, the loss values for
the same dataset with different secure aggregation schemes applied are smoother and eventually all
converge to be almost equal. This shows that our Janus, like advanced schemes, does not result in a
loss of model performance due to the use of secure aggregation. The impact on the model is similar
to that of existing advanced schemes, while protecting users privacy and providing better efficiency.

0 5 0 1 0 0 1 5 0 2 0 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

0 5 0 1 0 0 1 5 0 2 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

0 5 0 1 0 0 1 5 0 2 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

0 5 0 1 0 0 1 5 0 2 0 00 . 5

1 . 0

1 . 5

2 . 0

2 . 5

Lo
ss

R o u n d

 N o - S A
 J a n u s
 B B S A
 F l a m i n g o

( a )  M N I S T  ( C N N )

Lo
ss

R o u n d

 N o - S A
 M E P S A
 B B S A
 F l a m i n g o

( b )  M N I S T  ( M L P )

Lo
ss

R o u n d

 N o - S A
 M E P S A
 B B S A
 F l a m i n g o

( c )  C I F A R  ( C N N )

Lo
ss

R o u n d

 N o - S A
 M E P S A
 B B S A
 F l a m i n g o

( d )  C I F A R  ( M L P )

Figure 3: Training loss across different datasets and models.

4.3 COMPUTATION OVERHEAD

Since masking-based schemes are not resistant to user dropouts, we consider this case when imple-
menting BBSA and Flamingo. Specifically, we only consider the case where 10% of users drop out,
but it should be noted that in practice the waiting time required to solve the user dropout problem is

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

much longer than that considered in our experiments, due to the complexity and diversity of the real
scenarios. Moreover, it is important to note that some of the evaluated schemes inherently support
multi-round aggregation, while others do not. We adapted the schemes that lack built-in multi-
round aggregation capabilities by running them multiple times to simulate the effect of multi-round
aggregation. Although this approach is feasible, it introduces a considerable amount of additional
and unnecessary computationa overhead. This further highlights the advantages of our proposed
scheme, Janus, which is natively designed to support multi-round aggregation without incurring
such overhead, thus demonstrating superior efficiency and scalability in practice.

As shown in Figure 4, we present a comparative analysis of the time overhead of various schemes,
focusing on the completion time required for a single aggregation. It should be noted that, due to dif-
ferences in the stages involved across these schemes, only the relevant time-consuming stages were
considered for each. From the results, several conclusions can be drawn. First, the computational
overhead introduced by SA is within an acceptable range, demonstrating its practicality in real-
world applications. More importantly, our proposed scheme exhibits significantly lower overhead,
particularly on the client side, which substantially enhances overall efficiency. This improvement
can be attributed to the adoption of lightweight cryptographic components, which circumvent time-
intensive operations such as secret sharing and DH key negotiation. The absence of these complex
operations reduces the computational burden on clients, thereby contributing to the superior perfor-
mance of our scheme.

N o - S A J a n u s B B S A  F l a m i n g o0

2

4

6

8

N o - S A J a n u s B B S A  F l a m i n g o0

2

4

6

8

1 0

N o - S A J a n u s B B S A  F l a m i n g o0

3

6

9

1 2

N o - S A J a n u s B B S A  F l a m i n g o0

4

8

1 2

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( a )  M N I S T  ( C N N )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( b )  M N I S T  ( M L P )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( c )  C I F A R  ( C N N )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( d )  C I F A R  ( M L P )

Figure 4: Computation overhead across different datasets and models.

5 CONCLUSION

In this paper, we propose a new cryptographic primitive, i.e., separable homomorphic commitment
and design a generic dual-server multi-round SA scheme called Janus for federated learning. Janus
addresses the issues of dynamic user participation, verifiability, and resistance to model inconsis-
tency attacks that are not considered in advanced Flamingo (S&P’23). It not only significantly
enhances security but also improves system efficiency, which reduces per-client communication and
computation overhead from a logarithmic to a constant scale compared to current state-of-the-art
methods, with almost no compromise in model accuracy. Finally, we evaluate Janus from both the-
oretical and experimental perspectives, demonstrating its superior security and performance. Future
researches on integrating Janus with various advanced privacy-preserving techniques could further
enhance its security. Additionally, secure and effective identification of data poisoning attacks from
the users is another worthwhile research direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly)logarithmic overhead. In CCS, pp. 1253–1269. ACM,
2020.

Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In CCS, pp. 1175–1191. ACM, 2017.

Kallista A. Bonawitz, Fariborz Salehi, Jakub Konečný, Brendan McMahan, and Marco Gruteser.
Federated learning with autotuned communication-efficient secure aggregation. In ACSSC, pp.
1222–1226. IEEE, 2019.

Carlo Brunetta, Georgia Tsaloli, Bei Liang, Gustavo Banegas, and Aikaterini Mitrokotsa. Non-
interactive, secure verifiable aggregation for decentralized, privacy-preserving learning. In
ACISP, volume 13083 of Lecture Notes in Computer Science, pp. 510–528. Springer, 2021.

Huancheng Chen and Haris Vikalo. Recovering labels from local updates in federated learning. In
ICML. OpenReview.net, 2024.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

Joaquı́n Delgado Fernández, Sergio Potenciano Menci, Charles Lee, and Gilbert Fridgen. Secure
federated learning for residential short term load forecasting. CoRR, abs/2111.09248, 2021.

Jiqiang Gao, Boyu Hou, Xiaojie Guo, Zheli Liu, Ying Zhang, Kai Chen, and Jin Li. Secure aggrega-
tion is insecure: Category inference attack on federated learning. IEEE Trans. Dependable Secur.
Comput., 20(1):147–160, 2023.

Kostadin Garov, Dimitar Iliev Dimitrov, Nikola Jovanovic, and Martin T. Vechev. Hiding in plain
sight: Disguising data stealing attacks in federated learning. In ICLR. OpenReview.net, 2024.

Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar Baker. Verifl:
Communication-efficient and fast verifiable aggregation for federated learning. IEEE Trans. Inf.
Forensics Secur., 16:1736–1751, 2021.

Yue Guo, Antigoni Polychroniadou, Elaine Shi, David Byrd, and Tucker Balch. Microfedml: Pri-
vacy preserving federated learning for small weights. IACR Cryptol. ePrint Arch., pp. 714, 2022.

Changhee Hahn, Hodong Kim, Minjae Kim, and Junbeom Hur. Versa: Verifiable secure aggregation
for cross-device federated learning. IEEE Trans. Dependable Secur. Comput., 20(1):36–52, 2023.

Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. Deep models under the GAN: infor-
mation leakage from collaborative deep learning. In CCS, pp. 603–618. ACM, 2017.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inver-
sion attacks and defenses in federated learning. In NeurIPS, pp. 7232–7241, 2021.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014.

Ziyao Liu, Jiale Guo, Wenzhuo Yang, Jiani Fan, Kwok-Yan Lam, and Jun Zhao. Privacy-preserving
aggregation in federated learning: A survey. CoRR, abs/2203.17005, 2022.

Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and initialization: Theory
and numerical examples. CoRR, abs/1903.06733, 2019.

Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin. Flamingo:
Multi-round single-server secure aggregation with applications to private federated learning. In
SP, pp. 477–496. IEEE, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, vol-
ume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR, 2017.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In IEEE
Symposium on Security and Privacy, pp. 739–753. IEEE, 2019.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In AISTATS, volume
151 of Proceedings of Machine Learning Research, pp. 3581–3607. PMLR, 2022.

Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding secure aggregation in federated
learning via model inconsistency. In CCS, pp. 2429–2443. ACM, 2022.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, volume 576 of Lecture Notes in Computer Science, pp. 129–140. Springer, 1991.

Pian Qi, Diletta Chiaro, Antonella Guzzo, Michele Ianni, Giancarlo Fortino, and Francesco Piccialli.
Model aggregation techniques in federated learning: A comprehensive survey. Future Gener.
Comput. Syst., 150:272–293, 2024.

Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. ELSA: secure aggregation
for federated learning with malicious actors. In SP, pp. 1961–1979. IEEE, 2023.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
Ml-leaks: Model and data independent membership inference attacks and defenses on machine
learning models. In NDSS. The Internet Society, 2019.

Thomas Sandholm, Sayandev Mukherjee, and Bernardo A. Huberman. SAFE: secure aggregation
with failover and encryption. CoRR, abs/2108.05475, 2021.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In IEEE Symposium on Security and Privacy, pp. 3–18.
IEEE Computer Society, 2017.

Jinhyun So, Basak Güler, and Amir Salman Avestimehr. Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning. IEEE J. Sel. Areas Inf. Theory, 2(1):479–489,
2021.

Jinhyun So, Corey J. Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E. Ali, Basak Guler,
and Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation
in federated learning. In MLSys. mlsys.org, 2022.

Jinhyun So, Ramy E. Ali, Basak Güler, Jiantao Jiao, and Amir Salman Avestimehr. Securing secure
aggregation: Mitigating multi-round privacy leakage in federated learning. In AAAI, pp. 9864–
9873. AAAI Press, 2023.

Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark, and Joseph P. Near.
Efficient differentially private secure aggregation for federated learning via hardness of learning
with errors. In USENIX Security Symposium, pp. 1379–1395. USENIX Association, 2022.

Georgia Tsaloli, Bei Liang, Carlo Brunetta, Gustavo Banegas, and Aikaterini Mitrokotsa. sf DEVA:
decentralized, verifiable secure aggregation for privacy-preserving learning. In ISC, volume
13118 of Lecture Notes in Computer Science, pp. 296–319. Springer, 2021.

Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang. Fedcda: Feder-
ated learning with cross-rounds divergence-aware aggregation. In ICLR. OpenReview.net, 2024.

Di Wu, Jun Bai, Yiliao Song, Junjun Chen, Wei Zhou, Yong Xiang, and Atul Sajjanhar. Fedinverse:
Evaluating privacy leakage in federated learning. In ICLR. OpenReview.net, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yueqi Xie, Minghong Fang, and Neil Zhenqiang Gong. Fedredefense: Defending against model
poisoning attacks for federated learning using model update reconstruction error. In ICML. Open-
Review.net, 2024.

Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. Verifynet: Secure and verifiable
federated learning. IEEE Trans. Inf. Forensics Secur., 15:911–926, 2020.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In CSF, pp. 268–282. IEEE Computer Society,
2018.

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. Batchcrypt: Effi-
cient homomorphic encryption for cross-silo federated learning. In USENIX Annual Technical
Conference, pp. 493–506. USENIX Association, 2020a.

Xianglong Zhang, Anmin Fu, Huaqun Wang, Chunyi Zhou, and Zhenzhu Chen. A privacy-
preserving and verifiable federated learning scheme. In ICC, pp. 1–6. IEEE, 2020b.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In NeurIPS, pp. 14747–
14756, 2019.

Haomin Zhuang, Mingxian Yu, Hao Wang, Yang Hua, Jian Li, and Xu Yuan. Backdoor federated
learning by poisoning backdoor-critical layers. In ICLR. OpenReview.net, 2024.

A RELATED WORKS

The main goal of FL is to protect the privacy of local data while still allowing it to be used to train
the public models. A significant amount of research has been conducted around SA. This section
reviews the work related to our scheme. Refer to the reference (Qi et al., 2024; Liu et al., 2022) for
more extensive survey in this field.

Masking-based SA. Masking is a classic encryption technique based on one-time pad (Katz & Lin-
dell, 2014). Bonawitz et al. (2017) designed the first SA scheme (SecAgg) which using pairwise
masks to hide individual inputs for FL. However, their scheme involves a complete communication
graph, which incurs heavy computation and communication for each client linear in the number of
participants. Subsequently, Bell et al. (2020) replaced that with a k-regular graph of logarithmic
degree, which greatly improved the efficiency while maintaining the security. Stevens et al. (2022)
replaced the standard mask with learning with errors mask and used verifiable secret sharing to pre-
vent malicious users from distributing incorrect shares. Sandholm et al. (2021) arranged the users in
the system in the form of a ring chain, the efficiency of the scheme has been significantly improved,
and the user drop problem can be effectively solved. Most masking-based schemes require double
masking in order to solve the problem of dropped users. Bonawitz et al. (2019) combined the ran-
dom rotation technique to actively adjust the quantisation range of the model in order to reduce the
model volume. To reduce the communication overhead, TurboAgg (So et al., 2021) divides n users
into n/ log n groups and then uses a multi-group loop structure for subsequent aggregation.

Attacks that Bypass SA. The aggregation results of most existing schemes are visible to both the
clients and the aggregation server. However, this can lead to attacks where malicious servers bypass
the SA. Pasquini et al. (2022) proposed model inconsistency attacks, where a malicious server can
distribute different parameters to targeted and non-targeted users. This can trigger dying-ReLU
and make the input of non-target users be zero. So et al. (2023) noticed that when the trained
model begins to converge, the client model changes little between one training step and the next.
A malicious server can infer the updates of a client that participated in the previous round but did
not participate in the subsequent round from the aggregation results. Gao et al. (2023) proposed a
scheme which can launch a category inference attack even in presence of SA. To avoid this type
of attack, when the clients receive the model parameters, they need to verify whether the received
parameters are consistent or not, and terminate the training if they are not. But this will increase the
system overhead. Fernández et al. (2021) applied differential privacy on the aggregated model to
hide the aggregation results.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Server-side Attacks and Defenses. Membership inference attacks pose a potential threat from the
server side in FL. Specifically, an adversary can determine whether some specific data records are
part of the local training dataset of a target user only by accessing the model updates, either through
a black-box or white-box approach. Yeom et al. (2018) proposed the first label-based attack, which
aims at predicting whether an instance is in the local data of the target user. The attacker exploits
the performance disadvantage of the target model in the test dataset to complete this attack. Chen
& Vikalo (2024) proposed a general analytical method that allows the FL server to recover client
training labels, applicable to various FL algorithms without assumptions on activation functions or
batch label composition. Shokri et al. (2017) designed an attack with partial output knowledge in a
black box-scenario. Furthermore, Salem et al. (2019) improved a new attack by using the maximum
value of the model output confidence. Zhuang et al. (2024) introduced the layer substitution analysis,
a new technique that identifies layers critical for backdoor injection, making it well-suited for FL
attacks. Leveraging this technique, they developed two layer-wise backdoor attack strategies that
successfully implant backdoors into these key layers and evade state-of-the-art defenses without
compromising the primary task accuracy.

Meanwhile, Bonawitz et al. (2017) proposed the first SA scheme to compute the sum of model
updates hiding personal information. Subsequently, a great deal of research has centred around SA.
Techniques such as homomorphic encryption (Zhang et al., 2020a), differential privacy (Stevens
et al., 2022), and multi-party computation (Bell et al., 2020) are used to construct SA schemes to
protect user privacy from attack by malicious servers. SA based on cryptography aims to prevent
attacks by concealing model updates from any potential adversaries. This approach ensures that
individual contributions remain private, making it difficult for malicious entities to infer sensitive
information from the data.

Recently, Xie et al. (2024) identify a limitation in existing model poisoning attacks defenses: re-
liance on cross-client or global information, which leads to performance degradation under non-IID
data distributions or when there is a large number of malicious clients. Then they establish a crucial
distinction between model poisoning attacks and benign model updates by determining whether the
update can be approximately reconstructed using distilled local knowledge. Wu et al. (2024) pro-
posed FedInverse, a framework designed to evaluate whether FL models are susceptible to model
inversion attacks and quantify the associated data-leakage risks. Garov et al. (2024) showed that
all existing malicious server attacks can be identified through systematic checks. Furthermore, they
established a set of essential requirements that any practical malicious server attack must meet.

Verifiability. In addition, a malicious server might return incorrect aggregation results to gain an
unfair advantage or disrupt the system’s integrity. Such behavior poses significant security threats,
as users or clients relying on these results could be misled or manipulated. Therefore verifiable SA
is necessary to ensure correct aggregation. Zhang et al. (2020b) verified the aggregation result via
homomorphic encryption SA using homomorphic hash function. Additionally, Xu et al. (2020) ver-
ified masking-based SA using the same technique. Guo et al. (2021) proposed a verification scheme
which focuses on the high dimension inputs. Brunetta et al. (2021) proposed a non-interactive ver-
ifiable SA protocol from NIVA, which requiers users create a tag for each input shares. In contrast,
Tsaloli et al. (2021) proposed a scheme requires only a single tag for each user.

Multi-round Setting and Dynamic Joining. Model convergence in Federated Learning (FL) typi-
cally requires multiple rounds of training, with each round contributing incrementally to the overall
performance of the global model. However, most existing state-of-the-art SA schemes are designed
to support only a single round of aggregation. In addition to protecting user privacy in single rounds
of FL training, some studies have looked at privacy issues arising from multiple rounds of FL train-
ing. Nguyen et al. (2022) and So et al. (2022) proposed two new schemes support asynchronous
aggregation. Guo et al. (2022) designed a multi-round SA protocol for reusable secrets, and their
scheme is mainly oriented towards scenarios with small inputs (the input vector with small values).

Recently, Ma et al. (2023) proposed Flamingo, which has no restrictions on input value. So et al.
(2023) mitigated the privacy leakage involved in multi-round aggregation through client selection.
Furthermore, the existing schemes do not support dynamic joining. Flamingo assumes that the set
of all clients (n) participating in the training is fixed before the training starts and some subset is
selected from n in each round t. Therefore, Flamingo does not support the user to dynamically
add in the training process. Most current schemes require reconstruction of the communication
graph when new users join and require key negotiation with each other user, which imposes huge

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. Setup.
– All parties get the security parameter λ. – This phase generates the public parameter pp of
the system, which contains the specific commitment, one-time pad and public key encryption.
– The assitant server S1 generates its public/private key (pks, sks) and publishes its public
key to all users.
– Each user generates its public/private key (pki, ski) and publish its public key to servers S0

and S1. (Subsequent user-server interactions via public key encryption by default.)

2. Masking and Report.
– Each user computes x̂i,t ← Masking(ski,t, xi,t), where the ski,t is the private key generated
by user Ui during the round t.
– Each user encrypts the private key in OTP CTi,t ← Enc(pks, ski,t), where the pks is the
public key of the assistant server S1.
– Each user generates the commitment ci,t = (ci,r, ci,m)← Commit(xi,t, ri,t), where the ri,t
is the blinder and ci,r, ci,m is the the commitment parts of blinder and message respectively.
– Each user sends (x̂i,t||ci,r) to S0 and (CTi,t||ci,t) to the S1.

3. Collection and Aggregation.
– S0 collects the messages (x̂i,t||ci,r) from users and parses as xi,t and ci,r.

– Then S0 computes the
⊙n

i=1 x̂i,t = X̂t and
⊙n

i=1 ci,r = Cr.

– S0 sends the X̂t and Cr to all users.
– S1 collects the messages (CTi,t||ci,t) from users and parses as CTi,t and ci,t.
– S1 decrypts the ski,t ← Dec(CTi,t, sks) and it computes

⊙n
i=1 ski,t = SKt.

– S1 computes the
⊙n

i=1 ci,t = Ct.
– S1 sends the SKt and Ct to all users.

4. UnMasking and Verification.
– Each user receives the message from S0 and S1, then it decrypts the ciphertext as Cr and
X̂t using its private key ski.

– Each user unmasks the aggregation Xt ← UnMasking(SKt, X̂t).
– Each user computes the commitment about the input updates Cm ← Se(Ct, Cr).
– Each user generates the commitment of C∗

m ← PCommit(Xt, PPc), which is related to the
updates. PPc is the public parameter of commitment scheme. Then Ui compares C∗

m
?
= Cm.

If it is equal, then the aggregation result completed by S0 is correct, otherwise it is invalid.
Once the aggregation results are found to be incorrect, the user terminates the subsequent
training.

Figure 5: Detailed Construction of Janus.

communication and computation overheads. In addition, Wang et al. (2024) focus on the aggregation
of cross-round local models. They proposed FedCDA, a novel cross-round aggregation method that
constructs the global model by aggregating local models from multiple rounds based on minimum
divergence. To enhance efficiency, FedCDA further introduces an approximation strategy to reduce
selection overhead.

B DETAILED JANUS AND ITS INSTANTIATION

In this section, Figure 5 gives the full generic construction of Janus. Furthermore, we give an effec-
tive instantiation of our generic construction, where the underlying SHC is Pedersen commitment,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

public key encryption is ElGamal, one-time pad is based on normal addition encryption. Specifi-
cally, our scheme consists of the following five phases: setup, masking and report, collection and
aggregation, collection and aggregation, unmasking and verfication.

Setup. This phase determines the public parameters of the system. Firstly, all participants agree on
the security parameter λ. The public parameters of the cryptographic primitives are then generated
based on the security parameter. Define a triplet (p, q, g, h), where p is a randomly chosen prime of
length |q| = λ+ δ, the δ is a specified constant, q is a prime order group of Z∗

p, and g, h are random
generators of group of q order, q = (p − 1)/γ is prime and the γ is a specified small integer. Ui

generates public/private key (ski, pki) = (ski, g
ski (mod p)), where the ski ∈ Z∗

p. S1 generates
public/private key (sks, pks) = (sks, g

sks (mod p)) where the sks ∈ Z∗
p. Then S1 and Ui publish

their public keys to all entities while store their private keys secretly.

Masking and Report. Each user Ui trains local data Di to get the updates xi,t for round t. Ui

masks the vector by x̂i,t = Masking(xi,t, ski,t) = xi,t + ski,t (mod p). Then Ui encrypts
the ski,t by Enc(pks, ski,t) = CTi,t = (gki,t (mod p), ski,tpk

ki,t
s (mod p)). Furthermore, Ui

commits the xi,t by ci,t = Commit(xi,t, ri,t) = gxi,thri,t (mod p), where the ri,t ∈ Z∗
p and

ci,t = (ci,r, ci,m) = (hri,t (mod p), gxi,t (mod p)). Finally, Ui sends ci,r and x̂i,t to S0, ci,t and
CTi,t to S1.

Collection and Aggregation. Subsequently, S0 receives the message from Ui. Then it computes⊙n
i=1 x̂i,t = x̂1,t + x̂2,t + ... + x̂n,t = X̂t and

⊙n
i=1 ci,r = hr1,thr2,t ...hn,t (mod p) = Cr.

Then S0 sends Cr and X̂t to all users. When the S1 receives the message from Ui. It first decrypts
ski,t = Dec(sks, CTi,t) = ski,tpk

ki,t
s (gk

sks
i,t )−1 (mod p). Subsequently, it computes

⊙n
i=1 ci,t =

c1,tc2,t...cn,t (mod p) = Ct. Then it computes
⊙n

i=1 ski,t = sk1,t + sk2,t + ... + skn,t = SKt.
Finally, S1 sends the Ct and SKt to all users.

Unmasking and Verfication. When Ui receives the message from S0 and S1. Firstly, Ui computes
the Xt = Unmasking(X̂t, SKt) = X̂t−SKt to get the aggregation result Xt. To verify the validity
of the aggregation results, Ui separates the parts of the commitments that are only relevant to the
input updates by Se(Ct, Cr) = Cm. Then Ui makes a commitment to the aggregation result from
S0 through PCommit(Xt, ppc) = gX̂t (mod p) = C∗

m, where ppc is the public parameters of the
underlying SHC. Eventually Ui compares whether C∗

m
?
= Cm holds, if it does it indicates that the

aggregation result X̂t from S0 is correct, otherwise the aggregation result is not valid. Ui will refuse
to accept the results of the aggregation and aborted the subsequent training.

Correctness. The correctness of this instantiation requires each user will obtain the correct aggre-
gation result and the valid verification as long as each entities run the protocol honestly. It is not
hard to prove this due to the correctness of the underlying public key encryption, one-time pad and
SHC. Specifically, we asume that the aggregation server S0 receives all masked-input and performs
Janus correctly, the following condition holds.

n⊙
i=1

x̂i,t = x̂1,t + x̂2,t + ...+ x̂n,t

= x1,t + ski,t + x2,t + sk2,t + ...+ xn,t + skn,t

=

n⊙
i=1

xi,t +

n⊙
i=1

ski,t

= Xt + SKt,

(8)

where the
⊙n

i=1 ski,t is computed by S1. The final aggregation result is
⊙n

i=1 xi,t =
⊙n

i=1 x̂i,t −⊙n
i=1 ski,t = Xt. If the validation passes, the following condition holds.

Ct = gx1,thr1,tgx2,thr2,t ...gxn,thrn,t

= gx1,t+x2,t+...+xn,thr1,t+r2,t+...+rn,t ,

Cr = hr1,t+r2,t+...+rn,t ,

Cm = Ct/Cr = gx1,t+x2,t+...+xn,t ,

C∗
m = gXt .

(9)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

If the aggregation result Xt from S0 is correct, then the C∗
m = Cm will always hold.

C SECURITY ANALYSIS

In this section, we intend to demonstrate the security of our generic construction. We first give the
threat model and prove the Janus can protect the privacy of users’ local updates and the aggretated
upates. Finally, we give the security proof of single round and multi-round.

C.1 THREAT MODEL

All users agree to publish the final results of model aggregation only to each user, but not to the
servers to resist MIA. These users have a common interest in soundness (i.e., getting the correct
global model aggregation updates from untrusted servers) and privacy (i.e., hiding local model up-
dates from each other and the server). The specific assumptions in our paper are as follows: The
two servers will not collude but may perform incorrect aggregation. The scheme also allows for up
to n − 2 clients to collude. Specifically, even if the server aggregates incorrect results, our scheme
provides verifiability, which enables us to detect such behavior and mitigate the associated risks. If
the server colludes with up to n − 2 clients, it can only obtain the additive result of the remaining
two uncolluding clients. This result is an aggregation of two encrypted or obfuscated values, mak-
ing it impossible to recover each uncolluding user’s specific gradient information. This ensures that
the colluding entities cannot initiate a MIA or access the private information of the remaining two
non-colluding clients. When n−2 clients collude, this assumption is even weaker, as the absence of
server involvement further limits the accessible information, making it even harder to extract useful
data. If only a single server is corrupted, this does not compromise individual user privacy. For
instance, with server S0, as long as the underlying encryption algorithm is secure, the server cannot
access the user-submitted private data without the user’s private key. Similarly, for server S1, the
security of the underlying SHC ensures that its hiding properties prevent S1 from obtaining any pri-
vate information. In conclusion, the assumptions of our scheme are reasonable and well-supported.
We will incorporate these clarifications in the revised version to better highlight the theoretical ad-
vantages of our approach. In addition, we assume the channel between each user and servers are
secure, which allows each entities to authenticate the incoming messages and prevent outsiders from
injectiong their responses. Furthermore, we assume that there is no collusion between all entities in
the system. Our security proofs are based on this threat model.

C.2 PRIVACY FROM USERS

In the “honest but curious” setting, each client will honestly adhere to the protocol but attempt to
infer the local gradients of clients and the aggregated gradients. Therefore, we can use the standard
simulation proof for multi-party computation protocols to demonstrate the privacy of our generic
construction. We first consider privacy protection against honest-but-curious clients who hold their
own local gradients and have access to the global gradients. Specifically, let Π denote the proposed
Janus involving n users C1, C2, ..., Cn and two servers S0 and S1. Each user holds a local update
gradient xi, Janus securely computes the aggregated global update X . All participants may attempt
to infer more additional information, the Π satisfies the following privacy guarantee:

• For each honest-but-curious client Ci, the client learns nothing beyond its own local gra-
dient xi and the final global aggregated gradient X . Formally, for each Ci, there exists a
PPT simulator Si such that:

{ViewΠ(Ci)} ≈ {Si(xi, X)}, (10)

where ViewΠ(Ci) denotes the view of Ci during the real execution of Π, xi is the Ci’s
local updates and X is the final global aggregated result.

• For S0 and S1, they learns nothing beyond the masked aggregated results and the aggre-
gated results of masks. This can ensure they will learns nothing about the final global
aggregated gradient X , thus resisting the MIA. Formally, for S0 and S1, there exists a
PPT simulator Sserver such that:

{ViewΠ(S0, S1)} ≈ {Sserver(X̂, CT )}, (11)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where ViewΠ(S0, S1) denotes the view of two servers during the real execution of Π, X̂
is the masked aggregation result and CT is the ciphertext of masks.

Given any subset U ⊆ C of the users, where the C is the set of all users in the system (|C| = m). Let
the REALC,λ

U ({(x̂i,t)}i∈C , (c1,r, c2,r...cm,r)) be a random variable representing the ioint view of
the users in U . This suggests that all these honest but curious clients learned was the aggregation of
gradients of all clients and their own gradients.

Functionality Fs

Parties: users 1, . . . , N from St and two servers S0 and S1.
Parameters: corrupted rate η, number of participating training clients per-round n.

• Fs receives a set of corrupted parties C from the adversary A, where the |C|/|St| ≤ η.

• For each round t:

1. Fs receives a set of N clients St and updates xi,t from clients i ∈ {St \ C}.
2. Fs sends St to A and requests a set Mt. Fs computes the Xt =

⊙
i∈{Mt\C} xi,t if Mt ⊆ St and

continues; otherwise Fs sends abort to all honest participants.
3. There are two scenarios based on whether the servers are corrupted by A as follows.

– Corrupted: Fs outputs Xt to all the participants corrupted by A.
– Not corrupted: Fs requests a mask SKt from A and outputs Xt

⊙
SKt to S1.

Figure 6: Ideal functionality for Janus.

C.3 SINGLE-ROUND SECURITY

Theorem 1 (Security of Janus) Let the security parameter be λ and n be the number of users
for aggregation in each round. Assuming the existence of secure underlying one-time pad, SHC,
and public key encryption. Our generic construction can securely realize the ideal functionality Fs

under the presence of a static adversary controlling η fraction of n users (and the server S1) as
shown in Figure 6.

REAL
Fs,Ft

sum

Π,A (λ, n, xSt) ≈ IDEAL
Ft

sum

Fs,S (λ, n, xMt). (12)

Proof. We first prove the security of a single round aggragation. Our generic scheme (denoted as Π)
securely realizes the ideal functionality F t

sum (Figure 7) in the random oracle model. We can find
from the ideal function F t

sum that it is the Mt sent by the adversary A that determines the actual
result. We assume the A controls a set of clients and denote the set of corrupted cilents as C.

Event 1. We start with the servers not being corrupted by the A. Now, we first build a simulator S
in the ideal world, running A as a subroutine. Specifically, the simulation for round t is as follows.

1. S receives a set Mt from the adversary A.

2. S acquires Zt from the F t
sum.

3. Masking and Report. S interacts withA as in the masking and report phase and acts as hon-
est users in i ∈ {Mt \ C} with the masked updates x′

i,t such that the Zt =
⊙

i∈{Mt\C} x
′
i,t.

Here the input update x′
i,t and the mask ski,t are generated by S itself.

4. Collection and Aggregation. In this phase, S interacts with A, where A performs as a
honest participant as in the collection and aggregation of Π.

5. UnMasking and Verfication. S interacts with A as honest participants in the unmasking
and verfication phase.

6. In the above steps, if all honest participants would abort in the protocol in this round of
aggregation, then S sends abort to F t

sum. Finally, A outputs the value at random and
terminates this aggregation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Functionality F t
sum

Parties: users from St and two servers.
Parameters: corrupted rate η.

• F t
sum receives a set of corrupted participants C from the adversary A and xi,t from clients i ∈ {St \ C}.

• Fs sends St to A and requests a set Mt. Fs computes the Zt =
⊙

i∈{Mt\C} xi,t if Mt ⊆ St and
continues; otherwise Fs sends abort to the all honest participants.

• For each round t:

1. Fs receives a set of N clients St and updates xi,t from clients i ∈ {St \ C}.
2. Fs sends St to A and requests a set Mt. Fs computes the Zt =

⊙
i∈{Mt\C} xi,t if Mt ⊆ St and

continues; otherwise Fs sends abort to the all honest participants.
3. There are two scenarios based on whether the servers are corrupted by A as follows.

– Corrupted: Fs outputs Xt to all the participants corrupted by A.
– Not corrupted: Fs requests a mask SKt from A and outputs Zt

⊙
SKt to S1.

Figure 7: Ideal functionality for Report and Collection in Round t.

We construct a series of hybrid execution programs from the real world to the ideal world.

Hybrid 1. The view of A in the real-world execution is the same as the ideal world, when S has
actual inputs from honest participants {xi,t}, i ∈ St \ C, the individual masks ski,t and the SKt.

Hybrid 2. S does not use the actual masks in one-time pad between honest participants. It generates
a random mask sk′i,t from the {0, 1}λ, then it computes the corresponding one-time pad ciphertext
as (x̂′

i,t). We argure the view of A in this hybrid is the computationally indisinguishable from the
previous hybrid 1 as follows.

Firstly, the mask ski,t is computed from theRC of the one-time pad, and the mask sk′i,t is randomly
sampled in the ideal world. Let the Mt denotes the set of users chosen by A in the ideal world.
A in the ideal and real world can observes Masking(xi,t, ski,t) beteween a user i /∈ Mt and a
client i ∈ Mt. This indistinguishability stems from the selection of random masks in the specific
underlying one-time pad. Secondly, A can observe the ciphertexts generated from the sk′i,t. The
distribution of the ciphertexts is computationally indisinguishable from theA observed from the real
world, which is depend on the security of the underlying OTP.

Hybrid 3. In this hybrid, instead of using one-time pad with actural personal mask ski,t randomly
selected from the space RC , S uses masks randomly sampled from {0, 1}λ. Before the proof, we
model the generation of masks as a random oracleOR (see more details in the prior work (Bonawitz
et al., 2017)). For ∀i ∈ {Mt \ C}, the S samples sk′i,t randomly and programs OR as sk′i,t =
x̂i,t ⊘ xi,t, where the x̂i,t is observed in the real world and the ⊘ denotes the inverse operation
of ⊙. From the perspective of A, the distributions of x̂i,t in this hybrid and the previous one are
statistically indistinguishable.

Additionally, A learns the sk′i,t in the clear for i ∈Mt in the real and ideal world. The distributions
of sk′i,t are identical. However,A learn nothing about sk′i,t for i /∈Mt in both worlds because of the
semantic security of the underlying one-time pad. From the view ofA, this hybrid is computationally
indistinguishable from the previous hybrid.

Hybrid 4. In this hybrid, instead of control the random oracle as in the previous hybrid, S will
program the random oracle OR as sk′i,t = x̂ ⊘ x′

i,t. Specifically, the x′
i,ts are chosen such that⊙

i∈{Mt\C} xi,t =
⊙

i∈{Mt\C} x
′
i,t. From the view ofA this hybrid is the same as the previous one,

which can be derived from Lemma 6.1 of the prior work (Bonawitz et al., 2017).

Hybrid 5. Similar to the previous operation, this hybrid replaces the mask of honest participants
with the result from the random oracle. S will abort if theA would cheat by sending invalid masked
updates to S. In the phase of unmasking and verification, theAwould cheat by sending different Mt

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

to F t
sum. S will simulate the following protocol (see as Lemma 1) and output whatever the protocol

outputs. It is identical to the previous hybrid by doing this.

The final hybrid precisely represents the execution of the ideal world. The aforementioned events
indicate that our system is secure in the ideal world with a single round process.

Event 2. In this event, the server is not corrupted byA, the whole simulation is the same as Event 1,
except that the S will program the masks added by the A in each step.

We complete the proof that for any single round t, the protocol Π always securely realizes the ideal
functionality F t

sum in the presence of a static malicious adversary.

Lemma 1 Assume there exists a PKI and a secure signature scheme, there are 3ζ particpants with
at most ζ colluding malicious participants. Specifically, each party has an input bit of 0 or 1 from
a server. There exists a one-round protocol enabling each honest participant to determine whether
the server sent the same value to all honest participants.

Proof. When an honest participant receives at least 2ζ messages with the same value, it indicates that
the server has sent the same value to all honest participants. This is because, in the given system,
the threshold of 2ζ identical messages can only be met if a large majority of honest participants
have received the same value. Specifically, let the total number of participants in the system be
n = th + tm, where th denotes the number of honest participants and tm denotes the number of
malicious participants. For security and consistency in distributed protocols, the parameter ζ is set
such that th > 2ζ. When an honest participant receives no fewer than 2ζ identical messages, it can
confidently conclude that at least ζ + 1 of these messages were sent by distinct honest participants,
ensuring consistency of the message content. Hence, it can be inferred that the server has broadcast
the same value to all honest participants.

Conversely, if an honest participant receives fewer than 2ζ messages with the same value, this sug-
gests that the server may have sent different messages to different participants during the commu-
nication process. Since the number of identical messages received by honest participants falls short
of forming a consensus of 2ζ, it implies that the server may have engaged in malicious behavior by
sending inconsistent messages to various honest participants. To ensure the security and consistency
of the protocol, in such a scenario, the honest participant will abort the protocol execution. This
abort mechanism effectively prevents potential security threats and data integrity issues that could
arise due to inconsistent messages from the server.

C.4 MULTI-ROUND SECURITY

Our threat model assumes the corrupted rate is η, which means thatA controls ηn clients throughout
total T rounds. In order to prove the security of the multi-round scheme on the basis of the above
single-round security proof. The mask ski,t computed from OR of the underlying SHC ΠC . Let
the ∆t be distribution of the view of A in the single round t and the total number of rounds needed
for the model to converge is T . If there exists an adversary B, and two rounds of aggregation
t1, t2 ∈ [0, T ], where B can distinguish between ∆t1 and ∆t2 , then we can construct an adversary
A breaks the security of the underlying ΠC . We call the challenger in the security game of ΠC as S.
Specifically, there exists two worlds (b = 0 or 1) for the OR game. The S uses a random function if
the b = 0. When b = 1, S actual ΠC . Then we build theA as follows. On input t1, t2 from B, theA
asks for ski,t for all honest participants in the round t1 and t2. Then A could computes the masked
updates from the Π prescribed. It generates two views ∆t1 ,∆t2 and sends them to the B. Finally, A
outputs whatever the B outputs as the answer.

C.5 RESISTING MIA

The MIA is effective primarily because the server is aware of the final aggregated result. If the server
can manipulate the parameters sent to different clients, it can introduce inconsistencies that influ-
ence the model training process. The key to resisting this attack is to ensure that all clients start with
the same initial model parameters. This uniformity can be achieved through two main approaches:
using a public bulletin board where the initial parameters are posted for everyone to see, or through
mutual agreement among clients to verify that the parameters they receive are indeed consistent

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

across the network. The public bulletin board approach suffers from centralized dependency, infor-
mation leakage, and scalability issues, while the mutual agreement method has high communication
complexity, scalability limitations, and is vulnerable to Sybil attacks. Both methods face challenges
in maintaining consistency and security as the number of clients increases.

A significant advancement in Janus, which brought forward a novel concept: making the aggregation
results in the system visible only to the clients. In this approach, the computation of the final
aggregation result is performed locally by each client, rather than centrally by the server. This
means that even if the server, denoted as S0, disseminates inconsistent model parameters to different
clients, it remains unaware of the actual final aggregated model. This paradigm shift ensures that the
server cannot gain insight into the final result, thus preventing it from introducing systematic biases.

Additionally, we assumes that S0 and the clients are not colluding. In other words, the server cannot
conspire with any client to manipulate the aggregation process. By decentralizing the aggregation
computation and keeping the final result private among the clients, the Janus effectively mitigates
the risk of a successful MIA. This approach not only enhances the security of the federated learning
framework but also reinforces the privacy and trustworthiness of the system by limiting the server’s
influence over the final model.

D APPENDIX FOR REBUTTAL REVISION

D.1 MORE COMPARISON METHODS

Table 3 demonstrates that Janus surpasses other state-of-the-art schemes in terms of security, ef-
ficiency, and functionality. Specifically, our scheme achieves optimal efficiency while provid-
ing enhanced security and functionality. Our scheme makes weaker assumptions Compared to
ELSA Rathee et al. (2023), resulting in higher security while supporting multi-round aggregation
with a significant performance improvement. Compared to VeriFL Guo et al. (2021), Janus does not
require constructing complex communication graphs or performing time-consuming secret sharing
operations, which leads to substantial performance gains.

Table 3: Comparison of SA Constructions
Scheme Input Privacy Multi-round Verifiability Dynamic Versatility NS⋆ Efficience‡ MIA

SecAgg (Bonawitz et al., 2017) ✓ ✗ ✗ ✗ ✗ 1 ✗

BBSA (Bell et al., 2020) ✓ ✗ ✗ ✗ ✗ 1 ✗

VeriFL Guo et al. (2021) ✓ ✗ ✓ ✗ ✗ 1 ✗

ELSA Rathee et al. (2023) ✓ ✗ ✗ ✗ ✗ 2 ✗

Flamingo (Ma et al., 2023) ✓ ✓ ✗ ✗ ✗ 2† ✗

Janus ✓ ✓ ✓ ✓ ✓ 2 ✓

✓ Support, ✗ No support. Versatility: A generic construction. ⋆ Number of servers. † The decryptors of
this construction can be abstracted to a server. ‡ More black parts in the circle indicate better efficiency.

D.2 ADDITIONAL EXPERIMENTS

Our scheme is not limited to specific models or datasets. To better support this conclusion, we have
added more experimental results for the CIFAR-100 dataset on different models. Specifically, the
CIFAR-100 dataset is a challenging benchmark dataset widely used in machine learning and com-
puter vision research. It contains 60,000 color images, each of size 32x32 pixels, distributed across
100 distinct classes. Each class is organized hierarchically, with 20 superclasses grouping the 100
fine-grained categories, adding a layer of complexity. This fine-grained nature, combined with the
small image resolution, makes classification tasks on CIFAR-100 particularly difficult, as it demands
models to capture subtle features and patterns. The dataset is balanced, with each class containing
500 training images and 100 test images, ensuring uniform representation while amplifying the dif-
ficulty of distinguishing between visually similar categories. The specific experimental results are
shown in Figure 8 and 9, which show that Janus is comparable to most of the existing schemes in
terms of performance, but Janus has an obvious advantage in terms of computational overhead.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o0

2

4

6

8

1 0

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o2

4

6

8

1 0

1 2

1 4

1 6

1 8

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o0

2

4

6

8

1 0

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N o - S A J a n u s B B S A  V e r i F L E L S A F l a m i n g o2

4

6

8

1 0

1 2

1 4

1 6

1 8

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( a )  M N I S T  ( C N N )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( b )  C I F A R  ( C N N )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( c )  C I F A R - 1 0 0  ( C N N )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( d )  M N I S T  ( M L P )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( e )  C I F A R  ( M L P )

Ru
nni

ng 
Tim

e (
sec

)

S c h e m e

 P e r  c l i e n t
 S e r v e r
 T o t a l

( f )  C I F A R - 1 0 0  ( M L P )

Figure 8: Computation overhead across different datasets and models.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( a )  M N I S T  ( C N N )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( b )  C I F A R  ( C N N )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( c )  C I F A R - 1 0 0  ( C N N )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( d )  M N I S T  ( M L P )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( e )  C I F A R  ( M L P )

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

( f )  C I F A R - 1 0 0  ( M L P )

Figure 9: Test accuracy across different datasets and models.

22


	Introduction
	Preliminaries
	Commitments
	Masking-based Secure Aggregation
	Model Inconsistency Attacks

	Proposed Methods
	Separable Homomorphic Commitment
	The Proposed Janus

	Evaluation
	Theoretical Analysis
	Model Performance
	Computation Overhead

	Conclusion
	Related Works
	Detailed Janus and its Instantiation
	Security Analysis
	 Threat Model
	Privacy from Users
	Single-Round Security
	Multi-round Security
	Resisting MIA

	APPENDIX FOR REBUTTAL REVISION
	More Comparison Methods
	Additional Experiments


