Under review as a conference paper at ICLR 2026

SYMMATIKA: STRUCTURE-AWARE SYMBOLIC DIS-
COVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression (SR) seeks to recover closed-form mathematical expressions
that describe observed data. While existing methods have advanced the discovery
of either explicit mappings (i.e., y = f(x)) or discovering implicit relations (i.e.,
F(x,y) = 0), few modern and accessible frameworks support both. Moreover,
most approaches treat each expression candidate in isolation, without reusing recur-
ring structural patterns that could accelerate search. We introduce SYMMATIKA, a
hybrid SR algorithm that combines multi-island genetic programming (GP) with
a reusable motif library inspired by biological sequence analysis. SYMMATIKA
identifies high-impact substructures in top-performing candidates and reintroduces
them to guide future generations. Additionally, it incorporates a feedback-driven
evolutionary engine and supports both explicit and implicit relation discovery using
implicit-derivative metrics. Across benchmarks, SYMMATIKA achieves state-of-
the-art recovery rates on the Nguyen and Feynman benchmark suites, an impressive
recovery rate of 61% on Nguyen-12 compared to the next best 2%, and strong
placement on the error-complexity Pareto fronts on the Feynman equations and on
a subset of 57 SRBench Black-box problems. Our results demonstrate the power
of structure-aware evolutionary search for scientific discovery. To support broader
research in interpretable modeling and symbolic discovery, we have open-sourced
the full SYMMATIKA framework.

SYMMATIKA k iterations of GP Top performers

y ¥

re
GP @
Data & Fittest individual

Dp = {xi,yi}14 0
or B
Dy = {xi}is 7-1 _|_ 7-2
T2

Parameterized candidate generation Reusable structure (Motif) library

W
&
S 1
aé) 4
A 4

v

u’

Fig. 1: SYMMATIKA is a high-performing symbolic regression framework. Given data Dg (explicit)
or Dy (implicit), a parameterized generator € produces m initial populations. Each population evolves
for k£ GP iterations, and the top M expressions are used to update both the generator parameters
and a reusable structure (i.e., Motif) library. High-impact subexpressions are recombined to form
new candidates to accelerate convergence. The fittest individual 7* is selected as the final expression.

1 INTRODUCTION

In the late 16" century, Tycho Brahe meticulously recorded the positions of celestial bodies. His data
laid the foundation for Johannes Kepler, who in 1601 derived analytical expressions of the motion
of these planets. These expressions launched a scientific revolution in their discovery that Mars’

Under review as a conference paper at ICLR 2026

orbit was in fact an ellipse. This was an early instance of symbolic regression (SR), where governing
laws are distilled from observational data as interpretable mathematical expressions. The majority
of SR methods similarly aim to discover symbolic expressions f that relate variables in data (X, y),
with X; € R™, y; € R, in the form of y = f(x). Some others seek to uncover implicit relations
F(x,y) = 0 to discover invariants such as conservation laws.

Symbolic regression poses a computationally hard challenge, as the space of symbolic expressions
grows exponentially with expression length (Lu et al.l 2016; [Virgolin & Pissis} 2022). The dominant
approach, genetic programming (GP) (Koza, |1990), stochastically evolves populations of candidate
expressions using mutation and crossover. Tools such as PySR (Cranmer, [2023)), GPlearn (Stephens
et al.,[2016), Operon (Burlacu et al.,2020), and AFP (Schmidt & Lipson, 2010) apply GP to flexibly
search across diverse mathematical structures without assuming parametric forms. However, their
convergence is often slow due to uninformed exploration, generating many unpromising candidates
across generations.

To improve efficiency, neural-guided SR approaches integrate deep learning to bias the search toward
promising expressions. Methods such as DSR (Petersen et al.,2019), Al Feynman (Mundhenk et al.,
2021)), and NGGPPS (Udrescu & Tegmark, |2020) use RNNs or Transformers to guide expression
generation or predict symbolic transformations. Deep learning and GP-based approaches are alterna-
tive methods of symbolic regression. We make comparisons between GP-based and deep-learning
algorithms on benchmark performances later in Sec. 4]

Recent algorithms (Petersen et al.|[2019;|Mundhenk et al., 202 1)) start to use recurrent neural networks
(RNNs) to learn trends in expression coefficients. However, they do not capture higher-order syntactic
structures, such as the recurring mathematical motifs found in top-performing individuals. Therefore,
these approaches miss the opportunities to build complex expressions from learned substructures.
Identifying and reusing these structures could accelerate discovery by enabling recombination of
partial solutions into globally correct forms. Moreover, most existing SR systems specialize in either
explicit mappings or implicit relations, but not both. The only known system supporting both, Eureqa
(Schmidt & Lipson, [2009), has remained closed sourced and now is integrated into a commercialized
platform.

In this work, we introduce SYMMATIKA, a unified symbolic regression framework that discovers both
explicit and implicit mathematical relations by combining multi-population feedback-based genetic
programming with learned structural pattern reuse. Given data Dg = {(x;,y;)}2L, for explicit tasks
or Dy = {(x;)}, for implicit ones, SYMMATIKA iterates over three key phases: (1) feedback-
based GP, which adaptively adjusts operation weights based on evolutionary context; (2) structural
analysis, which extracts frequent syntactic substructures from high-performing expressions; and (3)
population-specific updates to generation parameters, enabling structurally guided tree construction.
The algorithm returns the fittest expression across all populations. In experiments on the Nguyen
benchmark and Feynman equations, SYMMATIKA outperforms state-of-the-art methods in accuracy
and convergence. It also recovers implicit governing equations from experimental data in the Eureqa
dataset with up to 100x faster, demonstrating both versatility and performance.

2 RELATED WORK

Genetic Programming for Symbolic Regression. GP has long been a cornerstone of symbolic
regression, originating with Koza’s foundational work (Koza, [1990; (1994), which introduced
the idea of evolving expression trees via biologically inspired operations such as mutation and
crossover. Modern GP-based SR systems such as Operon (Burlacu et al.,|2020) and PySR (Cranmer,
2023) inherit this lineage. Operon uses a steady-state GP model with tournament selection, while
PySR employs a multi-population island model and simulated annealing to balance exploration
and exploitation during evolution. These frameworks rely on fixed operator probabilities, which
can hinder adaptive search in complex landscapes. Feedback-based adaptive crossover-rate in
evolutionary computation (Guan et al.,|2024)) proposes a modifiable crossover distribution to optimize
crossover points, however it does not control the probability of crossover being selected over other
genetic operations (i.e. mutation or single-node crossover). Self-adjusting mutation rates with
provably optimal success rules (Doerr et al, [2019) proposes updating mutation rates based on
fitness-success of offspring, yet it does not consider the overall evolutionary progress of the algorithm.

Under review as a conference paper at ICLR 2026

SYMMATIKA builds on this GP foundation but introduces two key innovations. First, it uses feedback-
based operator scheduling that dynamically adjusts mutation, crossover, and selection rates based
on each population’s recent evolutionary progress (Sec.[3.2). Second, it augments the search with
a reusable structural motif library, extracted from high-performing expressions across populations
and generations (Sec. [3.3). This enables the recombination of semantically meaningful substructures,
promoting convergence toward globally correct solutions. Unlike previous GP models that operate
solely at the token or subtree level with fixed heuristics, SYMMATIKA evolves both structural and
operator-level strategies in tandem.

Neural-Guided Symbolic Regression. Neural-guided SR emerged to improve search efficiency
by integrating neural networks into symbolic discovery (Martius & Lampert, 2016} |Alaa & Van der
Schaar, 2019; [Kamienny et al.,[2022; Biggio et al., 2021; Champion et al.,|2019). Among these, Al
Feynman (Udrescu & Tegmark, [2020) is notable for using neural networks to detect symmetries, units,
and separability in the data, enabling recursive decomposition of complex equations. More directly
comparable to our method is DSO Mundhenk et al.[(2021), which combines an RNN-based generator
with stateless, random-restart GP loops. Their model generates [V candidate expressions per iteration,
refines them over .S GP steps, and uses the best M expressions to update the RNN via policy gradients.

While both our SYMMATIKA and DSO use learning-based components to guide symbolic search,
our approach diverges in two critical ways. First, instead of training a monolithic RNN to guide
sampling, we perform population-specific frequency analysis over high-performing expressions to
update generation parameters, enabling interpretable and efficient adaptation. Second, and more
fundamentally, DSO learns only at the foken level (e.g., which operators and constants are promising),
whereas SYMMATIKA extracts and reuses high-impact structural patterns — subtrees that recur in
successful individuals. This is especially useful to recombine partial symbolic solutions into novel
candidates for full solutions, facilitating both exploration and repair. Furthermore, our focus is
orthogonal to recent work using deep neural networks to uncover latent variables (Chen et al., [2022),
equations (Brunton et al.| 2016), or structures (Huang et al.,|2024). These approaches aim to extract
informative features from data. In fact, these approaches can integrate symbolic regression into their
process of discovering governing principles.

Eureqa and Implicit Symbolic Regression. Most modern SR systems focus on discovering
explicit functional mappings y = f(x), while implicit relations F'(x,y) = 0, commonly seen in
physical systems governed by conservation laws or symmetries, remain underexplored. Eureqa
(Schmidt & Lipson, [2009)) is one of the few frameworks capable of discovering both explicit and
implicit expressions. It uses a Pareto-optimized GP framework that perturbs, recombines, and
simplifies expressions, scoring candidates via error and complexity. Importantly, Eureqa incorporates
implicit-derivative metrics to recover nontrivial invariant equations.

Despite its versatility, Eureqa is over 16 years old and struggles on modern benchmarks due to
fixed operator schedules and heuristics tailored for low-dimensional problems (originally < 4
variables). SYMMATIKA preserves Eureqa’s implicit-derivative loss but augments it with improved
GP techniques including feedback-driven operator tuning, structural motif reuse, and multi-population
coordination. These enhancements enable SYMMATIKA to recover implicit equations up to 100 x
faster and achieves superior performance on explicit SR benchmarks such as Feynman and Nguyen.

3 SYMMATIKA

SYMMATIKA is composed of two core components: (1) a multi-population, feedback-driven genetic
programming engine, and (2) a library of high-impact symbolic motifs that capture reusable substruc-
tures. In this section, we introduce the formal setup and describe each component, followed by their
integration for discovering both explicit and implicit expressions in data.

3.1 PROBLEM SETUP

We represent symbolic expressions as algebraic trees 7, with internal nodes as unary or binary
operators (e.g., +, X, cos, log) and leaf nodes as constants or variables. A pre-order traversal of 7
yields the symbolic expression f, whose quality is assessed using task-specific fitness metrics.

Under review as a conference paper at ICLR 2026

Explicit relations. Given data Dr = {(x;,)}, with x; € R%, the goal is to find f such that
y = f(x). We define fitness as mean-log-error (MLE):

1

N
Lp,(f)=— Zlog(l +lyi — f(x)])

=|

Implicit relations. When target variables are not explicitly labeled, as is common in physical
systems governed by invariants, we aim to discover expressions f(x) = 0 that characterize
underlying constraints or symmetries. Given a candidate expression f(x1,x2,...,2,) = 0, to
quantify fitness, we apply the implicit function theorem. Treating x; as an implicit function of x;,
the derivative is given by:

of
6]}1' - azj
9. = " of
Ox;j o

We compute symbolic partial derivatives across all variable pairs and compare them against finite-
difference numerical estimates. To account for variable interdependencies, which frequently occur in
coupled dynamical systems, we generalize the paired partial derivative as:

Axy

ox; Ox; + Oz - Ar
. Axg
Orj dxj + Oz, - Ao,

where z,, and z, are variables interdependent with x; and x;, respectively. A represents finite
differences in numerical analysis (including time-series data), or the numerical approximation of the
derivative, and O represents the calculus partial derivative of a symbolic expression. We evaluate
all possible such pairings and take the worst-case pairing for evaluation to penalize expressions that
perform well only under selective dependencies.

Let M, and M, denote the symbolic and numerical paired-partial derivative matrices (shape (‘21) x N).
The implicit fitness is:

N
Lo,(F) =~ S Tog (1+ [Ma(x) — Ma(x0))
i=1

3.2 FEEDBACK-BASED GENETIC PROGRAMMING

Tree-based genetic programming uses two core operators: crossover, which swaps subtrees at selected
nodes between parents, and mutation, which perturbs nodes within an individual. These are typically
coupled with a selection mechanism (e.g., tournament selection) that favors high-fitness candidates.
While effective, traditional GP applies static operator rates and rigid selection rules, often overlooking
valuable substructures in lower-fitness individuals and failing to adapt to population dynamics. To
address these limitations, we extend GP with four key mechanisms:

Single-node crossover. Traditional subtree crossover introduces large structural changes. To enable
finer control during late-stage optimization, we introduce single-node crossover, which swaps only
one same-type node between trees (i.e. binary operation <> binary operation, unary operation <>
unary operation, variable <+ variable, etc.).

Temperature-guided selection and mutation. Simulated annealing is a well-established strategy
for balancing exploration and exploitation in evolutionary algorithms. PySR (Cranmer}2023)) incor-
porates this by rejecting a mutation with probability p = exp (%), where L and L are the
fitness scores of an expression before and after mutation, 7" € [0, 1] is the annealing temperature, and
o is a scaling hyperparameter. While effective for mutation acceptance, PySR continues to rely on tour-
nament selection, which prioritizes only the fittest individuals, favoring exploitation over exploration.

To promote further exploration of potentially promising but lower-fitness individuals, we extend
simulated annealing to the selection mechanism itself. During selection, we randomly sample a

£D(f))

subset of individuals from a population and assign each a Boltzmann probability: p; = exp(=%¢

Under review as a conference paper at ICLR 2026

7 = 327 — cos(y)

My (1) = (71, 1) JiM, (1) = (7a,I(7r)):

4—

a) Extract motifs b) Update library, select motifs c) Build/distribute composite
expressions

Fig. 2: Motif-based recombination across evolving populations with shared top performers.

where Lp(f) is the fitness of candidate f. Selection is then performed via roulette sampling over
normalized probabilities. At high temperatures (I — 1), selection approximates uniform sampling,
promoting exploration. As T" decreases, the probability mass concentrates on high-fitness candidates,
effectively converging toward tournament-style selection. This adaptive strategy allows the selection
mechanism to gradually shift from exploration to exploitation as the evolutionary process progresses.

We apply a similar temperature-dependent strategy to mutation. At high temperatures, coarse
mutations such as subtree replacement are favored to encourage diversity. As T lowers, finer
mutations, such as constant perturbations or operator swaps, are more likely. Each population P;
maintains a temperature-adjusted distribution over mutation types, enabling population-specific
tuning of structural granularity. Together, these temperature-guided mechanisms provide principled
control over both the scope of variation and the selective pressure during evolution.

Feedback-based operator scheduling. Traditional GP systems use fixed rates for genetic operators
such as mutation and crossover (Schmidt & Lipson, 2009). While simple, static rates are suboptimal:
coarse-grained changes like subtree crossover are useful early in evolution, whereas fine-grained
adjustments like coefficient tuning are better suited for later stages. To enable adaptive behavior,
we introduce feedback-based scheduling that dynamically adjusts operator probabilities based on
the evolutionary context of each population.

Let gy be the average fitness of the top-M individuals in a population prior to GP loop, and let g,
be the same statistic after n generations. Let h denote the number of consecutive generations with
negligible fitness improvement (plateau), defined as |g,, — g,_1| < € for some threshold ¢ = 1e~°.
We define the operator probability function:

mi £ (2ol —) 2010 h > 2

mi & (gl e —) else

P(gn, h) = {
Here, m; and m; are the initial and final operator probabilities for each genetic operation (e.g.
crossover, mutation), with signs determined by whether each operator frequency should increase or
decrease over time. Crossover starts with probability 60% and decreases to 5%, single-node crossover
starts with probability 10% and increases to 15%, mutation starts with probability 30% and increases
to 80%. This function is safe-guarded by these probability bounds and our probabilistic selection
model, so it is resilient to abnormal degradations in average fitness.

Island populations with migration. We evolve a set of populations or “islands” in parallel. The
island model for GP is a powerful tool for simultaneously evolving multiple distinct evolutionary
paths (Duarte et al., 2017; [Whitley et al.| [1999). We allow for small migrations between islands
by swapping small subsets of individuals between populations. Initially, 1% of island populations
are swapped every 20 iterations. These subsets increase to 2% of island populations according to
a growing control rate orjr. We keep migrations small and infrequent to promote population diversity
and prevent convergent evolution, which we tend to observe when migration rates exceed 3%.

Under review as a conference paper at ICLR 2026

3.3 MOTIF LIBRARY AND STRUCTURE REUSE

After each iteration of GP, we generate new candidates to replace subsets in each population P of
worst-performing individuals. Candidate generation in SYMMATIKA is modeled as a parameterized
distribution over expression trees, denoted p(7 | 6), where 7 is a symbolic expression and 6 encodes
node-level generation probabilities (e.g., for selecting constants, variables, and operators) (Mundhenk
et al., [2021}; |Petersen et al, 2019). These parameters are updated based on frequency feedback
from high-fitness individuals: for each operator type 6;, we compute its frequency fp, across top-
performing expressions, and apply the update:

0; < 0; + Bo, fo,

Here, By, is a scaling factor that accounts for natural biases, e.g., binary operators (3p, = 0.2) such as
+ and x may occur more often than unary functions (8, = 1.0) like log or exp, and are thus adjusted
more conservatively. These biases were selected from observations and tuning of our parameterized
candidate generator during initial testing. This feedback mechanism enables population-specific
adaptation of the generative distribution, which can bias expression construction toward promising
token-level patterns.

However, frequency-based feedback alone is limited: it captures which tokens are useful, but cannot
be used to explicitly discover structural patterns or partial solutions in individuals. For instance,
in a symbolic regression problem with correct solution f = 22 + y? + 22, a partial solution
f' = 2% + y? — cos(z) would not be recognized as having some correct terms through frequency
analysis. To better identify and reuse partial solutions, we introduce a structural motif discovery
mechanism inspired by biological sequence motifs.

In molecular biology, a sequence motif is a recurring nucleotide or amino-acid pattern with functional
significance (Tateno et al.,|1997; Liu et al.| 2002; |Chou & Schwartz, 2011} |Grant & Baileyl, 2021)).
Analogously, we define a symbolic motif as a high-impact subexpression, a subtree within an
expression that contributes strongly to its overall fitness. We use this intuition to construct a reusable
library of symbolic motifs and employ them for guided recombination.

Initialization and Data Structure. To implement structural reuse, we maintain a central motif
library Ml that stores high-impact symbolic subexpressions across populations. This library is
structured as a d x k table, where d corresponds to the number of data variables and each row holds
up to £ motifs associated with a particular variable, where k is typically a small integer (< 20).
Each entry in the table consists of a motif M, = (7', I(7’)), where 7’ is a symbolic subtree and
I(7")) is its estimated impact score on fitness. We calculate impact score with the following equation
I(7")) = L(7) — L(7 — 7"), where L(7) is the loss of the original tree expression and L(7 — 7') is
the loss of the original tree without the subtree 7’. This quantifies the importance of the substructure
to the overall quality of the expression.

Motif Generation. After each generation, we examine the top M individuals from each island
population to identify candidate motifs. For a given expression 7 (e.g., 7 = 3z2 — cos(y)), we
extract the left and right subtrees of each internal node (e.g., 71, = 322, Tr = — cos(y). Note: cos(y)
is a negative term in the example, so we extract it as — cos(y)) and assess their fitness contribution.

Each motif is then associated with a specific input variable v by scanning the subtree in pre-order and
assigning it to the first variable encountered. This heuristic is based on the assumption that symbolic
components are typically rooted in a dominant variable, and indexing motifs by variable helps
maintain coverage and diversity during recombination. The newly extracted motifs are compared to
the existing entries in row v of M ;. If a new motif has a higher impact than the lowest-ranked entry,
it replaces it. If not and the row has not been filled, the new motif will be added. The motifs in each
row are then re-sorted by their impact scores to retain the most promising candidates.

Structure-Aware Expression Synthesis. Once the motif library is updated, new expressions are
synthesized by sampling one or more motifs from each row of M until all variables are represented.
These motifs are then assembled into full expressions using randomly selected binary algebraic
operators such as +, —, X, or <+, resulting in composite symbolic expressions 7’. The resulting
expressions are inserted into a dedicated motif population P, which co-evolves alongside the main
island populations.

Under review as a conference paper at ICLR 2026

Co-Evolve Motif-Population and Main Populations. To propagate promising structural
components throughout the evolutionary process, high-performing expressions from Pj, are
periodically injected back into the main populations. This allows strong partial solutions, discovered
independently across islands and generations, to be recombined and reused in novel ways, ultimately
improving both convergence speed and expression quality.

This structure-aware mechanism complements token-level parameter updates by identifying se-
mantically meaningful subtrees for reuse and recombination. It accelerates symbolic discovery by
enabling partial solution reuse and coordinated variable coverage. Motif recombination also improves
robustness to local optima by synthesizing expressions from independently validated high-impact
components. We visualize this pipeline in Fig.[2] outline the full algorithm in Alg.[I] visualize the
full model in Fig. [T} and list hyperparameters in Appendix Tab.

3.4 IMPLEMENTATION DETAILS

SYMMATIKA is a multi-core C++23 library, compiled with clang++ and optimized using —-03
and -march=native flags. It leverages SymEngine for symbolic computation, Eigen for linear
algebra and paired-partial derivative operations, and OpenMP for parallelization. The full framework
is open-sourced to support future work in interpretable modeling and symbolic discovery.

4 EXPERIMENTS

For all experiments, SYMMATIKA is instantiated with population sizes of 10,000 individuals per
island, followed by truncation to the top 400 for the GP-loop. The number of islands I is set
proportional to expression complexity as I o« 2d, where d is the number of variables (capped at
I = 8 for large SR-problems with five or more variables due to computational considerations). We
run each experiment for 1500 generations of GP.

We report: (1) recovery rates on the Nguyen benchmark suite (with an emphasis on Nguyen-12
recoveries), (2) error-complexity plots of the Feynman equations (mean proportion of R? > 0.99 vs.
equation complexity) and 57 SRBench Black-box problems (median R? vs. equation complexity),
and (3) implicit-relation discovery in physical systems using Eureqa datasets. We also performed
ablation studies to assess the contribution of core components of SYMMATIKA. Our goals are to
demonstrate the effectiveness of SYMMATIKA on both explicit and implicit SR tasks, highlight cases
where it outperforms prior work, and understand how different algorithm modules contribute to
performance.

All experiments are run on a 2023 Apple M3 Max MacBook Pro with a 14-core CPU, 30-core GPU,
and 36GB unified memory. Unlike other neural-guided approaches, SYMMATIKA does not require
GPUs nor access to large language models (LLMs). Since SYMMATIKA uses multi-core execution,
and many baselines are either single-core or multi-core with unknown runtimes, we report recovery
rates (not wall-clock time) for Nguyen and Feynman.

4.1 NGUYEN BENCHMARK

Tab. [5] reports recovery rates over 100 independent runs per task. We take reported results from
Petersen et al.|(2019); [Mundhenk et al.[(2021) on NGGPPS (Note: PQT is one method of training
NGGPPS’ RNN), DSR, and Eureqa. SYMMATIKA records an average recovery rate of 96.5%,
outperforming all other methods by statistically significant margins (maximum p < 1075 from
z-score testing). We ran 100 runs with random seeds on Nguyen-12 using PySR and Operon with
the exact experiment settings (details in Appendix and reported 0/100 and 2/100 recoveries
respectively; given the simpler nature of Nguyen 1-11, we felt it was not necessary to perform testing
on problems proven to be easily solvable. Notably NGGPPS (Mundhenk et al.l 2021)) reports a 12%
success rate on a relaxed variant with expanded data range (Nguyen-12*), our performance remains
significantly stronger on the original Nguyen-12 dataset. These results highlight the advantage of
combining structural motif reuse with feedback-driven parameter tuning, especially for long and
composite expressions.

Under review as a conference paper at ICLR 2026

DL-based SR GP-based SR ML methods
XGB 20
25 Qzandumar%ggé’t“ D MRGP [S) FX
LGBM o FEAT (¢]
o) AlFeypman AlFeynman Q
] AT 5 SRU=0) °
g 20 KernelRidge * g1s gplearn
3 SBP-GP) . < Operon ©
o TPSR (A=0) o . 2 TSR (A =0.1) o
g 13P: R(A:g)l) o g 1 EPLEX
3 TPSR (A =0.5) K] TPSR (A=0.5))
= Q OTPSR(A=1) T 10 @SR(A=1)
¥ o [FEAT S AFP_FE
s ‘Gperon o s © !
% 10 05) EPLEX < [S) AP
£ o AF:FP_FE £ GP-GOMEA o
%’_ GP-GOMEA 5] ° % SNIP O
£ SymMatika) £ 5 o B4R
S s o BSR S A
© opleam [o SR
O 0. linear SymMatika o)
0 ® 0 hJ
0 5 10 15 20 25 0 5 10 15 20
Median R? Rank (lower is better) Mean Accuracy (R? > 0.99) Rank (lower is better)
(a) Black-box dataset (b) Feynman dataset

Fig. 3: Error—complexity (rank) trade-off on the Black-box (left) and Feynman (right) datasets.

4.2 FEYNMAN EQUATIONS BENCHMARK

Next, we evaluate on the Feynman benchmark, a widely adopted dataset of 100 symbolic physics
expressions derived from the Feynman Lectures. As in prior work, expressions are sampled to form
datasets D = {(x;,9;)}}¥,, and success is defined as recovery of the symbolic target. We performed
two sets of experiments: (1) recovery rates on 100 Feynman problems outlined in LaSR (Grayeli
et al, 2024)), and (2) error-complexity plot (mean R? > 0.99 proportion vs. equation complexity)
against SRBench (La Cava et al., 2021) results. We use the same experimental settings as for the
Nguyen benchmark (Appendix [A.3).

As shown in Tab.[d] SYMMATIKA recovers 73/100 expressions outperforming all methods, including
GPlearn (Stephens et al., 2016), DSR (Petersen et al., 2019), uDSR (Landajuela et al.| [2022),
AlFeynman (Udrescu & Tegmark, 2020), PySR (Cranmer, 2023)), and LaSR (Grayeli et al.| [2024)).
LaSR (Grayeli et al., |2024) extends PySR (Cranmer} 2023) with natural language priors from LLMs
via a CONCEPTABSTRACTION function, enabling semantic guidance during search. While this
approach is orthogonal to ours, our results show that structurally guided recombination and operator
adaptation alone are competitive with language-informed strategies.

To showcase some sample output, we run SYMMATIKA on a sample equation from the Feynman

Lectures on Physics (Feynman et al., [2015)), the relativistic Doppler shift formula w = Lty =wp.
-2
After running SYMMATIKA on its dataset, it returns the expression w = (‘:_FZ) wo with an MLE

loss of —3.10862 x 1016, and the discovered expression is mathematically equivalent to the ground
truth expression, albeit syntactically slightly different. We provide outputs on a subset of sampled
Feynman Equations in Appendix Sec.[A.T]

For the error-complexity plot, SYMMATIKA places impressively on the Pareto front. We report
mean R? > 0.99 proportion of 0.942 and complexity of 13.294 across 6 trials (Fig. . We surpass
all algorithms on SRBench — including Operon, AIFeynman and SBG-GP to name a few — with
maximum p = 0.044 — except for MRGP (Arnaldo et al., 2014)), which reports mean proportion 0.931
yet complexity 26316, significantly larger than SYMMATIKA. On the Black-box subset, however,
we report much better results in both error and complexity then MRGP. Additionally, two versions
of TPSR (Shojaee et al., 2023) slightly outperform our mean (R? > 0.99) accuracy with 0.949
(TPSR[A = 0.1]) and 0.952 (TPSR[A = 0]) to our 0.942, however our complexity is significantly
improved with our 13.294 compared to their 84.42 (TPSR[A = 0]) and 57.22 (TPSR[A = 0.1]).
Overall, SYMMATIKA places strongly on the Pareto front and leads in model complexity.

4.3 BLACK-BOX BENCHMARK

We evaluated SYMMATIKA on 57 Black-box problems gathered from SRBench used by TPSR
(Shojaee et al.| 2023) which include synthetic and real-world datasets and we recorded median
R? and mean equation complexity for the error-complexity plot (Fig. . We ran 5 full trials

Under review as a conference paper at ICLR 2026

and recorded median R? of 0.931 and equation complexity of 28.059. We outperform nearly all
benchmarked algorithms in median R? and match TPSR [\ = 0.5] (complexity 82.58), where \ is a
hyperparameter balancing fitting and complexity reward), and falling slightly behind TPSR [A = 0]
at 0.938 (complexity 129.85), Operon at 0.937 (complexity 61.74) and TPSR [A = 0.1] at 0.945
(complexity 95.71). Our complexity significantly improves on these algorithms by a factor of 3-4.5
for TPSR and a factor of 2 for Operon, and MRGP which reports a much-lower median R? of 0.502
larger and complexity 9878.172. TPSR records one trial so we cannot report meaningful p-testing
given limited experimental data, yet we can report that the Operon’s outperformance of us is not
statistically significant (p = 0.71138).

4.4 EUREQA PHYSICAL SYSTEMS

To evaluate implicit symbolic regression, we compared against Eureqa on four time-series physical
systems from its supplementary materials, including circular, pendulum, spherical, and double
pendulum motions. Unlike the explicit SR benchmarks, these systems do not provide labeled outputs
y, and recovery involves discovering hidden algebraic constraints f(x) = 0 from the raw dynamics.

SYMMATIKA used the same experimental setup

as with previous benchmarks. As Eureqa sup- Tab. 1: Runtime (s) on Eureqa dataset.

ports 32-core execution with distributed in- §yMMATIKA converges 10x—100x faster.
frastructure, we report wall-clock convergence

times to compare implicit SR performance

System SYMMATIKA (s) Eureqa (s)

(Tab. [[). SYMMATIKA recovers the ground- — e Y
truth implicit expressions outlined in the Eu- Circle—L :

. pendulum_h_1 0.98 31

reqa S.O.M. at very improved speeds. We ob- ¢ pore 1 3.00 320

serve ~100x speedups for simpler systems like db1_pendulum_h_1 900.00 27000

circle_1, and 10x for more complex sys-
tems like double_pendulum_h_1. We believe that these gains stem not only from modern
hardware but also from algorithmic improvements, including adaptive operator scheduling, and
motif-driven structural reuse.

4.5 ABLATION STUDY

To assess the contribution of core components of SYMMATIKA, we perform ablations on the Nguyen
benchmark under four configurations: (1) a baseline with standard GP (no parameter tuning or motif
reuse), (2) baseline + 6-based parameterized candidate generation, (3) baseline + structural motif
library, and (4) the full model with both mechanisms enabled. Each configuration is evaluated across
20 independent runs per task as shown in Tab. [6]in the appendix.

The full model consistently achieves high recovery rates, with improvements observed on nearly
every task. Parameterized generation provides consistent boosts across all benchmarks, while motif
reuse is especially helpful on longer expressions (e.g., the challenging Nguyen-12 (Sun et al.l 2025)).
In isolation, the motif mechanism raises the Nguyen-12 recovery rate from 5% to 40%, and further
improves to 65% when combined with §-based parameter adaptation. These results confirm that
token-level trends and reusable substructures capture complementary inductive biases that are critical
for recovering long or irregular expressions. We discuss limitations in depth in Appendix Sec.[A.5]

5 CONCLUSIONS

We presented SYMMATIKA, a symbolic regression framework that combines feedback-guided genetic
programming with a reusable structural motif library to recover both explicit and implicit expressions
from data. Through adaptive operator scheduling, motif-based recombination, and implicit-derivative
fitness evaluation, SYMMATIKA outperforms state-of-the-art methods on the Nguyen and Feynman
benchmarks and uniquely recovers complex and implicit equations, including Nguyen-12 and Eu-
reqa’s physical systems. These results highlight the value of integrating structural priors into symbolic
search. Future work will explore robustness to noise and extend the framework with a user-friendly
UI to support broader adoption in scientific discovery.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

For reproducibility, we’ve added a detailed table of model hyperparameters in App.[A.3] This table
describes each hyperparamater referenced in the main paper — including references to corresponding
sections — and includes the exact values used in all our experiments. We also describe the implemen-
tation details, including hardware setup, for our experiments in Sec.[3.4] Additionally, we describe
the exact experimental setups for the Nguyen (Sec. [d.T), Feynman (Sec. [4.2)), Black-box (Sec.[4.3),
and Eureqa (Sec.[4.4) datasets.

REFERENCES

Ahmed M Alaa and Mihaela Van der Schaar. Demystifying black-box models with symbolic
metamodels. Advances in neural information processing systems, 32, 2019.

Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic program-
ming. In Proceedings of the 2014 annual conference on genetic and evolutionary computation, pp.
879-886, 2014.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936-945. Pmlr, 2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932-3937, 2016.

Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon c++ an efficient genetic pro-
gramming framework for symbolic regression. In Proceedings of the 2020 genetic and evolutionary
computation conference companion, pp. 1562-1570, 2020.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):
22445-22451, 2019.

Boyuan Chen, Kuang Huang, Sunand Raghupathi, Ishaan Chandratreya, Qiang Du, and Hod Lipson.
Automated discovery of fundamental variables hidden in experimental data. Nature Computational
Science, 2(7):433-442, 2022.

Michael F Chou and Daniel Schwartz. Biological sequence motif discovery using motif-x. Current
protocols in bioinformatics, 35(1):13-15, 2011.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably
optimal success rules. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1479-1487, 2019.

Grasiele Duarte, Afonso Lemonge, and Leonardo Goliatt. A dynamic migration policy to the island
model. In 2017 IEEE congress on evolutionary computation (CEC), pp. 1135-1142. IEEE, 2017.

Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman lectures on physics, Vol.
II: The new millennium edition: mainly electromagnetism and matter, volume 2. Basic books,

2015.

Charles E Grant and Timothy L Bailey. Xstreme: Comprehensive motif analysis of biological
sequence datasets. BioRxiv, pp. 2021-09, 2021.

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. Advances in Neural Information Processing Systems, 37:
44678-44709, 2024.

10

Under review as a conference paper at ICLR 2026

Xiaoyuan Guan, Tianyi Yang, Chunliang Zhao, and Yuren Zhou. Feedback-based adaptive crossover-
rate in evolutionary computation. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 6923-6930, 2024.

Kuang Huang, Dong Heon Cho, and Boyuan Chen. Automated discovery of continuous dynamics
from videos. arXiv preprint arXiv:2410.11894, 2024.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Frangois Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269-10281, 2022.

John R Koza. Genetic programming: A paradigm for genetically breeding populations of computer
programs to solve problems, volume 34. Stanford University, Department of Computer Science
Stanford, CA, 1990.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87-112, 1994.

William La Cava, Bogdan Burlacu, Marco Virgolin, Michael Kommenda, Patryk Orzechowski,
Fabricio Olivetti de Franga, Ying Jin, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. Advances in neural information processing systems, 2021
(DB1):1, 2021.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
symbolic regression. Advances in Neural Information Processing Systems, 35:33985-33998, 2022.

Jin S Liu, Mayetri Gupta, Xiaole Liu, Linda Mayerhofere, and Charles E Lawrence. Statistical
models for biological sequence motif discovery. In Case Studies in Bayesian Statistics: Volume VI,
pp- 3-32. Springer, 2002.

Qiang Lu, Jun Ren, and Zhiguang Wang. Using genetic programming with prior formula knowledge
to solve symbolic regression problem. Computational intelligence and neuroscience, 2016(1):
1021378, 2016.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053,2021.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81-85, 20009.

Michael D Schmidt and Hod Lipson. Age-fitness pareto optimization. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pp. 543-544, 2010.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
planning for symbolic regression. Advances in Neural Information Processing Systems, 36:
45907-45919, 2023.

Trevor Stephens et al. Genetic programming in python, with a scikit-learn inspired api: gplearn.
Documentation at https://gplearn. readthedocs. io/en/stable/intro. html, 2016.

Chenglu Sun, Shuo Shen, Wenzhi Tao, Deyi Xue, and Zixia Zhou. Noise-resilient symbolic regression
with dynamic gating reinforcement learning. arXiv preprint arXiv:2501.01085, 2025.

Y Tateno, K Ikeo, Tadashi Imanishi, H Watanabe, T Endo, Y Yamaguchi, Yoshiyuki Suzuki, K Taka-
hashi, K Tsunoyama, M Kawai, et al. Evolutionary motif and its biological and structural
significance. Journal of molecular evolution, 44:S38-S43, 1997.

11

Under review as a conference paper at ICLR 2026

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science advances, 6(16):eaay2631, 2020.

Marco Virgolin and Solon P Pissis. Symbolic regression is np-hard. arXiv preprint arXiv:2207.01018,
2022.

Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model genetic algorithm: On
separability, population size and convergence. Journal of computing and information technology, 7
(1):33-47, 1999.

12

Under review as a conference paper at ICLR 2026

APPENDIX

A.1 SAMPLE OUTPUTS FROM SUBSET OF FEYNMAN EQUATIONS

Tab. 2: Comparison of ground-truth vs. discovered equations.

Equation Number Ground Truth Equation

Discovered Equation

1184 r= murtmer
1.11.20 p, — 0.333333333;,2?333@;73%
1.37.4 I, =1, + Iy + 2/I1 I5 cos (9)
1.24.6 E, = im(w? + wd)a?
MI.17.37 f =B+ acos(d))
1.27.6 fr=—%

T ()
1.47.23 c=,/%"
L.12.11 F = ¢(Ef + Bvsin(9))

r = 1M T2MM2
(m1+ma2) (m1+mz2)
P. = ”ppéEf
* 3ka
I* = Il + IQ + 2\/[1[2 COSs (5)

1

E, = im(w? + wd)ia?
f =5+ Bcos ()
ff = LJIFL
d; T
c— [aer
o

F = qEy + qBvsin(9)

We demonstrate outputs on a subset of the Feynman Equations and compare ground truth equations to
discovered equations. The ground truth equations and discovered equations are syntactially different
although mathematically equivalent. These discoveries were found with implementation details
consistent with all other experiments. All discovered equations record an MLE loss of < 10716,

A.2 SYMMATIKA ALGORITHM

Alg. 1 SYMMATIKA Algorithm

input: Symbolic regression problem with data D and relation type ¢

output: Best-fitting expression 7*

1: Initialize islands Iy, . . ., I,,, with populations P, ..., P,, and node parameters 61, ..., 0,,

2: Initialize fitness trackers Fi, ..., F,
3: Define motif library M,
4: for each generation g do

5: for each island I; do

6: E(I;) + evolve island population P; with k runs of GP

7: Ty < update island parameters 6,

8: if plateau height h > hy,x then

9: rebuild population P;
10: end if
11: Tm ¢ update motif library My with high-performing subexpressions
12: M (I;) + migrate individuals between islands with growing rate aps
13: end for
14: E (M) < evolve motif population and distribute fittest individuals to island populations
15: end for

16: return 7*

A.3 TABULATED SYMMATIKA PARAMETERS

Tab. [3is a list of SYMMATIKA’s experimental settings. We performed each experiment with random

seeds.

13

Under review as a conference paper at ICLR 2026

Tab. 3: Experimental settings of SYMMATIKA.

Parameters Explanation
G = 1500 number of generations in evolutionary algorithm.
m number of distinct island populations (see Section |4).
k =200 number of iterations of GP per generation (see Fig|I).
t=0,1 type of SR problem, i.e. explicit or implicit relation (see Algorithm.
ap = 0.02 migration rate of individuals between island populations (see Algorit m.
Be =(0.2,...,0.2,1.0,...,1.0) natural bias term for node type 6; (see Section[3.3).

—————— ———

5 times 13 times L . . .

m; = 0.60,0.10,0.30 initial genetic operator probabilities (crossover, single-node crossover, mutation)
my = 0.05,0.15,0.80 final genetic operator probabilities (crossover, single-node crossover, mutation)

A.4 NGUYEN & FEYNMAN BENCHMARK RESULTS

Tab. 4: Exact recovery counts on the Feynman benchmark (100 tasks). SYMMATIKA recovers 73
expressions, outperforming all other algorithms.

GPlearn AFP-FE DSR uDSR AlFeynman PySR LaSR SYMMATIKA
20/100 26/100 23/100 40/100 38/100 59/100 72/100 73/100

Tab. 5: Exact recovery rates (%) on the Nguyen benchmark over 100 runs. SYMMATIKA achieves
the highest average performance (96.5%) and recovers Nguyen-12 at significantly higher rates than
existing algorithms (61% success).

Dataset Expression SymMatika NGGPPS DSR PQT Eureqa Operon PySR
Nguyen-1 23 +22+x 100 100 100 100 100 — —
Nguyen-2 z* + 2%+ 2% + 2 100 100 100 99 100 — —
Nguyen-3 2%+ a2t + 2% +a22+a 100 100 100 86 95 — —
Nguyen-4 28+ 25 4ot + 22+ 22+ 2 100 100 100 93 70 — —
Nguyen-5 sin(z?) cos(z) — 1 100 100 72 73 73 — —
Nguyen-6 sin(x) + sin(x + 2?) 100 100 100 98 100 — —
Nguyen-7 log(z + 1) + log(z? + 1) 98 97 35 41 85 — —
Nguyen-8 VT 100 100 96 21 0 — —
Nguyen-9 sin(z) + sin(y?) 100 100 100 100 100 — —
Nguyen-10 2 sin(z) cos(y) 100 100 100 91 64 — —
Nguyen-11 2¥ 100 100 100 100 100 — —
Nguyen-12 a* — 234+ 1y? —y 61 0 0 0 0 2 0
Average 96.5 914 83.6 752 73.9 — —

14

Under review as a conference paper at ICLR 2026

A.5 ABLATIONS & LIMITATIONS

Tab. 6: Recovery rates for individual benchmark problems with model ablations across 20 independent
trials per problem. 95% confidence intervals are obtained from the recovery rates across all 12 Nguyen
problems for each ablation.

Recovery rate (%)

Problem Baseline 6 Generation Motif Library Full Model
Nguyen-1 100 100 100 100
Nguyen-2 100 100 100 100
Nguyen-3 100 100 100 100
Nguyen-4 90 95 100 100
Nguyen-5 95 100 100 100
Nguyen-6 85 90 95 100
Nguyen-7 60 80 85 95
Nguyen-8 100 100 100 100
Nguyen-9 100 100 100 100
Nguyen-10 100 100 100 100
Nguyen-11 100 100 100 100
Nguyen-12 5 20 40 65
Nguyen average 86.3 90.4 93.3 96.7
95% confidence intervals +15.92 +13.02 +9.82 +5.7

The primary limitation in our approach is our results on the Feynman Equations. Although we report
results outperforming or performing on par with leading models, we are still unable to solve a subset
of 27 problems. These problems generally involve long expressions with complicated structures, such
asn = g /(ka))]rLgXp(ium BT problem I1.35.18 in the Feynman Equations (Udrescu
& Tegmark, 2020). Other unsolved problems include large arguments in unary operators (e.g.
T = \/ 2?2 + x5 — 2w129 cos(6; — 63)). To attempt further discovery of Feynman equations, we will
conduct experiments in an improved hardware setup with more CPU cores to evolve more island
populations in parallel with larger populations and for longer. Additionally, we will further investigate
methods of discovering implicit relations in higher-dimensional data (i.e. > 5 variables).

15

	Introduction
	Related Work
	SymMatika
	Problem Setup
	Feedback-Based Genetic programming
	Motif Library and Structure Reuse
	Implementation Details

	Experiments
	Nguyen Benchmark
	Feynman Equations Benchmark
	Black-box Benchmark
	Eureqa Physical Systems
	Ablation Study

	Conclusions
	Reproducibility statement
	Appendix
	Sample Outputs From Subset of Feynman Equations
	SymMatika Algorithm
	Tabulated SymMatika Parameters
	Nguyen & Feynman Benchmark Results
	Ablations & Limitations

