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Abstract

We critically appraise the recent interest in out-of-distribution
(OOD) detection and question the practical relevance of ex-
isting benchmarks. While the currently prevalent trend is
to consider different datasets as OOD, we argue that out-
distributions of practical interest are ones where the distinc-
tion is semantic in nature for a specified context, and that
evaluative tasks should reflect this more closely. Assuming a
context of object recognition, we recommend a set of bench-
marks, motivated by practical applications. We make progress
on these benchmarks by exploring a multi-task learning based
approach, showing that auxiliary objectives for improved se-
mantic awareness result in improved semantic anomaly de-
tection, with accompanying generalization benefits.

1 Introduction

In recent years, concerns have been raised about modern
neural network based classification systems providing
incorrect predictions with high confidence (Guo et al.,
2017). A possibly-related finding is that classification-
trained CNNs find it much easier to “overfit” to low-level
properties such as texture (Geirhos et al., 2019), canonical
pose (Alcorn et al., 2019), or contextual cues (Beery, Horn,
and Perona, 2018) rather than learning globally coherent
characteristics of objects. A subsequent worry is that
such classifiers, trained on data sampled from a particular
distribution, are likely to be misleading when encountering
novel situations in deployment. For example, silent failure
might occur due to equally confident categorization of
unknown objects into known categories (due to shared
texture, for example). This last concern is one of the
primary motivating reasons for wanting to be able to detect
when test data comes from a different distribution than
that of the training data. This problem has been recently
dubbed out-of-distribution (OOD) detection (Amodei et
al.; Hendrycks and Gimpel, 2016; 2017), but is also referred
to as anomaly/novelty/outlier detection in the contemporary
machine learning context. Evaluation is typically carried
out with benchmarks of the style proposed in Hendrycks
and Gimpel (2017), where different datasets are treated as
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OOD after training on a particular in-distribution dataset.
This area of research has been steadily developing, with
some additions of new OOD datasets to the evaluation
setup (Liang, Li, and Srikant, 2018), and improved results.

Current benchmarks are ill-motivated Despite such
tasks rapidly becoming the standard benchmark for OOD
detection in the community, we suggest that, taken as a
whole, they are not very well-motivated. For example,
the object recognition dataset CIFAR-10 (consisting of
images of objects placed in the foreground), is typically
trained and tested against noise, or different datasets
such as downsampled LSUN (a dataset of scenes), or
SVHN (a dataset of house numbers), or TINY-IMAGENET
(a different dataset of objects). For the simpler cases of
noise, or datasets with scenes or numbers, low-level image
statistics are sufficient to tell them apart. While choices like
TINY-IMAGENET might seem more reasonable, it has been
noted that particular datasets have particular biases related
to specific data collection and curation quirks (Torralba
and Efros; Tommasi et al., 2011; 2017), which renders the
problem of treating different datasets for OOD detection
questionable. It is possible we are only getting better at
distinguishing such idiosyncrasies. As an empirical illustra-
tion, we show in Appendix C that very trivial baselines can
perform reasonably well at existing benchmarks.

Semantic distributional shift is relevant We call into
question the practical relevance of these evaluative tasks
which are currently treated as standard by the community.
While they might have some value as very preliminary
reliability certification or as a testbed for diagnosing
peculiar pathologies (for example, undesired behaviours
of unsupervised density models, as in Nalisnick et al.
(2019)), their significance as benchmarks for practical OOD
detection is less clear. The implicit goal for the current
style of benchmarks is that of detecting one or more of a
wide variety of distributional shifts, which mostly consist
of irrelevant factors when high-dimensional data has low-
dimensional semantics. We argue that this is misguided; in
a realistic setting, distributional shift across non-semantic
factors (for example, camera and image-compression
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artefacts) is something we want to be robust to, while shift
in semantic factors (for example, object identity) should
be flagged down as anomalous or novel. Therefore, OOD
detection is well-motivated only when the distributional
shift is semantic in nature.

Context determines semantic factors In practical
settings, OOD detection becomes meaningful only after
acknowledging context, which identifies relevant semantic
factors of interest. These are the factors of variation whose
unnatural deviation are of concern to us in our assumed
context. For example, in the context of scene classification,
a kitchen with a bed in the middle is an anomalous obser-
vation. However, in the context of object recognition, the
primary semantic factor is not the composition of scene-
components anymore, but the identity of the foreground
object. Now the unusual context should not prevent correct
object recognition. If we claim that our object recognition
models should be less certain of identifying an object in a
novel context, it amounts to saying that we would prefer
our models to be biased. In fact, we would like our models
to systematically generalize (Fodor and Pylyshyn, 1988) in
order to be trustworthy and useful. We would like them to
form predictions from a globally coherent assimilation of
the relevant semantic factors for the task, while being robust
to their composition with non-semantic factors.

Without context, OOD detection is too broad to be
meaningful The problem of OOD detection then, as cur-
rently treated by the community, suffers from imprecision
due to context-free presumption and evaluation. Even
though most works assume an underlying classification
task, the benchmark OOD datasets include significant
variation over non-semantic factors. OOD detection with
density models are typically presented as being unaware
of a downstream module, but we argue that such a context
must be specified in order to determine what shifts are
of concern to us, since we typically do not care about
all possible variations. Being agnostic of context when
discussing OOD detection leads to a corresponding lack of
clarity about the implications of underlying methodologies
in proposed approaches. The current benchmarks and
methods therefore carry a risk of potential misalignment
between evaluative performance and field performance in
practical OOD detection problems. Henceforth, we shall
refer to such realistic OOD detection problems, where the
concerned distributional shift is a semantic variation for a
specified context, by the term anomaly detection.

Contributions and overview Our contributions in this
paper are summarized as follows.

1. Semantic shifts are interesting, and benchmarks should
reflect this more closely: We provided a grounded discussion
about the relevance of semanticity in the context of a task for
realistic OOD (anomaly) detection. Under the view of re-
garding distributional shifts as being either semantic or non-
semantic for a specified context, we concluded that semantic
shifts are of practical interest. If we want to deploy reliable
models in the real world, we typically wish to achieve ro-

bustness against non-semantic shift.
2. More practical benchmarks for anomaly detection: Al-

though our discussion applies generally, in this paper we
assume the common context of object recognition. In this
context, unseen object categories may be considered anoma-
lous at the “highest level” of semanticity. Anomalies corre-
sponding to intermediate levels of semantic decomposition
can also be relevant; for example, a liger should result in
50-50 uncertainties if the training data contains only lions
and tigers. However, such anomalies are significantly harder
to curate, requiring careful interventions at collection-time.
Since detection of novel categories is a compelling anomaly
detection task in itself, we recommend benchmarks that re-
flect such applications in section 2.

3. Auxiliary objectives for improved semantic represen-
tation improves anomaly detection: Following our discus-
sion about the relevance of semanticity, in sections 4 and 5
we investigate the effectiveness of multi-task learning with
auxiliary self-supervised objectives. These have been shown
to result in semantic representations, measured through lin-
ear separability by object categories. Our experimental re-
sults are indicative that such augmented objectives lead to
improved anomaly detection, with accompanying improve-
ments in generalization.

2 Motivation and Proposed Tasks
In order to develop meaningful benchmarks, we begin by
considering some practical applications where being able to
detect anomalies, in the context of classification tasks, would
find use.

Nature studies and monitoring: Biodiversity scientists
want to keep track of variety and statistics of species across
the world. Online tools such as iNaturalist (2019) enable
photo-based classification and subsequent cataloguing in
data repositories from pictures uploaded by naturalists. In
such automated detection tools, a potentially novel species
should result in a request for expert help rather than mis-
classification into a known species, and detection of undis-
covered species is in fact a task of interest. A similar practi-
cal application is camera-trap monitoring of members in an
ecosystem, notifying caretakers upon detection of invasive
species (Fedor et al.; Willi et al., 2009; 2019). Taxonomy of
collected specimens is often backlogged due to the human
labour involved. Automating digitization and identification
can help catch up, and often new species are brought to light
through the process (Carranza-Rojas et al., 2017), which ob-
viously depends on effective detection of novel specimens.

Medical diagnosis and clinical microbiology: Online
medical diagnosis tools such as Chester (Cohen, Bertin,
and Frappier, 2019) can be impactful at improving health-
care levels worldwide. Such tools should be especially adept
at being able to know when faced with a novel pathol-
ogy rather than categorizing into a known subtype. Simi-
lar desiderata applies to being able to quickly detect new
strains of pathogens when using machine learning sys-
tems to automate clinical identification in the microbiology
lab (Zieliński et al., 2017).

AI safety: Amodei et al. (2016) discuss the problem of dis-
tributional shift in the context of autonomous agents operat-
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Table 1: Sizes of proposed benchmark subsets from ILSVRC2012. The training set consists of roughly 1300 images per member,
and 50 images per member in the test set (which come from the validation set images in the ILSVRC2012 dataset).

Subset Number of members Total training images Total test images

Dog (hound dog) 12 14864 600
Car 10 13000 500
Snake (colubrid snake) 9 11700 450
Spider 6 7800 300
Fungus 6 7800 300

ing in our midst, with examples of actions that do not trans-
late well across domains. A similar example in that vein,
grounded in a computer vision classification task, is the con-
trived scenario of encountering a novel vehicle (that follows
different dynamics of motion), which might lead to a dan-
gerous decision by a self-driving car which fails to recognize
unfamiliarity.

Having compiled the examples above, we can now try
to come up with an evaluative setting more aligned with
realistic applications. The basic assumptions we make
about possible evaluative tasks are: (i) that anomalies of
practical interest are semantic in nature; (ii) that they are
relatively rare events whose detection is of more primary
relevance than minimizing false positives; and (iii) that
we do not have access to examples of anomalies. These
assumptions guide our choice of benchmarks and evaluation.

Recommended benchmarks A very small number of recent
works (Akcay, Atapour-Abarghouei, and Breckon; Zenati
et al., 2018; 2018) have considered a case that is more
aligned with the goals stated above. Namely, for a choice
of dataset, for example MNIST, train as many versions of
classifiers as there are classes, holding out one class every
time. At evaluation time, score the ability of being able to
detect the held out class as anomalous. This is a setup more
clearly related to the task of being able to detect semantic
anomalies, holding dataset-bias factors invariant to a sig-
nificantly greater extent. In this paper, we shall explore this
setting with CIFAR-10 and STL-10, and recommend this
as the default benchmark for evaluating anomaly detection
in the context of object recognition. Similar setups apply
to different contexts. We discourage the recently-adopted
practice of treating one category as in-distribution and
many other categories as out-distributions (as in Pidhorskyi,
Almohsen, and Doretto (2018) and Golan and El-Yaniv
(2018), for example). While this setting is not aligned with
the context of multi-object classification, it relies on a
dataset constructed for such a purpose. Moreover, practical
situations calling for one-class modelling typically consider
anomalies of interest to be (often subtle) variations of the
same object, and not a set of very distinct categories.

While the hold-out-class setting for CIFAR-10 and
STL-10 is a good setup for testing anomaly detection of
disparate objects, a lot of applications, including some of
the ones we described earlier, require detection of more
fine-grained anomalies. For such situations, we propose a
suite of tasks comprised of subsets of ILSVRC2012 (Rus-
sakovsky et al., 2015), with fine-grained subcategories. For

example, the SPIDER subset consists of members tarantula,
Argiope aurantia, barn spider, black widow, garden spider,
wolf spider. We also propose FUNGUS, DOG, SNAKE, and
CAR subsets. These subsets have varied sizes, with some of
them being fairly small (see table 1). Although this is a sig-
nificantly harder task, we believe this setting aligns with the
practical situations we described above, where sometimes
large quantities of labelled data are not always available, and
a particular fine-grained selection of categories is of inter-
est. See Appendix A for more details about our construction.

Evaluation Current works tend to mainly use both
Area under the Receiver-Operator-Characteristics (AU-
ROC) and Area under Precision-Recall curve (AUPRC) to
evaluate performance on anomaly detection. In situations
where positive examples are not only much rarer, but also
of primary interest for detection, AUROC scores are a
poor reflection of detection performance; precision is more
relevant than the false positive rate (Fawcett; Davis and
Goadrich; Avati et al., 2006; 2006; 2018). We shall not
inspect AUROC scores because in all of our settings, normal
examples significantly outnumber anomalous examples,
and AUROC scores are insensitive to skew, thus resulting
in optimistic scores (Davis and Goadrich, 2006). Precision
and recall are calculated as

precision =
true positives

true positives + false positives
, (1)

recall =
true positives

true positives + false negatives
, (2)

and a precision-recall curve is then defined as a set of
precision-recall points, for a varying threshold, t,

PR curve � {recall(t), precision(t),−∞ < t < ∞}. (3)

The area under the precision-recall curve is calculated by
varying the threshold t over a range spanning the data, and
creating a finite set of points for the PR curve. One alter-
native is to interpolate these points, producing a continu-
ous curve as an approximation to the true curve, and com-
puting the area under the interpolation by, for example, the
trapezoid rule. Interpolation in a precision-recall curve can
sometimes be misleading, as studied in Boyd, Eng, and Page
(2013), who recommend a number of more robust estima-
tors. Here we use the standard approximation to average
precision as the weighted mean of precisions at thresholds,
weighted by the increase in recall from the previous thresh-
old.
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average precision =
∑

k

precisionk(recallk − recallk−1). (4)

3 Related Work

Evaluative tasks As discussed earlier, the style of bench-
marks widely adopted today follows the recommendation
in Hendrycks and Gimpel (2017). Among follow-ups, the
most significant successor has been Liang, Li, and Srikant
(2018) which augmented the suite of tests with slightly
more reasonable choices: for example, TINY-IMAGENET is
considered as out-of-distribution for in-distrbution datasets
such as CIFAR-10. However, on closer inspection, we
find that TINY-IMAGENET shares semantic categories with
CIFAR-10, such as species of {dogs, cats, frogs, birds}, so
it is unclear how such choices of evaluative tasks correspond
to realistic anomaly detection problems. Work in the area of
open-set recognition is closer to a realistic setup in terms of
evaluation; in Bendale and Boult (2016), detection of novel
categories is tested with a set of images corresponding
to different classes that were discontinued in subsequent
versions of Imagenet, but later work (Dhamija, Günther, and
Boult, 2018) relapsed into treating very different datasets
as novel. We do not encourage using one particular split
of a collection of unseen classes as anomalous. This is
because such a one-time split might favour implicit biases
in the predefined split, and the chances of this happening
is reduced with multiple hold-out trials. As mentioned
earlier, a small number of works have already used the
hold-out-class style of tasks for evaluation. Unfortunately,
due to a lack of a motivating discussion, the community at
large continues to adopt the tasks in Hendrycks and Gimpel
(2017) and Liang, Li, and Srikant (2018).

Approaches to OOD detection In Hendrycks and Gimpel
(2017), the most natural baseline for a trained classifier is
presented, where the detection score is simply given by the
predictive confidence of the classifier (MSP). Follow-up
work in Liang, Li, and Srikant (2018) proposed adding a
small amount of adversarial perturbation, followed by tem-
perature scaling of the softmax (ODIN). Methodologically,
the approach suffers from having to pick a temperature and
perturbation weight per anomaly-dataset. Complementary
methods such as confidence calibration of DeVries and
Taylor (2018), have been shown to improve performance of
MSP and ODIN.

Using auxiliary datasets as surrogate anomalies has been
shown to improve performance on existing benchmarks
in Hendrycks, Mazeika, and Dietterich (2019). This ap-
proach is limited, due to its reliance on other datasets, but
a more practical variant in Lee et al. (2018) uses a GAN to
generate negative samples. However, Lee et al. (2018) suf-
fers from the methodological issue of hyperparameters being
optimized per anomaly-dataset. We believe that such con-
tentious practices arise from a lack of a clear discussion of
the nature of the tasks we should be concerned with, and a
lack of grounding in practical applications which would dic-
tate proper methodology. The primary goal of our paper is
to help fill this gap.

Table 2: Multi-task augmentation with the self-supervised
objective of predicting rotation improves generalization.

CIFAR-10 STL-10

Classification only 95.87± 0.05 85.51± 0.17
Classification+rotation 96.54± 0.08 88.98± 0.30

Shalev, Adi, and Keshet (2018) augment the training set
with semantically similar labels, but it is not always practical
to assume access to a corpora providing such labels. In the
next part of the paper, we explore a way to potentially induce
more semantic representation, with the hope that this would
lead to corresponding improvements in semantic anomaly
detection and generalization.

4 Encouraging Semantic Representations

with Auxiliary Self-supervised Objectives

We hypothesize that classifiers that learn representations
which are more oriented toward capturing semantic proper-
ties would naturally lead to better performance at detecting
semantic anomalies. “Overfitting” to low-level features
such as colour or texture without consideration of global
coherence might result in potential confusions in situations
where the training data is biased and not representative.
For a lot of existing datasets, it is quite possible to achieve
good generalization performance without learning semantic
distinctions, a possibility that spurs the search for removing
algorithmic bias (Zemel et al., 2013), and which is often
exposed in embarrassing ways. As a contrived example, if
the training and testing data consists of only one kind of
animal which is furry, the classifier only needs to learn about
fur-texture, and can ignore other meaningful characteristics
such as the shape. Such a system would fail to recognize
another furry, but differently shaped creature as novel, while
achieving good test performance. Motivated by this line of
thinking, we ask the question of how we might encourage
classifiers to learn more meaningful representations.

Multi-task learning with auxiliary objectives Caru-
ana (1993) describes how sharing parameters for learning
multiple tasks, which are related in the sense of requiring
similar features, can be a powerful tool for inducing
domain-specific inductive biases in a learner. Hand-design
of inductive biases requires complicated engineering, while
using the training signal from a related task can be a much
easier way to achieve similar goals. Even when related tasks
are not explicitly available, it is often possible to construct
one. We explore such a framework for augmenting object
recognition classifiers with auxiliary tasks. Expressed in no-
tation, given the primary loss function, �primary, which is the
categorical cross-entropy loss in the case of classification,
and the auxiliary loss �auxiliary corresponding to the auxiliary
task, we aim to optimize the combined loss

�combined(θ;D) = �primary(θ;D) + λ�auxiliary(θ;D), (5)

where θ are the shared parameters across both tasks, D is
the dataset, λ is a hyper-parameter we learn by optimizing
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Figure 1: Plots of costs, accuracies, and average precision for hold-out-class experiments with 3 categories each from CIFAR-
10 (top) and STL-10 (bottom), using the MSP method (Hendrycks and Gimpel, 2017). While classification performance is
not correlated with performance at anomaly detection (compare test accuracy numbers with average precision scores), the
“pattern” of improvement at anomaly detection appears roughly related to generalization (compare the coarse shape of test
accuracy curves with that of average precision curves).

for classification accuracy on the validation set. In practice,
we alternate between the two updates rather than taking one
global step; this balances the training rates of the two tasks.

Auxiliary tasks Recently, there has been strong in-
terest in self-supervision applied to vision (Doer-
sch, Gupta, and Efros; Pathak et al.; Noroozi and
Favaro; Zhang, Isola, and Efros; van den Oord, Li,
and Vinyals; Gidaris, Singh, and Komodakis; Caron et al.,
2015; 2016; 2016; 2017; 2018; 2018; 2018), exploring tasks
that induce representations which are linearly separable by
object categories. These objectives naturally lend them-
selves as auxiliary tasks for encouraging inductive biases
towards semantic representations. First, we experiment
with the recently introduced task in Gidaris, Singh, and
Komodakis (2018), which asks the learner to predict the
orientation of a rotated image. In table 2, we show signif-
icantly improved generalization performance of classifiers
on CIFAR-10 and STL-10 when augmented with the
auxiliary task of predicting rotation. Details of experimental
settings, and performance on anomaly detection, are in the
next section. We also perform experiments on anomaly
detection with contrastive predictive coding (van den Oord,
Li, and Vinyals, 2018) as the auxiliary task and find that
similar trends continue to hold.

The addition of such auxiliary objectives is complemen-
tary to the choice of scoring anomalies. Additionally, it en-
ables further augmentation with more auxiliary tasks (Doer-
sch and Zisserman, 2017).

5 Evaluation

We study the two existing representative baselines of max-
imum softmax probability (MSP) (Hendrycks and Gim-
pel, 2017), and ODIN (Liang, Li, and Srikant, 2018) on
the proposed benchmarks. For ODIN, it is unclear how to

choose the hyperparameters for temperature scaling and the
weight for adversarial perturbation without assuming access
to anomalous examples, an assumption we consider unreal-
istic in most practical settings. We fix T = 1000, ε = 5e-5
for all experiments, following the most common setting.

Experimental Settings

Settings for CIFAR-10 and STL-10 Our base network for
all CIFAR-10 experiments is a Wide ResNet (Zagoruyko
and Komodakis, 2016) with 28 convolutional layers and a
widening factor of 10 (WRN-28-10) with the recommended
dropout rate of 0.3. Following Zagoruyko and Komodakis
(2016), we train for 200 epochs, with an initial learning
rate of 0.1 which is scaled down by 5 at the 60th, 120th,
and 160th epochs, using stochastic gradient descent with
Nesterov’s momentum at 0.9. We train in parallel on 4
Pascal V100 GPUs with batches of size 128 on each. For
STL-10, we use the same architecture but append an extra
group of 4 residual blocks with the same layer widths as in
the previous group. We use a widening factor of 4 instead
of 10, and batches of size 64 on each of the 4 GPUs, and
train for twice as long. We use the same optimizer settings
as with CIFAR-10. In both cases, we apply standard data
augmentation of random crops (after padding) and random
horizontal reflections.

Settings for IMAGENET For experiments with the proposed
subsets of IMAGENET, we replicate the architecture we use
for STL-10, but add a downsampling average pooling layer
after the first convolution on the images. We do not use
dropout, and use a batch size of 64, train for 200 epochs;
otherwise all other details follow the settings for STL-10.
The standard data augmentation steps of random crops to
a size of 224 × 224 and random horizontal reflections are
applied.
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Table 3: We train ResNet classifiers on CIFAR-10 holding out each class per run, and score detection with average precision
for the maximum softmax probability (MSP) baseline in (Hendrycks and Gimpel, 2017) and ODIN (Liang, Li, and Srikant,
2018). We find that augmenting with rotation results in improved anomaly detection as well as generalization (contrast columns
in the right half with the left).

CIFAR-10 Classification-only Rotation-augmented

Anomaly MSP ODIN Accuracy MSP ODIN Accuracy

airplane 43.30 ± 1.13 48.23 ± 1.90 96.00 ± 0.16 46.87 ± 2.10 49.75 ± 2.30 96.91 ± 0.02
automobile 14.13 ± 1.33 13.47 ± 1.50 95.78 ± 0.12 17.39 ± 1.26 17.35 ± 1.12 96.66 ± 0.03
bird 46.55 ± 1.27 50.59 ± 0.95 95.90 ± 0.17 51.49 ± 1.07 54.62 ± 1.10 96.79 ± 0.06
cat 38.06 ± 1.31 38.97 ± 1.43 97.05 ± 0.12 53.12 ± 0.92 55.80 ± 0.76 97.46 ± 0.07
deer 49.11 ± 0.53 53.03 ± 0.50 95.87 ± 0.12 50.35 ± 2.57 52.82 ± 2.96 96.76 ± 0.09
dog 25.39 ± 1.17 24.41 ± 1.05 96.64 ± 0.13 32.11 ± 0.82 32.46 ± 1.39 97.36 ± 0.06
frog 40.91 ± 0.81 42.21 ± 0.48 95.65 ± 0.09 52.39 ± 4.58 54.44 ± 5.80 96.51 ± 0.12
horse 36.18 ± 0.77 36.78 ± 0.82 95.64 ± 0.08 39.93 ± 2.30 39.65 ± 4.31 96.27 ± 0.07
ship 28.35 ± 0.81 30.61 ± 1.46 95.70 ± 0.15 29.36 ± 3.16 28.82 ± 4.63 96.66 ± 0.17
truck 27.17 ± 0.73 28.01 ± 1.06 96.04 ± 0.24 29.22 ± 2.87 29.93 ± 3.86 96.91 ± 0.12

Average 34.92 ± 0.41 36.63 ± 0.61 96.03 ± 0.00 40.22 ± 0.16 41.56 ± 0.15 96.83 ± 0.02

Table 4: Average precision scores for hold-out-class experiments with STL-10. We observe that the same trends in improve-
ments hold as with the previous experiments on CIFAR-10.

STL-10 Classification-only Rotation-augmented

Anomaly MSP ODIN Accuracy MSP ODIN Accuracy

airplane 19.21 ± 1.05 23.46 ± 1.65 85.18 ± 0.20 22.21 ± 0.76 23.37 ± 1.71 89.24 ± 0.12
bird 29.05 ± 0.69 33.51 ± 0.36 85.91 ± 0.36 36.12 ± 2.08 40.08 ± 3.30 89.91 ± 0.29
car 14.52 ± 0.37 16.14 ± 0.83 84.32 ± 0.55 15.95 ± 2.20 16.87 ± 2.94 89.52 ± 0.44
cat 25.21 ± 0.93 27.92 ± 0.84 86.95 ± 0.36 29.34 ± 1.30 31.35 ± 1.88 90.89 ± 0.26
deer 24.29 ± 0.53 25.94 ± 0.49 85.34 ± 0.35 27.60 ± 2.22 29.71 ± 2.55 89.20 ± 0.17
dog 23.42 ± 0.60 23.44 ± 1.18 87.78 ± 0.45 26.78 ± 0.71 26.14 ± 0.62 91.37 ± 0.33
horse 21.31 ± 1.01 22.19 ± 0.75 85.52 ± 0.21 23.79 ± 1.46 23.59 ± 1.63 89.60 ± 0.11
monkey 23.67 ± 0.83 21.98 ± 0.91 86.66 ± 0.31 28.43 ± 1.67 28.32 ± 1.20 90.07 ± 0.23
ship 14.61 ± 0.12 13.78 ± 0.63 84.65 ± 0.21 16.79 ± 1.20 15.37 ± 1.22 89.33 ± 0.15
truck 15.43 ± 0.17 14.35 ± 0.12 85.34 ± 0.17 17.05 ± 0.50 16.59 ± 0.60 90.08 ± 0.38

Average 21.07 ± 0.25 22.27 ± 0.29 85.77 ± 0.13 24.41 ± 0.23 25.14 ± 0.45 89.92 ± 0.08

Predicting rotation as an auxiliary task For adding
rotation-prediction as an auxiliary task, all we do is append
an extra linear layer alongside the one that is responsible
for object recognition. λ is tuned to 0.5 for CIFAR-10, 1.0
for STL-10, and a mix of 0.5 and 1.0 for IMAGENET. The
optimizer and regularizer settings are kept the same, with
the learning rate decayed along with the learning rate for
the classifier at the same scales.

We emphasize that this procedure is not equivalent to data
augmentation, since we do not optimize the linear classifi-
cation layer for rotated images. Only the rotation prediction
linear layer gets updated for inputs corresponding to the
rotation task, and only the linear classification layer gets
updated for non-rotated, object-labelled images. Asking the
classifier to be rotation-invariant would require the auxiliary
task to develop a disjoint subset in the shared representation
that is not rotation-invariant, so that it can succeed at
predicting rotations. This encourages an internally split
representation, thus diminishing the potential advantage
we hope to achieve from a shared, mutually beneficial space.

CPC as an auxiliary task We also experimented with
contrastive predictive coding (van den Oord, Li, and Vinyals
2018) as an auxiliary task. Since this is a patch-based

method, the input spaces are different across the two tasks:
that of predicting encodings of patches in the image, and
that of predicting object category from the entire image.
We found that two tricks are very useful for fostering co-
operation: (i) replacing the normalization layers with their
conditional variants (de Vries et al. 2017) (conditioning
on the task at hand), and (ii) using symmetric-padding
instead of zero-padding. Since CPC induces significant
computational overhead, we resorted to a lighter-weight
base network. While this comes at the cost of a drop in
performance, we still find, in table 6, that similar patterns of
improvements continue to hold. We provide further details
in Appendix B.

Discussion

Self-supervised multi-task learning is effective In tables 3
and 4 we report average precision scores on CIFAR-10 and
STL-10 for the baseline scoring methods MSP (Hendrycks
and Gimpel, 2017) and ODIN (Liang, Li, and Srikant,
2018). We note that ODIN, with fixed hyperparameter
settings across all experiments, continues to outperform
MSP most of the time. When we augment our classifiers
with the auxiliary rotation-prediction task, we find that
anomaly detection as well as test set accuracy are markedly
improved for both scoring methods. As we have remarked

3159



Table 5: Averaged average precisions for the proposed subsets of Imagenet, with rotation-prediction as the auxiliary task. Each
row shows averaged performance across all members of the subset. A random detector would score at the skew rate.

Classification-only Rotation-augmented

Subset Skew MSP ODIN Accuracy MSP ODIN Accuracy

dog 8.33 23.92 ± 0.49 25.85 ± 0.09 85.09 ± 0.14 24.66 ± 0.58 25.73 ± 0.87 85.25 ± 0.17
car 10.00 21.54 ± 0.62 22.49 ± 0.54 77.17 ± 0.10 21.66 ± 0.19 22.38 ± 0.46 76.72 ± 0.19
snake 11.11 18.62 ± 0.93 19.18 ± 0.79 69.74 ± 1.63 20.23 ± 0.18 21.17 ± 0.12 70.51 ± 0.48
spider 16.67 21.20 ± 0.56 24.15 ± 0.72 68.40 ± 0.21 22.90 ± 1.29 25.10 ± 1.78 68.68 ± 0.77
fungus 16.67 42.56 ± 0.49 44.59 ± 1.46 88.23 ± 0.45 44.19 ± 1.86 46.86 ± 1.13 88.47 ± 0.43

Table 6: Averaged average precisions for the proposed subsets of Imagenet where CPC is the auxiliary task.

Classification-only CPC-augmented

Subset Skew MSP ODIN Accuracy MSP ODIN Accuracy

dog 8.33 20.84 ± 0.50 22.77 ± 0.74 83.12 ± 0.26 21.43 ± 0.63 24.08 ± 0.63 84.16 ± 0.07
car 10.00 19.86 ± 0.21 21.42 ± 0.48 75.42 ± 0.11 22.21 ± 0.44 23.61 ± 0.57 78.88 ± 0.15
snake 11.11 18.20 ± 0.76 18.67 ± 1.07 66.15 ± 1.89 18.78 ± 0.40 20.39 ± 0.60 68.02 ± 0.85
spider 16.67 22.03 ± 0.68 24.08 ± 0.70 66.65 ± 0.42 22.28 ± 0.60 23.37 ± 0.68 68.67 ± 0.36
fungus 16.67 39.19 ± 1.26 41.71 ± 1.94 87.05 ± 0.06 42.08 ± 0.57 45.05 ± 1.11 88.91 ± 0.46

Table 7: Improving test set performance might not help

Method Accuracy Av. Prec. with MSP

Base model 96.03 ± 0.00 34.92 ± 0.41
Random-center-masked 96.27 ± 0.05 34.41 ± 0.74
Rotation-augmented 96.83 ± 0.02 40.22 ± 0.16

earlier, a representation space with greater semanticity
should be expected to bring improvements on both fronts.
All results report mean ± standard deviation over 3 trials.
In table 5, we repeat the same process for the much harder
Imagenet subsets. Taken together, our results indicate that
multi-task learning with self-supervised auxiliary tasks
can be an effective approach for improving anomaly de-
tection, with accompanying improvements in generalization.

Improved test set accuracy is not enough Training
methods developed solely to improve generalization, with-
out consideration of the affect on semantic understanding,
might perform worse at detecting semantic anomalies. This
is because it is often possible to pick up on low-level or
contextual discriminatory patterns, which are almost surely
biased in relatively small datasets for complex domains
such as natural images, and perform reasonably well on
the test set. To illustrate this, we run an experiment where
we randomly mask out a 16 × 16 region in CIFAR-10
images from within the central 21 × 21 region. In table 7,
we show that while this leads to improved test accuracies,
anomaly detection suffers (numbers are averages across
hold-out-class trials). This suggests that while the masking
strategy is effective as a regularizer, it might come at the
cost of less semantic representation. Certain choices can
therefore result in models with seemingly improved gener-
alization but which have poorer representation for tasks that
require a more coherent understanding. For comparison, the
rotation-augmented network achieves both a higher test set
accuracy as well as an improved average precision. This

example serves as a caution toward developing techniques
that might achieve reassuring test set performance, while
inadvertently following an internal modus operandi that
is misaligned with the pattern of reasoning we hope they
discover. This can have unexpected consequences when
such models are deployed in the real world.

6 Conclusion

We provided a critical review of the current interest in OOD
detection, concluding that realistic applications involve de-
tecting semantic distributional shift for a specified context,
which we regard as anomaly detection. While there is signif-
icant recent interest in the area, current research suffers from
questionable benchmarks and methodology. In light of these
considerations, we suggested a set of benchmarks which are
better aligned with realistic anomaly detection applications
in the context of object classification systems.

We also explored the effectiveness of a multi-task learn-
ing framework with auxiliary objectives. Our results demon-
strate improved anomaly detection along with improved
generalization under such augmented objectives. This sug-
gests that inductive biases induced through such auxiliary
tasks could have an important role to play in developing
more trustworthy neural networks.

We note that the ability to detect semantic anomalies also
provides us with an indirect view of semanticity in the rep-
resentations learned by our mostly opaque deep models.
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Table 8: Imagenet subset members

Dog (hound) Car Snake (colubrid) Spider Fungus

Ibizan hound Model T ringneck snake tarantula stinkhorn
bluetick race car vine snake Argiope aurantia bolete
beagle sports car hognose snake barn spider hen-of-the-woods

Afghan hound minivan thunder snake black widow earthstar
Weimaraner ambulance garter snake garden spider gyromitra

Saluki cab king snake wolf spider coral fungus
redbone beach wagon night snake

otterhound jeep green snake
Norweigian elkhound convertible water snake

basset hound limo
Scottish deerhound

bloodhound

A Imagenet benchmarks

We first sorted all candidate subsets by the number of mem-
bers. We then picked from among the list of top twenty
subsets, with a preference for subsets that are more closely
aligned with the theme of motivating practical applications
we provided. We also manually inspected the data, to check
for inconsistencies, and performed some pruning. For ex-
ample, in the beetle subset, leaf beetle and ladybug appear
to overlap sometimes. Finally, we settled on our choice of
5 subsets. In table 8, we list the members under every pro-
posed subset. The sets are collected by first resizing such that
the shorter side is of length 256 pixels, followed by a center
crop. For tuning λ, we treat 20% of the data in the training
sets as validation, and the remaining 80% for training.

B Experiments with CPC

CPC involves performing predictions for encodings of
patches of an image from those above them. To avoid learn-
ing trivial codes, a contrastive loss is used which essentially
trains the model to distinguish between correct codes and
“noisy” ones. These negative samples are taken from patches
within and across images in the batch.

We use the same network architecture as we used for the
Imagenet experiments with rotation-prediction as the aux-
iliary task, but modify the first convolution layer to have
a stride of 2. This reduces the computation overhead suf-
ficiently for concurrent training with CPC at reasonable
batch-sizes (CPC training batch-sizes are 32), but at a mi-
nor expense of classifier performance. We use the first three
blocks of the network for the patch encoder as in (van den
Oord, Li, and Vinyals, 2018), and append the final layers
for the classification task. Unlike with rotation, the auxiliary
task works on patches while the primary classifier works
on the entire image. This leads to differences in the oper-
ating receptive-fields, and differing proportions of bound-
ary effects. To facilitate easier parameter sharing across the
two tasks, we make the following changes. First, we replace
all default zero-padding with reflected, symmetric padding.
This removes the effect of having a different ratio of border-
zeros to pixels when the spatial dimensions of the input
changes. Second, we replace all normalization layers with
conditional normalization variants (this means separate sets

of scale and shift parameters are used depending on the
current prediction task). Since batch-normalization allows
trivial solutions to CPC for patches sampled from differ-
ent images, we only use patches from within the same im-
age, and find that we can continue using it to our advan-
tage. We keep the same optimizer settings from the rota-
tion experiments, but it is possible that different choices
might lead to further improvements. λ is tuned to 10.0 for
all experiments, following a coarse hyperparameter search
for best validation-set classification accuracy over a range
of {0.1, 1.0, 10.0, 20.0, 50.0}.

C Trivial baseline for existing benchmarks
To demonstrate that the current benchmarks are trivial with
very low-level information, we experiment with CIFAR-10
as in-distribution by simply looking at likelihoods under a
mixture of 3 pixel-level Gaussians, trained channel-wise. We
find that this simple baseline compares very well with re-
cent approaches at all but one of the benchmark OOD tasks
in (Liang, Li, and Srikant, 2018) for CIFAR-10.

OOD dataset Average precision

TinyImagenet (crop) 96.84
TinyImagenet (resize) 99.03
LSUN 58.06
LSUN (resize) 99.77
iSUN 99.21

We see that this underperforms on LSUN. When we inspect
LSUN, we find that the images are cropped patches from
scene-images, and a majority of them are of uniform colour
and texture, with little variation and structure in them. While
this dataset is most obviously different from CIFAR-10,
we believe that the appearance of the images results in the
phenomenon reported in Nalisnick et al. (2019), where one
distribution that “sits inside” the other because of a similar
mean but lower variance ends up being more likely under
the wider distribution. In fact, thresholding on simply the
“energy” of the edge-detection map gives us an average pre-
cision of around 87.5% for LSUN, thus indicating that the
extremely trivial feature of a lower edge-count is already a
strong indicator for telling apart such an obvious difference.

We found that the Gaussian baseline underperforms
severely on the hold-out-class experiments on CIFAR-10,
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achieving an average precision of a mere 11.17% across the
10 experiments.
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