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ABSTRACT

Large language models (LLMs) have achieved remarkable progress in open-ended
text generation, yet they remain prone to hallucinating incorrect or unsupported
content, which undermines their reliability. This issue is exacerbated in long-
form generation due to hallucination snowballing, a phenomenon where early
errors propagate and compound into subsequent outputs. To address this chal-
lenge, we propose a novel inference-time scaling framework, named Step-wise
HAllucination Rejection Sampling (SHARS), that allocates additional computa-
tion during decoding to detect and reject hallucinated content as it is produced. By
retaining only confident information and building subsequent generations upon it,
the framework mitigates hallucination accumulation and enhances factual consis-
tency. To instantiate this framework, we further introduce a new uncertainty-based
hallucination detection method, named HalluSE, for long-form generation, im-
proving upon the prior semantic entropy approach. The combined system enables
models to self-correct hallucinations without requiring external resources such as
web search or knowledge bases, while remaining compatible with them for fu-
ture extensions. Empirical evaluations on standardized hallucination benchmarks
demonstrate that our method substantially reduces hallucinations in long-form
generation while preserving or even improving the informativeness of generation.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2025; Yang et al., 2025a; Grattafiori et al., 2024) have
markedly expanded the frontiers of artificial intelligence, demonstrating impressive capabilities in
open-ended text generation across domains such as question answering (Min et al., 2023; Wei et al.,
2024), code synthesis (Jimenez et al.), and scientific communication (Lu et al., 2024). However,
their practical deployment is hindered by a persistent and well-documented challenge: hallucination
(Ji et al., 2023). Hallucinations arise when models generate content that is factually inaccurate,
unsupported, or in conflict with the provided input (Bang et al., 2025), often delivered with high
fluency and confidence. This phenomenon undermines the reliability of model output and user trust,
and poses risks in high-stakes applications.

Hallucinations are particularly concerning in open-ended generation, where the extended and uncon-
strained nature of the outputs makes it especially challenging to validate. In addition, prior studies
(Zhang et al., 2024; Zhao et al., 2025; Yang et al., 2025b) have shown that longer generations tend
to amplify hallucination risk, a phenomenon known as hallucination snowballing, in which early
errors propagate and trigger additional mistakes. This underscores the importance of intervening
early in the generation process to interrupt error accumulation and thereby reduce hallucinations.

Separately, a growing body of research (Wei et al., 2022; Yao et al., 2023; Muennighoff et al.,
2025; DeepSeek-AI et al., 2025) has investigated the paradigm of inference-time compute scaling,
which improves model performance by allocating additional computation at generation time. This
paradigm is particularly well-suited for hallucination mitigation in high-stakes domains such as
healthcare, scientific discovery, and law, where users are often willing to accept slower responses in
exchange for more factual and reliable outputs. Nevertheless, this direction remains underexplored,
and to the best of our knowledge, there are no well-established findings on how inference-time
scaling affects factuality in open-ended generation.
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Ramesses IV was the fifth pharaoh of Egypt's 
Twentieth Dynasty. He was the son of Ramesses III. 
His reign was marked by building projects and mining 
expeditions for copper and turquoise. He died of 
unknown causes, and he was succeeded by his son, 
Ramesses V.

Tell me about Ramesses IV.
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Ramesses IV was the fifth pharaoh of Egypt's 
Twentieth Dynasty. He ruled from 1160 to 1125 BCE. 
He was the son of Ramesses III and came to power 
after the deaths of all of his brothers. His mummy 
shows clear signs of assassination, with deep wounds 
to the throat. 

factual hallucinated

(a) (b)

Figure 1: (a) Comparison of biographies generated by naive LLM decoding and our method.
Unlike naive decoding, our method rejects hallucinated content, preserves factual information, and
acquires additional factual content (the last two sentences in the displayed generation) beyond the
original information space. (b) Scaling of factual precision with respect to inference-time com-
putation on the FactScore benchmark (Min et al., 2023). Inference-time computation is approxi-
mated by relative runtime, measured as a factor of the runtime of the corresponding naive decoding
method for each setup. Each data point in the figure represents an individual run of our method un-
der one of the four setups, except for the leftmost point of each color indicating the naive decoding
baseline. Full experimental details are provided in Section 5.2.

Inspired by these insights, we introduce a general inference-time compute framework, termed
Step-wise HAllucination Rejection Sampling (SHARS), to mitigate hallucinations in open-
ended generation. SHARS leverages an arbitrary detector to identify and reject hallucinated content
as it is produced during generation, preserves only factual segments, and builds subsequent outputs
upon them (Fig. 1a). This design aims to increase the proportion of factual information in the final
output while disrupting hallucination snowballing from its early stages. To instantiate this frame-
work, we further propose a new uncertainty-based hallucination detection method, HalluSE,
tailored for long-form generation. HalluSE builds upon the prior semantic entropy approach (Far-
quhar et al., 2024), incorporating several refinements to address its limitations and improve detection
effectiveness. Notably, SHARS is designed to be detector-agnostic, allowing it to integrate with any
hallucination detection method and thereby broadly benefit from future advances in hallucination
detection research.

We conduct extensive experiments on diverse long-form factuality benchmarks, including Factual-
Bio (Farquhar et al., 2024), FactScore (Min et al., 2023), and LongFact (Wei et al., 2024), to evaluate
our methods. Empirical results show that HalluSE significantly improves hallucination detection ac-
curacy over prior approaches in long-form generation. SHARS further proves effective in mitigating
hallucinations in open-ended generation while preserving, and in some cases enhancing, output in-
formativeness. Importantly, SHARS exhibits a promising scaling property: when appropriately
configured, factuality continues to improve as additional inference-time computation is allo-
cated within a certain range (Fig. 1b). For instance, SHARS improves factual precision by about
26% for evaluated models on the FactScore benchmark.

2 RELATED WORKS

Hallucination detection. Farquhar et al. (2024) introduced hallucination detection via semantic
entropy, which estimates uncertainty in the space of meanings by clustering diverse model samples
and measuring entropy over the induced semantics. They benchmarked this method against two
alternatives: Self-Check, where the model verifies its own assertions, and P(True), which measures

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Freddie Frith was a 
motorcycle racer and 
retailer. He was born 

in 1909.

 Freddie Frith was a 
motorcycle racer and 

retailer.

Q1: What was Freddie Frith's profession? motorcyclist

Q2: What is Freddie Frith known for?

Q3: What is Freddie Frith's job?

He was born in 1909.

Q1: When was Freddie Frith born?

Q2: What is Freddie Frith's birthdate?

Q3: What is the date of Freddie Frith's birth?

1909 18 May 1909 January 1909

30 May 1909 29 May 1909

30 May 1909 2 April 1910 3 January 1909

Text Generation Fact 
Decomposition Probe Question Generation

stonemason motorcycle retailer

motorcycle racing motorcycle sales Grand Prix motorcycle racing

motorcycle seller motorcycle racing stoneworker

Answer Sampling & Clustering

Ba
se

lin
e

Freddie Frith was a 
motorcycle racer and 
retailer. He was born 

in 1909.

motorcycle racer: 
Freddie Frith was a 

motorcycle racer and 
retailer.

Q1: What was Frith's profession? motorcyclist; racer; retailer

Q2: What is Frith known for?

Q3: What is Freddie Frith's job?
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Figure 2: Illustration of naive long-form semantic entropy method and our proposed HalluSE. Dif-
ferent colors under ‘Answer Sampling & Response’ denote distinct semantic clusters of generated
responses. A green check indicates low semantic entropy (high agreement, reliable answers), while
a red cross marks high semantic uncertainty (likely hallucinated content).

the probability that the model predicts the token “True” when few-shot prompted to compare a main
answer with alternatives. Another training- and retrieval-free approach by Mündler et al. (2024)
detects hallucinations by eliciting multiple responses and identifying contradictions or inconsisten-
cies. Other methods train lightweight probes. For instance, Kossen et al. (2024) trained probes to
approximate semantic entropy from hidden states of a single generation, while Obeso et al. (2025)
trained probes on web-search-grounded, entity-level labels to detect hallucinations in real time. Al-
ternatively, Min et al. (2023), Wei et al. (2024), and Zhao et al. (2025) detect hallucinations by
decomposing generated text into atomic facts and checking them against trusted external sources.

Hallucination mitigation. To mitigate hallucinations, Tian et al. (2024) fine-tune models using
preference data generated from a retrieval-enabled judge and direct preference optimization (DPO),
enabling the model to prefer factual responses. Huang & Chen (2024) propose FactAlign, which
assigns sentence-level factuality rewards to reinforce supported spans in long-form outputs. Gu et al.
(2025) introduce Mask-DPO, which masks non-factual sentences during preference optimization so
that updates focus exclusively on factual content.

Inference-time mitigation approaches have also been explored. Integrative decoding (Cheng et al.,
2025b) aggregates self-consistent continuations by jointly selecting supported tokens. Chuang et al.
(2024) propose DoLa, which reweights next-token probabilities by contrasting logits from late and
early layers. Retrieval-augmented generation (RAG) (Lewis et al., 2020) grounds generation on
retrieved passages to replace unsupported spans, while Cai et al. (2024) improve RAG by introducing
outline-guided generation and factuality-aware optimization for web-augmented long-form outputs.
More recently, Cheng et al. (2025a) incorporate tree search–based algorithms to enable explicit
slow-thinking generation, mitigating hallucinations during inference.

3 HALLUSE: DETECTING HALLUCINATIONS IN LONG-FORM GENERATION

This section introduces HalluSE, our uncertainty-based hallucination detection method for long-
form text generation. HalluSE builds on the prior semantic entropy approach for long-form gen-
eration (Farquhar et al., 2024), while addressing several of its key limitations. In Section 4.1, we
further employ HalluSE as the hallucination detector to instantiate our primary hallucination miti-
gation framework.

3.1 BACKGROUND: SEMANTIC ENTROPY AND HALLUCINATION DETECTION

Semantic entropy (Farquhar et al., 2024) is an uncertainty measure that captures the variability of a
model’s predictions in the semantic space rather than the token space. Instead of only considering
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surface-level probability distributions over tokens, semantic entropy groups candidate generations
into meaning-equivalent clusters and measures the entropy across these clusters. Given a set of can-
didate generations sampled from the model, each generation is mapped into a semantic cluster Ci.
The probability of a cluster is defined as the sum of token-level probabilities of all generations as-
signed to it: p(Ci) =

∑
y∈Ci

p(y), where p(y) is the model probability of generation y. The seman-
tic entropy is then computed as the entropy over cluster probabilities: Hs = −

∑
i p(Ci) log p(Ci).

The full technical details can be found in Farquhar et al. (2024).

Low semantic entropy indicates semantic agreement among candidate generations, while high se-
mantic entropy reflects semantic disagreement and is often associated with hallucinations. This
property makes semantic entropy a natural signal for hallucination detection: when the model is
confident and semantically consistent, the likelihood of hallucination is lower, whereas high seman-
tic entropy often correlates with unsupported or erroneous content.

3.2 NAIVE LONG-FORM SEMANTIC ENTROPY AND ITS LIMITATIONS

The semantic entropy method described above assumes that candidate answers are short-form. To
extend it, Farquhar et al. (2024) proposed a naive approach for applying semantic entropy to long-
form generation. As shown in Fig. 2, the generation is first decomposed into a set of fact claims. For
each fact claim, several probe questions with expected answers are generated to query the fact, and
the short-form semantic entropy method is then applied to each question. This procedure effectively
reduces long-form hallucination detection to a series of short-form detection tasks.

Algorithm 1: Pseudocode of HalluSE.
Data: text, c, M , Q, A, θ
Result: verified facts, hallucinated facts
verified facts, hallued facts← [ ], [ ]
facts← decompose facts(M , text)
for (entity, claim) in facts do

questions← gen questions(M , Q, entity,
claim)

Hs← [ ]
for question in questions do

Hs← Hs ∪ semantic entropy(M , A,
c, question)

Hs← mean(Hs)
if Hs < θ then

verified facts← verified facts ∪
(entity, claim)

else
hallued facts← hallued facts ∪

(entity, claim)

return verified facts, hallued facts

The naive long-form semantic entropy method
faces two main limitations as illustrated in
Fig. 2. First, it decomposes a generation into
fact claims without distinguishing which en-
tity within each claim should be validated.
This ambiguity can cause the wrong en-
tity to be probed downstream. For exam-
ple, given the query Tell me about Alan
Turing and the generation Alan Turing
is a computer scientist, the entity
of interest is clearly computer scientist
rather than Alan Turing. However, the
prior method may incorrectly generate probe
questions such as Who is a computer
scientist?.

Second, the naive approach assumes that each
probe question has only a single valid answer,
so any uncertainty in sampled answers is at-
tributed solely to the model. In practice, how-
ever, probe questions can admit multiple valid
answers. For example, in biographies, a promi-
nent individual may hold multiple professions.
A probe question such as What is XX’s
profession? may thus have several correct
answers. Even if the model consistently sam-
ples correct but different professions, the resulting semantic entropy remains high, incorrectly flag-
ging the fact as hallucinated.

3.3 HALLUSE

HalluSE addresses the limitations of the naive long-form semantic entropy method through three
key refinements as illustrated in Fig. 2. First, it decomposes each generation into pairs of entities
and fact claims. Second, it improves the prompting strategy with clearer instructions, structured for-
matting, and few-shot examples. In particular, HalluSE guides the LLM to generate probe questions
with unambiguous expected answers, thereby reducing unnecessary cases of multiple valid answers.
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Algorithm 2: Pseudocode of SHARS.
Data: User query q
Result: Verified response to the user query
verified text, hallued text← “”, “”
while not End Of Sequence do

sent← next sent(M , q, verified text, hallued text)
verified facts, hallued facts← detect hallu(M ,

sent, verified text)
if len(verified facts) = 0 then

hallued text← hallued text + sent
else

if len(hallued facts) ̸= 0 then
sent← rewrite sent(M , q, verified facts)

verified text← verified text + sent
hallued text← “”

// break if no verified facts for N
times in a row

return verified text

Algorithm 3: Pseudocode of next
sentence sampling.
Data: q, verified text, hallued text
Result: A new sentence
text sofar← “”
input← q + verified text +

hallued text
while True do

token← next token(M , input)
text← decode(token)
text sofar← text sofar + text
sents← split sents(text sofar)
if len(sents) ≥ 2 then

sent← sents[0]
break

input← input + text
return sent

Third, it explicitly instructs the LLM to provide all valid answers, when applicable, in each sampling
step. The complete HalluSE pipeline is as follows:

1. Fact Decomposition: given a model response, HalluSE decomposes it into a set of facts,
where each fact consists of an entity and a claim describing a piece of atomic information
about that entity from the model response.

2. Question Generation: for each fact, HalluSE generates Q probe questions in which the
entity and claim serves as the expected short-form and long-form answer, respectively.

3. Answer Sampling: for each probe question, it produces A answers conditioned on the
preceding context c, i.e., the text appearing before the fact in the response.

4. Semantic Entropy Computation: semantic entropy is computed from the sampled an-
swers per question and averaged across the Q questions, yielding the semantic entropy of
the fact.

5. Hallucination Identification: A fact is classified as hallucinated if its semantic entropy
exceeds a predefined threshold θ; otherwise, it is deemed factual.

The full procedure is summarized in Algorithm 1. Fact Decomposition, Question Generation, and
Answer Sampling are implemented by prompting a pretrained instruction-following LLM, denoted
as M , with the specific prompts detailed in Appendix A. Semantic Entropy Computation is imple-
mented with its discrete formulation (Farquhar et al., 2024). The LLMs for Fact Decomposition and
Question Generation can be arbitrary, while the LLM for Answer Sampling should match the model
used to produce the given response. In this work, we employ the same model for all components,
including response generation.

4 SHARS: STEP-WISE HALLUCINATION REJECTION SAMPLING

Motivation. We observe that open-ended questions admit an effectively infinite range of relevant
information that can constitute a valid answer, yet in practice models draw on only a limited subset
of this space when generating responses. Intuitively, if hallucinated content in the initial gener-
ation can be filtered out and the model is guided to explore the remaining information space for
truthful content to fill these gaps, the resulting generation can be free of hallucinations. Moreover,
by dynamically grounding generation on truthful information, this process could potentially disrupt
the error compounding caused by earlier mistakes and increase the likelihood of sampling factual
content.

5
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4.1 STEP-WISE HALLUCINATION REJECTION SAMPLING

Following this motivation, we propose our general inference-time compute framework, SHARS,
which leverages an arbitrary detector to identify and reject hallucinated content during generation.
SHARS partitions the generation into multiple steps—sentences in our setting—and applies hallu-
cination rejection sampling sequentially as each sentence is produced. For a given sentence, hal-
lucination rejection sampling invokes a hallucination detector to assess its factuality. Based on the
detection outcome, the sentence is either (i) discarded if it contains no factual information, (ii)
rewritten to remove hallucinated content if it mixes factual and hallucinated information, or (iii)
retained if it is entirely factual, with no hallucinations detected. Generation terminates when one of
the following occurs: (1) an end-of-sequence (EOS) token is sampled; (2) the maximum new-token
budget is reached; or (3) fully hallucinated sentences are sampled in N consecutive attempts. The
full procedure is summarized in Algorithm 2.

Our method differs from conventional rejection sampling, also known as the best-of-N sampling,
for inference-time scaling in three key aspects. First, rejection sampling is performed in a step-
wise and dynamic manner rather than applied once to the entire generation. Second, we sample
one candidate sentence at a time and resample only when the current sentence is rejected, instead
of generating multiple candidates simultaneously. Third, in cases where a sentence contains both
factual and hallucinated information, we rewrite it to remove hallucinations rather than discarding
it entirely. The latter two strategies improve efficiency and make the approach more practical for
inference-time deployment.

Hallucination detector. SHARS is designed to operate with any detector by treating the hallu-
cination detector as a black box. In this work, we instantiate SHARS with our HalluSE detector
proposed in Section 3.3, serving as the primary hallucination mitigation approach. We adopt Hal-
luSE because (1) it is training-free and domain-agnostic, and because (2) it does not rely on external
models, tools, or reference knowledge sources. These properties allow seamless integration into
SHARS and enable zero-shot application across new domains.

HalluSE estimates the uncertainty of the knowledge probed by generated questions and uses it as a
proxy for the uncertainty of the corresponding fact. For example, consider the fact to be verified:
Alan Turing is an athlete. The relevant knowledge in this case is Alan Turing’s profes-
sion. If the model is uncertain about this knowledge, it suggests that not only the underlying fact
is likely hallucinated, but also that alternative sampled facts for the profession are likely halluci-
nated. While this improves the efficiency of hallucination detection, it also raises a challenge for
sentence sampling: how do we generate a new sentence with knowledge distinct from that in the
hallucination?

Sentence sampling. To address the above challenge, we explore two strategies, termed Tempera-
tures and Following. The Temperatures strategy gradually increases the decoding temperature for
sampling a new sentence as the number of consecutive hallucinated sentences grows. In other words,
the longer the model is stuck at a given point in generation, the more randomness is introduced to
encourage exploration of alternative continuations. This approach leverages the model’s inherent
stochasticity to produce diverse sentences, but it can be less efficient as it does not explicitly incor-
porate information from the identified hallucinated sentences.

In contrast, the Following strategy temporarily retains the identified hallucinated sentences in the
generation and samples the next sentence by continuing the generation process, as illustrated in Al-
gorithm 3. This leverages the model’s inherent content planning ability to reduce the likelihood of
repeatedly generating content about the same knowledge. For example, a model will typically avoid
generating a second birthday for an individual once one has already been stated. However, this ap-
proach risks allowing hallucinations to influence subsequent generation. To mitigate this effect, we
clear the pool of hallucinated sentences whenever new factual information is identified and retained,
preventing the pool from becoming excessively large, as shown in Algorithm 2. Furthermore, hal-
lucinated sentences are used solely for sentence sampling and are not passed to HalluSE as context
for computing semantic entropy, ensuring that existing hallucinations do not affect the identification
of hallucinations in newly sampled sentences. The Following strategy is ultimately adopted due to
its superior empirical performance, as discussed in Section 5.3.

Sentence rewriting. We employ an LLM to rewrite the sentence to remove its hallucinated con-
tent while preserving factual information. Specifically, we provide the LLM with a list of factual

6
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Table 1: Performance of the baseline and our methods on the FactualBio benchmark with Qwen3-
32B when detecting both Major and Minor hallucinations.

Model Method AUROC AURAC Accuracy Accuracy
@ 0.8 @ 0.9

Qwen3-32B

Self-Check 57.6 69.3 73.5 73.5
P(True) 69.8 73.3 70.0 70.0
Naive Long-Form SE 66.2 73.1 70.5 70.5
Ours 72.9 77.3 75.4 72.8

claims identified by HalluSE and prompt it to generate a sentence comprising those claims, rather
than supplying the original sentence along with hallucinated claims and asking it to remove them.
Empirically, we find that the former approach performs better with small- to medium-scale models
such as Qwen3-32B, Llama3.1-8B, and even Qwen3-4B-Instruct. We hypothesize that this advan-
tage arises because LLMs are more effective when guided by positive examples than by negative
ones.

The rewriting LLM can be any model with sufficient instruction-following capability to perform the
task. In this work, we use the same model as the main generation model. The rewriting prompts are
provided in Appendix A.

4.2 ABSTENTION MECHANISM

Our third termination condition leads to a novel dynamic abstention mechanism based on the model’s
parametric knowledge and internal confidence. Assuming sufficient diversity in sentence sampling,
our method abstains after generating N fully hallucinated sentences covering different aspects of the
user query in a row. This abstention may occur either at the outset or midway through a generation,
with the latter case allowing the model to first produce information it is confident is factual.

5 RESULTS

5.1 LONG-FORM HALLUCINATION DETECTION

In this section, we compare our method against long-form semantic entropy and other closely related
hallucination detection baselines which requires no training and external gold knowledge base.

Experiment setup. We evaluate our hallucination detection method with Qwen3-32B Yang et al.
(2025a) on the FactualBio dataset introduced by Farquhar et al. (2024). FactualBio contains
paragraph-length biographies of 21 individuals sampled from the WikiBio dataset Lebret et al.
(2016). Each paragraph-length biography in the FactualBio dataset is broken down into individual
sentences, which are labeled True, Incorrect-Minor, or Incorrect-Major, depending on the severity
of the false claim. For example, the claim that an individual was knighted, though they were not, is
considered Incorrect-Major, while a reported birthdate in the wrong month is considered Incorrect-
Minor.

To benchmark our hallucination detection method, we extended the FactualBio dataset to include
“entities“, with respect to which our method evaluates the semantic uncertainty of each claim. The
Self-Check baseline, rather than evaluating semantic uncertainty, simply asks the LLM whether the
factoid is likely to be true. The P(True) baseline considers the probability that the LLM predicts
that the next token is “True” when few-shot prompted to compare the original answer with plausible
alternatives.

Improved detection accuracy. As shown in Table 1, we observe that our method improves hal-
lucination detection AUROC significantly. AUROC measures how well the uncertainty score dis-
tinguishes correct from incorrect answers across all thresholds. AURAC, or the area under the
‘rejection accuracy’ curve, summarizes how much accuracy improves when discarding the most un-
certain answers. Accuracy@0.8 and Accuracy@0.9 report the model’s accuracy after discarding the
top 20% and top 10% most uncertain responses, respectively.
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Table 2: Performance of the baseline and our methods on the FactScore benchmark without con-
straints on response length. The best score for each metric is highlighted in bold.

Model Method Response No. No. Factual
Rate (%) Unsupported Supported Precision (%)

Llama3.1-8B-Instruct

Baseline 99.5 5.7 6.7 53.7
Ours-Resp 99.5 3.2 5.7 64.1
Ours-Info 88.5 1.9 5.9 75.6
Ours-Prec 78.6 1.4 5.0 78.4

Qwen3-32B

Baseline 99.5 8.8 9.7 52.4
Ours-Resp 97.8 5.7 11 65.7
Ours-Info 92.9 4.2 11.7 73.5
Ours-Prec 82.4 3.1 11.1 78.4

Table 3: Performance of the baseline and our methods on the FactScore benchmark with a 200-
word response length constraint. Models are prompted to generate approximately 200 words, which
exceeds the average length produced without such constraint.

Model Method Response No. No. Factual
Rate (%) Unsupported Supported Precision (%)

Qwen3-32B
Baseline 98.9 16.2 22.4 58.0
Ours-Info 98.4 11.8 29.1 71.0
Ours-Prec 84.6 6.7 23.6 77.9

5.2 FEWER HALLUCINATIONS AND MORE SUPPORTED FACTS

Experiment setup. We mainly evaluate our method on the FactScore benchmarks using Qwen3-
32B (Yang et al., 2025a) and Llama3.1-8B-Instruct (Grattafiori et al., 2024). Qwen3-32B follows
officially recommended decoding settings with temperature 0.7, top-k 20, and top-p 0.8, while
Llama3.1-8B-Instruct uses temperature 0.7, top-k 50, and top-p 0.9. For baselines, we use tem-
perature 0, also known as greedy decoding to maximize their factuality. The full experiment setup
and the configuration of our methods are given in Appendix B.1.

Factual precision is defined as the proportion of supported claims (“No. Supported”) relative to
the total number of claims (“No. Supported” + “No. Unsupported”). Response rate denotes the
proportion of queries answered without refusal. Factual precision and the number of fact claims are
computed with generations that answer the prompt queries without refusal.

For each model, results of our method are reported under three hyperparameter settings: Ours-
Resp maximizing the response rate, Ours-Info maximizing the number of supported claims (“No.
Supported”), and Ours-Prec maximizing factual precision.

Reduced hallucination rate. As shown in Tabs. 2 and 3, our method substantially reduces hal-
lucination rates across different models and generation lengths. It consistently improves factual
precision over the baseline by approximately 20–26% and significantly decreases the number of
unsupported fact claims that are hallucinated by the model.

Increased factual information. In addition, Tabs. 2 and 3 show that our method increases the
number of supported fact claims across all setups with Qwen3-32B, indicating that the generated
responses contain more factual information and are thus more helpful. For Llama3.1-8B-Instruct,
our method slightly reduces supported fact claims, but this is minor compared to the substantial
reduction in hallucinated claims.

Abstention. We observe that our method achieves the highest factual precision and the largest num-
ber of supported facts, albeit with a lower response rate. This indicates that the method effectively
identifies user queries for which the underlying model has limited knowledge and abstains from an-
swering. To further validate its effectiveness in mitigating hallucinations independent of additional
abstention, we report results under a matched response rate with the baseline, denoted Ours-Resp in
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Table 4: Performance of the baseline and our methods on the LongFact benchmark under different
generation length constraints.

Model Gen Length Method Response No. No. Factual
Constraint Rate (%) Unsupported Supported Precision (%)

Qwen3-32B
No Baseline 100.0 1.7 23.1 93.0

Ours 100.0 1.1 21.2 94.6

200 words Baseline 100.0 3.2 43.4 93.0
Ours 100.0 2.5 41.8 94.4

Tab. 2 and Ours-Info in Tab. 3. Even under this setting, our method substantially improves factual
precision compared to the baseline.

5.3 ABLATION STUDY

This section presents an ablation study on two components of our method: sentence sampling and
rewriting. As shown in Tab. 5 in Appendix B.2, both rewriting and the Following sampling strategy
are critical for achieving strong performance. Enabling rewriting substantially boosts the response
rate, while the Following strategy increases the number of supported fact claims and, when combined
with rewriting, further improves factual precision.

5.4 ADDITIONAL RESULTS ON LONGFACT BENCHMARK

In addition to FactScore, we evaluate our method on an alternative long-form factuality benchmark,
LongFact (Wei et al., 2024). As shown in Tab. 5, our method consistently mitigates hallucinations
on LongFact, improving factual precision and reducing unsupported fact claims compared to the
baseline. Although the improvement margin is smaller than in the FactScore experiments, this is
expected since the baseline already achieves very high factual precision. Notably, the 1.4% precision
gain from our method is comparable to the 0.9% improvement observed when moving from GPT-
3.5-Turbo to GPT-4-Turbo, as reported in Wei et al. (2024). We emphasize that the reported results
are based on a single run without hyperparameter tuning due to the high API cost of evaluation,
suggesting that further performance gains are likely achievable with hyperparameter optimization.

6 LIMITATIONS

Our approach requires substantial inference-time compute, which increases cost and limits its prac-
ticality in resource-constrained settings. Furthermore, reliance on instruction-following means that
it cannot always be effectively applied to small-scale models that do not have sufficient instruction-
following capabilities. Future work will explore integrating lightweight semantic probes or de-
veloping purpose-built smaller models fine-tuned for fact decomposition, rewriting, and question
generation, which could broaden the applicability and reduce computational demands.

7 CONCLUSION

In conclusion, this work addresses the critical challenge of hallucinations in open-ended genera-
tion by introducing SHARS, a general inference-time compute framework that incrementally rejects
hallucinated content and builds subsequent outputs upon verified information. Together with Hal-
luSE, our improved uncertainty-based detection method, SHARS provides an effective and flexible
approach to mitigating hallucinations while maintaining or enhancing informativeness. Extensive
evaluations across multiple long-form factuality benchmarks demonstrate that our methods signifi-
cantly advance the state of hallucination detection and mitigation, and importantly, reveal a promis-
ing inference-time scaling property of factuality. These findings highlight the potential of inference-
time compute as a powerful and practical paradigm for improving the reliability of large language
models, especially in high-stakes domains where accuracy and trustworthiness are paramount.
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REPRODUCIBILITY STATEMENT

Upon acceptance, we will release our code, appropriate environment builders, and all configurations
to facilitate reproduction of our results. We will also provide dataloaders for all datasets used in this
work. Because generation involves non-deterministic sampling from LLMs, we cannot guarantee
identical outputs across runs; however, we will ensure that all experimental protocols and hyperpa-
rameters are well-documented so that results can be faithfully approximated.

ETHICS STATEMENT

In conducting this research, we commit to the guiding principles outlined in the ICLR Code of
Ethics. Our goal is to contribute positively to society and the field of language model reasoning,
with a particular focus on mitigating the harms posed by LLM hallucinations. We are conscious that
our method relies on more intensive compute demands, which carry environmental costs that may
disproportionately affect climate-insecure communities. We hope to minimize this in future work
by developing smaller models that are able to perform the same tasks. We also acknowledge that
our experiments rely on biographical information from open-source datasets. While such data may
raise privacy considerations, we neither collect nor use private or personal data without consent, and
all evaluations are based on publicly available resources and model generations. We assess that this
use does not compromise individual privacy. Finally, we refrain from overstating claims or hiding
negative results. We encourage users of our method to perform risk assessments before deployment
in sensitive domains, such as medicine.

LLM STATEMENT

Beyond being the subject of our experiments, LLMs were used in this work to write figure-
generating code, format LaTeX tables, perform sentence-level clarity edits on some sections of text,
and write some utility functions in our codebase (e.g., “make me a function that converts ‘three’ to
3.”).
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Table 5: Performance of various variants of our method on the FactScore benchmark for Qwen3-
32B model. No generation length constraint was applied. All variants were evaluated with the same
hyperparameter settings described in Appendix B.1. Relative runtime is reported as a factor with
respect to the runtime of the Following-Rewrite variant.

Sentence Rewrite Response No. No. Factual Relative
Sampling Rate (%) Unsupported Supported Precision (%) Runtime

Following Yes 91.8 4.8 10.7 69.4 1.00
Temperature Yes 95.6 4.9 9.0 64.8 1.01
Following No 54.4 4.3 12.0 73.5 1.60
Temperature No 40.1 2.3 7.4 76.2 1.55

A PROMPTS

Prompts are given in Fig. 3 and Fig. 4.

B EXPERIMENTS

B.1 CONFIGURATION

FactScore (Min et al., 2023) evaluates LLMs by generating biographies for 182 individuals 1 (the
labeled split), spanning diverse demographics and varying levels of rarity. Each generation is de-
composed into atomic facts, which are verified against a reliable knowledge source, in this case a
pre-saved Wikipedia. GPT-5 was used as the backend LLM for the benchmark. The prompts for
query are given in Appendix A. The results are reported from a single run due to the high API cost
of benchmark evaluation.

LongFact (Wei et al., 2024) is a benchmark for long-form factuality with two key differences from
FactScore. First, it includes thousands of questions across 38 topics, though we used only a subset of
140 prompts following Zhao et al. (2025) due to resource constraints (evaluating a single generation
costs at least $0.19 (Wei et al., 2024)). Second, it relies on results from online Google Search rather
than a pre-saved Wikipedia as the knowledge source. GPT-3.5-turbo-0125 is used as the backend
LLM. The experimental setup follows that of FactScore in Section 5.2.

We describe here the hyperparameters of our method. The maximum number of tolerated consec-
utive hallucinated sentences sampling, N , is 10 across all setups. In Tab. 2, the number of probe
questions, Q, the number of answers, A, and the semantic entropy threshold, θ, are 1, 3, 0.7 for
Ours-Resp with Llama3.1-8B-Instruct; 3, 3, 0.3 for Ours-Info with Llama3.1-8B-Instruct; 2, 3, 0.3
for Ours-Prec with Llama3.1-8B-Instruct; 1, 5, 0.7 for Ours-Resp with Qwen3-32B; 2, 3, 0.2 for
Ours-Info with Qwen3-32B; 2, 7, 0.6 for Ours-Prec with Qwen3-32B. In Tab. 3, the number of
probe questions, Q, the number of answers, A, and the semantic entropy threshold, θ, are 1, 3, 0.5
for Ours-Info; 2, 3, 0.3 for Ours-Prec. In Tab. 4, the number of probe questions, Q, the number of
answers, A, and the semantic entropy threshold, θ, are 3, 3, 0.3 for without length constraint; 2, 3,
0.5 for 200-words constraint. In Tab. 5, the number of probe questions, Q, the number of answers,
A, and the semantic entropy threshold, θ, are 1, 3, 0.5 for all.

All above hyperparameters, except for the ones for LongFact, are found through a coarse grid search.

B.2 RESULTS OF ABLATION STUDY

The results of our ablation study are given in Tab. 5.

1We exclude one individual named Focus... from the original dataset due to confusion with the band of the
same name Focus and complications caused by special punctuation.
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{sentence}

Tell me about {entity}.

You are an information extraction assistant. Your task is 
to analyze a sentence and output a list of entities and 
their corresponding fact claims.

---

### Task Instructions

1. Identify all entities in the sentence, excluding the 
subject.
2. For each entity, generate one fact claim about it based 
only on the sentence.

---

### Rules

#### Entity Rules:

* Entities include named persons, occupations, 
organizations, objects, concepts, events, locations, roles, 
fields, education, times, and numbers.
* Must not include the sentence subject and pronouns 
like He/She/I/It/This/That/They.
* Copy entities exactly as written in the sentence (no 
rephrasing, no normalization).

#### Fact Claim Rules:

* Each entity must map to exactly one fact claim.
* A fact claim must:
  - Be a single, complete, grammatically correct sentence.
  - Be fully supported by the input sentence (no added or 
inferred information).
  - Contain the entity itself explicitly.
* Each fact claim should include only the target entity, 
unless other entities are strictly necessary to preserve 
the meaning.

#### Output Format:

* If no entities remain after exclusion, return an empty list.
* Otherwise, return as a list.
* Each line must follow the format: `- entity: fact claim`

---

### Example 1

Input: Isaac Newton was an English mathematician and 
physicist.

Output:
- Chinese: Isaac Newton was English.
- researcher: Isaac Newton was a mathematician.
- writer: Isaac Newton was a physicist.

---

### Example 2

Input: Marie Curie won Nobel Prizes in both Physics and 
Chemistry.

Output:
- Nobel Prizes: Marie Curie won Nobel Prizes.
- Physics: Marie Curie won Nobel Prizes in Physics.
- Chemistry: Marie Curie won Nobel Prizes in Chemistry.

---

### Example 3

Input: He has won several/various/many awards.

Output:
- awards: He has won awards.

You are given a query from the user asking for 
information. Write the answer in English characters. 
Output plain text only. Do not use formatting styles, 
symbols, or headings. Each sentence should provide 
different information and must not repeat the same 
content. Output only the final answer to the query. Do not 
generate explanations, reasoning, or commentary for the 
answer. Do not ask follow-up questions. The response 
must be around 200 words in total.

You are given a query, a sentence and an entity from that 
sentence. The sentence is the part of a generated 
response to the given query. Your task is to generate 1 
distinct, natural questions such that:
1. The given sentence serves as a full long-form answer.
2. The given entity serves as a correct short-form answer.

### Instructions:

* Each question must be open-ended (cannot be 
answered by yes/no).
* Do not mention or hint the answer in the question.
* Each question must be phrased differently (no 
redundancy, varied structures).

### Output Format:

* output the questions as a list
* each line must follow this format: `- question`

----

### Example 1

#### Input
Query: Tell me about the Eiffel Tower.
Sentence: The Eiffel Tower in Paris was completed in 
1889.
Entity: 1889

#### Output
- In which year was the Eiffel Tower in Paris completed?

### Example 2

#### Input
Query: Tell me about Davy Crockett.
Sentence: Davy Crockett  was a frontiersman.
Entity: frontiersman

#### Output
- What was Davy Crockett's profession?

Query: {query}.
Sentence: {claim}

Entity: {entity}

You are given from the user a question, along with a 
query and verified information as context. Answer the 
question only in plain text. Do not use full sentences. 
Respond with the fewest words possible, such as a 
name, place, or thing. If multiple valid answers exist, 
output up to 5 answers, separated by `;`.

Query: {query}
Verified information: {verified_text} 

Question: {question}

Fact Decomposition PromptMain Prompt

Question Generation Prompt

Answer Generation Prompt

System PromptLegend User Prompt

Figure 3: Set of prompts for various parts of the pipeline.
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System PromptLegend User Prompt

You are given a query and a list of fact claims. Each fact 
claim describes one fact. Your task is to generate a new 
single sentence that incorporates the facts described in 
the fact claims.

### Instructions

1. Identify the fact in each fact claim.
2. Remove any facts that are irrelevant to the query or to 
the other facts.
3. If relevant facts remain, combine them into a single 
new sentence.
4. The subject of the output sentence must be the same 
as the subject in the fact claims (e.g., the specific name 
or pronouns like He/She/It/This/That).
4. If no relevant facts remain, return an empty string.

### Output Requirements

* Output only the generated sentence, and nothing else.
* The output must be exactly one complete, 
grammatically correct sentence.
* Do not invent new facts or add extra information 
beyond the fact claims.
* If no facts remain, output an empty string.

---

### Example 1

#### Input:
Query: Tell me about Grace Hopper.

Fact claims:
- Grace Hopper was a pioneer in computer programming.
- She is known for her work on the COBOL language.

#### Output:
Grace Hopper was a pioneer in computer programming, 
known for her work on the COBOL language.

---

### Example 2

#### Input:
Query: Tell me about Edsger Dijkstra.

Fact claims:
- He was Dutch.
- He was a computer scientist.

#### Output:
He was a Dutch computer scientist.

---

### Example 3

#### Input:
Query: Tell me about Donald Knuth.

Fact claims:
- He is known for his contributions to algorithms.
- Oxford is located in UK.

#### Output:
He is known for his contributions to algorithms.

Query: {query}
Fact claims:
- {claim 1}
- {claim 2}

Rewrite Prompts

Figure 4: Additional prompt if rewrite is enabled.
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