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Abstract

Reconstructing high-resolution (HR) images from
low-resolution (LR) inputs poses a significant
challenge in image super-resolution (SR). While
recent approaches have demonstrated the efficacy
of intricate operations customized for various ob-
jectives, the straightforward stacking of these dis-
parate operations can result in a substantial com-
putational burden, hampering their practical util-
ity. In response, we introduce SeemoRe, an effi-
cient SR model employing expert mining. Our ap-
proach strategically incorporates experts at differ-
ent levels, adopting a collaborative methodology.
At the macro scale, our experts address rank-wise
and spatial-wise informative features, providing a
holistic understanding. Subsequently, the model
delves into the subtleties of rank choice by lever-
aging a mixture of low-rank experts. By tapping
into experts specialized in distinct key factors cru-
cial for accurate SR, our model excels in uncover-
ing intricate intra-feature details. This collabora-
tive approach is reminiscent of the concept of “see
more”, allowing our model to achieve an optimal
performance with minimal computational costs
in efficient settings. The source codes will be
publicly made available at https://github.
com/eduardzamfir/seemoredetails

1. Introduction

Single image super-resolution (SR) is a long-standing
low-level vision endeavour that pursues the reconstruction
of a high-resolution (HR) image from its degraded low-
resolution (LR) counterpart. This challenging task has gar-
nered considerable attention owing to the expeditious devel-
opment of ultra-high definition devices and video streaming
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Figure 1. Model complexity trade-off. Visualization of PSNR,
GMACS, and parameter counts on Mangal09 dataset for x2 task.
Our proposed SeemoRe excels the state-of-the-art CNN-based and
lightweight Transformer-based SR models. Marker size indicates
parameter counts w.r.t SwinIR-Light (Liu et al., 2021).

applications (Khani et al., 2021; Zhang et al., 2021a). Fore-
seeing the resource constraints, it is of substantial desire to
design an efficient SR model for gauging the HR images to
be perfectly visualized on these devices or platforms. Iden-
tifying the most plausible candidates for missing HR pixels
poses a particular challenge for SR. In the absence of exter-
nal priors, the primary approaches for SR involves exploring
the intricate relationships among the neighboring pixels for
reconstruction. Recent SR models exemplify this through
methods such as (a) attention (Liang et al., 2021; Zhou
et al., 2023; Chen et al., 2023), (b) feature mixing (Hou
et al., 2022; Sun et al., 2023), and (c) global-local context
modeling (Wang et al., 2023; Sun et al., 2022), yielding
remarkable accuracy.

Unlike other approaches in this work, we aim to avoid com-
plex and disconnected blocks focusing on specific factors,
opting instead for a unified learning module specialized for
all aspects. However, an additional challenge arises due
to the efficiency requirement, rendering implicit learning
through a vast number of parameters unfeasible, especially
in the context of devices with limited resources.

To achieve such an efficient unification, we introduce
SeemoRe, which leverages the synergy of different experts
to maximize intra-feature intertwining, collaboratively learn-
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ing a cohesive relation across LR pixels. Our motivation
stems from the observation that image features often display
diverse patterns and structures. Attempting to capture and
model all these patterns with a single, monolithic model can
be challenging. Collaborative experts, on the other hand, en-
able the network to specialize in different regions or aspects
of the input space, enhancing its adaptability to various pat-
terns and facilitating the modeling of LR-HR dependencies,
akin to “See More”.

Technically, our network is composed of stacked residual
groups (RGs) for dynamically selecting the pivotal features
via experts, focusing on two different aspects. At the macro
level, each RG embodies two successive expert blocks: (a)
Rank modulating expert (RME), expertized in dealing with
the most informative features through low-rank modulation,
and (b) Spatial modulating expert (SME), expertized in ef-
ficient spatial enhancement. At the micro level, we devise
a Mixture of Low-Rank Expertise (MoRE) as the founda-
tional component within RME to dynamically select the
best and most suitable rank for different inputs and at dif-
ferent network depths while implicitly modeling the global
contextual relationships. Furthermore, we design a Spatial
Enhancement Expertise (SEE) as an efficient alternative to
complex self-attention within SME for distinctly improv-
ing the spatial-wise local aggregation capabilities. Such a
combination efficiently modulates the mutual dependencies
within the feature attributes, enabling our model to extract
high-level information, which is a key aspect of SR. By
explicitly mining experts at different granularity for differ-
ent expertise, our network navigates the intricacies between
spatial and channel features, maximizing their synergistic
contribution and thus accurately and efficiently reconstruct-
ing more details.

As shown in Figure 1, our network significantly outperforms
the state-of-the-art (SOTA) efficient models such as DDistill-
SR (Wang et al., 2022) or SAFMN (Sun et al., 2023) by a
considerable margin, while utilizing only half or even less
of the GMACS. Although our model is specifically designed
for efficient SR, its scalability is evident as our larger model
surpasses the SOTA lightweight transformer in performance
while incurring lower computational costs. Overall, our key
contributions are threefold:

* We propose SeemoRe which matches the versatility
of Transformer-based methods and the efficiency of
CNN-based methods.

* A Rank modulating expert (RME) is proposed to probe
into the intricate inter-dependencies among the relevant
feature projections in an efficient manner.

* A Spatial modulating expert (SME) is proposed to in-
tegrate the complementary features extracted by SME
by encoding the local contextual information.

2. Related Works

CNN-based SR. In recent years, CNN-based tech-
niques have outperformed traditional interpolation algo-
rithms (Duchon, 1979) by learning a non-linear mapping
between the input and target in an end-to-end training
manner. The seminal SRCNN (Dong et al., 2014) intro-
duced a three-layer convolutional approach for image super-
resolution, later extended by works such as (Lim et al.,
2017; Zhang et al., 2018b; Hui et al., 2019; Liang et al.,
2021). VDSR (Kim et al., 2016) and EDSR (Lim et al.,
2017) deepen networks using residual learning principles,
with EDSR streamlining residual blocks for deeper train-
ing. Conversely, RCAN (Zhang et al., 2018a) introduces a
novel residual-in-residual architecture for models exceed-
ing 400 layers. While various spatial and channel attention
mechanisms aim to enhance image reconstruction quality,
CNN-based techniques still struggle to effectively utilize
shared information across both dimensions. In this work,
we aim to explore the interdependencies among the features
in a computationally efficient way.

Transformer-based SR. Thanks to its remarkable perfor-
mance in high-level tasks (Dosovitskiy et al., 2021), the
Transformer architecture has found its way into low-level
vision tasks, such as image SR. Contemporary Transformer-
based approaches aim to alleviate the computational load
by confining self-attention to local regions and incorporat-
ing a higher degree of locality bias into their network de-
sign. SwinlR (Liang et al., 2021) incorporates local window
self-attention and a shift mechanism inspired by the Swin
Transformer design(Liu et al., 2021). Meanwhile, others
like ELAN (Zhang et al., 2022) or ESRT (Lu et al., 2022)
reduce the feature dimensions by splitting or down-scaling
to enhance the computational efficiency. Omni-SR (Wang
et al., 2023) models pixel-interactions across different axes,
creating universal correlations. SRFormer (Zhou et al.,
2023) optimizes the computational efficiency by employing
large window self-attention through the permutation of self-
attention mechanisms. However, transformer-based meth-
ods typically demand significantly higher computational
resources, even with smaller model capacities.

Efficiency in SR. In recent years, the pursuit of efficient
SR techniques has gained significant momentum (Li et al.,
2022; Ignatov et al., 2023; Li et al., 2023; Conde et al.,
2023). Consequently, researchers have introduced stream-
lined neural architectures (Ignatov et al., 2021), network
compression (Wang et al., 2022), reparameterization (Zhang
et al., 2021b), and other training strategies to cater to the de-
mand for efficiency. Initially, efficient SR methods utilized
group convolutions and cascaded block designs to boost
efficiency (Ahn et al., 2018; Hui et al., 2019). Subsequent
advancements introduced convolution-based spatial or chan-
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Figure 2. Architecture Overview. SeemoRe refines the feature representations via stacked Residual groups (RGs). Each RG consists of a
Rank Modulating Exert (RME) and a Spatial Modulating Expert (SME). RME leverages the Mixture of Low Rank Expertise (MoRE) to
refine the global texture, while SME employs spatial enhancement experts (SEE) to supplement RME with spatial cues.

nel enhancement modules (Liu et al., 2020b). More recently,
ShuffleMixer (Sun et al., 2022) integrates large kernel convo-
lutions and feature shuffling, improving both computational
efficiency and high-resolution reconstruction. SAFMN (Sun
et al., 2023) improves the efficiency by collecting non-local
features using a shallow pyramid. Despite improvements in
several efficiency aspects brought up by the aforementioned
approaches, there is still scope for a better trade-off between
model efficiency and the restoration performance.

Dynamic Networks. Dynamic networks have been exten-
sively studied to optimize the balance between speed and
performance across various tasks. Early research employed
conditional computation to selectively activate network seg-
ments at different times (Bengio et al., 2013). More recently,
Mixture-of-Experts (MoE) approaches with routing architec-
ture (Shazeer et al., 2017; Riquelme et al., 2021; Puigcerver
et al., 2024) have expanded model capacity without sig-
nificantly increasing inference costs, primarily enhancing
the feed-forward capacity of Transformers in Natural lan-
guage processing (Shazeer et al., 2017) and high-level vision
tasks (Riquelme et al., 2021; Puigcerver et al., 2024). A
similar idea can be found in image restoration, where Path-
Restore (Yu et al., 2021) dynamically routes image patches
to different network paths based on content and distortion,
leveraging a difficulty-regulated reward function. In this
work, our research explores the routing concept from an
architecture design perspective for image super-resolution,
aiming to discover the most efficient and appropriate expert
to improve the feature modeling.

3. Methodology

In this section, we unveil the fundamental components of
our proposed model tailored for efficient super-resolution.
As demonstrated in Figure 2, our overall pipeline embodies
a sequence of N residual groups (RGs) and an upsampler
layer. The initial step involves applying a 3 x3 convolution
layer to generate the shallow features from the input low-
resolution (LR) image. Subsequently, multiple stacked RGs
are deployed to refine the deep features, easing the recon-

struction of high-resolution (HR) images while maintaining
efficiency. Each RG consists of a Rank modulating expert
(RME) and a Spatial modulating expert (SME). Lastly, a
global residual connection links the shallow features to the
output of the deep features for capturing the high-frequency
details and an up-sampler layer ( 3 x3 and pixel-shuffle (Shi
et al., 2016)) is deployed for faster reconstruction.

3.1. Rank Modulating Expert

Unlike large kernel convolution (Hou et al., 2022) or self-
attention (Vaswani et al., 2017) that rely upon resource-
intensive matrix operations for modelling the LR-HR depen-
dencies, we opt for modulating the most relevant interac-
tions in low-rank in our quest for efficiency. Our proposed
Rank modulating expert (RME) (see Figure 2) explores a
Transformer alike architecture using Mixture of Low-Rank
Expertise (MoRE) for modelling the relevant global infor-
mative features efficiently and a GatedFFN (Chen et al.,
2023) for refined contextual feature aggregation.

Mixture of Low-Rank Expertise. As illustrated in Fig-
ure 3, from a layer normalised input tensor x € R7*WxC
we use a 3 x3 convolution for feature projection and then
we split along the channel dimension to create two distinct
views x, and x, € RE*W*C To efficiently aggregate the
pixel-wise cross-channel context, we leverage a recursive
strided convolution ¢ times followed by a refinement and
upsampling step, resulting in the construction of the fea-
ture pyramid denoted as %, € R7*WX*C The process is
formulated as follows:

)]
%y = | Weo,o(DConvsys([pliaxw)) [taxw, (2)

P hxw = DConvy, . (...(DConvy,, 1 (xp))

where DConvy, «; denotes a depth-wise convolution with
kernel size k and stride s, W _, o denotes a linear layer, p
represents the contextual feature pyramid. Simultaneously,
a parallel depth-wise convolution extracts the local spatial
context X, before feeding both the extracted feature maps
into the mixture of low-rank expertise. This branched paral-
lel design approach is chosen purposefully. In general, the



See More Details: Efficient Image Super-Resolution by Experts Mining

TN
N

Training

0-o—wre -

Router .
Inference

Figure 3. Ilustration of the proposed Mixture of Low-Rank Exper-
tise (MoRE) as a core block of the RME.

downsampling of the feature maps impacts the reconstruc-
tion performance of SR methods. Therefore, we maintain
the same resolution for general feature extraction while in-
corporating an additional path to capture global contextual
cues efficiently, thereby circumventing any information loss.

To further delve into the intricacies of the inter-dependencies
among the extracted features for reducing complexity, we
deploy low-rank decomposition for the inputs while mod-
eling the global contextual relationships. As demonstrated
in Figure 3, a single low-rank expert (£), takes as input the
spatial features, X, and encoded pixel-wise contextual cues,
X3 and is formulated as:

Ei=Wh . c(WeLp % OWe_ g %), (3

where the linear layers denoted as W _, ,, compress the
encoded features along the channel dimension to their low-
rank approximation R;, where i € {1,...,n}. After adeptly
modulating the spatial cues through element-wise multipli-
cation with the contextual cues in low-dimensional space,
another linear layer W3Ri _,¢ extends the features back to
the original dimension C' to extract the relevant channel-
wise spatial content. Thereby, implicitly mixing the crucial
spatial and channel dependencies in an efficient way.

However, manually determining the optimal low-rank (R)
may not fully leverage all the inherent information for mod-
ulation, leading to underutilized model capacity. Thus, we
employ a dynamic approach using a mixture of different
low rank experts, with a routing network (G) that systemati-
cally explores the search space to identify the ideal low-rank
expert based on the input and network depth. Following
(Shazeer et al., 2017), the final output y of the mixture of
low-rank experts is as follows:

Yy = Zg(&a)gi(iavib) + )A(a; “)

where G(-) and &;(+) denote the learned routing function
and the output of the i-th expert, respectively. The sparsity
inherent in the router function G(-) optimizes computation

Algorithm 1 Mixture of Low-Rank Experise

1: Input: Input feature X,, semantic cues X

2: Parameters: n Experts £, Router G, Low-Rank di-
mensions R; = 271 withi € {1,...,n}, top-1 expert
k=1

3: Compute router outputs: g = G(X,)

4: Normalize weights: w = Softmax(g)

5: Select top-1 expert: wiop.1 = topk(w, k = 1)

6: Set all other weights to zero: w; = 0 for ¢ # top-1

7: if training then

8: foreache € & do

9: Ve =Wk c(Wi g% © Wi, %)

10:  end for

11:  Compute final output: y = > w; -y’

12: else

13:  Compute final output: y = wigp. - yop!

14: end if

15: Output: Final output y

by assigning greater weights to the top-k low-rank experts.
While at training time, our method learns from different
experts, during inference, only the selected top-k expert is
utilized for computation, further enhancing the efficiency.
More specifically, the inference complexity is not propor-
tional to the number of experts.

Adhering to the MoE concept with £k > 1, our routing
function for optimal low-rank representation extends sparse
routing principles (Shazeer et al., 2017) by selecting only
the top-1 expert. As our work is pioneering in this domain,
we emphasize a more interpretable top-1 design, as shown
in Figure 5b, which allows us to streamline the model ar-
chitecture and computational process, creating an efficient
yet powerful image super-resolution model. Technically,
both training and inference leverage dynamic expert selec-
tion based on input and model depth; however, only the
top-1 expert per layer is utilized, with contributions from
other experts weighted at zero. During inference, inactive
experts are disregarded to efficiently exploit contextual in-
formation using the optimal input-dependent expert chosen
by the router. This ensures consistency between training
and inference, as only one expert per layer remains active,
thereby mitigating potential discrepancies. In Table 9 found
in the supplementary, we show that augmenting the number
of top-k experts can slightly improve the performance, at
the cost of increased computational complexity. We hope
that our network can serve as a fresh baseline for future
development.

Additionally, the design choices contributing towards the se-
lection of the number of low-rank experts (£;) and the rank
dimension (R) for memory-efficient reconstruction is illus-
trated in Table 5a of the ablation study. We also provide the
pseudocode for the proposed MoRE block in Algorithm 1.
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In addition to the primary analyses presented in the main
text, the supplementary material offer further insights and
experiments that substantiate the design decisions of our
proposed MoRE module. For detailed information, refer to
Tables 11 and 14.

3.2. Spatial Modulating Expert

We observe that the rank modulating expert is more ded-
icated towards investigating the global channel-wise con-
textual information, and its effectiveness would be comple-
mented by the spatial-wise local information. Inspired by
the previous work in classification (Yang et al., 2022; Hou
et al., 2022), we design a spatial modulating expert (SME)
(see Figure 2) comprising of a spatial enhancement exper-
tise (SEE) block that efficiently captures the spatial-wise
coupling followed by a GatedFFN (Chen et al., 2023) for
feature refinement.

Spatial Enhancement Expertise. While the vanilla self-
attention (SA) mechanism (Vaswani et al., 2017) creates
connections among all the input pixels, effectively captur-
ing the relevant context, its quadratic computational com-
plexity with image size poses limitations, particularly in
high-resolution scenarios like image SR. Thus, our spatial
enhancement expertise simplifies the computation of the
similarity matrix A between keys K and queries Q by uti-
lizing a striped depth-wise convolution with a large kernel,
sequentially convolving the feature maps with ky € R[]
followed by ko € R[®1. Specifically, we compute the
locally enhanced spatial-wise features as follows:

Xout = DCOHVZxk(Wé‘eCXm) © WE()J—>CXim (5)

where ® is the Hadamard product, Wé ¢ and W% ~C
are linear (project) layers, DConvy,, ;. denotes the striped
depth-wise convolution, and x;,, is the layer normalised
output of the RME. The use of a large-kernel convolution
facilitates a localized correlation among the pixels within
the k£ x k window, emulating the window-based SA layers
frequently employed in image restoration (Liu et al., 2021;
Zamir et al., 2022; Chen et al., 2023), all the while pre-
serving the efficiency benefits associated with convolutional
layers as demonstrated in Table 4a.

4. Experiments

Datasets and Evaluation. Following the SR litera-
ture (Liang et al., 2021; Chen et al., 2023), we utilize
DIV2K (Agustsson & Timofte, 2017) and Flickr2K (Lim
et al., 2017) datasets for training. We produce LR im-
ages using bicubic downscaling of HR images. When test-
ing our method, we assess its performance on canonical
benchmark datasets for SR - Set5 (Bevilacqua et al., 2012),
Setl4 (Zeyde et al., 2010), BSD100 (Martin et al., 2001),

Urban100 (Huang et al., 2015) and Mangal09 (Matsui et al.,
2017). We calculate PSNR and SSIM results on the Y-
channel from the YCbCr color space.

Implementation Details. We augment our training data
with randomly extracted 64 x 64-sized crops, with random
rotation, horizontal and vertical flipping. Similar to (Sun
et al., 2022; 2023), we minimize the L1-Norm between
SR output and HR ground truth in the pixel and frequency
domain using Adam (Kingma & Ba, 2017) optimizer for
500K iterations with a batch size of 32 and initial learn-
ing rate of 1 x 1073 halving it at following milestones:
[250K,400K ,450K,475K]. All experiments are conducted
with the PyTorch framework on NVIDIA RTX 4090 GPUs.
We design our smallest model (SeemoRe-T) with 6 RGs.
The feature dimension and channel expansion factor in Gat-
edFFN are set to 36 and 2, respectively. For all MoRE
sub-modules, we select an exponential growth of the chan-
nel dimensionality and choose in total of 3 experts. The
kernel size in SEE is set to 11 x 11. More details can be
found in the supplemental, c.f: Table 6.

4.1. Comparison to State-of-the-Art Methods

We present quantitative results for x2, x3, and x4 im-
age SR, comparing against current efficient state-of-the-art
models in Table 1, including CARN-M (Ahn et al., 2018),
IMDN (Hui et al., 2019), PAN (Zhao et al., 2020), DR-
SAN (Park et al., 2021), DDistill-SR (Wang et al., 2022),
ShuffleMixer (Sun et al., 2022), and SAFMN (Sun et al.,
2023). Additionally, we evaluate against lightweight vari-
ants of popular Transformer-based SR models such as
SwinlR (Liu et al., 2021), ELAN (Zhang et al., 2022), and
SRFormer (Zhou et al., 2023) in Table 2. Our proposed
SeemoRe-T stands out as the most efficient method, consis-
tently surpassing all other methods across all benchmarks
and scale factors. For instance as clear from Table 1, on
the Urban100 and Mangal09 benchmarks (x2), SeemoRe-
T outperforms SAFMN (Sun et al., 2023) by 0.41dB and
0.30dB, respectively. Furthermore, with 47% fewer parame-
ters and 65% fewer GMACS than DDistill-SR (Wang et al.,
2022), SeemoRe-T achieves on average 0.12 dB higher
PSNR results across all benchmarks (x4). Scaling our
method up to a comparable size with lightweight Transform-
ers yields comparable or superior results. As demonstrated
in Table 2, our SeemoRe-L outperforms SwinIR-Light and
SRFormer-Light on Mangal09 (x4) by 0.57dB and 0.31dB,
while requiring fewer GMACS.

Visual Results. We show visual comparisons (x4) in Fig-
ure 4. In some challenging scenarios, the previous methods
may suffer blurring artifacts, distortions, or inaccurate tex-
ture restoration. Contrary to others, our SeemoRe alleviates
the blurring artifacts better and maintains structural fidelity.
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Table 1. Comparison to efficient SR models. PSNR (dB 71) and SSIM (1) metrics are reported on the Y-channel. Best and second best
performances are highlighted. GMACS (G) are computed by upscaling to a 1280 x 720 HR image. SeemoRe-T achieves state-of-the-art
performance across all benchmarks with the lowest parameter count and computational demand. ‘-’ represents unreported results.

Method Params GMACS Set5 Setl4 BSD100 Urban100 Mangal09
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic - - 33.66 .9299 30.24 .8688 29.56 .8431 26.88 .8403 30.80 .9339
CARN-M (Ahn et al., 2018) 412K 91 37.53 9583 3326 9141 31.92 .8960 31.23 .9193 - -
IMDN (Hui et al., 2019) 694K 159 38.00 9605 33.63 9177 32.19 .8996 32.17 .9283 38.88 .9774
PAN (Zhao et al., 2020) 261K 71 38.00 .9605 33.59 9181 32.18 .8997 32.01 .9273 38.70 .9773

o DRSAN (Park et al., 2021) 370K 86 37.99 9606 33.57 9177 32.16 .8999 32.10 .9279 - -

X DDistill-SR (Wang et al., 2022) 414K 128 38.03 .9606 33.61 .9182 32.19 .9000 32.18 .9286 38.94 .9777
ShuffleMixer (Sun et al., 2022) 394K 91 38.01 9606 33.63 .9180 32.17 .8995 31.89 .9257 38.83 .9774
SAFMN (Sun et al., 2023) 228K 52 38.00 .9605 33.54 9177 32.16 .8995 31.84 .9256 38.71 .9771
SeemoRe-T (ours) 220K 45 38.06 .9608 33.65 .9186 32.23 .9004 3222 .9286 39.01 .9777
Bicubic - - 30.39 .8682 27.55 .7742 27.21 .7385 24.46 .7349 26.95 .8556
CARN-M (Ahn et al., 2018) 415K 46 3399 9236 30.08 .8367 28.91 .8000 27.55 .8385 - -
IMDN (Hui et al., 2019) 703K 72 3436 .9270 30.32 .8417 29.09 .8046 28.17 .8519 33.61 .9445
PAN (Zhao et al., 2020) 261K 39 3440 9271 30.36 .8423 29.11 .8050 28.11 .8511 33.61 .9448

o DRSAN (Park et al., 2021) 410K 43 3441 9272 30.27 .8413 29.08 .8056 28.19 .8529 - -

X DDistill-SR (Wang et al., 2022) 414K 57 3437 9275 30.34 .8420 29.11 .8053 28.19 .8528 33.69 .9451
ShuffleMixer (Sun et al., 2022) 415K 42 3440 9272 30.37 .8423 29.12 .8051 28.08 .8498 33.69 .9448
SAFMN (Sun et al., 2023) 233K 23 3434 9267 30.33 .8418 29.08 .8048 27.95 .8474 33.52 .9437
SeemoRe-T (ours) 225K 20 3446 9276 30.44 .8445 29.15 .8063 28.27 .8538 33.92 .9460
Bicubic - - 28.42 8104 26.00 .7027 25.96 .6675 23.14 .6577 24.89 .7866
CARN-M (Ahn et al., 2018) 415K 33 31.92 8903 28.42 .7762 27.44 .7304 25.62 .7694 - -
IMDN (Hui et al., 2019) 715K 41 32.21 .8948 28.58 .7811 27.56 .7353 26.04 .7838 30.46 .9075
PAN (Zhao et al., 2020) 272K 28 32.13 .8948 28.61 .7822 27.59 .7363 26.11 .7854 30.51 .9095

< DRSAN (Park et al., 2021) 410K 31 32.15 .8935 28.54 .7813 27.54 .7364 26.06 .7858 - -

X DDistill-SR (Wang et al., 2022) 434K 33 32.23 .8960 28.62 .7823 27.58 .7365 26.20 .7891 30.48 .9090
ShuffleMixer (Sun et al., 2022) 411K 28 3221 .8953 28.66 .7827 27.61 .7366 26.08 .7835 30.65 .9093
SAFMN (Sun et al., 2023) 240K 14 32.18 .8948 28.60 .7813 27.58 .7359 2597 .7809 30.43 .9063
SeemoRe-T (ours) 232K 12 3231 .8965 28.72 .7840 27.65 .7384 26.23 .7883 30.82 .9107

For instance, in image img60 and img73 from Urban100,
certain methods like DDistill-SR, SwinIR-Light and DAT-
Light fail to accurately reconstruct shadow patterns or win-
dow struts, whereas our method exhibits strong recovery of
fine details. These visual comparisons highlight SeemoRe’s
ability to reconstruct high-quality images by effectively
leveraging local and contextual information. Coupled with
quantitative comparisons, these findings underscore the ef-
fectiveness of our method. More visual results can be found
in the Supplementary material.

4.2. Model Complexity Trade-Off

In the vision domain, scalability becomes more paramount.
We strive to expand the limits of our SeemoRe framework,
optimizing for both reconstruction fidelity and efficiency.
The framework provides three complexity scales—tiny (T),
base (B), and large (L)—with progressively improved recon-
struction performance, c.f Figure 1. In Table 3, we present
comparisons of memory usage and running time, demon-
strating that our SeemoRe-T outperforms representative
state-of-the-art methods. By using the low-rank feature mod-
ulation and simultaneous aggregation of the channel-spatial

dependencies, the GPU consumption of our SeemoRe-T
is 3% less than DDistill-SR, while being 2 times faster.
Additionally, Table 3 highlights the significant efficiency
advantage of SeemoRe over lightweight Transformers. Fur-
ther results are provided in the Supplemental. To further
underscore our method’s capability, we align SwinIR-Light
and SRFormer-Light with a size and computational demand
similar to ours, followed by retraining these downsized net-
works using our schedule. The results presented in Table 3
highlight that SeemoRe-T significantly outperforms both
Transformer-based models by a considerable margin.

4.3. Ablation Study

We conduct detailed studies on the components within our
approach. All experiments are conducted on the x2 setting.

Macro Architecture. As reported in Table 4a, we evalu-
ate the effectiveness of our proposed key architectural com-
ponents by comparing them with a baseline model consist-
ing solely of depthwise and pointwise convolutions, more
details in Supplemental. After adding the proposed modules
into the baseline model, their is a notable and persistent
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Table 2. Comparison to lightweight SR Transformers. PSNR (dB 1) and SSIM (1) metrics are reported on the Y-channel. Best and
second best performances are highlighted. GMACS (G) are computed by upscaling to a 1280 x 720 HR image. SeemoRe-L outperforms
or achieves comparable performance to compared Transformers while being more efficient. x 3 results are in the Supplemental.

Method Params GMACS Set5 Setl4 BSD100 Urban100  Mangal(09
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic - - 33.66 .9299 30.24 .8688 29.56 .8431 26.88 .8403 30.80 .9339
SwinIR-Light (Liang et al., 2021) 910K 244  38.14 9611 33.86 .9206 32.31 .9012 32.76 .9340 39.12 .9783
ELAN-Light (Zhang et al., 2022) 621K 201  38.17 9611 33.94 .9207 32.30 .9012 32.76 .9340 39.11 .9782
o SRFormer-Light (Zhou et al., 2023) 853K 236 38.23 9613 33.94 .9209 32.36 .9019 32.91 .9353 39.28 .9785
X ESRT (Lu et al., 2022) 751K 191  38.03 .9600 33.75 .9184 32.25 9001 32.58 .9318 39.12 .9774
SwinIR-NG (Choi et al., 2023) 1181K 274 38.17 .9612 33.94 9205 32.31 9013 32.78 .9340 39.20 .9781
DAT-Light (Chen et al., 2023) 553K 194 38.24 9614 34.01 .9214 32.34 9019 32.89 .9346 39.49 .9788
SeemoRe-L (ours) 931K 197 38.27 9616 34.01 9210 32.35 .9018 32.87 .9344 39.49 .9790
Bicubic - - 28.42 8104 26.00 .7027 25.96 .6675 23.14 .6577 24.89 .7866
SwinIR-Light (Liang et al., 2021) 897K 64 32.44 8976 28.77 .7858 27.69 .7406 26.47 .7980 30.91 .9151
ELAN-Light (Zhang et al., 2022) 601K 54 32.43 8975 28.78 .7858 27.69 .7406 26.54 .7982 30.92 .9150
< SRFormer-Light (Zhou et al., 2023) 873K 63 32.51 .8988 28.82 .7872 27.73 .7422 26.67 .8032 31.17 .9165
X ESRT (Lu et al., 2022) 751K 68 32.19 .8947 28.69 .7833 27.69 .7379 26.39 .7962 30.75 .9100
SwinIR-NG (Choi et al., 2023) 1201K 63 32.44 8980 28.83 .7870 27.73 .7418 26.61 .8010 31.09 .9161
DAT-Light (Chen et al., 2023) 573K 50 32.57 .8991 28.87 .7879 27.74 .7428 26.64 .8033 31.37 9178
SeemoRe-L (ours) 969K 50 32.51 .8990 28.92 .7888 27.78 .7428 26.79 .8046 31.48 9181

Table 3. Complexity Analysis. Runtime (ms, J) and memory con-
sumption (M, |) averaged across 200 samples using a NVIDIA

Table 4. Ablation on Blocks. GMACS (]) are computed by upscal-
ing to a 1280 x 720 HR image. We show results for X2 upscaling.

RTX 4090 device. _ Method RME SME Params. GMACS Urban100 Mangal09
Method Input  Scale Time GPU Memory Baseline i 157K 35 3161 38.55
DAT-Light 210.12 8715.1 v - 199K 40 31.96 38.75
SwinIR-Light 131.25 6175.3 SeemoRe-T - v 178K 40 31.97 38.87
SRFormer-Light 103.95 7270.1 v v 220K 45 32.22 39.01
SeemoRe-L (ours) [320,180] x4 17.99 9531.6 (@) Contribution of components.
ShuffleMixer 7.40 1380.7
DDistill-SR 11.20 28221 Method Macro Expert Order Urban100 Mangal09
SeemoRe-T (ours) 5.66 2744.9 Spatial - Rank 32.17 38.93
- - SeemoRe-T .
(a) Runtime and memory consumption. Rank - Spatial 32.22 39.01
(b) Block order.
Scale Method Params. GMACS Urban100 Mangal09
SwinIR* 191K 43 31.56 38.07 Method Kernel k£ Params. GMACS Urban100 Mangal09
™ SRFormer™ 188K 49 31.60 38.59 3 217K 44 32.04 38.84
x DAT* 115K 44 31.91 38.80 SeemoRe-T 7 219K 45 32.10 38.96
SeemoRe-T 220K 45 32.22 39.01 11 220K 45 32.22 39.01

(b) PSNR (dB 1) on the Y-Channel. * denotes retrained models.

improvement in the results. The incorporation of RME or
SME results in improvements of 0.26 dB or 0.32 dB on
Urban100 over the baseline, respectively. Although both
modules individually outperform the baseline with only a
marginal increase in parameters, alternating the insertion
of both the modules within each RG fully unleashes the
model’s capabilities while enhancing the overall efficiency.
Overall, our SeemoRe-T obtains a compelling gain of 0.49
dB and 0.38 dB on Urban100 and Mangal09, respectively.
Moreover, Table 4b empirically justifies the chosen block
ordering, showcasing the Rank-Spatial macro order design’s
superiority over permuted Spatial-Rank macro order. This

(c) Kernel size (k) variation.

empirical evidence supplements the qualitative justifications
in Section 5 regarding the individual importance of MoRE
and SEE blocks.

Design choices of SME. The main component of SME
module, SEE deploys striped convolutions with large-kernel
sizes to effectively module the spatial cues. Table 4 demon-
strates that deploying large kernel sizes improves the overall
performance of the model. In particular, the PSNR shows
a notable gain of 0.18 dB on Urban100 dataset when in-
creasing the kernel size from 3x3 to 11x 11 (keeping other
settings intact), with only 3K increase in parameters. It
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Figure 4. Visual comparison of SeemoRe with state-of-the-art methods on challenging cases for x4 SR from the Urban100 benchmark.

Table 5. Ablation on MoRE. Exponential growth yields best perfor-
mance in terms of parameter counts and PSNR. #& denotes the
number of experts and Dim. the rank dimensionality. We show
results for x 2 upscaling.

Method #& Dim. Params. Urban100 Mangal09
SeemoRe-T
= 142 6 23,4,5,6,7 229K  32.12 39.01
é 2%i+2 4 2468 224K 3211 38.98
O 2 4 248,16 231K 3221 39.02
“ _ 3 2,4,8 220K 3222 39.01
4% 2 2 2,4 214K 32.19 39.00
1 2 211K 32.16 38.92
(a) Low-rank expert design.

Method Recursive Steps ¢ Urban100 Mangal09
1 32.10 38.99
SeemoRe-T 2 32.22 39.01
3 31.04 38.13

(b) Recursive step (¢) variation.

clearly proves that such a design benefits in the efficient use
of the relevant information to augment the restoration of
sharp regions spatially.

Design choices of RME. We motivate our design choices
for the MoRE module in RME by varying the growth func-
tion and the number of experts as depicted in Table Sa.

When pursuing a dynamic solution for determining the opti-
mal low-rank dimensionality, it becomes necessary to design
the corresponding search space. First, we present results for
% 2 upscaling on Urban100 and Mangal09 using different
growth functions. Based on the observed outcomes, it is
evident that an exponentially increasing low-rank dimen-
sionality yields the best performance with marginal increase
in the parameters. Hence, we opt to retain this search space
design in all further experimentation. Next, we analyze the
reconstruction quality based on the number of experts in
each MoRE module, while exponentially increasing the low-
rank dimensionality. Based on these experiments, we assert
that the efficient results are obtained when we have three, as
our total number of experts. Further, we ablate the choice
of recursive steps for SeemoRe-T in Table 5b, where our
plain version takes (¢ = 2). It can be seen that lower (¢t = 1)
and higher (¢ = 3) values either fail to capture sufficient
contextual information or overly compromise spatial image
features.

5. Discussion on Experts

Our model integrates experts at varying levels, each special-
izing in crucial factors for SR. In this section, we aim to
elucidate their expertise.

Mixture of Low-Rank Experts. The decision-making
process of the router at different network depths is illustrated
in Figure 5a. Notably, earlier blocks showcase a diverse
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Figure 5. Low-Rank Analysis. (a) We plot the decisions made by the routing function for SeemoRe-T over the depth of the network.(b) We
visualize the low-rank features of SeemoRe-T for x4 SR given example images from Urban100 and Mangal09.

After SEE

Input Before MoRE After MoRE

Figure 6. Feature Visualization. We present visualizations of fea-
ture maps before and after our proposed modules. Clearly, our
MOoRE block notably enhances activation sharpness via contextual
feature modulation. Moreover, our SEE module improves learned
representations by integrating spatial cues effectively.

range of rank choices ( £1,£2,E3), while deeper layers tend
to favor lower ranks (£7) (Please note that for every &;, the
corresponding rank dimension is 2¢). This phenomenon can
be attributed to the hierarchical feature learning nature of
deep neural networks, aligning with our expectations. In
fact, earlier layers typically capture low-level details and,
at times, unwanted noise while reconstructing details in
the input LR image, thus resulting in wide variations in
the rank choices. In contrast, deeper layers focus on the
main structures and key features required for SR. Hence,
higher ranks at deeper layers are less favored, as they may
introduce redundancy or noise that does not significantly
contribute to the overall quality of the reconstructed image.
This design aspect provides our method with the flexibility
to adapt to the complexity of the task, a capability that,
to the best of our knowledge, has not yet been explored
in the image reconstruction community. In Figure 5b, we
further visualize the routing decisions and the corresponding
low-rank feature maps for two exemplary input images.
It is noteworthy that each individual rank carries distinct
information while being mutually complementary. As the
model depth increases, the network becomes proficient in
restructuring these representations.

How important are MoRE and SEE?  To substantiate
the significance of the proposed MoRE and SEE modules,
we analyze the feature maps before and after integrating
both blocks into the RME module as depicted in Figure 6.
This analysis vividly showcases the advantages of leverag-
ing MoRE for contextual information mining within RME.
Notably, the activations exhibit reduced noise and enhanced
sharpness. Additionally, we observe a synergistic interac-
tion between MoRE and SEE at marked locations (indicated
by red arrows): MoRE effectively refines global textures
by filtering out noise, while SEE supplements over-filtered
regions with critical local details.

6. Conclusion

We propose a novel ConvNet, named SeemoRe, for efficient
and accurate image super-resolution. Our SeemoRe excels
in modeling local and contextual information, surpassing
both previous CNN-based and lightweight Transformer ap-
proaches in terms of efficiency and reconstruction fidelity.
Unlike other approaches, we empirically demonstrate both
the scalability of efficiency and reconstruction performance.
In our approach, we intricately design the rank modulation
expert to discern the most pivotal features, enhancing this
compressed representation with valuable contextual cues.
Our spatial enhancement expert efficiently integrates local
spatial-wise information, unlocking the full potential of our
architecture. This novel approach optimally exploits the
low information regime in the input image, enhancing de-
tail reconstruction while improving efficiency. Extensive
experiments on image super-resolution demonstrate that
our proposed SeemoRe achieves consistent superior perfor-
mance over recent state-of-the-art efficient methods on all
considered SR benchmarks, while even being on par with
the lightweight Transformers in terms of reconstruction fi-
delity.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning, specifically efficient image super-
resolution. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here. However, applying super-resolution methods
in Al-assisted software raises ethical concerns about privacy
invasion and increased surveillance capabilities. Adherence
to transparency, accountability, and privacy rights is crucial
to mitigate potential harm and ensure responsible deploy-
ment in alignment with societal values.
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Table 6. Implementation Details.

Parameter SeemoRe-T SeemoRe-B SeemoRe-L
Num. RGs 6 8 16
Channel dimension 36 48 48
MLP-Ratio 2

LR dimensionality growth exponential

Num. Experts £ 3

Top-k experts 1

SFM kernel size 11

Recursion steps 2 2 1
Training Dataset DIV2K + Flickr2K
Optimizer Adam

Batch size 32

Total Num. Iterations 500k

FFT Loss weight 0.1

LR-Rate le.3

LR-Decay Rate 0.5

LR-Decay Milestones [250K,400 K ,450K ,475K]

A. Further Implementation Details

Table 6 outlines the architectural configurations and training
settings employed to achieve the reported results in this
study. Throughout all our experiments, we maintained a
fixed random seed for reproducibility purposes. We based
our implementation on the public PyTorch-based BasicSR'
framework for architecture development and training. We
use fucore® Python package for computing GMACS and
parameter counts.

Baseline for Architecture Contribution. Here we pro-
vide more details about the baseline method for the ablation
in Tables 4a and 7. In the main text, we evaluate SeemoRe-
T by sequentially removing the proposed RME and SME
blocks, resulting in a plain baseline model with fewer param-
eters and GMACs. To ensure a fair comparison, we adjust
the baseline configuration to match our plain SeemoRe-T
model. To ensure roughly equivalent parameter counts and
computational complexity, we adopt 5 RGs with a channel
dimensionality of 48. Within each RG, we integrate simple
convolutional operators from our RME submodule without
the MoRE module, while the SME module is simplified to
a pointwise convolution.

'mttps://github.com/XPixelGroup/BasicSR
2https://github.com/facebookresearch/
fvcore
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Table 7. Ablation on contribution of components. GMACS ({) are
computed by upscaling to a 1280 x 720 HR image. (*) denotes
modified configuration from proposed SeemoRe-T model.

Method RME SME Params. GMACS Urban100 Mangal09
Baseline™ - - 232K 52 31.73 38.63

v - 249K 48 31.99 38.75
SeemoRe-T - v 238K 53 32.05 38.96

v v 220K 45 32.22 39.01

Comparison to lightweight SR Transformers (x3). In
Table 8, we present the performance of our SeemoRe-L
model for x3 upscaling, extending the results from Table 2
in the main text. Our SeemoRe-L consistently outperforms
other lightweight Transformers and demonstrates only a
slightly lower performance compared to DAT-Light (Chen
et al., 2023).

B. More Ablations

B.1. Architecture Design

SEE block compared to prior designs. The results in
Table 10 prove that our SEE block design outperforms the
FusedMB-Conv block proposed by ShuffleMixer (Sun et al.,
2022) in terms of reconstruction abilities while maintaining
higher efficiency. Moreover, substituting the large-kernel
convolution in the Conv2Former (Hou et al., 2022) block
with our striped large-kernel variant not only enhances ef-
ficiency but also improves the reconstruction capabilities
of high-frequency information, as evident from Urban100
results.

MOoRE block design. Our rationale behind the MoRE
design involves the aggregation of valuable contextual infor-
mation. Similar to prior works (Liu et al., 2020b), we assign
more learning parameters to enhance the high-frequency
features while keeping the simple DConv-branch as resid-
ual to facilitate the optimization. We further support this
rationale with empirical evidence provided in Table 11. The
results show that adding the extended feature to the out-
put of DConv performs better than with and without the
aggregation output.

Optimization function. In Table 12, we explore the im-
pact of using the L1-Norm in FFT space to compare the
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Table 8. Comparison to lightweight SR Transformers. Extension of Table 2. PSNR (dB 1) and SSIM (1) metrics are reported on the
Y-channel. GMACS |) are computed by upscaling to a 1280 x 720 HR image.

Method Params GMACS SET5 SET14 BSD100 Urban100  Mangal09
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic - - 30.39 .8682 27.55 .7742 27.21 7385 24.46 .7349 26.95 .8556
SwinIR-Light (Liang et al., 2021) 918K 111 34.62 9289 30.54 .8463 29.20 .8082 28.66 .8624 33.98 .9478
ELAN-Light (Zhang et al., 2022) 629K 90 34.61 .9288 30.55 .8463 29.21 .8081 28.69 .8624 34.00 .9478
e» SRFormer-Light (Zhou et al., 2023) 861K 105  34.67 9296 30.57 .8469 29.26 .8099 28.81 .8655 34.19 .9489
X ESRT (Lu et al., 2022) 770K 96 34.42 9268 30.43 .8433 29.15 .8063 28.46 .8574 33.95 .9455
SwinIR-NG (Choi et al., 2023) 1190K 114  34.64 .9293 30.58 .8471 29.24 .8090 28.75 .8639 34.22 .9488
DAT-Light (Chen et al., 2023) 629K 89 34.76 9299 30.63 .8474 29.29 .8103 28.89 .8666 34.55 .9501
SeemoRe-L (ours) 959K 87 3472 9297 30.60 .8469 29.29 .8101 28.86 .8653 34.53 .9496

Table 9. Ablation on the top-k experts. PSNR (dB 1) and SSIM (1) metrics are reported on the Y-channel for x 2 upscaling. GMACS (J)
and memory consumption (M, |) are computed by upscaling to a 1280 x 720 HR image using a NVIDIA RTX 4090 device.

Method Params GMACS GPU Memory SETS SET14 BSD100 Urban100 Mangal09
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SeemoRe-T

k=1 220K  44.83 10972 38.06 9608 33.65 .9186 32.23 .9004 3222 .9286 39.01 .9777

k=2 220K 4522 11233 38.09 9608 33.61 .9184 3222 .9003 32.23 .9286 39.00 .9777

k=3 220K 46.12 11494 38.10 .9609 33.66 .9185 32.23 .9004 32.24 .9289 39.08 .9779

Table 10. Analysis of proposed SEE block. We have conducted
the following experiment by replacing our proposed SEE with the
spatial enhancement module, Fused-MBConv in Shufflemixer (Sun
et al., 2022), and Conv Block in Conv2Former (Hou et al., 2022)
on X2 scale.

Method Params. GMACS Urban100Manga109
SeemoRe-T

FusedMB (Sun et al., 2022) 304K 64 32.18 38.99
C2F (Hou et al., 2022) 220K 46 32.19 39.04
SEE (ours) 220K 45 32.22 39.01

Table 11. Analysis of MoRE design. We provide further insights in
the design decisions of our SeemoRe framework for X2 upscaling.

Method Residual ¢ Urban100 Mangal09
No aggregation 32.11 38.96

SeemoRe-T Aggregation output 32.15 38.99
DConv output 32.22 39.01

model output with high-quality GT images. Compared to
utilizing only the traditional L1 loss in RGB space, we ob-
serve an average performance improvement of 0.09 dB on
Urban100 and Mangal09 datasets while using the combined
losses. We acknowledge that only a few previous methods
incorporate the same FFT loss (Sun et al., 2022; 2023);
however, other efficient image super-resolution methods
either employ a more intricate training schedule with mul-
tiple stages (Liu et al., 2020a; Kong et al., 2022) or utilize
large-scale models for knowledge distillation (Wang et al.,

14

Table 12. Optimization function. SeemoRe-T was trained on
DIV2K and Flickr2K. We report PSNR (dB 1) on the Y-Channel
for X2 upscaling.

Method L1 FFT BSD100 Urban100 Mangal09
v 1.0 - 0.0 3221 32.14 38.90

SeemoRe-T v 1.0 v 0.1 3223 32.22 39.01
v 1.0 v 02 3222 32.16 39.02

Table 13. Model size. PSNR (dB 7) is reported on the Y-channel.
GMACS are computed by upscaling to a 1280 x 720 HR image.
N and C denote number of RGs and channel features, respectively.

Method Config Params. GMACS Urban100 Mangal09

SeemoRe-T N:6 C:36 220K 45 32.22 39.01
SeemoRe-B N:8 C:48 490K 101 32.52 39.30
SeemoRe-L N:16 C:48 931K 197 32.87 39.49

2022).

Scaling the model size. In Table 13, we detail the archi-
tecture, efficiency, and PSNR results across different model
sizes on Urban100 and Mangal09 datasets. Starting with
SeemoRe-T, which has 220K parameters and 45 GMACS,
each subsequent complexity stage doubles these figures. No-
tably, all model stages achieve state-of-the-art performance
within their weight classes, with SeemoRe-L matching or
even surpassing recent lightweight Transformer-based SR
models.

Futhermore, we investigate increasing the number of ex-
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Table 14. Scaling up the numbers of experts. We analyze the im-
pact of the number of experts on SeemoRe-T’s performance.

Scale Method #& Growth Params. Urban100 Mangal09
o 8 2x1+2 261K  32.18 39.02
x  SeemoRe-T 4 2! 231K 3221 39.02

3 2" 220K  32.22 39.01

Table 15. Real SR performance. NIQE and BRISQUE are reported
on the real image collection provided by SwinIR (Liang et al.,
2021). DIV2K-I and DIV2K-II performance reported as PSNR.

Method NIQE (J) BRISQUE ({) DIV2K-I DIV2K-II
Bicubic 7.65 58.29 26.30 25.71
SAFMN 7.19 51.39 26.80 26.77
SeemoRe-T 6.53 45.53 27.07 27.01

perts to 8 as shown in Table 14 the impact on the overall
model performance. The results indicate that increasing
the number of experts adds complexity, however it doesn’t
consistently improve the reconstruction fidelity. Balancing
the low-rank space and the expert count offers to fine-tune
the performance trade-off. Though, our emphasis here is
on efficiency, we aim to explore more complex designs in
future research.

B.2. Evaluation on Real SR

We conduct experiments for Real SR (x4) using the
Real-ESRGAN (Wang et al., 2021) degradation model
on SeemoRe-T and the current efficient SOTA SR model
SAFMN (Sun et al., 2023), see Table 15. Both SAMFN and
SeemoRe-T are initialized from the x4 bicubic checkpoints,
we reduce the number of iterations on the DF2K_OST
dataset by half (250k) and train only using the L1 loss. We
report the popular NR-IQA metrics (NIQE and BRISQUE)
on the commonly used real-world image collection given
in SwinlR (Liang et al., 2021). Additionally, we conduct a
cross-dataset evaluation using testsets with more realistic
degradation of different severity levels (Type I and Type II),
as provided by (Liang et al., 2022).

C. Future work and limitations

The proposed approach, employing a mixture of experts for
feature modulation, is versatile for tasks with limited input
information, such as low-light enhancement and denoising.
Additionally, SeemoRe’s efficient design makes it a valuable
solution for dynamic and resource-intensive environments.
Expanding the number of experts in our network’s low-rank
aspect poses challenges due to rapid feature dimensionality
growth. Thus, our approach is currently limited to a small
number of experts, contrasting with other fields leveraging
larger expert ensembles. Despite the improving trade-off
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between efficiency and reconstruction fidelity, as depicted in
Figures 7 and 8, our SeemoRe model still contends with blur
artifacts. However, similar artifacts can also be observed
in Transformer-based super-resolution alternatives, albeit
at a higher computational cost (in terms of inference time).
While our model represents a pioneering effort in utilizing a
mixture of low-rank experts for super-resolution, significant
opportunities for further research exist. For instance, explor-
ing explicit constraints on the features learned by different
experts presents intriguing research directions with potential
applications across a spectrum of restoration problems. We
wish our network serve as a straightforward yet effective
baseline, stimulating continued exploration in the field.

D. Visual Results.

We provide additional visual comparisons (x4) in Figure 7
for the Mangal09 benchmark and in Figure 8§ for the Ur-
ban100 benchmark. Our SeemoRe framework consistently
produces visually pleasing results, even on artistic images.
In contrast to previous methods which exhibit flawed texture
and character reconstruction, our proposed approach effec-
tively reconstructs missing details, as illustrated in Figure 7,
across all exemplary images considered. More concretely,
when examining the example image img25 our SeemoRe
network proficiently reconstructs the capital letter “I”” within
the text prompt “COMIC,” whereas SwinIR-Light and DAT-
L encounter difficulty in producing any readable output.
Additionally, in example image img04 our model signifi-
cantly outperforms others in reconstructing the pattern with
higher fidelity. Moreover, our model’s reconstruction of
img92 in Figure 8 demonstrates reduced blurring and more
distinct edges, enhancing overall visibility.
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Figure 7. Visual comparison of SeemoRe with state-of-the-art methods on challenging cases for x4 SR from the Mangal09 benchmark.
p ) "-4 ;- “"F
£t ]
114710

7 ’Zit'#!k

\ Wi =, et :
Urban100: img04 (x 4) Urban100: img72 (x 4) Urban100: img92 (x 4)

DDistill-SR ShuffleMixer SwinIR-Light DAT-Light SeemoRe-L

Figure 8. Visual comparison of SeemoRe with state-of-the-art methods on challenging cases for x4 SR from the Urban100 benchmark.
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