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ABSTRACT

Multi-view representation learning aims to learn a high-quality unified representa-
tion for an entity from its multiple observable views to facilitate the performance
of downstream tasks. A fusion-based multi-view representation learning frame-
work consists of four main components: View-specific encoding, Single-view
learning (SVL), Multi-view learning (MVL), and Fusion. Recent studies achieve
promising performance by carefully designing SVL and MVL constraints, but al-
most all of them ignore the basic fact that effective representations are different
for different tasks, even for the same entity. To bridge this gap, this work proposes
a Task-Oriented Multi-View Representation Learning (TOMRL) method, where
the key idea is to modulate features in the View-specific encoding and Fusion mod-
ules according to the task guidance. To this end, we first design a gradient-based
embedding strategy to flexibly represent multi-view tasks. After that, a meta-
learner is trained to map the task embedding into a set of view-specific parameters
and a view-shared parameter for modulation in the Encoding and Fusion modules,
respectively. This whole process is formalized as a nested optimization problem
and ultimately solved by a bi-level optimization scheme. Extensive experiments
on four multi-view datasets validate that our TOMRL consistently improves the
performance of most existing multi-view representation learning approaches.

1 INTRODUCTION

Learning a high-quality representation for target entities is a fundamental and critical problem that
facilitates a variety of downstream tasks, such as classification tasks Jia et al. (2021); Han et al.
(2023b), clustering tasks Zhong & Pun (2022); Lin et al. (2021), retrieval tasks Chen et al. (2017;
2023), and so on. However, in the real world, entities are generally so complex that we cannot
model them directly and efficiently, but merely obtain observations from partial perspectives with
the assistance of specific sensors Li et al. (2019a). For example, a bird can be represented by a
piece of audio containing a call, a video of a flight, or a few candid photos, and similarly, it can be
identified by shape, color, or texture. These multi-modal or multi-feature data derived from different
sensors are collectively known as multi-view data, which each contain partial information and are
combined as a representation of the bird entity. Multi-view representation learning is one such
science that aims to investigate how to learn a unified entity representation from multi-view data and
leverage it for downstream tasks Zhao et al. (2017); Huang et al. (2021); Yan et al. (2021).

As a classical topic, numerous excellent multi-view representations have been proposed and widely
used. Early correlation-based approaches, such as CCA Chaudhuri et al. (2009) and its variants,
align two views by constraining correlations Houthuys et al. (2018); Guo & Wu (2019); Uurtio
et al. (2019). DCCA Andrew et al. (2013) extends it and lifts the limitation on the number of
views by utilizing deep networks. Such an alignment-based approach inherently preserves consistent
information across multiple views. In addition to the consistency, several studies have advocated
that complementary information contained in different views is also beneficial for learning entity
representations. For example, the CSMSC Luo et al. (2018) and DSS-MSCZhou et al. (2020) extract
and fuse the features of these two components as the final entity representation, respectively. Further,
recent approaches propose the notion of redundancy to remove information that is irrelevant or even
harmful to the learning of a unified representation, such as noise, background, etc. MFLVC Xu
et al. (2022) and MetaViewer Wang et al. (2023) separate and filter out the redundant information
through a multi-level network architecture and bi-level optimization process, respectively. E2MVSC
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explicitly decouples the information of consistency, complementarity, and redundancy using a two-
head network with self-supervised constraints and filters out redundant information while retaining
the other two via the information bottleneck principle. Existing solutions have made satisfactory
advances in “how to learn a unified representation from multi-view data”, but almost all of them
neglect “the proper utilization of these representations in downstream tasks”.

From the perspective of handling tasks, the above multi-view methods fall into two categories. One
is learning the unified representation for a set of multi-view data at once, which is usually used for
clustering tasks Zhang et al. (2019); Zheng et al. (2022); Lin et al. (2023). The advantage is that it
potentially learns information about the data distribution (the current task), while the disadvantage
is that it is not flexible enough to deal with out-of-sample data, which makes it almost unusable
in real-world scenarios Busch et al. (2020); Zhang et al. (2021). The other one follows a more
general form that focuses only on learning the corresponding uniform representation for entities,
which can easily handle out-of-sample data and is therefore widely used for tasks such as clustering,
classification, and retrieval Xu et al. (2022); Wang et al. (2023). The drawback is also obvious: valid
representations should be different in different tasks. For example, a green cat should obviously be
classified into different clusters in a “cat-dog” clustering task and a “color” clustering task. In other
words, two entities that are grouped together for some tasks may be far apart for others.

In order to combine the advantages of the above two types of learning paradigms, this work provides
a meta-learning-based solution and learns task-oriented multi-view representations, which can both
flexibly handle out-of-sample data and help multi-view features (or unified representations) be better
used for solving downstream tasks. Specifically, we first define an unsupervised multi-view task in
an episode fashion and provide an embedding strategy for the multi-view task using the Fisher
Information Matrix (FIM) Achille et al. (2019). Afterwards, a meta-learning model is built that
receives task embeddings and maps them into two sets of shift and bias parameters for modulating
view-specific features and unified entity representation, respectively. The meta-learning and multi-
view learning processes are modeled as a nested optimization problem and ultimately solved by a bi-
level optimization scheme. Note that this work looks at making the multi-view representations better
adapted to downstream tasks, rather than how to extract unified representations from multi-view data
(which has been well-studied in existing work). Thus, TOMRL can be easily integrated into existing
multi-view methods to improve the quality of the unified representation. Experiments on both few-
shot and routine tasks demonstrate the effectiveness of our TOMRL. The key contributions are

• We propose a Task-Oriented Multi-view Representation Learning method (TOMRL) from
a meta-learning perspective. To the best of our knowledge, this could be the first exploration
of “how representations from multiple views can better serve the task”.

• TOMRL defines and embeds an unsupervised multi-view task in an episode fashion and
designs a meta-learner for modulating the view-specific features and unified entity repre-
sentations with the task guidance.

• TOMRL models meta-learning and multi-view learning as a nested bi-level optimization,
where the high-level meta-learns the shift and bias parameters at task-level and low-level
modulates and improves the multi-view representation based on them.

• TOMRL is compatible with most existing multi-view representation learning methods. Ex-
perimental results show that our method consistently improves the performance of down-
stream tasks for both few-shot and routine tasks.

2 A BASIC FUSION-BASED MULTI-VIEW LEARNING PIPELINE

Given an entity x = {xv}Vv=1 with V views, sampled from the data distribution p(x), where
xv ∈ Rdv denotes the v-th view of the entity x, and dv is its dimension. Multi-view represen-
tation learning aims to learn a mapping from multiple views to a unified entity representation,
f : x → H ∈ RdH , where dH is the dimension of the unified representation H . A high-quality
unified representation integrates useful information from multiple views and represents entities in a
more comprehensive way than any of them, and thus can be used in a variety of downstream tasks.
Here we take the example of classification and clustering tasks, which are fundamental tasks in
supervised and unsupervised learning settings, respectively. For the classification task, the entities
usually correspond to manually labeled category labels y, and the learning goal transforms to pre-
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Figure 1: The overall framework of our TOMRL.

dicting the correct labels y for x based on H . For clustering tasks without any pre-labeled supervised
information, the goal is to assign entities to different clusters where entities within the same cluster
share some of the same attributes and vice versa. Either way, a high-quality, discriminative, unified
entity representation is essential for downstream tasks.

DeepMVC Trosten et al. (2023) presents a general framework for multi-view clustering, and we
extend here slightly to fusion-based multi-view representation learning Li et al. (2019a) 1. As shown
by the dashed box in Fig. 1, this framework consists of five modules. Along the data flow, they are:

• View-specific Encoding, or Encoding for short, is equipped with a (deep neural network)
encoder Ev with the trainable parameter θhv for each view, and their task is to produce the
view-specific representation hv = Ev(xv; θhv ) from raw multi-view data.

• Single-view Learning (SVL) component consists of a set of auxiliary tasks designed to
help optimize view-specific encoders {Ev}Vv=1 to better learn view-specific features. Each
auxiliary task is specific to its designated view, and is isolated from all other views.

• Multi-view Learning (MVL) is similar to SVL in that they both aim to constrain encoder
training. The difference is that the auxiliary tasks in MVL are required to utilize all views
simultaneously, allowing the model to learn features across views.

• Fusion module combines view-specific representations into the unified entity representa-
tion H shared by all views. Fusion is typically done using a (weighted) average Li et al.
(2019b); Trosten et al. (2021), or by concatenation Huang et al. (2019b); Xin et al. (2021);
Xu et al. (2021). More complex fusion strategies are also possible, such as attention mech-
anisms Zhou & Shen (2020), meta-learning Wang et al. (2023), etc.

• Evaluation module uses the learned entity representations for downstream tasks. For ex-
ample, Evaluation can consist of traditional clustering methods in clustering tasks, such as
k-means Xu et al. (2017) or Spectral Clustering Shi & Malik (2000). In addition to these
“train-then-evaluate” two-stage pipelines, some Evaluations that are integrated and jointly
trained with other modules are also permissible.

Following this framework, the learning of the mapping f from multi-view data to a unified repre-
sentation H can be formalized as:

f := H = F ({Ev(xv; θhv )︸ ︷︷ ︸
hv

}Vv=1; θH), s.t. argmin
θ
h1 ,...,θ

hV ,θH

(L1
SV L + · · ·+ Lv

SV L + LMV L) (1)

where Lv
SV L and LMVL denote the loss functions involved in auxiliary tasks in SVL and MVL

modules, respectively. Following the investigation of previous works, existing studies are devoted
1This extension is reasonable. In the unsupervised setting, SVL and MVL degenerate into SV-SSL and

MV-SSL mentioned in DeepMVC Trosten et al. (2023) follow the self-supervised learning (SSL) paradigm:
the learner is trained by designing a series of pretest tasks. As for supervised settings, SVL and MVL are
dominated by label prediction tasks, assisted by pre-test tasks Trosten et al. (2021); Zhou & Shen (2020).
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to elaborate various auxiliary tasks as well as various instances of Lv
SV L and LMVL in SVL and

MVL modules. Representative ones are, for example, the information bottleneck constraints Wan
et al. (2021); Federici et al. (2020), the contrastive constraints Lin et al. (2021; 2023) and the MCR2

discriminative constraints Yu et al. (2020a). These undoubtedly enhance the capability to derive a
unified representation from multiple views. However, little research has focused on how learned
representations are better adapted to the task, as reviewed in the previous section.

3 TASK-ORIENTED MULTI-VIEW LEARNING

To fill this gap, this work proposes a TOMRL method and investigates how to learn task-oriented
multi-view representations, which is achieved by modulating view-specific and unified representa-
tions in Encoding and Fusion modules, respectively. The basic principles followed are twofold, for
different tasks, a) the effective components are different in each view and b) the fusion process of
features may also be inconsistent. Therefore, more explicitly, our TOMRL focuses on the Encod-
ing and Fusion modules, which not only do not conflict with existing work on SVL and MVL, but
also further enhance their performance in downstream tasks. Formally, multi-view representation
learning with TOMRL on a task t can be rewritten from Eq. 1 as:

ft := Ht = F ({Ev(xv; θhv , whv
t
)︸ ︷︷ ︸

hv
t

}Vv=1; θH , wHt), s.t. argmin
θ
h1 ,...,θ

hV ,θH ,
w

h1
t
,...,w

hV
t

,wHt

(L1
SV L+ · · ·+Lv

SV L+LMV L) (2)

where whv
t

and wHt
denote additional introduced modulation parameters, where the former are

view-specific representations of modulation parameters following the first principle and the latter
are uniform representations of modulation parameters following the second principle. Here, we use
FiLM Perez et al. (2018) to instantiate these two modulation processes. Formally, the modulation
parameter consists of two parts, the Scale s and the Shift b, i.e., whv

t
:= {shv

t
, bhv

t
} and wHt

:=
{sHt

, bHt
}. For the given target task t, the modulated v-th view representation and the unified

representation are respectively: hv
t = hv ⊙ shv

t
+ bhv

t
and Ht = H ⊙ sHt

+ bHt
. It is worth

noting that any form of modulation is allowed, e.g. sigmoid (gate) function Vuorio et al. (2019) and
attention-based (softmax) modulation Mnih et al. (2014); Vaswani et al. (2017). More experimental
comparisons of modulation strategies can be found in Sec 4.

3.1 A META-LEARNER FOR MODULATING PARAMETERS

The above modulation parameters are expected to introduce task bias for multi-view representations
and are therefore derived from a meta-learner M in this work, i.e.,

{shv
t
, bhv

t︸ ︷︷ ︸
whv

t

}Vv=1, sHt , bHt︸ ︷︷ ︸
wHt

= M({zvt }Vv=1, Zt; Θ), (3)

where Θ is the meta (learner) parameter, {zvt }Vv=1 and Zt are the embedding of task t from the
perspective of v-th view and entity, respectively. Meta-learning is a promising paradigm for learn-
ing meta-knowledge from numerous historical tasks to quickly tackle unseen new tasks. Typical
meta-learning strategies consist of a meta-learner and a base learner trained with an episodic set-
ting. Episode consists of tasks, which further contain support sets and query sets. The base learner
learns task-specifically on the support set of each task, and the meta-learner learns task-level meta-
knowledge by integrating the loss on query set of multiple tasks, where the meta-knowledge can be
anything in the training, such as parameters, hyper-parameters, or even data. Along this idea, we
first extend the task definition in the previous work Huang et al. (2019a) and define two multi-view
tasks with episode manner, and later encode the tasks with the help of a gradient-based strategy and
design a new auxiliary task for the meta-learner. After that, we embed the multi-view tasks based
on a gradient strategy and design a new auxiliary task for meta-learner training.

3.1.1 MULTI-VIEW TASK WITH EPISODE

To emphasize the universality of the proposed TOMRL, we consider both supervised and unsuper-
vised perspectives and define multi-view classification and multi-view clustering tasks with episode
as illustrative instances.
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• Supervised Multi-view Classification Task Tcls = (N,K,K ′, S,Q, V ) comes with two
disjoint sets of data. Labeled support set STcls

= {(xs1
i , . . . , xsV

i , ysi )}NK
i=1 and Labeled

query set QTcls
= {(xq1

i , . . . , xqV
i , yqi )}NK′

i=1 containing same N classes, but disjoint K
and K′ samples, respectively. For such tasks, the base learner trains on the support set and
makes predictions ŷqi on the support set, and the meta-learner updates by integrating the
query errors across tasks.

• Unsupervised Multi-view Clustering Task Tclu = (N,K, S,Q, V, V ′) consists of N
classes and K unlabelled samples pre class, which are further constructed as two disjoint
data sets from the view perspective. Unlabeled support set STclu

= {(xv
1, . . . , x

v
M )}V ′

v=1

and Unlabeled query set QTclu
= {(xv

1, . . . , x
v
M )}Vv=V ′ . For such tasks, the base learner

clusters the support set into N clusters and maps the query samples to one of the predicted
clusters, and the meta-learner updates by integrating the consistency error 2 on the query
set across tasks.

3.1.2 MULTI-VIEW TASK EMBEDDING

Note that when N and K are small, the above task degenerates into a typical setting for few-shot
learning, also known as the N-way K-shot task. In this work, there is no restriction on the number of
N and K, so the next difficulty is how to learn flexibly from multi-view tasks with different scales.
To solve it, we take inspiration from Achille et al. (2019); Wang et al. (2021) and produce scale-
consistent task embeddings based on the gradient information defined by the Fisher Information
Matrix (FIM) of the Encoding and Fusion parameters. Taking a classification task t as an example,
the task embedding from the v-th view perspective is defined as the FIM of the v-th encoder Ev ,
which can be computed as

zvt := FIMθhv = Exv,y∼p̂t(x)pEv
t (y|xv)[∇θhv log pE

v

(y|xv)∇θhv log pE
v

(y|xv)T ] (4)

where p̂t(x) is the empirical distribution defined by the support set St. FIM actually measures the
response of the parameters to the task utilizing the gradient Achille et al. (2019), so the classification
error described above can be viewed as a specific instance of Lv

SV L, meaning it can be easily com-
puted in the multi-view framework with the Lv

SV L. Similarly, the task embedding Zt from entity
perspective can be computed as the FIM of the Fusion module F with the LMVL.

3.1.3 A NEW VIEW INDEX PREDICTION AUXILIARY TASK

So far, the meta-learner can receive gradient-based task embeddings and derive modulation param-
eters for both the Encoding and Fusion modules. The last potential risk is to generate modulation
parameters for different views with one meta-learner, which may confuse the knowledge at view-
level. To this end, a simple view index recognition auxiliary task was additionally used. In addition
to the modulation parameters, the meta-learning predicts the corresponding view index for the input
task embedding with a recognition head. The view discriminability of meta-learning is increased by
minimizing the recognition error, i.e., LIND =

∑V
v=1 −vlog(v|hv

t ) Thus, the total loss function for
meta learner is Lmeta = Lbase+LIND, where Lbase = L1

SV L+· · ·+Lv
SV L+LMVL is abbreviated

from Eq. 2.

3.2 BI-LEVEL OPTIMIZATION FOR META-LEARNING AND MULTI-VIEW LEARNING

Following previous works Finn et al. (2017); Shu et al. (2019), we train the parameter of meta learner
and fine-tune the pre-trained parameter of multi-view framework in a bi-level optimization fashion,
which can be formalized as

Θ∗ = argminΘLmeta(argminθLbase(θ; Θ)︸ ︷︷ ︸
θ∗(Θ)

), (5)

2This is essentially a self-supervised constraint, where the meta-learner is trained to learn the task informa-
tion using the self-supervised information that “the clustering results are consistent across different views of
the entity”.
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Algorithm 1 The framework of our TOMRL.
Require: Pre-trained DeepMRL parameters θh1 , . . . , θhV and θH , meta parameters Θ, Dataset D,
the number of views V , the number of task per episode T , maximum iteration steps in outer-level
optimisation O, maximum iteration steps in inner-level optimisation L.

1: Initialize Θ;
2: for o = 1, . . . , O do
3: # Outer-level optimization
4: Sample batch of tasks {Tt = (St, Qt)}Tt=1 ∼ p(T ) constructed from D.
5: for t = 1, . . . , T do
6: Obtain task embedding zt via Eq. (4)
7: Obtain modulation parameters whv

t
= {shv

t
, bhv

t
} and wHt = {sHt , bHt} via Eq. (3).

8: for l = 1, . . . , L do
9: # Inner-level optimization

10: for v = 1, . . . , V do
11: Obtain view-specific representation hv = Ev(xsv

i , θhv ).
12: Modulate view-specific representation hv

t = ht ⊙ shv
t
+ bhv

t
.

13: end for
14: Obtain the unified representation H = F (hv,ΘH).
15: Modulate the unified representation Ht = H ⊙ sHt + bHt .
16: Update θh1 , . . . , θhV and θH via Eq. (7).
17: end for
18: end for
19: Update Θ via Eq. (6).
20: end for
21: Return the optimal parameters θh1 , . . . , θhV and Θ.

Overall, the outer-level optimization expects to learn an optimal set of meta-learner parameters,
which produces the modulation parameters mentioned in Eq. 2 for modulating the multi-view rep-
resentation. The inner-level optimization can handle specific tasks better with the help of these
modulations. Since the meta-learner learns task-level knowledge across multiple tasks, the above
process is known as task-oriented multi-view representation learning. More specifically, in the o-th
outer-level optimization, the parameters of the meta-learner are updated as

Θo = Θo−1 − β

T

T∑
t=1

∇ΘLmeta

(
Qt; θt(Θ

o−1)
)
, (6)

with the updated meta parameters after the o-th outer-level optimization, the inner-level optimization
modulates the multi-view representation to adapt (the support set of) on each task. For task t, the
update of the base parameters in the l-th inner-level optimization is

θlt = θl−1
t − α∇θLbase(St; θ

l−1
t ◦Θo). (7)

The α and β are the learning rates of the base and meta-learning, respectively. The overall flow of
our TOMRL is presented in Alg. 1.

4 RELATED WORKS

This work focuses on using feature modulation strategies to address multi-view representation learn-
ing in a meta-learning paradigm. The introductory chapter reviews several representative approaches
to multi-view representation learning and clarifies the relationship with the work in this paper: the
former focuses on modeling the representation, while the latter is concerned with the adaptation of
the representation to the task. More multi-view learning approaches have been well summarized and
discussed in recent surveys Yan et al. (2021); Trosten et al. (2023). In addition, we discuss in detail
the differences and connections between our TOMRL and existing learning paradigms involving
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multiple views and multiple tasks in Appendix A.1. In the following, we mainly review multi-view
meta-learning and parameter modulation strategies.

Meta learning vs. Multi-view Learning These two paradigms focus on learning shared knowl-
edge from multiple tasks and multiple views, respectively, so their combination is bi-directional.
Multi-view meta-learning, or multi-modal meta-learning, is dedicated to exploiting the rich infor-
mation contained in multiple views to improve the performance of the meta-learner in a few-shot
or self-supervised scenario Vuorio et al. (2019); Ma et al. (2022). For example, a series of studies
improve the robustness of prototype features in metric-based meta-learning methods with the help
of additionally introduced modal information Xing et al. (2019); Pahde et al. (2021); Zhang et al.
(2022). MVDG Yu et al. (2020b) designs a multi-view constraint to improve the generalization
of gradient-based meta-learning, where multiple optimization trajectories learning from multiple
views are employed to produce a suitable optimization direction for model updating. In contrast,
some studies utilize meta-learning paradigms to facilitate multi-view representation learning. For
example, SMIL Ma et al. (2021) uses Bayesian meta-learning to address the challenge of severely
missing modalities. MetaViewer Wang et al. (2023) meta-learning a data-dependent multi-view fu-
sion rule to model entity-view relationships. Our TOMRL belongs to the latter. Unlike MetaViewer,
which meta-learns representations directly, TOMRL meta-learns a set of modal parameters that can
be integrated into most existing multi-view methods and improve their task adaptability.

Parameter modulation Parametric modulation is a common strategy to flexibly adapt models to
a variety of complex scenarios Feng et al. (2021); Brockschmidt (2020); Park et al. (2019). FiLM
Perez et al. (2018) is a typical modulation strategy that scales and shifts the activated neurons by
adding a multi-layer perceptron (MLP) for each layer. Based on this, MTL Sun et al. (2019) learns
transferable parameters in order to quickly adapt to new tasks. MMAML Vuorio et al. (2019) mod-
ulates meta-learned initialization parameters to handle multi-modal tasks. Inspired by them, this
paper uses FiLM to modulate multi-view representation. The difference is that these parameters are
meta-learned across tasks and have task-oriented properties.

5 EXPERIMENTS

In this section, we present extensive experimental results to validate the effectiveness and flexibility
of our TOMRL. The remainder of the experiments are organized as follows: Subsection 5.1 lists
datasets, compared methods, and implementation details. Subsection 5.2 Subsection 5.3 investi-
gates the performance of TOMRL in regular multiview tasks and cross-domain multiview tasks,
respectively. Ablation studies and in-depth analyses are included in Subsection 5.4.

5.1 EXPERIMENTAL SETUP

Datasets. Four widely used datasets are adopted for our experiments, including Caltech 101-7,
COIL-20, NoisyFashion, and EdgeFashion. Concretely, Caltech 101-7 Cai et al. (2013) is a subset
of Caltech101 Fei-Fei et al. (2004), contains 7 classes and 6 handcrafted features as views. COIL-
20 Nene et al. (1996) is a three-view dataset consisting of 1440 grayscale images belonging to 20
categories. NoisyFashion is generated using FashionMNIST Xiao et al. (2017), which contains two
views: the raw image and its Gaussian noised image (σ = 0.2, the setting following Trosten et al.
(2023)). EdgeFashion is another version of FashionMNIST. We employ the raw image and the
edge-detected image of the same instance as two views.

Baselines. Along with our proposed TOMRL, three state-of-the-art multi-view clustering baselines
from the last five years are selected for comparison, of which: (i) Deep Multimodal Subspace Clus-
tering (DMSC) Abavisani & Patel (2018); (ii) Multi-view Spectral Clustering Network (MvSCN)
Huang et al. (2019b); (iii) Simple Multi-View Clustering (SiMVC) Trosten et al. (2021). In addi-
tion to this, we compare the AE-KM, AECoDDC, and InfoDDC proposed by Trosten et al. (2023),
as well as the results with TOMRL. These three approaches represent a simple baseline without
constraints, with comparison constraints, and with information theoretic constraints, respectively,
demonstrating the flexibility of TOMRL. To make the results more reliable, we report the average
of 100 tasks in clustering and classification, respectively.

Implementation details. The implementation of TOMRL is based on the DeepMVC open source
framework Trosten et al. (2023). All baselines adopt the recommended training hyper-parameters.
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Table 1: Clustering results 5-way 5-shot multi-view tasks. Bold denotes the results of our TOMRL.

Methods NoisyFashion EdgeFashion COIL-20 Caltech7
ACCclu NMI ACCclu NMI ACCclu NMI ACCclu NMI

DMSC 58.74 63.28 51.26 54.50 34.57 67.39 45.11 46.05
MvSCN 70.10 72.85 63.52 66.39 59.23 78.74 55.87 56.41
SiMVC 73.72 78.33 67.28 70.41 89.63 92.67 61.06 62.11
AE-KM 60.80 71.81 53.21 57.92 37.46 71.71 57.99 55.26
w/ TOMRL 62.31 74.14 55.73 59.06 40.25 73.33 59.85 57.77
AECoDDC 63.66 67.20 60.26 68.87 95.86 96.01 64.13 65.84
w/ TOMRL 66.25 70.06 62.38 71.28 96.10 98.41 65.10 66.54
InfoDDC 72.35 79.74 70.76 72.52 62.80 79.68 49.20 50.93
w/ TOMRL 75.80 82.93 72.35 77.89 65.75 80.26 51.25 51.38

Table 2: Classification results on 5-way 5-shot multi-view tasks. Bold denotes the results of our
TOMRL.

Methods NoisyFashion EdgeFashion COIL-20 Caltech7
ACCcls Prec. ACCcls Prec. ACCcls Prec. ACCcls Prec.

DMSC 72.84 70.58 63.66 58.03 77.38 72.99 65.28 61.43
MvSCN 88.32 82.36 70.82 62.87 80.71 78.25 63.57 62.70
SiMVC 95.86 88.27 78.58 66.29 98.90 98.26 71.84 69.09
AE-KM 64.51 77.13 59.97 60.91 78.42 71.71 62.13 63.33
w/ TOMRL 65.68 79.22 61.14 61.96 79.64 73.10 64.52 64.92
AECoDDC 82.84 74.05 81.87 66.07 97.25 95.73 65.64 67.64
w/ TOMRL 84.59 66.80 83.01 66.92 98.72 97.05 70.32 68.10
InfoDDC 94.84 89.33 76.22 68.39 87.76 83.23 66.33 57.74
w/ TOMRL 96.07 90.68 79.68 70.58 89.18 84.57 68.29 58.26

For the baseline with TOMRL, an additional meta-learning process is added after the regular train-
ing. Following the setup of previous works Finn et al. (2017); Antoniou et al. (2019), we sample five
tasks per episode and set the learning rate to 0.001 and 0.0001 for the inner-level and outer-level op-
timization processes, respectively. The inner loop performs a single-step optimization, i.e., L = 1.
Two downstream tasks, including clustering and classification, are employed in our experiments.
Two popular clustering metrics, i.e., accuracy (ACCclu) and normalized mutual information (NMI),
are used to quantify the clustering effectiveness. For the classification task, two common metrics are
used, including accuracy (ACCcls), and precision (Prec.). Note that a higher value of these metrics
indicates better clustering or classification performance.

5.2 RESULTS IN THE 5-WAY 5-SHOT MULTI-VIEW TASKS

To validate the benefits of TOMRL on cross-task learning, we first constructed regular 5-way 5-shot
multi-view clustering and classification tasks. In this setting, the performance differences between
the baseline methods w/ and w/o TOMRL both come from task bias. For the clustering task, we
use the post-processing strategies recommended by the baseline method, such as AE-KM and AE-
CoDDC using k-means and deep clustering algorithms, respectively Trosten et al. (2023), and the
classification task is complemented by the SVM classifier Wang et al. (2023). Corresponding re-
sults are listed in Table 1 and Table 2. TOMRL brings consistent performance gains to the baseline
approaches, suggesting that 1) TOMRL is independent of auxiliary tasks and fusion strategies; 2)
TOMRL is robust to different task metrics and even to task types; and 3) TOMRL effectively learns
and utilizes task bias information.

5.3 RESULTS IN CROSS-DOMAIN MULTI-VIEW TASKS

Further, we consider a more challenging cross-domain task setup where the training and testing
tasks are sampled from different datasets. Specifically, two cross-domain scenarios are included,
from NoisyFashion to EdgeFashion and from EdgeFashion to NoisyFashion, respectively. Table 3
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Table 3: Clustering results of all methods. Bold and underline denote the best and second-best
results, respectively.

Methods NoisyFashion → EdgeFashion EdgeFashion → NoisyFashion
ACCclu NMI ACCcls Prec. ACCclu NMI ACCcls Prec.

AE-DDC 48.26 43.86 50.81 49.25 44.50 50.82 46.12 58.03
w/ TOMRL 52.25 54.37 56.10 55.07 49.04 55.27 50.85 62.10
AECoDDC 48.58 51.22 62.33 47.58 45.15 48.98 62.78 55.26
w/ TOMRL 52.80 57.39 70.26 58.77 52.88 53.16 69.22 59.30
InfoDDC 53.74 56.95 58.35 56.20 51.39 54.25 68.58 62.17
w/ TOMRL 60.85 55.74 63.58 60.87 56.71 59.32 72.24 67.39

demonstrates the enhancements that TOMRL brings to the three baseline methods. Compared to the
results in Table 1 and Table 2, the relative benefit of TOMRL is higher. One possible reason is that in
cross-domain tasks, both clustering and classification tasks require more task-relevant information.

5.4 ABLATION ANALYSIS

Table 4: Ablation results on the loss function. Bold and
underline denote the best and second-best results, respec-
tively.

Ablation ACCclu NMI ACCcls Prec.
Baseline 95.86 96.01 97.25 95.73

TOMRL w/o hv
t 96.91 97.63 98.07 96.28

TOMRL w/o Ht 96.57 97.28 98.66 96.35
TOMRL w/o LIND 97.98 98.12 99.03 96.99

TOMRL 98.10 98.41 99.56 98.47

Ablation analysis. We perform three
ablation experiments on the COIL-
20 dataset using AECoDDC as the
baseline, including TOMRL without
view-specific representation modulation
(w/o hv

t ), without unified representation
modulation (w/o Ht), and without view
index prediction task (LIND). The re-
sults listed in Table 4 show that: 1) the
self-supervised information provided by
the auxiliary task slightly improves the results; 2) both modulation strategies are crucial for perfor-
mance improvement.

Table 5: Comparison of different modulation
mechanisms. Bold and underline denote the best
and second-best results, respectively.

Modulation ACCclu NMI ACCcls Prec.
Baseline 95.86 96.01 97.25 95.73

Gate 96.07 96.53 97.98 96.44
Softmax 98.18 98.02 98.58 97.26

Scale 98.92 98.39 99.13 97.90
Shift 97.58 97.87 98.21 96.82
FiLM 98.10 98.41 99.56 98.47

Modulation mechanisms. Tab. 5 compares
several commonly used modulation strategies
in the same data and task settings as in the
previous subsection. Gate and Softmax are
both prototype-dependent, non-linear, and non-
parametric strategies. FiLM is substantially
ahead of the other four strategies, validating
the effectiveness of modeling the transforma-
tion from a unified entity to specific views with
the affine transformation.

6 CONCLUSION

This work proposes a task-oriented multi-view representation learning method, TOMRL, to boot-
strap existing methods to handle downstream tasks better through representation modulation. To this
end, we resort to a gradient-based meta-learning paradigm and construct a meta-learner to generate
modulation parameters. We further define multi-view tasks in an episodic manner, demonstrate a
task embedding strategy based on gradients, and design a new view index prediction assistance task.
Meta-learning and multi-view learning are ultimately formalized as a nested optimization problem
and solved via a bi-level optimization paradigm. Extensive experiments validate that our TOMRL
can be easily integrated into existing multi-view representation learning methods and bring consis-
tent performance gains. Although this work is an initial attempt to introduce task bias in multi-view
representation learning, promising results were obtained that may inspire subsequent multi-view
representation learning approaches. Future work will focus on modeling view-task relationships
and designing more comprehensive task encoding strategies.
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Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. In ICLR. OpenReview.net, 2020.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In CVPR, pp. 178,
2004.

Xidong Feng, Chen Chen, Dong Li, Mengchen Zhao, Jianye Hao, and Jun Wang. CMML: contextual
modulation meta learning for cold-start recommendation. In CIKM, pp. 484–493, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, volume 70, pp. 1126–1135, 2017.

Chenfeng Guo and Dongrui Wu. Canonical correlation analysis (CCA) based multi-view learning:
An overview. CoRR, abs/1907.01693, 2019.

Beibei Han, Yingmei Wei, Qingyong Wang, and Shanshan Wan. Dual adaptive learning multi-task
multi-view for graph network representation learning. Neural Networks, 162:297–308, 2023a.

Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classifica-
tion with dynamic evidential fusion. IEEE Trans. Pattern Anal. Mach. Intell., 45(2):2551–2566,
2023b.

Lynn Houthuys, Rocco Langone, and Johan A. K. Suykens. Multi-view kernel spectral clustering.
Inf. Fusion, 44:46–56, 2018.

Gabriel Huang, Hugo Larochelle, and Simon Lacoste-Julien. Centroid networks for few-shot clus-
tering and unsupervised few-shot classification. CoRR, abs/1902.08605, 2019a.

Zhenyu Huang, Joey Tianyi Zhou, Xi Peng, Changqing Zhang, Hongyuan Zhu, and Jiancheng Lv.
Multi-view spectral clustering network. In IJCAI, pp. 2563–2569, 2019b.

10



Under review as a conference paper at ICLR 2024

Zhenyu Huang, Joey Tianyi Zhou, Hongyuan Zhu, Changqing Zhang, Jiancheng Lv, and Xi Peng.
Deep spectral representation learning from multi-view data. IEEE Trans. Image Process., 30:
5352–5362, 2021.

Xiaodong Jia, Xiao-Yuan Jing, Xiaoke Zhu, Songcan Chen, Bo Du, Ziyun Cai, Zhenyu He, and
Dong Yue. Semi-supervised multi-view deep discriminant representation learning. IEEE Trans.
Pattern Anal. Mach. Intell., 43(7):2496–2509, 2021.

Xiaoli Li and Jun Huan. Interactions modeling in multi-task multi-view learning with consistent
task diversity. In CIKM, pp. 853–861. ACM, 2018.

Yingming Li, Ming Yang, and Zhongfei Zhang. A survey of multi-view representation learning.
IEEE Trans. Knowl. Data Eng., 31(10):1863–1883, 2019a.

Zhaoyang Li, Qianqian Wang, Zhiqiang Tao, Quanxue Gao, and Zhaohua Yang. Deep adversarial
multi-view clustering network. In Sarit Kraus (ed.), IJCAI, pp. 2952–2958, 2019b.

Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. COMPLETER: incom-
plete multi-view clustering via contrastive prediction. In CVPR, pp. 11174–11183, 2021.

Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. Dual contrastive
prediction for incomplete multi-view representation learning. IEEE Trans. Pattern Anal. Mach.
Intell., 45(4):4447–4461, 2023.

Runkun Lu, Jianwei Liu, Siming Lian, and Xin Zuo. Multi-view representation learning in multi-
task scene. Neural Comput. Appl., 32(14):10403–10422, 2020.

Shirui Luo, Changqing Zhang, Wei Zhang, and Xiaochun Cao. Consistent and specific multi-view
subspace clustering. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), AAAI Conference on
Artificial Intelligence, pp. 3730–3737, 2018.

Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng. SMIL: multimodal
learning with severely missing modality. In AAAI, pp. 2302–2310, 2021.

Yao Ma, Shilin Zhao, Weixiao Wang, Yaoman Li, and Irwin King. Multimodality in meta-learning:
A comprehensive survey. Knowl. Based Syst., 250:108976, 2022.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of visual
attention. In NIPS, pp. 2204–2212, 2014.

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-20).
1996.

Frederik Pahde, Mihai Marian Puscas, Tassilo Klein, and Moin Nabi. Multimodal prototypical
networks for few-shot learning. In WACV, pp. 2643–2652, 2021.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In CVPR, pp. 2337–2346, 2019.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, pp. 3942–3951, 2018.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 22(8):888–905, 2000.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
net: Learning an explicit mapping for sample weighting. In NeurIPS, pp. 1917–1928, 2019.

Gan Sun, Yang Cong, Jun Li, and Yun Fu. Robust lifelong multi-task multi-view representation
learning. In Xindong Wu, Yew-Soon Ong, Charu C. Aggarwal, and Huanhuan Chen (eds.), ICBK,
pp. 91–98, 2018.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In CVPR, pp. 403–412, 2019.

11



Under review as a conference paper at ICLR 2024

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer. Reconsidering repre-
sentation alignment for multi-view clustering. In CVPR, pp. 1255–1265, 2021.

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael C. Kampffmeyer. On the effects of
self-supervision and contrastive alignment in deep multi-view clustering. In CVPR, pp. 23976–
23985, 2023.

Viivi Uurtio, Sahely Bhadra, and Juho Rousu. Large-scale sparse kernel canonical correlation anal-
ysis. In ICML, volume 97, pp. 6383–6391, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J. Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. In NeurIPS, pp. 1–12, 2019.

Zhibin Wan, Changqing Zhang, Pengfei Zhu, and Qinghua Hu. Multi-view information-bottleneck
representation learning. In AAAI, pp. 10085–10092, 2021.

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, and Michael Brudno. Grad2task: Improved few-
shot text classification using gradients for task representation. In NeurIPS, pp. 6542–6554, 2021.

Ren Wang, Haoliang Sun, Yuling Ma, Xiaoming Xi, and Yilong Yin. Metaviewer: Towards A
unified multi-view representation. In CVPR, pp. 11590–11599, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017.

Bowen Xin, Shan Zeng, and Xiuying Wang. Self-supervised deep correlational multi-view cluster-
ing. In IJCNN, pp. 1–8, 2021.

Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, and Pedro O. Pinheiro. Adaptive cross-modal
few-shot learning. In NeurIPS, pp. 4848–4858, 2019.

Jie Xu, Yazhou Ren, Huayi Tang, Xiaorong Pu, Xiaofeng Zhu, Ming Zeng, and Lifang He. Multi-
vae: Learning disentangled view-common and view-peculiar visual representations for multi-view
clustering. In ICCV, pp. 9214–9223, 2021.

Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature
learning for contrastive multi-view clustering. In CVPR, pp. 16030–16039, 2022.

Jinglin Xu, Junwei Han, Feiping Nie, and Xuelong Li. Re-weighted discriminatively embedded
k-means for multi-view clustering. IEEE Trans. Image Process., 26(6):3016–3027, 2017.

Xiaoqiang Yan, Shizhe Hu, Yiqiao Mao, Yangdong Ye, and Hui Yu. Deep multi-view learning
methods: A review. Neurocomputing, 448:106–129, 2021.

Yang Yu, Zhekai Du, Lichao Meng, Jingjing Li, and Jiang Hu. Adaptive online continual multi-view
learning. Information Fusion, pp. 102020, 2023.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction. In NeurIPS,
2020a.

Yunlong Yu, Zhong Ji, Jungong Han, and Zhongfei Zhang. Episode-based prototype generating
network for zero-shot learning. In CVPR, pp. 14032–14041, 2020b.

Changqing Zhang, Yeqing Liu, and Huazhu Fu. Ae2-nets: Autoencoder in autoencoder networks.
In CVPR, pp. 2577–2585, 2019.

Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. MVDG: A unified multi-view framework for
domain generalization. In ECCV, volume 13687, pp. 161–177, 2022.
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A APPENDIX

A.1 CONNECTIONS AND DIFFERENCES WITH MULTI-VIEW MULTI-TASK LEARNING
(MVMTL) AND CONTINUOUS/LIFELONG MULTI-VIEW LEARNING (CMVL)

MVMTL Li & Huan (2018); Han et al. (2023a), CMVL Yu et al. (2023); Sun et al. (2018), and our
TOMRL all consider both multi-view and multi-task scenarios, exploiting comprehensive feature
representation of multiple views in each task as well as the task relationships of multiple related
tasks. However, they are different in terms of learning objectives, key challenges, and practical
settings:

• MVMTL follows the multi-task learning setting, where the learning objective is to im-
prove performance on the main task through joint training on multiple related (auxiliary)
tasks. Key challenges include selecting or designing auxiliary tasks, balancing loss func-
tions across multiple tasks, etc. The counterpart is conventional (single-view) multi-task
learning, with the difference that MVMTL utilizes comprehensive information (e.g., con-
sistency and complementarity, etc.) from multiple views of each task. Once the multi-view
information is well integrated, most MVMTL methods degrade to the conventional multi-
task scenario Lu et al. (2020).

• CMVL follows the continuous learning setting, where the learning objective is to han-
dle new tasks without performance degradation on previously learned tasks for a series of
consecutive tasks. The key challenge is to overcome catastrophic forgetting. Similarly,
the counterpart is conventional (single-view) continuous learning, with the difference that
CMVL utilizes comprehensive information from multiple views of each task.

• Our TOMRL follows the meta-learning setting, where the learning objective is to rapidly
handle new downstream tasks by learning meta-knowledge over multiple tasks. To this end,
we construct task-level training and test sets on the multi-view dataset and train the model
in an episodic fashion. The counterpart is conventional (single-view) meta-learning, with
the difference that TOMRL considers both view-specific representations and fused unified
representations in the meta-learning process. If the multi-view properties of the task are
ignored, TOMRL degrades to a conventional meta-learning method Vuorio et al. (2019).
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