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Abstract

Reinforcement learning (RL) excels in optimizing policies for discrete-time Markov
decision processes (MDP). However, various systems are inherently continuous
in time, making discrete-time MDPs an inexact modeling choice. In many ap-
plications, such as greenhouse control or medical treatments, each interaction
(measurement or switching of action) involves manual intervention and thus is
inherently costly. Therefore, we generally prefer a time-adaptive approach with
fewer interactions with the system. In this work, we formalize an RL framework,
Time-adaptive Control & Sensing (TACOS), that tackles this challenge by optimiz-
ing over policies that besides control predict the duration of its application. Our
formulation results in an extended MDP that any standard RL algorithm can solve.
We demonstrate that state-of-the-art RL algorithms trained on TACOS drastically
reduce the interaction amount over their discrete-time counterpart while retaining
the same or improved performance, and exhibiting robustness over discretization
frequency. Finally, we propose OTACOS, an efficient model-based algorithm for
our setting. We show that OTACOS enjoys sublinear regret for systems with suffi-
ciently smooth dynamics and empirically results in further sample-efficiency gains.

1 Introduction

Nearly all state-of-the-art RL algorithms (Schulman et al., 2017; Haarnoja et al., 2018; Lillicrap et al.,
2015; Schulman et al., 2015) were developed for discrete-time MDPs. Nevertheless, continuous-
time systems are ubiquitous in nature, ranging from robotics, biology, medicine, environment
and sustainability etc. (cf. Spong et al., 2006; Jones et al., 2009; Lenhart and Workman, 2007;
Panetta and Fister, 2003; Turchetta et al., 2022). Such systems can be naturally modeled with
stochastic differential equations (SDEs), but computational approaches necessitate discretization.
Furthermore, in many applications, obtaining measurements and switching actions is expensive. For
instance, consider a greenhouse of fruits or medical treatment recommendations. In both cases, each
measurement (crop inspection, medical exam) or switching of actions (climate control, treatment
adjustment) typically involves costly human intervention. Hence, minimizing such interactions with
the underlying system is desirable. This underlying challenge is rarely addressed in the RL literature.

In practice, a time-equidistant discretization frequency is set, often manually, adjusted to the underly-
ing system’s characteristic time scale. This is challenging, however, especially for unknown/uncertain
systems, and systems with multiple dominant time scales (Engquist et al., 2007). Therefore, for many
real-world applications having a global frequency of control is inadequate and wasteful. For example,
in medicine, patient monitoring often requires higher frequency interaction during the onset of illness
and lower frequency interactions as the patient recovers (Kaandorp and Koole, 2007).

In this work, we address this limitation of standard RL methods and propose a novel RL framework,
Time-adaptive Control & Sensing (TACOS). TACOS reduces a general continuous-time RL problem
with underlying SDE dynamics to an equivalent discrete-time MDP, that can be solved with any
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RL algorithm, including standard policy gradient methods like PPO and SAC (Schulman et al., 2017;
Haarnoja et al., 2018). We summarize our contributions below.

Contributions

1. We reformulate the problem of time-adaptive continuous time RL to an equaivalent discrete-time
MDP that can be solved with standard RL algorithms.

2. Using our formulation, we extend standard policy gradient techniques (Haarnoja et al. (2018)
and Schulman et al. (2017)) to the time-adaptive setting. Our empirical results on standard RL
benchmarks (Freeman et al., 2021) show that TACOS outperforms its discrete-time counterpart
in terms of policy performance, computational cost, and sample efficiency.

3. To further improve sample efficiency, we propose a model-based RL algorithm, OTACOS.
OTACOS uses well-calibrated probabilistic models to capture epistemic uncertainty and, similar
to Curi et al. (2020) and Treven et al. (2023), leverages the principle of optimism in the face
of uncertainty to guide exploration during learning. We theoretically prove that OTACOS suffers
no regret and empirically demonstrate its sample efficiency.

2 Problem statement

We consider a general nonlinear continuous time dynamical system with continuous state X ⊂ Rdx

and action U ⊂ Rdu space. The underlying dynamics are governed by a (controllable) SDE:

dxt = f∗(xt,ut)dt+ g∗(xt,ut)dBt. (1)

Here xt ∈ X is the state at time t, ut ∈ U the control input, f∗, g∗ are unknown drift and diffusion
functions and Bt is a standard Brownian motion in RdB . Our goal is to find a control policy πU :

X × T → U which maximizes an unknown reward b∗(xt,ut) over a fixed horizon T def
= [0, T ], i.e.,

max
π∈Π

E
[∫

t∈T
b∗(xt,πU (xt, t))dt

]
,

where the expectation is taken w.r.t. the policy and stochastic dynamics and Π is the class of policies2

over which we search.

In practice, we can only measure the system state and execute control policies in discrete points in
time. In this work, we focus on problems where state measurement and control are synchronized
in time. We refer to these synchronized time points as interactions in the following parts of this
paper. Synchronizing state measurement and control contrasts standard time-adaptive approaches
such as event-triggered control (Heemels et al., 2021), where the state is measured arbitrarily high
frequency and control inputs are changed only so often to ensure stability. It is also in contrast to
the complementary setting, where control inputs are changing at an arbitrarily high frequency but
measurements are collected adaptively in time (Treven et al., 2023). An adaptive control approach
as Heemels et al. (2021) is very important for many real-world applications but similarly, an adaptive
measurement strategy is crucial for efficient learning in RL (Treven et al., 2023). Our approach treats
both of these requirements jointly.

We consider two different scenarios for continuous-time control: (i) Penalizing interactions with
some cost, (ii) bounded number of interactions, i.e., hard constraint on control/measurement steps.

Interaction cost We consider the setting where every interaction we take has an inherent cost
c(xt,ut) > 0. Note that we consider this cost structure for its simplicity and TACOS works for more
general cost functions that depend on the duration of application for the action ut or the previous
action ut−1 and thus captures many practical real-world settings. We define this task more formally
below

max
π∈Π,πT

E

[
K−1∑
i=0

∫ ti

ti−1

b∗(xt,πU (xti−1
, ti−1))dt− c(xti−1

,πU (xti−1
, ti−1))

]
, (2)

ti = πT (xti−1
, ti−1) + ti−1, t0 = 0, tK = T, ∀(x, t) ∈ X × T ;πT (x, t) ∈ [tmin, tmax].

Here tmin > 0 is the minimal duration for which we have to apply the control, tmax ∈ [tmin, T ] the
maximum duration, and πT is a policy that predicts the duration of applying the action.

2We assume that Π is the set of Lπ-Lipschitz policies
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Bounded number of interactions In this setting, the number of interactions with the system is
limited by a known amount K. Intuitively, this represents a scenario where we have a finite budget
for the inputs that we can apply and have to decide on the best strategy to space these K inputs over
the full horizon. A formal definition of this task is given below

max
π∈Π,πT

E

[
K−1∑
i=0

∫ ti

ti−1

b∗(xt,πU (xti−1
, ti−1, i− 1))dt

]
, (3)

ti = πT (xti−1
, ti−1, i− 1) + ti−1, t0 = 0, tK = T, ∀(x, t, i) : πT (x, t, i) ∈ [tmin, tmax].

In the absence of the transition costs or the bound on the number of interactions, intuitively the policy
would propose to interact with the system as frequently as possible, i.e., every tmin seconds. The
additional costs/constraints ensure that we do not converge to this trivial (but unrealistic) solution.

3 TACOS: Time Adaptive Control or Sensing

In the following, we reformulate the continuous-time problem as an equivalent discrete-time MDP.
We first denote the state and running reward flows of Equation (1). The state flow by applying action
uk for tk time reads:

xk+1 = Ξ(xk,uk, tk),

Ξ(x,u, t)
def
= x+

∫ t

0

f∗(xs,u)ds+

∫ t

0

g∗(xs,u)dBs.

We assume that every time we interact with the system, we also obtain the integrated reward and
define the reward flow as

Ξb∗(x,u, t)
def
=

∫ t

0

b∗ (Ξ(x,u, s),u) ds. (4)

Due to the stochasticity of (Bt)t∈T , the state flow Ξ(x,u, t) and the reward flow Ξb∗(x,u, t) are
stochastic. For ease of notation, we denote

Φf∗(xk,uk, tk)
def
= E [Ξ(xk,uk, tk)] , Φb∗(xk,uk, tk)

def
= E [Ξb∗(xk,uk, tk)]

wx
k

def
= Ξ(xk,uk, tk)−Φ(xk,uk, tk), wb∗

k
def
= Ξb∗(xk,uk, tk)− Φb∗(xk,uk, tk),

and the concatenated state and reward flow function, and noise as:

Φ∗(xk,uk, tk) =

(
Φf∗(xk,uk, tk)
Φb∗(xk,uk, tk)

)
, wk =

(
wx

k

wb∗

k

)
. (5)

In this work, we search for policies that return the next control we apply and also the time for how
long to apply the control.

3.1 Reforumlation of Interaction Cost setting to Discrete-time MDPs

We convert the problem with interaction costs to a standard MDP which any RL algorithm for
continuous state-action spaces can solve. To this end, we restrict ourselves to a policy class:

ΠIC = {π : X × T → U × T | πT (·, t) ∈ [tmin, tmax],π is Lπ − Lipschitz} .
For simplicity, we denote by πT the component of the policy that predicts the duration of applying
the action and with πU the component that predicts the action value. The policies we consider map
state x and time-to-go t to control u and the time τ for how long we apply the action u. We define
the augmented state s = (x, b, t), where x is the state, b integrated reward and t time-to-go. With the
introduced notation we arrive at a discrete-time MDP problem formulation

max
π∈ΠIC

Vπ,Φ∗(x0, T ) = max
π∈ΠIC

E

[
K−1∑
k=0

r(sk,π(sk))

]
(6)

s.t. sk+1 = ΨΦ∗(sk,π(sk),wk), s0 = (x0, 0, T ),

K−1∑
k=0

πT (xk, tk) = T,

where we have
ΨΦ∗(sk,π(sk),wk) = (Φ∗(xk,π(xk, tk)) +wk, tk − πT (xk, tk))

r(sk,π(sk)) = Ξb∗(xk,π(xk, tk))− c(xk,πU (xk, tk)).

3



0 5 10
Time

0

5

S
ta

te

cos(θ)

sin(θ)

ω

0 5 10
Time

−1

0

A
ct

io
n

0 5 10
Time

0.0

0.5

1.0

R
un

ni
ng

re
w

ar
d

0 10 20
Action Steps

0.25

0.50

0.75

T
im

e
fo

r
ac

ti
on

Pendulum Swing Up Task [Duration=10.0s, c(x,u, t) = 0.1]

(a) We add a constant switch cost of 0.1 and significantly reduce the number of interactions from 200 to 24.
Initially, the policy applies maximal bang-bang torque for longer times, until the pendulum reaches the top. On
the top, we measure and change the controller at a higher frequency in order to keep the pendulum stable, at the
position with the highest reward.
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Pendulum Swing Up Task [Duration=5.0s, K = 5]

(b) We set a tight bound of K = 5 for the number of interactions and observe that we can still solve the task.

Figure 1: Experiment on the Pendulum environment for the average cost and a bounded number of
switches setting.

3.2 Reformulation of Bounded Number of Interactions to Discrete-time MDPs

The second setting is similar to the one studied by Ni and Jang (2022). In this case, we consider the
following class of policies:

ΠBI = {π : X × T × N → U × T | ∀k ∈ [K] : π(·, ·, k) is Lπ – Lipschitz} .
For an augmented state s = (x, b, t, k), our policies map states x, time-to-go t, number of past
interactions k to a controller u and the time duration τ for applying the action. Here the optimal
control problem reads

max
π∈ΠBI

Vπ,Φ∗(x0, T ) = max
π∈ΠBI

E

[
K−1∑
k=0

r(sk,π(sk))

]
(7)

s.t. sk+1 = ΨΦ∗(sk,π(sk),wk), s0 = (x0, 0, T, 0),

where,

ΨΦ∗(sk,π(sk),wk) = (Φ∗(xk,π(xk, tk, k)) +wk, tk − πT (xk, tk, k), k + 1)

r(sk,π(sk)) = Ξb∗(xk,π(xk, tk, k)).

In the following, we provide a simple proposition which shows that our reformulated problem is
equivalent to its continuous-time counterpart from Section 2.
Proposition 1. The problem in Equation (2) and 3 are equivalent to Equation (6) and 7, respectively.

Figure 1 depicts the influence of interaction cost and K on the controller’s performance for the
pendulum environment.

4 TACOS with Model-free RL Algorithms

We now illustrate the performance of TACOS on several well-studied robotic RL tasks. We consider
the RC car (Kabzan et al., 2020), Greenhouse (Tap, 2000), Pendulum, Reacher, Halfcheetah and
Humanoid environments from Brax (Freeman et al., 2021). Thus our experiments range from
environments necessitating time-adaptive control like the Greenhouse, a realistic and highly dynamic
race car simulation, and a very high dimensional RL task like the Humanoid.3

3X ⊂ R244,U ⊂ R17. We provide our implementation at https://github.com/lasgroup/TaCoS.
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We investigate both the bounded number of interactions and interaction cost settings in our experi-
ments. In particular, we study how the bound K affects the performance of TACOS and compare it
to the standard equidistant baseline. We further study the interplay between the stochasticity of the
environments (magnitude of g∗) and interaction costs and the influence of tminon TACOS. For all
experiments in this section, we combine SAC with TACOS (SAC-TACOS).
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Figure 2: We study the effects of the bound on interactions K on the performance of the agent.
TACOS performs significantly better than equidistant discretization, especially for small values of K.

How does the bound on the number of interactions K affect TACOS? We analyze the bounded
number of interactions setting (cf. Section 3.2) of TACOS, studying the relationship between the
number of interactions and the achieved episode reward. We compare our algorithm with the standard
equidistant time discretization approach which splits the whole horizon T into T/K discrete time
steps at which an interaction takes place. We evaluate the two methods in the greenhouse and
pendulum environments. For the pendulum, we consider the swing-up and swing-down tasks. The
results are reported in Figure 2. The time-adaptive approach performs significantly better than the
standard equidistant time discretization. This is particularly the case for the greenhouse and pendulum
swing-down tasks. Both tasks involve driving the system to a stable equilibrium and thus, while
high-frequency interaction might be necessary at the initial stages, a fairly low interaction frequency
can be maintained when the system has reached the equilibrium state. This demonstrates the practical
benefits of time-adaptive control.
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Figure 3: Effect of interaction cost (first row) and environment stochasticity (second row) on the
number of interactions and episode reward for the Pendulum and Greenhouse tasks.

How does the interaction cost magnitude influence TACOS? We investigate the setting from
Section 3.1 with interaction costs. In our experiments, we always pick a constant cost, i.e., c(x,u) =
C. We study the influence of C on the episode reward and on the number of interactions that the
policy has with the system within an episode. We again evaluate this on the greenhouse and pendulum
environment. For the pendulum, we consider the swing-up task. The results are presented in the
first row of Figure 3. Noticeably, increasing C reduces the number of interactions. The decrease is
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drastic for the greenhouse environment since it can be controlled with considerably fewer interactions
without having any effect on the performance. Generally, we observe that decreasing the number of
interactions, that is, increasing C, also results in a slight decline in episode reward.

How does environment stochasticity influence the number of interactions? We analyze the
influence of the environment’s stochasticity, i.e., the magnitude of the diffusion term g∗, on the episode
reward and number of interactions on TACOS. Intuitively, the more stochastic the environment, the
more interactions we would require to stabilize the system. We again evaluate our method on the
greenhouse and pendulum swing-up tasks. The results are reported in the second row of Figure 3.
The results verify our intuition that more stochasticity in the environment generally leads to more
interactions. However, we observe that the policy is still able to achieve high rewards for a wide
range of magnitude of g∗. This showcases the robustness and adaptability of TACOS to stochastic
environments.
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Figure 4: We compare the performance of TACOS in combination with SAC and PPO with the
standard SAC algorithm and SAC with more compute (SAC-MC) over a range of values for tmin

(first row). In the second row, we plot the episode reward versus the physical time in seconds spent
in the environment for SAC-TACOS, SAC, and SAC-MC for a specific evaluation frequency 1/teval.
We exclude PPO-TACOS in this plot as it, being on-policy, requires significantly more samples than
the off-policy methods. While all methods perform equally well for standard discretization (denoted
with 1/t∗), our method is robust to interaction frequency and does not suffer a performance drop
when we decrease tmin.

How does tmin influence TACOS? As highlighted in Section 1, picking the right discretization
for interactions is a challenging task. We show that TACOS can naturally alleviate this issue and
adaptively pick the frequency of interaction while also being more computationally and data-efficient.
Moreover, we show that TACOS is robust to the choice of tmin, which represents the minimal duration
an action has to be applied, i.e., its inverse is the highest frequency at which we can control the
system. In this experiment, we consider SAC-TACOS and compare it to the standard SAC algorithm.
TACOS adaptively picks the number of interactions and therefore during an episode of time T , it
effectively collects less data than the standard discrete-time RL algorithm.4 This makes comparison
to the discrete-time setting challenging since environment interactions and physical time on the
environment are not linearly related for TACOS as opposed to the standard discrete-time setting.
Nevertheless, to be fair to the discrete-time method, we give SAC more physical time on the system
for all environments, effectively resulting in the collection of more data for learning. Since the
standard SAC algorithm updates the policy relative to the data amount, we consider a version of SAC,
SAC-MC (SAC more compute), which leverages the additional data it collects to perform more
gradient updates. This version essentially performs more policy updates than SAC-TACOS and thus
is computationally more expensive. Furthermore, to demonstrate the generality of our framework, we
also combine TACOS with PPO (PPO-TACOS).

We report the performance after convergence across different tmin in the first row of Figure 4. From
our experiment, we conclude that SAC-TACOS and PPO-TACOS are robust to the choice of tmin

4A standard RL algorithm would collect T/tmin data points per episode.
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and perform equally well when tmin is decreased, i.e., frequency is increased. This is in contrast to
the standard RL methods, which have a significant drop in performance at high frequencies. This
observation is also made in prior work (Hafner et al., 2019). Crucially, this highlights the sensitivity
of the standard RL methods to the frequency of interaction. In the second row of Figure 4 we show
the learning curve of the methods for a specific frequency 1/teval. From the curve, we conclude that
SAC-TACOS achieves higher rewards with significantly less physical time on the environment. We
believe this is because our method explores more efficiently (akin to Dabney et al., 2020; Eberhard
et al., 2022), and also learns a much stronger/continuous-time representation of the underlying MDP.

Interestingly, at the default frequency used in the benchmarks 1/t∗, all methods perform similarly.
However, slightly decreasing the frequency already leads to a drastic drop in performance for all
methods. Intuitively, decreasing the frequency prevents us from performing the necessary fine-grained
control and obtaining the highest performance.

While we have access to the optimal frequency 1/t∗ for these benchmarks, for a general and unknown
system it is very difficult to estimate this frequency. Furthermore, as we observe in our experiments,
picking a very high frequency is also not an option when using standard RL algorithms. We believe
this is where TACOS excels as it adaptively picks the frequency of interaction, thereby relieving the
problem designer of this decision.

5 Efficient Exploration for TACOS via Model-Based RL

In this section, we propose a novel model-based RL algorithm for TACOS called Optimistic
TACOS (OTACOS). We analyze the episodic setting, where we interact with the system in episodes
n = 1, . . . , N . In episode n, we execute the policy πn, collect measurements and integrated rewards
(xn,0, bn,0), . . . , (xn,kn

, bn,kn
), and prepare the data Dn = {(zn,1,yn,1), . . . , (zn,kn

,yn,kn
)},

where zn,i = (xn,i−1,un,i−1, tn,i−1) and yn,i = (xn,i, bn,i). From the dataset D1:n
def
= ∪i≤nDi

we build a model Mn for the unknown function Φ∗ such that it is well-calibrated in the sense of the
following definition.

Definition 1 (Well-calibrated statistical model of Φ∗, Rothfuss et al. (2023)). Let Z def
= X × U × T .

We assume Φ∗ ∈ ⋂n≥0 Mn with probability at least 1− δ, where statistical model Mn is defined as

Mn
def
=
{
f : Z → Rdx+1 | ∀z ∈ Z,∀j ∈ {1, . . . , dx + 1} : |µn,j(z)− fj(z)| ≤ βn(δ)σn,j(z)

}
,

Here, µn,j and σn,j denote the j-th element in the vector-valued mean and standard deviation
functions µn and σn respectively, and βn(δ) ∈ R≥0 is a scalar function that depends on the
confidence level δ ∈ (0, 1] and which is monotonically increasing in n.

Similar to model-based RL algorithms for the discrete-time setting (Kakade et al., 2020; Curi et al.,
2020; Sukhija et al., 2024), we follow the principle of optimism in the face of uncertainty and select
the policy πn for both settings of TACOS (cf. Sections 3.1 and 3.2) by solving:

πn
def
= argmax

π∈Π□

max
Φ∈Mn−1

Vπ,Φ(x0, T ), (8)

where □ ∈ {IC,BI} is the appropriate policy class from Section 3. Running OTACOS for N
episodes, we measure the performance via the regret:

RN =

N∑
n=1

(
Vπ∗,Φ∗(x0, T )− Vπn,Φ∗(x0, T )

)
.

Here π∗ is the optimal policy from the class of policies we optimize over. Any kind of regret bound
requires certain assumptions on the regularity of the underlying dynamics (1).
Assumption 1 (Dynamics model). Given any norm ∥·∥, we assume that the drift f∗, and diffusion g∗

are Lf∗ and Lg∗-Lipschitz continuous, respectively, with respect to the induced metric. We further
assume supz∈Z ∥g∗(z)∥F ≤ A.

Assumption 1 ensures the existence of the SDE (1) solution under policy πn. To provide bounds on
the performance of OTACOS for settings Sections 3.1 and 3.2 we also need some assumptions on the
noise and reward model.
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Assumption 2 (Reward and noise model for Section 3.1 Setting). Given any norm ∥·∥, we assume
that running reward b is Lb-Lipschitz continuous, with respect to the induced metric. We further
assume boundedness of the reward 0 ≤ b∗(x,u) ≤ B, and interaction cost 0 ≤ c(x,u) ≤ C. The
dynamics noise is independent and follows: wx

k ∼ N
(
0, σ2(xk,uk, tk)Idx

)
.

Assumption 3 (Reward and noise model for Section 3.2 Setting). Given any norm ∥·∥, we assume
that the running reward b is Lb-Lipschitz continuous, w.r.t. to the induced metric.

Finally, we assume that we learn a well-calibrated model of the unknown flow Φ∗.
Assumption 4 (Well calibration assumption). Our learned model is an all-time-calibrated statistical
model of Φ∗, i.e., there exists an increasing sequence of (βn(δ))n≥0 such that our model satisfies the
well-calibration condition, cf., Definition 1.

Analogous assumptions are made for model-based RL algorithms in the discrete-time setting (Curi
et al., 2020; Sukhija et al., 2024). This calibration assumption is satisfied if Φ∗ can be represented
with Gaussian Process (GP) (Williams and Rasmussen, 2006; Kirschner and Krause, 2018) models.
Theorem 2. Consider the setting from Section 3.1 and let Assumption 1, 2, and Assumption 4 hold.
Then we have with probability at least 1− δ:

RN ≤ O
(
βN−1T

3/2
√
NIN

)
Now consider, the setting with a bounded number of switches K, and let Assumption 1, 3, and
Assumption 4 hold. Then, we get with probability at least 1− δ

RN ≤ O
(
βK
N−1KeD(Lf∗+L2

g∗ )(1+Lπ)TK
√
NIN

)
,

where D is a constant. Here, with IN we denote the model-complexity after observing N points (Curi
et al., 2020), which quantifies the difficulty of learning Φ∗. For GPs, it behaves similar to the
maximum information gain γN (Srinivas et al., 2009), i.e., implying sublinear regret for several
common kernels (Vakili et al., 2021).

As a proof of concept, we evaluate OTACOS on the pendulum and RC car environment for the
interaction cost setting. 5 As baselines, we adapt common model-based RL methods such as
PETS (Chua et al., 2018) and planning with the mean to TACOS. We call them PETS-TACOS and
MEAN-TACOS, respectively. The result is reported in Figure 5. From the figure, we conclude that
OTACOS is more sample efficient than other model-based baselines and SAC-TACOS (SAC-TACOS
requires circa 6000 episodes for the pendulum and 2000 for the RC car).

0 5 10 15
Episodes

0

100

E
pi

so
de

R
ew

ar
d

Pendulum Swing-Up [Duration=10s]

0 20 40 60 80 100
Episodes

0

20

40

60

RC Car [Duration=4s]
OTaCoS SAC-TaCoS PETS-TaCoS Mean-TaCoS

Figure 5: We run OTACOS on the pendulum and RC car environment. We report the achieved reward
averaged over five different seeds with one standard error.

6 Related Work

Similar to this work, Holt et al. (2023); Ni and Jang (2022); Karimi (2023) consider continuous-
time deterministic dynamical systems where the measurements or control input changes can only

5The code is available at https://github.com/lasgroup/model-based-rl.
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happen at discrete time steps. Moreover, Holt et al. (2023) proposes a similar problem as ours from
Section 3.1, where they specify a cost on the number of interactions. However, their solution is based
on a heuristic, where a measurement is taken when the variance of the potential reward surpasses
a prespecified threshold. On the contrary, we directly tackle this problem at hand and propose a
general framework for time-adaptive control that does not rely on any heuristics. Karimi (2023) adapt
SAC (Haarnoja et al., 2018) to include a regularization term, which effectively adds a cost for every
discrete interaction. Ni and Jang (2022) induce a soft-constraint on the duration τ of each action in
the environment. However, all the aforementioned works propose heuristic techniques to minimize
interactions, whereas we formalize the problem systematically for the more general case of SDEs and
show that it has an underlying MDP structure that any RL algorithm can leverage. In addition, we
propose a no-regret model-based RL algorithm for this setting and analyze its sample complexity.

Temporal abstractions are considered also in the framework of options (Sutton et al., 1999; Mankowitz
et al., 2014; Mann and Mannor, 2014; Harb et al., 2018). However, a key difference to TACOS is that
in the options framework, the agent measures the state even between the controller switches.

Learning to repeat actions Several works observe that repeating actions in the discrete-time MDPs
problems such as Atari (Mnih et al., 2013; Braylan et al., 2015) or Cartpole (Hafner et al., 2019)
significantly increase the speed of learning. However, the action repeat is fixed through the entire
rollout and treated as a hyperparameter. Durugkar et al. (2016); Vezhnevets et al. (2016); Srinivas
et al. (2017); Sharma et al. (2017); Lee et al. (2020); Grigsby et al. (2021); Chen et al. (2021); Nam
et al. (2021); Yu et al. (2021); Biedenkapp et al. (2021); Krale et al. (2023) automate the selection of
action repeat, and show superior performance over the fixed number setting. Dabney et al. (2020)
empirically show that repeating the actions helps with the exploration, effectively having a similar
effect that colored noise exploration has over the standard white noise exploration (Eberhard et al.,
2022).

Continuous-time RL Following the seminal work of Doya (2000) and the advances in Neural
ODEs of Chen et al. (2018), continuous-time RL has regained interest (Cranmer et al., 2020; Grey-
danus et al., 2019; Yildiz et al., 2021; Lutter et al., 2021). Moreover, modeling in continuous-time
is found to be particularly useful when learning from different data sources where each source is
collected at a different frequency (Burns et al., 2023; Zheng et al., 2023). An important line of work
exists for modeling continuous dynamics for the case when states and actions are discrete, called
Markov Jump Processes (Kallianpur and Sundar, 2014; Berger, 1993; Huang et al., 2019; Seifner and
Sanchez, 2023). Another line of work that is close to ours is event and self-Triggered Control (Astrom
and Bernhardsson, 2002; Anta and Tabuada, 2010; Heemels et al., 2012, 2021), where they model
continuous-time control systems by implementing changes to the input only when stability is at risk,
ensuring efficient and timely interventions. Treven et al. (2023) propose a no-regret continuous-time
model-based RL algorithm, which akin to OTACOS, performs optimistic exploration. They study
the problem where controls can be executed continuously in time and propose adaptive measurement
selection strategies. Similarly, we propose a novel model-based RL algorithm, OTACOS, based on the
principle of optimism in the face of uncertainty. We show that OTACOS has no regret for sufficiently
smooth dynamics and has considerable sample-efficiency gains over its model-free counterpart.

7 Conclusion and discussion

We study the problem of time-adaptive RL for continuous-time systems with continuous state and
action spaces. We investigate two practical settings where each interaction has an inherent cost and
where we have a hard constraint on the number of interactions. We propose a novel RL framework,
TACOS, and show that both of these settings result in extended MDPs which can be solved with
standard RL algorithms. In our experiments, we show that combining standard RL algorithms with
TACOS results in a significant reduction in the number of interactions without having any effect on
the performance for the interaction cost setting. Furthermore, for the second setting, TACOS achieves
considerably better control performance despite having a small budget for the number of interactions.
Moreover, we show that TACOS improves robustness to a large range of interaction frequencies,
and generally improves sample complexity of learning. Finally, we propose, OTACOS, a no-regret
model-based RL algorithm for TACOS and show that it has further sample efficiency gains.
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A Extended Theory

In this section, we prove Theorem 2 for OTACOS. We separate the section into two parts; proof for
the transaction cost setting (Appendix A.1) and the proof for the bounded number of switches setting
(Appendix A.2).

We start with the definitions of model complexity and sub-Gaussian random vector that we will use
extensively in this section.
Definition 2 (Model Complexity). We define the model complexity as is defined by Curi et al. (2020).

IN := max
D1,...,DN

N∑
n=1

∑
(x,u,t)∈Dn

∥σn(x,u, t)∥22 . (9)

Definition 3. A random variable x ∈ R is said to be sub-Gaussian with variance proxy σ2 if E[x] = 0
and we have:

E[etx] ≤ e
σ2t2

2 , ∀t ∈ R

A random vector x ∈ Rd is said to be sub Gaussian with variance proxy σ2 if for any e ∈ Rd, ∥e∥2 =

1 the random variable x⊤e is σ2 sub Gaussian. We write x ∼ subG
(
σ2
)
.

In the following, we will be distinguishing between the state of the augmented MDP s and the
true state of the dynamical system x. The augmented state at time step k includes the true state of
the system, xk, the integrated reward bk between k − 1 and k, and the time to left to go tk, i.e.,
sk = [x⊤

k , bk, tk]
⊤.

A.1 Transition Cost setting

We prove our regret bound for the transition cost case in the following. We start with the difference
lemma which adapts Sukhija et al. (2024, Lemma 2) to our setting.
Lemma 3 (Difference lemma). Define Vπn,Φ(x, τ) as

Eπ,Φ

K(τ)−1∑
k≥0

r(sk,π(sk))
∣∣∣x0 = x

 ; where
K(τ)−1∑
k=0

πT (xk, tk) = τ

that is the total reward starting with time to go τ and state x for the policy π and dynamics Φ. Here
the expectation w.r.t. π,Φ represents the expectation of the underlying trajectory induced by the
policy π on the dynamics Φ. Then we have for all π, Φ′, Φ∗, x0, T < 0;

Vπ,Φ′(x0, T )− Vπ,Φ∗(x0, T ) = Eπ,Φ∗

∑
k≥0

Vπ,Φ′(x̂k+1, tk+1)− Vπ,Φ′(xk+1, tk+1)

 , (10)

where x̂k+1 is the state of ŝk+1 = ΨΦ′(sk,π(sk),wk) and xk+1 is the state of sk+1 =
ΨΦ∗(sk,π(sk),wk).

Proof.

Vπ,Φ∗(x0, T ) = Eπ,Φ∗

∑
k≥0

r(sk,π(sk))


= Eπ,Φ∗

r(s0,π(s0)) +∑
k≥1

r(sk,π(sk))


= Eπ,Φ∗ [r(sk,π(s0)) + Vπ,Φ∗(x1, t1)]

= Eπ,Φ∗ [r(sk,π(s0)) + Vπ,Φ′(x̂1, t1)− Vπ,Φ′(x0, T )] +

+ Eπ,Φ∗ [Vπ,Φ(x0, T )− Vπ,Φ′(x̂1, t1) + Vπ,Φ∗(x1, t1)]

= Vπ,Φ′(x0, T ) + Eπ,Φ∗ [Vπ,Φ(x1, t1)− Vπ,Φ′(x̂1, t1)]
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+ Eπ,Φ∗ [Vπ,Φ∗(x1, t1)− Vπ,Φ′(x1, t1)]

Hence we have:

Vπ,Φ∗(x0, T )− Vπ,Φ′(x0, T ) =

= Eπ,Φ∗ [Vπ,Φ′(x1, t1)− Vπ,Φ′(x̂1, t1)] + Eπ,Φ∗ [Vπ,Φ∗(x1, t1)− Vπ,Φ′(x1, t1)]

By repeating the step inductively the result follows.

In the following, we leverage the result above to bound the regret of our optimistic planner w.r.t. the
difference in value functions.
Lemma 4 (Per episode regret bound). Let Assumption 4 hold, then we have with probability at least
1− δ for all n ≥ 0.

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T ) ≤ Eπn,Φ∗

∑
k≥0

Vπn,Φn
(x̂n,k+1, tn,k+1)− Vπn,Φn

(xn,k+1, tn,k+1)

 .

(11)

Proof. Since we choose the policy optimistically, we get

Vπ∗,Φ∗(x0, T )− Vπn,Φ∗(x0, T ) ≤ Vπn,Φn(x0, T )− Vπn,Φ∗(x0, T ).

Applying Lemma 3 the result follows.

Now we derive an upper and lower bound on our value function.
Lemma 5 (Objective upper bound). Let π be any policy from the class ΠTC and consider any T > 0,
then we have:

− C

tmin
T ≤ Vπ,Ψ∗(x0, T ) ≤ BT.

Proof. Since running reward is bounded 0 ≤ b∗(x,u) ≤ B, the number of steps K we can do in an
episode is bounded with 0 ≤ K ≤ T

tmin
, and switch cost is bounded 0 ≤ c(x,u) ≤ C we have:

− C

tmin
T ≤ Vπ,Ψ∗(x0, T ) ≤ BT.

A key lemma we use to bound the difference in value functions is the following from Kakade et al.
(2020).
Lemma 6 (Absolute expectation Difference Under Two Gaussians (Lemma C.2. Kakade et al.
(2020))). Let z1 ∼ N (µ1, σ

2I) and z2 ∼ N (µ2, σ
2I), and for any (appropriately measurable)

positive function g, it holds that:

E[g(z1)]− E[g(z2)] ≤ min

{∥µ1 − µ2∥
σ2

, 1

}√
E[g2(z1)]

Furthermore, due to Assumption 4 we can also bound the distance between the next state prediction
by the true system Φ∗ and the optimistic system Φn.
Lemma 7. Let Assumption 4 hold, then we have the following for all n ≥ 0.

∥xn,k+1 − x̂n,k+1∥ ≤ 2
√
dxβn−1 ∥σn−1(xn,k,πn(xn,k, tn,k))∥

Proof.

∥xn,k+1 − x̂n,k+1∥ = ∥Φ∗(xk,πn(xn,k, tn,k)) +wn,k − (Φn(xn,k,πn(xn,k, tn,k) +wn,k)∥
= ∥Φ∗(xk,πn(xn,k, tn,k))−Φn(xn,k,πn(xn,k, tn,k)∥
≤ 2
√

dxβn−1 ∥σn−1(xn,k,πn(xn,k, tn,k))∥ ,
where the last inequality follows from the fact that Φ∗,Φn ∈ Mn−1
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Next, we relate the regret at each episode to the model epistemic uncertainty using Lemma 3 and
Lemma 7.
Corollary 8. Let Assumption 1 – 2 and Assumption 4 hold, then we have for all n ≥ 0 with probability
at least 1− δ.

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T ) ≤
2
√
dxβn−1T

σ

(
B +

C

tmin

)
E

∑
k≥0

∥σn−1(xn,k,πn(xn,k, tn,k))∥


(12)

Proof. From Lemma 4 we have:

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T ) ≤ E

∑
k≥0

Vπn,Φn
(xn,k+1, tn,k+1)− Vπn,Φn

(x̂n,k+1, tn,k+1)

 .

Lemma 6 can be applied to positive function g. We hence make a transformation and apply it to
g(·) = Vπn,Φn

(·, tn,k+1) +
C

tmin
T , which is positive due to Lemma 5. Moreover, ∀x ∈ X ;

g(·) = Vπn,Φn
(·, tn,k+1) +

C

tmin
T ≤ Btn,k+1 +

C

tmin
T ≤ T (B +

C

tmin
).

Applying Lemma 6 we obtain:

Vπn,Φn
(xn,k+1, tn,k+1)− Vπn,Φn

(x̂n,k+1, tn,k+1) ≤
T

σ

(
B +

C

tmin

)
E [∥xn,k+1 − x̂n,k+1∥]

Finally, applying Lemma 7 we arrive at:

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T ) ≤
2
√
dxβn−1T

σ

(
B +

C

tmin

)
E

∑
k≥0

∥σn−1(xn,k,πn(xn,k, tn,k))∥



Now we can prove our regret bound for the transition cost case.
Theorem 9. Let Assumption 1 – 2 and Assumption 4 hold, then we have for all n ≥ 0 with probability
at least 1− δ.

RN =

N∑
n=1

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T )

≤ 2
√
dxβN−1T

3/2

σ2tmin

(
B +

C

tmin

)√
NIN

Proof. We compute:

RN =

N∑
n=1

Vπn,Φ∗(x0, T )− Vπ∗,Φ∗(x0, T )

≤ 2
√
dxT

σ

(
B +

C

tmin

) N∑
n=1

βn−1E

∑
k≥0

∥σn−1(xn,k,πn(xn,k, tn,k))∥


≤ 2

√
dxβN−1T

σ

(
B +

C

tmin

)
E

 N∑
n=1

∑
k≥0

∥σn−1(xn,k,πn(xn,k, tn,k))∥


≤ 2

√
dxβN−1T

σ

(
B +

C

tmin

)√
TN

tmin
E

√√√√ N∑
n=1

∑
k≥0

∥σn−1(xn,k,πn(xn,k, tn,k))∥2

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≤ 2
√
dxβN−1T

3/2

σ
√
tmin

(
B +

C

tmin

)√
NIN

Here the first inequality follows because of Corollary 8, the second inequality follows due to the
monotonicity of sequence (βn)n≥0, the third inequality follows by Cauchy–Schwarz and the last one
by maximizing the term in expectation.

Our regret RN is sublinear if βN−1

√
NIN is sublinear. For general well-calibrated models this is

tough to verify. However, for Gaussian process dynamics, IN is equal to (up to constant factors)
the maximum information gain γN (Srinivas et al., 2009) (c.f., Curi et al. (2020, Lemma 17)). The
maximum information gain is sublinear for a rich class of kernels (Vakili et al., 2021), i.e., yielding
sublinear regret for OTACOS (see Sukhija et al. (2024, Theorem 2) for more detail).

A.2 Bounded number of transition

We overload the notation in this section and add number of switches to the value function, such that
we have Vπn,Φ∗(x0, T, 0) = Vπn,Φ∗(x0, T )

Lemma 10 (Per episode regret bound). We have:

Vπn,Φ∗(x0, T, 0)− Vπ∗,Φ∗(x0, T, 0) ≤

≤ E

[
K−1∑
k=0

Vπn,Φn
(xn,k+1, tn,k+1, k + 1)− Vπn,Φn

(x̂n,k+1, tn,k+1, k + 1)

]
,

where x̂n,k+1 is the state of one step hallucinated component ŝn,k+1 = ΨΦn
(sn,k,πn(sn,k),wn,k)

and xn,k+1 is the state of sn,k+1 = ΨΦ∗(sn,k,πn(sn,k),wn,k).

Proof.

Vπn,Φ∗(x0, T, 0) = E

∑
k≥0

r(sn,k,πn(sn,k))

 = E

r(sn,0,πn(sn,0)) +
∑
k≥1

r(sn,k,πn(sn,k))


= E [r(sn,k,πn(sn,0)) + Vπn,Φ∗(xn,1, tn,1, 1)]

= E [r(sn,k,πn(sn,0)) + Vπn,Φn(xn,1, tn,1, 1)− Vπn,Φn(x0, T, 0)]+

+ E [Vπn,Φn(x0, T, 0)− Vπn,Φn(xn,1, tn,1, 1) + Vπn,Φ∗(xn,1, tn,1, 1)]

= Vπn,Φn
(x0, T, 0) + E [Vπn,Φn

(x̂n,1, tn,1, 1)− Vπn,Φn
(xn,1, tn,1, 1)]

+ E [Vπn,Φ∗(xn,1, tn,1, 1)− Vπn,Φn
(xn,1, tn,1, 1)]

Hence we have:

Vπn,Φ∗(x0, T, 0)− Vπn,Φn
(x0, T, 0) =

= E [Vπn,Φn
(x̂n,1, tn,1, 1)− Vπn,Φn

(xn,1, tn,1, 1)] + E [Vπn,Φ∗(xn,1, tn,1, 1)− Vπn,Φn
(xn,1, tn,1, 1)]

Repeating the step inductively the result follows and using Vπn,Φ∗(xn,K , tn,K ,K) = 0 we prove
the lemma.

A.2.1 Subgaussianity of the noise

In principle, we could assume that the noise wk is Gaussian and then with the same analysis obtain
the regret bound. However, stochastic flows are in many cases not exactly Gaussian but only sub-
Gaussian. For such noise we need can not apply Lemma 6 and need to escort to different analysis.
First we show that under mild assumptions on the SDE dynamics functions f∗ and g∗ the resulting
noise wk is sub-Gaussian.

To derive this result we will follow the work of Djellout et al. (2004). We present the results in quite
informal way, for more rigorous statements we refer the reader to Djellout et al. (2004).
Definition 4 (Wasserstein distance). Let (E , dE) be a metric space and let µ, ν be two probability
measures on E . We define:

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ [d(x, y)
p]

1
p
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Definition 5 (Kullback–Leibler divergence). Let (E , dE) be a metric space and let µ, ν be two
probability measures on E . We define:

H(ν||µ) =
{
Ex∼ν

[
log
(

dν(x)
dµ(x)

)]
, if ν ≪ µ

+∞, else

Definition 6 (Lp-transportation cost information inequality). Let (E , dE) be a metric space and
let µ be a probability measure on E . We say that µ satisfy the Lp-transportation cost information
inequality, and for short write µ ∈ Tp(C), if there exists a constant C such that for any measure ν on
E we have:

Wp(µ, ν) ≤
√
2CH(ν||µ).

We now state an important theroem of Bobkov and Götze (1999) that we will use later.

Theorem 11 (From Bobkov and Götze (1999)). Let (E , dE) be a metric space and let µ be a
probability measure on E . We have that µ ∈ T1(C) if and only if for any µ-integrable and LF -
Lipschitz function F : (E , dE) → R and for any λ ∈ R we have:

Ex∼µ

[
eλ(F (x)−Ex∼µ[F (x)])

]
≤ e

λ2

2 CL2
F

Next, we provide a condition under which Ξ(x,u, t) is sub-Gaussian random variable for any t ∈ T .

Corollary 12 (Adjusted Corollary 4.1 of Djellout et al. (2004)). Assume

sup
x∈Rdx

u∈Rdu

∥g∗(x,u)∥F ≤ A, ∥f∗(x,u)− f∗(x̂, û)∥ ≤ Lf∗ ∥(x,u)− (x̂, û)∥ ,

and denote the law of (Ξ(x,u, t))t∈T on the space C(T ,Rdx) (space of continuous functions from
T to Rdx) by Px. Then, there exist a constant C = C(A,Lf∗ , T ) such that Px ∈ T1(C) on the
space C(T ,Rdx) equipped with the metric:

d(γ1, γ2) = sup
t∈[0,T ]

∥γ1(t)− γ2(t)∥

Lets e be a(ny) unit vector in Rdx and define:

Fe,t : C(T ,Rdx) → R
Fe,t : γ 7→ γ(t)⊤e

We have:

|Fe,t(γ1)− Fe,t(γ2)| =
∣∣(γ1(t)− γ2(t))

⊤e
∣∣

≤ ∥γ1(t)− γ2(t)∥ ∥e∥ = ∥γ1(t)− γ2(t)∥
≤ sup

t∈T
∥γ1(t)− γ2(t)∥ = d(γ1, γ2)

Therefore for any e, t the function Fe,t is 1–Lipschitz. Since we have

E[|Fe,t(γ)|] =
∫
C(T ,Rdx )

|γ(t)| dPx(γ) = E[
∣∣Ξ(x,u, t)⊤e

∣∣] < ∞

the function Fe,t is also Px-integrable. Combining the latter observation with the Theorem 11 we
obtain that for any e ∈ Rdx and any t ∈ T we have:

EΞ(x,u,t)

[
eλ(Ξ(x,u,t)⊤e−E[Ξ(x,u,t)⊤e])

]
= Eγ∼Px

[
eλ(Fe,t(γ)−Eγ∼Px [Fe,t(γ)])

]
≤ e

λ2

2 C

Hence under the assumption of Theorem 2 for Bounded number of switches setting we have that
for any t ∈ T the random variable Ξ(x,u, t)− E [Ξ(x,u, t)] ∼ subG (C). The variance proxy C
depends on A,Lf∗ , T .
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A.2.2 Lipschitness of the expected flow Φ∗

To apply analysis for the case when noise wk is any sub-Gaussian we also need to show that the
dynamics function Φ∗ is Lipschitz. We first start with some general results.
Lemma 13. Let f : Rn → Rm, A ⊂ [n] and denote B = AC . If we have:

• ∥f(xA,xB)− f(x̂A,xB)∥2 ≤ LA ∥xA − x̂A∥2,

• ∥f(xA,xB)− f(xA, x̂B)∥2 ≤ LB ∥xB − x̂B∥2,

then f is 2(LA + LB) Lipschitz.

Proof. We have:

∥f(x)− f(x̂)∥2 = ∥f(xA,xB)− f(x̂A, x̂B)∥2
= ∥f(xA,xB)− f(x̂A,xB) + f(x̂A,xB)− f(x̂A, x̂B)∥2
≤ LA ∥xA − x̂A∥2 + LB ∥xB − x̂B∥2
≤ (LA + LB) (∥xA − x̂A∥2 + ∥xB − x̂B∥2)

≤ 2(LA + LB)

∥∥∥∥(xA − x̂A

xB − x̂B

)∥∥∥∥
2

= 2(LA + LB) ∥x− x̂∥2

Lemma 14 (Lipschitzness of Φf∗). There exists a positive constant LΦf
such that the flow Φf∗ is

LΦf
–Lipschitz.

Proof. We will first prove coordinate-wise Lipschitzness. We observe:

1. Lipschitness in time:

∥∥Φf∗(x,u, t)−Φf∗(x,u, t̂)
∥∥ =

∥∥∥∥∥
∫ t

0

E[f∗(xs,u)]ds−
∫ t̂

0

E[f∗(xs,u)]ds

∥∥∥∥∥
≤
∫ t

t̂

E [∥f∗(xs,u)∥] ds ≤ F
∣∣t− t̂

∣∣
2. Lipschitness in state x: To prove this, consider the δxt = Ξ(x,u, t)−Ξ(x̂,u, t), then we

have

dδxt = (f∗(xt,u)− f∗(x̂t,u))dt+ (g∗(xt,u)− f∗(x̂t,u))dBt

= δf∗
t dt+ δg∗

t dBt.

Note that ∥δf∗
t ∥ ≤ Lf∗ ∥δxt∥ and ∥δg∗

t ∥ ≤ Lg∗ ∥δxt∥ since both functions are Lipschitz.
Define yt = δx⊤

t δxt and use Ito’s Lemma to get

dyt = 2δx⊤
t (δf

∗
t dt+ δg∗

t dBt) + tr(δg∗
t (δg

∗
t )

⊤)dt

Moreover,

E[yt] =

∫ t

0

2E[δx⊤
s δf

∗
s ] + E[tr(δg∗

s (δg
∗
s )

⊤)]ds

≤
∫ t

0

2E [∥δxs∥ ∥δf∗
s ∥] + E[∥δg∗

s∥2]ds

≤
∫ t

0

(2Lf∗ + L2
g∗)E[∥δxs∥2]ds

Note that yt = ∥δxt∥2, so we can apply Grönwall’s inequality to get

E
[
∥δxt∥2

]
≤ ∥δx0∥2 e(2Lf∗+L2

g∗ )t.
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Moreover,

∥E[δxt]∥ ≤
√

E
[
∥δxt∥2

]
≤ ∥δx0∥ e

2Lf∗+L2
g∗

2 t ≤ ∥δx0∥ e
2Lf∗+L2

g∗
2 T .

Hence we have:

∥Φf∗(x,u, t)−Φf∗(x̂,u, t)∥ ≤ ∥x− x̂∥ e
2Lf∗+L2

g∗
2 T .

3. Lipschitness in action u: We denote δxt = Ξ(x,u, t) − Ξ(x, û, t) and δu = u − û
Following the same steps as in the proof of Lipschitzness in state we arrive at:

dyt = 2δx⊤
t (δf

∗
t dt+ δg∗

t dBt) + tr(δg∗
t (δg

∗
t )

⊤)dt

Integration yields:

E[yt] =

∫ t

0

2E[δx⊤
s δf

∗
s ] + E[tr(δg∗

s (δg
∗
s )

⊤)]ds

≤
∫ t

0

2E [∥δxs∥ ∥δf∗
s ∥] + E[∥δg∗

s∥2]ds

≤
∫ t

0

2E [Lf∗ ∥δxs∥ (∥δxs∥+ ∥δu∥)] + E
[
2L2

g∗

(
∥δxs∥2 + ∥δu∥2

)]
ds

≤
∫ t

0

(3Lf∗ + 2L2
g∗)E [ys] + (Lf∗ + 2L2

g∗) ∥δu∥ ds,

where we used (a+ b)2 ≤ 2a2 +2b2 and ab ≤ 1
2 (a

2 + b2). Applying Grönwall’s inequality
results in:

E
[
∥δxt∥2

]
≤ ∥δu∥2 (Lf∗ + 2L2

g∗)e(3Lf∗+2L2
g∗ )t

≤ ∥δu∥2 (Lf∗ + 2L2
g∗)e(3Lf∗+2L2

g∗ )T

Applying Lemma 13 on 2. and 3. we have that Φf∗(·, ·, t) is

2

(
e

2Lf∗+L2
g∗

2 T +
√
Lf∗ + 2L2

g∗e
3Lf∗+2L2

g∗
2 T

)
–Lipschitz. Applying Lemma 13

on 1. and Φf∗(·, ·, t) and bounding 2 ≤ 4 we finally obtain that Φf∗ is

4

(
e

2Lf∗+L2
g∗

2 T +
√
Lf∗ + 2L2

g∗e
3Lf∗+2L2

g∗
2 T + F

)
–Lipschitz.

Corollary 15 (Lipschitzness of the Φb∗ ). The cost flow Φb∗ is O
(
eC1(Lf∗+L2

g∗ )T
)

–Lipschitz, where
C1 is a constant.

Proof. Same as in the proof of Lemma 14 we first show coordinate-wise Lipschitzness.

1. We first show Lipschitness in time:∣∣Φb∗(x,u, t)− Φb∗(x,u, t̂)
∣∣ = ∣∣∣∣E [∫ t

t̂

b∗(xs,u)ds

]∣∣∣∣
≤ E

[∫ t

t̂

|b∗(xs,u)| ds
]

≤ E
[
B(t− t̂)

]
= B(t− t̂).

2. To obtain Lipschitzness in state observe:

|Φb∗(x,u, t)− Φb∗(x̂,u, t)| =
∣∣∣∣E [∫ t

0

b∗(Ξ(x,u, s),u)− b∗(Ξ(x̂,u, s),u)ds

]∣∣∣∣
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≤ E
[∫ t

0

|b∗(Ξ(x,u, s),u)− b∗(Ξ(x̂,u, s),u)| ds
]

≤ Lb∗E
[∫ t

0

∥Ξ(x,u, s)−Ξ(x̂,u, s)∥ ds
]

≤ Lb∗

∫ t

0

√
E
[
∥Ξ(x,u, s)−Ξ(x̂,u, s)∥2

]
ds

≤ Lb∗ ∥x− x̂∥
∫ t

0

e
2Lf∗+L2

g∗
2 sds

=
2Lb∗

2Lf∗ + L2
g∗

(
e

2Lf∗+L2
g∗

2 t − 1

)
∥x− x̂∥

3. Finally, for Lipschitzness in action observe:

|Φb∗(x,u, t)− Φb∗(x, û, t)| =
∣∣∣∣E [∫ t

0

b∗(Ξ(x,u, s),u)− b∗(Ξ(x, û, s),u)ds

]∣∣∣∣
≤ E

[∫ t

0

|b∗(Ξ(x,u, s),u)− b∗(Ξ(x, û, s),u)| ds
]

≤ Lb∗E
[∫ t

0

∥Ξ(x,u, s)−Ξ(x, û, s)∥+ ∥u− û∥ ds
]

≤ Lb∗t ∥u− û∥+ Lb∗

∫ t

0

√
E
[
∥Ξ(x,u, s)−Ξ(x, û, s)∥2

]
ds

≤ Lb∗t ∥u− û∥+ Lb∗ ∥u− û∥
√

Lf∗ + 2L2
g∗

∫ t

0

e
3Lf∗+2L2

g∗
2 sds

= Lb∗

t+
2
√
Lf∗ + 2L2

g∗

3Lf∗ + 2L2
g∗

(
e

3Lf∗+2L2
g∗

2 t − 1

) ∥u− û∥

≤ Lb∗

T +
2
√
Lf∗ + 2L2

g∗

3Lf∗ + 2L2
g∗

(
e

3Lf∗+2L2
g∗

2 T − 1

) ∥u− û∥

Applying Lemma 13 result follows.

Corollary 16 (Lipschitzness of Φ∗). The unknown function Φ∗ is LΦ = LΦf
+ LΦb

=

O
(
eD(Lf∗+L2

g∗ )T
)

–Lipschitz, where D is constant.

A.2.3 Regret bound

Lemma 17 (Per episode regret bound (general sub-Gaussian noise)). Consider the setting with a
bounded number of switches K, and let Assumption 1, 3, and Assumption 4 hold. Then, we get with
probability at least 1− δ:

Vπn,Φ∗(x0, T,K)− Vπ∗,Φ∗(x0, T,K) ≤

≤ O
(
LK−1
σ βK

n−1e
C(Lf∗+L2

g∗ )(1+Lπ)TKE

[
K∑

k=0

∥σn−1(xn,k,πn(xn,k, tn,k, k))∥2

])

Proof. Applying Lemma 5 of Curi et al. (2020) the result follows.

Theorem 18. Consider the setting with a bounded number of switches K, and let Assumption 1, 3,
and Assumption 4 hold. Then, we get with probability at least 1− δ:

RN =

N∑
n=1

Vπn,Φ∗(x0, T,K)− Vπ∗,Φ∗(x0, T,K)
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≤ O
(
LK−1
σ βK

N−1

√
KeC(Lf∗+L2

g∗ )(1+Lπ)TK
√
NIN

)

Proof. We apply Lemma 17 and Cauchy-Schwarz:

RN =

N∑
n=1

Vπn,Φ∗(x0, T,K)− Vπ∗,Φ∗(x0, T,K)

≤
N∑

n=1

O
(
LK−1
σ βK

n−1e
C(Lf∗+L2

g∗ )(1+Lπ)TKE

[
K∑

k=0

∥σn−1(xn,k,πn(xn,k, tn,k, k))∥2

])

≤ O
(
LK−1
σ βK

N−1e
C(Lf∗+L2

g∗ )(1+Lπ)TK
)
E

[
N∑

n=1

K∑
k=0

∥σn−1(xn,k,πn(xn,k, tn,k, k))∥2

]
≤ O

(
LK−1
σ βK

N−1e
C(Lf∗+L2

g∗ )(1+Lπ)TK
)√

K
√
NIN

Here we first applied Lemma 17. Then we used the monotonicity of (βn)n≥0 sequence. In the last
step we first applied maximum over the collected data, then Cauchy-Schwarz inequality and finally
the definition of model complexity.
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B Additional Experiments

Figure 6: Pendulum swing-down task. Row 1: 4 interactions, optimized interaction times, Row 2: 5
interactions, optimized interaction times, Row 3: 4 equidistant interactions, Row 4: 4 equidistant
interactions.
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Figure 7: When stochasticity of the environments increases, we need more interactions at the unstable
equilibrium (Pendulum on top). The stochasticity scale goes from 0.1 to 0.5 to 1.0 from top to bottom
row respectively.
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code with all the hyperparameters to run the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the experimental details either, minor part in the main paper,
and the major part in the accompanying code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are run with 5 seeds and mean performance with standard
error is reported in all our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of compute in the readme.txt file as part of the enclosed
code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms, in every respect, to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper proposes a method to improve exploration in reinforcement learning
in the nonepisodic setting, and is not tied to specific applications. As such, it shares the
many potential societal consequences that are associated with reinforcement learning and
automation as a whole, spanning from environmental impact to concerns on ethics and
alignment.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release high-risk data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all creators whose code we used in our experiments in Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is documented where applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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