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Abstract

Correlation Clustering (CC) is a foundational problem in unsupervised learning
that models binary similarity relations using labeled graphs. While classical CC
has been widely studied, many real-world applications involve more nuanced
relationships, either multi-class categorical interactions or varying confidence
levels in edge labels. To address these, two natural generalizations have been
proposed: Chromatic Correlation Clustering, which assigns semantic colors to
edge labels, and pseudometric-weighted Correlation Clustering, which allows edge
weights satisfying the triangle inequality. In this paper, we develop improved
approximation algorithms for both settings. Our approach leverages LP-based
pivoting techniques combined with problem-specific rounding functions. For
the pseudometric-weighted correlation clustering problem, we present a tight 10

3 -
approximation algorithm, matching the best possible bound achievable within the
framework of standard LP relaxation combined with specialized rounding. For the
Chromatic Correlation Clustering (CCC) problem, we improve the approximation
ratio from the previous best of 2.5 to 2.15, and we establish a lower bound of
2.11 within the same analytical framework, highlighting the near-optimality of our
result.

1 Introduction

Clustering is a fundamental task in unsupervised learning, where the goal is to partition a set of
objects into groups based on their pairwise relationships. One prominent problem in this domain is
Correlation Clustering (CC) [5], which models binary similarity/dissimilarity between items using
an edge-labeled graph: similar pairs are marked with a ‘+’ label and dissimilar pairs with a ‘−’.
The objective is to partition the nodes to minimize disagreements—i.e., cases where the partitioning
contradicts the edge labels. Due to its flexibility in not requiring a predefined number of clusters, CC
has been widely utilized in various areas such as detecting communities in networks [17], inferring
labels from user interactions [1, 13] and resolving ambiguous entities [28].
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However, classic CC models only binary relationships, which is insufficient for many practical
applications. For example, in a social network, edges may represent diverse relationship types such
as “colleague,” “classmate,” or “family.” To address this limitation, Bonchi et al. [10] introduced the
Chromatic Correlation Clustering (CCC) problem, which generalizes CC to multi-class categorical
settings. In CCC, the input is an edge-colored graph where each color represents a different rela-
tionship type. The goal is to cluster the nodes and assign a single color to each cluster such that the
number of disagreements—edges whose color does not match the cluster’s assigned color, or edges
that should be separated—is minimized. CCC has wide applications in link classification, entity
resolution, and clustering in bioinformatics [10, 3, 30].

In parallel, another important generalization of CC is the weighted correlation clustering problem,
where edges are associated with weights reflecting the reliability or cost of violating a given label.
When weights are unrestricted, obtaining a constant-factor approximation is known to be hard (under
the Unique Games Conjecture) [29]. However, when edge weights form a pseudometric—i.e., they
satisfy the triangle inequality—constant-factor approximations become feasible. This weighted
setting more faithfully models scenarios where not all edges are equally trustworthy.

1.1 Related Works

The Correlation Clustering problem has been widely studied since its introduction [9], and it is known
to be APX-hard, leading to efforts to develop approximation algorithms. Early work by Bansal, Blum,
and Chawla introduced a constant-factor approximation algorithm [5]. Charikar et al. [15] improved
this to a 4-approximation using linear programming. Ailon, Charikar, and Newman then introduced
the Pivot algorithm [2], which achieved a 3-approximation in linear time. Chawla et al. [16] further
improved this to 2.06 using more refined LP-rounding techniques. More recently, researchers have
surpassed the 2-approximation barrier. Cohen-Addad, Lee, and Newman [23] used the Sherali-
Adams hierarchy to develop a (1.994 + ε)-approximation, while Cohen-Addad et al. [22] proposed
preclustering, which improved the approximation to (1.73 + ε). The most recent breakthrough by
Cao et al. [12] introduced the cluster LP, which unifies all known LP relaxations for CC. They show
that this can be approximated efficiently using preclustering, achieving a (1.437 + ε)-approximation,
the best known guarantee for CC so far. In a more recent work [12], they introduced a new approach
to find a feasible solution for the cluster LP in sublinear time.

Chromatic Correlation Clustering is an extension of the classical Correlation Clustering problem,
where edge colors represent different types of relationships. Bonchi et al. [10] introduced CCC with
a heuristic lacking guarantees. Anava et al. [3] gave a 4-approximation via LP rounding, plus two
practical methods: Reduce and Cluster (RC, ratio 11) and Deep Cluster (DC). Klodt et al. [30] showed
that Pivot [2] yields a 3-approximation and that RC achieves a 5-approximation. More recently, Xiu et
al. [32] developed a 2.5-approximation algorithm for CCC based on a linear programming approach,
improving upon the previous best-known ratio. They also introduced a greedy heuristic that achieves
strong empirical results.

In modern data analysis, correlation clustering must often be performed under computational con-
straints such as limited memory or streaming access to data. Consequently, substantial research has
focused on crafting clustering algorithms specifically tailored for dynamic, streaming, online, and
distributed settings [31, 25, 27, 18, 26, 19, 4, 21, 7, 8, 6, 20, 11].

1.2 Our Results

Our Contributions. In this work, we present improved approximation algorithms for both the CCC
and pseudometric-weighted CC problems.

• For the pseudometric-weighted correlation clustering problem, we develop a refined LP-
based pivoting algorithm that achieves a tight 10

3 -approximation. We further prove that
this approximation factor is optimal within the standard LP relaxation framework combined
advanced rounding functions.

• For the Chromatic Correlation Clustering problem, we enhance the LP-based method
through a new analysis that yields a 2.15-approximation, improving upon the previous best
bound of 2.5 by Xiu et al. [32]. We also establish a lower bound of 2.11 within the same
analytical framework, underscoring the near-optimality of our approach.
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Both results are obtained by extending and unifying the triple-based analysis of LP-rounding schemes.
Our work improves the theoretical guarantees for two natural and practically motivated generalizations
of correlation clustering and contributes new insights into their structural and algorithmic properties.

Technical Overview. Our algorithms for both Chromatic Correlation Clustering (CCC) and
pseudometric-weighted Correlation Clustering (CC) build on linear programming (LP) relaxations
and a unified triple-based rounding framework [16] . Below, we outline the key technical insights:

Pseudometric-Weighted CC: The upper bound for the approximation factor 10/3 is derived using
the LP-based Pivot algorithm and a more careful rounding function. For the lower bound, By
assuming the existence of an α-approximation and analyzing carefully constructed hard instances,
the technique derives necessary conditions that any rounding function must satisfy. These conditions
expose inherent conflicts, demonstrating that α cannot be arbitrarily small. In particular, the analysis
establishes that α must be at least 10

3 . The core idea is to identify instance configurations that induce
contradiction between the properties required of the rounding functions, ultimately leading to this
lower bound on α.

Chromatic Correlation Clustering (CCC): Building on the LP formulation introduced by Xiu et
al. [32], which jointly encodes fractional cluster membership and color assignments. The decoupling
of color assignment from cluster formation, allowing us to preserve color structure without entangling
it with clustering decisions. Using a triple-based analysis, we introduce tailored rounding func-
tions—particularly for neutral edges—to better align the rounding behavior with the LP’s structure
and avoid overcounting. This careful handling of intra-color, conflicting, and neutral edges reduces
the approximation factor from 2.5 to 2.15. Our lower bound analysis builds on the general triple-based
framework, augmented with structural insights specific to the LP-CCC algorithm and its associated
LP solution. We carefully define the cost and LP contribution of each edge type—particularly neutral
edges—and construct adversarial instances that expose limitations of any rounding strategy.

Paper Organization. The remainder of the paper is structured as follows: Section 2 introduces the
problem formulations and LP relaxations for both pseudometric-weighted and chromatic correlation
clustering. Section 3 presents our approximation algorithms and outlines their design. Section 4
defines the rounding functions used in the LP-based algorithms. Section 5 provides a detailed
triple-based analysis of the approximation guarantees. We conclude with a summary and discussion
in Section 6.

2 Preliminaries

The correlation clustering (CC) problem takes as input a signed undirected graph G = (V,E =
E+ ⊎ E−), where each edge e = uv ∈ E is assigned a sign ‘+’ or ‘−’, described by e ∈ E+ or
e ∈ E−. The objective is to find a partition of the nodes such that the number of disagreements—i.e.,
negative edges within the same cluster and positive edges between different clusters—is minimized.
In other words, the cost of the clustering C is as follows:

obj(C) :=
∑

uv∈E+

xuv +
∑

uv∈E−

(1− xuv),

where xuv = 0 indicates that there exists C ∈ C such that u, v ∈ C, and xuv = 1 otherwise.

CC has a standard LP relaxation leveraging the viewpoint on x as a discrete metric between partitions.
Since the x above satisfies the triangle inequality, we can relax the range of x from {0, 1} to [0, 1],
resulting in the following LP:

minimize
∑

uv∈E+

xuv +
∑

uv∈E−

(1− xuv) (CC-LP)

subject to xuv + xvw ≥ xwu, (1)
xuv ∈ [0, 1]. (2)

The integrality gap of CC-LP on a complete graph is known to be 2 [15], which indicates that the
standard LP-based algorithm cannot obtain a better approximation factor below 2.

3



2.1 Pseudometric-weighted Correlation Clustering

The weighted Correlation Clustering problem is a generalization of the classical CC problem in
which each edge is associated with a nonnegative violation cost. Specifically, for each edge uv in
a complete graph, a weight wuv ≥ 0 is provided, and violating the edge’s label (either ‘+’ or ‘−’)
incurs a penalty of wuv. This differs from the standard setting, where all violations incur a uniform
cost of 1. The weighted variant allows us to encode edge-wise reliability: when wuv is large, it is
more reasonable to follow the given label between u and v.

However, assuming the Unique Games Conjecture, no O(1)-approximation algorithm exists for the
general weighted case [24]. An exception occurs when the weight function satisfies the triangle
inequality, i.e., the weights form a pseudometric. In this pseudometric-weighted setting, a constant-
factor approximation is known [14]. Following the analysis of Charikar and Gao with L = 2 yields
an approximation factor of BHR + 1

1
3

≤ 4
1
3

+ 2(L− 1) + 1
1
3

= 17, since the second type of charge
occurs at most L− 1 = 1 time in the charging scheme. The following is a natural LP relaxation of
the weighted CC problem, extending (CC-LP):

minimize
∑

uv∈E+

wuv · xuv +
∑

uv∈E−

wuv · (1− xuv) (wCC-LP)

subject to xuv + xvw ≥ xwu, (3)
xuv ∈ [0, 1]. (4)

Here, the variable x can be viewed as defining a pseudometric over the vertex set, representing the
distance between clusters. Since CC on bipartite graphs has an integrality gap of 3 [16], and is a
special case of pseudometric-weighted CC, the LP relaxation (wCC-LP) for pseudometric-weighted
CC also has an integrality gap of at least 3.

2.2 Chromatic Correlation Clustering Problem

The Chromatic Correlation Clustering problem is a variant of the classical CC problem in which each
cluster is additionally assigned a color [10]. The input includes a complete graph

(
V,

(
V
2

))
and a set

of L possible colors, as well as a special color γ that denotes that two vertices should not be placed in
the same cluster—analogous to a negative (‘−’) edge in the classical CC setting. When L = 1 (i.e., a
single cluster color), CCC reduces to the standard CC problem with a complete instance.

The following is a linear programming (LP) relaxation of the CCC problem [10]:

minimize
∑

ϕ(uv) ̸=γ

xϕ(uv)
uv +

∑
ϕ(uv)=γ

∑
c∈L

(1− xc
uv) (CCC-LP)

subject to xc
uv ≥ xc

u, x
c
v, (5)

xc
uv + xc

vw ≥ xc
wu, (6)∑

c∈L

xc
u = |L| − 1, (7)

xc
u, x

c
uv ∈ [0, 1]. (8)

Here, the variables xc
u and xc

uv are soft assignments:

• 1− xc
u ∈ [0, 1] represents the fractional assignment of vertex u to a cluster of color c.

• 1− xc
uv ∈ [0, 1] indicates the fractional agreement between vertices u and v under color c.

These variables measure the likelihood of vertices or edges being assigned to a color, with {1−xc
u}c∈L

forming a probability distribution over the colors assigned to vertex u, subject to constraints (7)
and (8).

There is also a geometric interpretation of these variables. Consider L discrete pseudometric spaces
(Vc, dc) where Vc = {uc : u ∈ V }, and vertex u is connected to uc with a link of length xc

u. Then,
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xc
uv represents the bottleneck distance between u and v, conditioned on traversing the auxiliary

connections u → uc and v → vc. This view generalizes the classical CC setting, where the
cluster-wise discrete metric can be regarded as a special case of bottleneck distances.

Since CCC generalizes the standard CC problem, the integrality gap of (CCC-LP) is at least as large
as that of (CC-LP), which is 2.

3 Approximation Algorithm

Building on the LP formulations introduced in the previous sections, we now present approximation
algorithms for both pseudometric-weighted CC and CCC settings. LP-PIVOT (Algorithm 1) extends
the classical LP-based pivoting method. The set of edges is divided into 3 subsets: E+ and E−

indicate a set of ‘+′ and ‘−′ edges, respectively, while E◦ indicates a set of edges that always incur
a cost regardless of the output. The last subset is involved in the CCC case, as some of the edges
might already be misclassified before the execution. f+, f−, and f◦ are rounding functions, which
are explained in Section 4. The time complexity of the algorithm is O(|V |2).

Algorithm 1 LP-PIVOT

Input: Complete graph G =
(
V,

(
V
2

)
= E+ ⊎ E− ⊎ E◦

)
, LP solution {xuv}uv∈(V2).

Output: Clustering C of V .

Pick a pivot v ∈ V uniformly at random.
Set C = {v}.
for u ∈ V \{v}, do

Set puv as following:

puv =


f+(xuv), uv ∈ E+;

f−(xuv), uv ∈ E−;

f◦(xuv), uv ∈ E◦.

Update C ← C ∪ {u} with probability 1− puv .
end for
return C = {C} ∪ LP-PIVOT(G|V \C , x|V \C).

The algorithm for the pseudometric-weighted CC problem is LP-PIVOT((V,E+ ⊎ E− ⊎
∅), {x∗

uv}uv∈(V2)) along with selected rounding functions given by equation (11). The time complex-
ity of the algorithm is dominated by solving the LP, which is polynomial in |V |.
The algorithm for the CCC problem is LP-CCC(G,ϕ, x) (Algorithm 2) along with the differently
selected rounding functions given by equations (12) and (13), which first partitions the vertices
according to their LP-derived color distributions, followed by applying the LP-PIVOT algorithm,
with edge types partitioned by color. The final clustering is obtained by combining the |L| number of
outputs from the LP-PIVOT algorithm. The color pre-classification step requires O(|V ||L|) time and
the following LP-PIVOT step requires at most O(|V |2) time in total, which are both dominated by
the time complexity of solving (CCC-LP), which is polynomial in |V | and |L|.

4 Rounding Functions

The effectiveness of the LP-PIVOT and LP-CCC algorithms critically depends on the choice of
rounding functions used in the clustering process. Rounding functions f+, f−, f◦ : [0, 1]→ [0, 1]
convert the LP value xuv to the non-selection probability puv [16]. The sign of the edge uv—either
‘+’, ‘−’, or ‘◦’—determines which rounding function is applied. The sign ‘◦’ indicates that the edge
does not belong to E. The following natural conditions are imposed on any rounding function f :

f(0) = 0, f(1) = 1; (9)
x < y ⇒ f(x) ≤ f(y). (10)
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Algorithm 2 LP-CCC

Input: Complete graph G =
(
V, E =

(
V
2

))
, color function ϕ : E → L ∪ {γ}, LP solution

{xc
u}u∈V, c∈L and {xc

uv}uv∈E, c∈L.
Output: Clustering C of V , Coloring function Φ : C → L.

Initialize C = ∅, Sc = ∅ for all c ∈ L.
for u ∈ V do

if ∃c ∈ L s.t. xc
u < 1

2 , then
Update Sc ← Sc ∪ {u}.

else
Update C ← C ∪ {{u}}.
Assign Φ({u}) as an arbitrary color.

end if
end for
for c ∈ L do

Gc = (Sc, Ec = E+
c ⊎ E−

c ⊎ E◦
c ), where Ec =

(
Sc

2

)
,

and E+ ⊎ E− ⊎ E◦ is defined as a partition by color c, γ, L\{c} respectively.
Set Cc = LP-PIVOT(Gc, x

c|Ec
).

Update C ← C ∪ Cc.
Assign Φ(C) = c for all C ∈ Cc.

end for
return C, Φ.

Condition 9 is not only intuitive but also necessary in certain cases, such as ensuring f+(0) = 0 and
f−(1) = 1. Other constraints are not required in the proofs of Theorems 1 and 3, which thus provide
lower bounds on the approximation factors for ‘general’ rounding functions.

Lemma 1. The LP-PIVOT algorithm achieves a constant-factor approximation in expectation only if
f+(0) = 0 and f−(1) = 1.

Proof. We prove it by contradiction on some graph instances.

Case 1 f+(0) = 0. Consider G = (V,E =
(
V
2

)
= E ⊎ ∅ ⊎ ∅). The optimal clustering is

C∗ = {V }, satisfying obj(C∗) = 0, and the optimal LP solution is x∗ ≡ 0.

Suppose f+(0) > 0. Then Pr[LP-PIVOT(G, 0) ̸= C∗] > 0. Since obj(C) > 0 if and only if C ̸= C∗,
this leads to a contradiction with the assumption of the expected constant factor approximation.

Case 2 f−(1) = 1. Consider G = (V,E =
(
V
2

)
= ∅ ⊎ E ⊎ ∅). The optimal clustering is

C∗ = {{v} : v ∈ V }. The following arguments are similar to Case 1.

Different variants of the CC problem may use different rounding functions. In this paper, we provide
rounding functions for both the pseudometric-weighted CC and CCC problems.

4.1 Pseudometric-weighted Correlation Clustering

We propose the following rounding functions that yield a tight approximation factor:

f+(x) = f−(x) =


0, x < 0.4;
5
3x, 0.4 ≤ x < 0.6;

1, x ≥ 0.6.

(11)

With these functions, the algorithm achieves an expected approximation factor of 10/3. Moreover,
no other rounding function can improve this factor, as shown in Section 5.1.
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Figure 1: The region where f◦ violates the α = 2.15-approximation for CCC using the proposed f◦

defined in (13).

4.2 Chromatic Correlation Clustering

We further consider the rounding functions f+, f− from Chawla et al. [16], which yield a 2.06-
approximation for classical CC, and introduce a new function f◦ to handle ◦-edges for CCC:

f+(x) =


0, x < 0.19;(

x−0.19
0.5095−0.19

)2

, 0.19 ≤ x < 0.5095;

1, x ≥ 0.5095,

f−(x) = x, (12)

f◦(x) =

{
1.7x, x < 0.5;

0.3x+ 0.7, x ≥ 0.5.
(13)

This function was designed not to intersect with analytic bounds that violate an approximation factor
of α = 2.15, as illustrated in Figure 1. From Figure 1, x refers to the LP value corresponding
to the pivot edge (i.e., one of the endpoints is a pivot vertex) whose color differs from the color
under execution of the pivot-based algorithm, while y refers to the corresponding probability of not
containing the edge in a single cluster. The plot shows the choice of our f◦ and the region of (x, y)
such that: The triple-based analysis in Section 5 cannot guarantee an α = 2.15-approximation if the
value x is assigned to the probability of y by the rounding function f◦.

4.3 Comparison with Prior Work

Pseudometric-weighted CC: The LP-UMVD-PIVOT algorithm, recently proposed by Charikar
and Gao [14] for the Ultrametric Violation Distance (UMVD) problem, follows a pivoting-based
rounding strategy applied to an LP relaxation. When the number of distinct pairwise distances
between elements, denoted by L, is equal to 2, their algorithm can be viewed as a special case of
our LP-PIVOT framework. In this setting, the two distances d1 and d2 correspond to the ‘−’ and ‘+’
labels, respectively, used in our rounding procedure. The rounding functions used are:

f+(x) = f−(x) =


0, x < α;
max{x−αβ, 0}

1−αβ , α ≤ x ≤ 1− α;

1, x > 1− α,

f◦(x) =


0, x < αβ;

x, αβ ≤ x ≤ 1− αβ;

1, x > 1− αβ.
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Here, α and β are fixed algorithmic parameters. For the pseudometric-weighted CC problem, they
are set to α = 1

3 and β = 0, and f◦ is unused.

With triple-based analysis, this choice yields an approximation factor of 6, as shown in the subsec-
tion ??.

Chromatic CC: The LP-based pivoting algorithm by Xiu et al. [32] uses LP values directly as
probabilities, corresponding to the following rounding functions:

f+(x) = f−(x) = f◦(x) = x.

This setting is known to achieve an approximation factor of 2.5.

5 Triple-based Analysis

To complete the analysis of the algorithm, it suffices to show that for every triple of vertices u, v, w ∈
V , the expected cost incurred by the algorithm, denoted ALG(uvw), is at most a factor α times the
corresponding LP cost LP (uvw). That is,

ALG(uvw) ≤ α · LP (uvw).

If the inequality holds for every triple, then the total expected cost of the algorithm is at most α · LP .
To show this, the analysis expresses the expected algorithmic cost and LP cost as averages over all
possible pivot choices and vertex triples. Specifically, it defines:

• e.costw(u, v): the expected cost of violating constraint (u, v), conditioned on pivot w,
• e.lpw(u, v): the expected LP charge of edge (u, v), conditioned on pivot w.

Here, LP charge is an event that either of the endpoints of the edge is gathered with the pivot
vertex, multiplied by the LP value of the edge. Since charging occurs exactly once for each edge,
accumulating every charge results in exactly the LP cost.

5.1 Pseudometric-weighted Correlation Clustering

In the CC setting, we use the function C, as defined in [16], to measure the gap:

C(xuv, xvw, xwu, puv, pvw, pwu) = α · LP (uvw)−ALG(uvw),

where

ALG(uvw) = e.costw(uv) + e.costu(vw) + e.costv(wu),

LP (uvw) = e.lpw(uv) + e.lpu(vw) + e.lpv(wu),

and

e.costw(u, v) =

{
puw(1− pvw) + (1− puw)pvw, uv ∈ E+;

(1− puw)(1− pvw), uv ∈ E−,

e.lpw(u, v) =

{
(1− puwpvw)xuv, uv ∈ E+;

(1− puwpvw)(1− xuv), uv ∈ E−.

In the weighted CC setting, edge weights further influence the value of C:

C(xuv, xvw, xwu, puv, pvw, pwu, wuv, wvw, wwu) = α · LP (uvw)−ALG(uvw),

with the definition for e.cost and e.lp remains the same; the classical CC corresponds to
(wuv, wvw, wwu) = (1, 1, 1).

Under the pseudometric constraint on weights w, we can reduce the number of cases to consider in
the analysis.
Lemma 2. If α · LP (uvw)−ALG(uvw) ≥ 0 holds for weight configurations (wuv, wvw, wwu) ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}, then the inequality also holds for any configuration (wuv, wvw, wwu)
satisfying the triangle inequality.
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Proof. Let all xuv, xvw, xwu, puv, pvw, pwu be fixed. ALG(uvw) and LP (uvw) can be written as

ALG(uvw) = wuv · e.costw(uv) + wvw · e.costu(vw) + wwu · e.costv(wu)

and
LP (uvw) = wuv · e.lpw(uv) + wvw · e.lpu(vw) + wwu · e.lpv(wu).

Therefore, the function αLP (uvw)−ALG(uvw) is linear w.r.p. (wuv, wvw, wwu).

Since the set of (wuv, wvw, wwu) that satisfies the triangle inequality forms a convex cone generated
by (1, 1, 0), (1, 0, 1), (0, 1, 1), the function value is nonnegative for all such (wuv, wvw, wwu) if and
only if the value is nonnegative for (wuv, wvw, wwu) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

This lemma implies that the algorithm achieves an approximation factor of α if all of the following
inequalities are satisfied for every possible configuration on the triangle uvw:

e.costw(uv) + e.costu(vw) ≤ α · (e.lpw(uv) + e.lpu(vw)),

e.costw(uv) + e.costv(wu) ≤ α · (e.lpw(uv) + e.lpv(wu)),

e.costu(vw) + e.costv(wu) ≤ α · (e.lpu(vw) + e.lpv(wu)).

We obtain a lower bound on the approximation factor of LP-PIVOT by verifying the feasibility of
rounding functions that satisfy the above inequalities. To this end, we analyze several configurations
of LP values and edge signs on triangle uvw.

In Theorems 1 and 3, the notation ‘(a, b, c) with (s1, s2, s3)’ denotes (xuv, xvw, xwu) = (a, b, c),
where each edge sign is given by s1, s2, and s3, respectively.

Theorem 1. The lower bound on the approximation factor of LP-PIVOT in pseudometric-weighted
correlation clustering is 10/3. The proof is deferred to the Appendix.

Conversely, there exist rounding functions f+, f− making the approximation factor of LP-PIVOT by
10/3, providing that the lower bound above is tight.

Theorem 2. The LP-PIVOT algorithm with the rounding function defined in equation 11 yields a
10/3-approximation algorithm for pseudometric-weighted CC. The proof is deferred to the Appendix.

5.2 Chromatic Correlation Clustering

We analyze the performance of the LP-CCC algorithm. This algorithm begins by assigning each
vertex to its majority color based on the LP solution, followed by a pivot-based clustering routine.

Due to the strict majority condition, any edge not included in
⊎
Ec must have an LP value of at least

1/2. Thus, the cost incurred by such edges is at most twice their LP contribution [32].

Within each color class Sc, corresponding to color c, we follow an analysis similar to that of Chawla
et al. [16]: edges of color c are treated as positive edges (E+), edges of the adversarial color γ as
negative edges (E−), and all other edges as neutral (E◦).

For positive and negative edges, the definitions of e.cost and e.lp remain consistent with those in [16].
The other three cases, particularly those involving neutral edges, require more careful treatment.

Consider a negative edge uv ∈ E−: the LP value is

e.lpw(u, v) =
∑
c′∈L

(1− xc′

uv) ≥ 1− xc
uv.

For a neutral edge uv ∈ E◦, the expected cost arises from the event that u and v are not separated by
w, i.e., at least one of them shares a cluster with w. The expected cost is thus given by the probability
that u and v are not simultaneously separated from w.

The LP contribution in this case is the product of this probability with x
ϕ(uv)
uv , where ϕ(uv) ̸= c is the

color of edge uv in the input. While x
ϕ(uv)
uv is not tied to color c, we can still bound it below using

9



xc
uv, x

c
vw, x

c
wu due to LP constraints [32]:

xϕ(uv)
uv ≥ max{xϕ(uv)

u , xϕ(uv)
v } (5)

≥ max

{
1

2
, 1− xc

u, 1− xc
v

}
(7, 8)

≥ max

{
1

2
, 1− xc

uv, 1− xc
vw, 1− xc

wu

}
. (5)

Summarizing the results, we express the expected cost and lower bound on the LP value for a fixed
pivot w as follows:

e.costw(u, v) =


puw(1− pvw) + (1− puw)pvw, uv ∈ E+;

(1− puw)(1− pvw), uv ∈ E−;

1− puwpvw, uv ∈ E◦;

(14)

e.lpw(u, v) ≥


(1− puwpvw)x

c
uv, uv ∈ E+;

(1− puwpvw)(1− xc
uv), uv ∈ E−;

(1− puwpvw)max
{

1
2 , 1− xc

uv, 1− xc
vw, 1− xc

wu

}
, uv ∈ E◦.

(15)

These formulations are central to the analysis. Since α · LP −ALG is always at least the expression
obtained from the LP lower bound, we can prove that this bound is nonnegative.

As in Section 5.1, the algorithm achieves an α-approximation if the following inequality holds for all
triangles uvw:

e.costw(uv) + e.costu(vw) + e.costv(wu) ≤ α · (e.lpw(uv) + e.lpu(vw) + e.lpv(wu)) .

This inequality leads to the following result on the approximation guarantee for LP-CCC:
Theorem 3. The approximation factor of LP-CCC for CCC is bigger than 2.11. The proof is
deferred to the Appendix.

Analogous to the classical CC setting—where the lower bound and the approximation ratio of LP-
PIVOT differ by less than 0.04 [16]—augmenting the LP rounding with a suitable f◦ yields the
following:
Theorem 4. LP-CCC, using the rounding functions in (12) and (13), achieves a 2.15-approximation
for Chromatic Correlation Clustering. The proof is deferred to the Appendix.

6 Conclusion

In this work, we studied two important variants of correlation clustering: pseudometric-weighted
correlation clustering and chromatic correlation clustering . For both problems, we developed and
analyzed specialized rounding functions that are essential for achieving improved approximation
guarantees via the LP-PIVOT algorithm.

For the pseudometric-weighted setting, we proposed a piecewise-linear rounding function tailored for
the setting that achieves a 10/3-approximation, and showed that no alternative function within our
analytical framework can yield a better factor. For the chromatic correlation clustering variant, we
designed a distinct rounding function that respects the constraints imposed by color restrictions and
achieves an approximation factor of 2.15. The function is constructed using a piecewise-linear form
and leverages a careful analysis of triple costs.

Overall, our work highlights the importance of designing principled and variant-specific rounding
strategies to extend LP-based techniques to structured clustering problems, yielding strong theoretical
guarantees.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction summarizes the main contributions and their
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Replace by [Yes] , [No] , or [NA] .
Answer: [Yes]
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Justification: We have discussed pseudometric condition in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a full proof of each result in appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our results are mainly theoretical.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our results are mainly theoretical.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Our methods do not need training process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our results are mainly theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our results are mainly theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We present a theory work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We present a theory work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We present a theory work.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We present a theory work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM at all.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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