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ABSTRACT

When continual test-time adaptation (TTA) persists over the long term, errors ac-
cumulate in a model and further lead it to predict only a few classes regardless of
the input, known as model collapse. Recent studies have explored reset strategies
that erase these accumulated errors completely. However, their periodic resets lead
to suboptimal adaptation, as they occur independently of collapse. Also, their full
resets cause the catastrophic loss of knowledge acquired over time, even though it
could be beneficial in future. To this end, we propose 1) an Adaptive and Selective
Reset (ASR) scheme that dynamically determines when and where to reset, 2) an
importance-aware regularizer to recover essential knowledge lost from reset, and
3) an on-the-fly adaptation adjustment scheme to enhance adaptability under chal-
lenging domain shifts. Extensive experiments across long-term TTA benchmarks
demonstrate the effectiveness of our approach, particularly under challenging con-
ditions. Our code will be released.

1 INTRODUCTION

Test-time adaptation (TTA) (Liang et al., 2020; Sun et al., 2020; Wang et al., 2021) aims to address
the growing challenge of distribution shifts in real-world applications by enabling model adaptation
at test time. Recently, TTA research has expanded to continual scenarios (Wang et al., 2022; Dobler
etal., 2023), allowing models to adapt to a non-stationary stream of domains, where updates progress
continuously, while errors accumulate over time. However, when domain shifts persist over the long
term, these errors further result in model collapse (Niu et al., 2023; Shumailov et al., 2024), in which
models converge to generate incorrect predictions concentrated on only a few classes across inputs.

To address this, recent studies have explored methods seeking to preserve knowledge from the source
domain when adapting to target domains (Wang et al., 2022; Marsden et al., 2024; Press et al., 2023).
A straightforward yet effective method involves periodically resetting model parameters to those of
the source model (Press et al., 2023), which erases accumulated updates and errors, thereby rescuing
the model from irreversible collapse. However, such a mechanism forces resets to depend on a single
pre-defined reset interval across all situations, leading to too frequent or infrequent resets. Moreover,
this completely erases knowledge acquired during adaptation, thereby disrupting forward knowledge
transfer within the continuously adapting model (Diaz-Rodriguez et al., 2018).

To this end, we propose an Adaptive and Selective Reset (ASR) scheme that dynamically determines
when and where to reset based on the concentration of predicted classes, which is utilized to estimate
the risk of model collapse. We trigger a reset once the risk is deemed significant, and adjust its scope
based on how significant the risk is. Several studies (Bai et al., 2021; Yang et al., 2024) showed that
corruption from label noise begins at the end of the network. Since this corruption results in collapse,
we prioritize layers closer to the output for reset. Fig. | illustrates how our ASR scheme differs from
the aforesaid naive reset approach. Besides, we introduce an importance-aware regularizer to recover
essential knowledge lost from reset. We estimate parameter importance through a newly formulated
Fisher information. Based on this, parameters regarded as crucial to previous tasks are aligned with
their accumulated state, which incorporates all prior target knowledge. Finally, we propose to adjust
our adapting mechanism on the fly based on domain discrepancy. We define prediction inconsistency
to quantify this discrepancy, and then use it to update model hyperparameters via reparameterization,
improving our adaptability under challenging domain shifts. Our contributions are as follows:

* We propose an Adaptive and Selective Reset (ASR) scheme that dynamically determines when and
where to reset, effectively preventing model collapse while mitigating knowledge loss.
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Figure 1: Illustrative comparison between a naive reset approach (RDumb; Press et al. (2023)) and
our Adaptive and Selective Reset (ASR) on the same model (ETA; Niu et al. (2022)). RDumb fully
resets parameters at fixed intervals (e.g., every 1000 steps), whereas ASR dynamically decides when
and where to reset, achieving more stable (smaller fluctuations) and higher (+7.33%p) performance.
Dotted vertical lines indicate when resets occur.

* Beyond the reset strategy, we introduce an importance-aware regularizer to recover parameters
that are inevitably reset but deemed crucial to prior tasks, and on-the-fly adaptation adjustment
that updates model hyperparameters according to domain discrepancy to enhance adaptability.

» Extensive experimental results across various long-term TTA benchmarks demonstrate the effec-
tiveness of our method. Remarkably, our method yields a substantial 44.12% improvement over
the state of the art on the challenging CCC-Hard (Press et al., 2023).

2 RELATED WORK

Test-time adaptation. TTA enables a model to adapt to unknown target environments without any
target assumptions. Since true labels are unavailable at test time, early works have explored effective
unsupervised adaptation (Kundu et al., 2020; Li et al., 2020; Liang et al., 2020). Initial TTA research
proposed to adjust batch normalization statistics (Schneider et al., 2020; Mirza et al., 2022), which
evolved toward integrating self-training schemes (Zhang et al., 2022; Goyal et al., 2022), such as
entropy minimization, improving predictive confidence on target data (Wang et al., 2021), which has
been developed to prevent wrong confidence intensification (Zhang et al., 2025a; Han et al., 2025).

Continual test-time adaptation. Self-training methods face a critical challenge in a non-stationary
domain stream, where their performance gradually deteriorates over time with noisy pseudo-labeling
repeated (Wang et al., 2022; Niu et al., 2023). It accumulates errors, enhancing predictive confidence
in incorrect predictions, eventually leading them to converge to suboptimal solutions, a phenomenon
known as model collapse (Niu et al., 2023; Shumailov et al., 2024). Several studies (Niu et al., 2023;
Hoang et al., 2024) empirically illustrated that once collapsing, a model assigns all inputs into a few
dominant classes. CoTTA (Wang et al., 2022) addresses this collapse by stabilizing its self-training
scheme using augmentation-averaged pseudo-labels and preventing source knowledge forgetting via
stochastic parameter restoration. On the one hand, to handle error accumulation, recent research has
explored reliable adaptation, such as using adaptive learning rates (Park et al., 2024; Maharana et al.,
2025) or adaptive loss functions (Liu et al., 2024a).

Long-term test-time adaptation. While effective at preventing collapse in standard continual set-
tings, TTA methods struggle under more realistic environments, such as gradual (Ddbler et al., 2023)
or smooth (Press et al., 2023) domain shifts that persist over the long term. To overcome these chal-
lenges, ROID (Marsden et al., 2024) introduces weight ensembling as a smooth restoration scheme,
where the adapting model is updated by combining with the weighted pre-trained model. CMF (Lee
& Chang, 2024) improves it by updating the pre-trained model based on the adapting model, inspired
by the Kalman filter (Sirkkid & Svensson, 2023). On the one hand, more aggressive alternatives have
also been proposed. One such alternative is to periodically reset all parameters to their original state
(Press et al., 2023). Others trigger such a reset only when extremely high predictive confidence (Niu
et al., 2023) or a significant distribution discrepancy from the source (Wang et al., 2024) is identified.
Another line of research has developed regularization techniques to constrain the deviation between
pre-trained and adapting parameters, such as weighting regularization with Fisher information (Niu
et al., 2022) or adjusting the regularization coefficient based on parameter divergence from the origi-
nal state (Hoang et al., 2024). This coefficient can also be dynamically assigned for each single layer
based on its location (Yang et al., 2024) or its sensitivity to distribution shifts (Choi et al., 2022). In
this study, our research aligns with the emerging trend of long-term TTA (denoting TTA under more
realistic environments where domain shifts persist over the long term), addressing the drawbacks of
conventional reset mechanisms that reset too often or too rarely and completely erase the knowledge
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Figure 2: Overview of our Adaptive and Selective Reset (ASR) scheme, which compares prediction
concentration C; with its cuamulative counterpart C;_; for each test batch from a long domain stream,
triggers a reset when C; > C;_, indicating that the model is corrupted severely enough to collapse,
and determines layers to reset based on C, —C;_1, which reflects how severely the model is corrupted.
On the upper side, icons inside dashed boxes, labeled with numbers, denote class labels. White icons
represent correct predictions, while black icons represent incorrect predictions.

accumulated for extended periods. However, our approach dynamically determines when and where
to reset, while recovering significant knowledge lost.

3 METHOD

3.1 PROBLEM DEFINITION

Given a pre-trained source model fp,, our goal is to improve its performance at test time over a long
sequence of test domains without access to source data. A handful of test samples arrive in sequence
and are then inaccessible once processed via the model. At step ¢, the current model fy, , is given a
test sample 2% and generate a prediction §! = o(fs, , (%)), where f, yields logit outputs and o is the
softmax function. The model is evaluated using its predictions 7, and is then adapted as 6;_1 — 6;
using unsupervised objective functions. Besides, we also aim to achieve stable adaptation, ensuring
that performance does not deteriorate over time under collapse-prone scenarios such as perpetually
changing or cyclically recurring domain streams. To this end, we address the limitations of existing
reset approaches, such as suboptimal reset timing and the catastrophic erasure of knowledge, through
the following three main components: (1) Adaptive and Selective Reset (ASR; illustrated in Fig. 2),
(2) importance-aware knowledge recovery, and (3) on-the-fly adaptation adjustment.

3.2 MOTIVATION

First, we observed that RDumb (Press et al., 2023)’s fixed periodic reset is only fit for standard TTA
benchmarks where domain shifts occur at a regular interval. In real-world settings, however, domain
shifts do not follow a fixed schedule and their timing can vary significantly. In these settings, RDumb
resets either too early or too late, misaligned with the actual risk of collapse, leading to suboptimal or
unstable adaptation. Second, as shown in Fig. I, RDumb suffers from a substantial performance drop
immediately after each reset. This is primarily due to its full-parameter recovery, which discards all
adaptation knowledge accumulated so far, while causing significant recovery delays as well. These
observations motivated our reset strategy, which triggers resets only when the model is at risk and
mitigates knowledge erasure from the reset. We further support the second motivation by quantifying
post-reset performance drops and recovery delays in Appendix F.1.

3.3 ADAPTIVE AND SELECTIVE RESET

When to reset. We introduce an adaptive reset scheme that triggers a reset only when a high risk of
collapse is detected. To achieve it, we define prediction concentration C;, leveraging the notion that
entropy reflects the uniformity of a distribution, where Softmax (Mean (Logits) ) serves as the
underlying measure, as follows:

C | B¢ |

=i, log(r,) where p, =0 |B|Zfe”xt , (1)
t

c=1

C is the total number of classes, and p;, indicates the probability of the c-th class in p;, obtained by
applying the softmax function o to the average logits of the batch B; at time step t. Although we can
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measure the concentration of predicted classes, it remains unclear when it is high enough to suggest
that the model is on the verge of collapse. We argue that when the concentration C; deviates from its
long-term normal behavior, it can be regarded as an indication that collapse is likely to emerge, and
define cumulative concentration C;, computed via exponential moving average (EMA), as follows:

ét:MC'C_tfl‘F(l—Mc)'Cty )

where /¢ is the momentum coefficient, and Cy is initialized as — log(av - C) using a pre-defined
ag. We compare the concentration C; with its cumulative counterpart C;_; to judge whether to
trigger a reset at each step t. C;_1 is reinitialized as —log(cg - C) if the model is reset; oth-
erwise it is updated via Eq. (2). We choose o such that the initial cumulative value is always
sufficiently larger than C; for any ¢ (see top-right of Fig. 2). C;_; is guaranteed with time to ap-
proximate the long-term normal behavior of C;. We render a reset triggered right after C; > C;_1 is
detected to prevent accumulating corrupted Fisher information, which will be described in Sec. 3.4.
To demonstrate that our prediction concentration C; is an effec-
tive metric for detecting a high collapse risk, we evaluate its cor-

relation with accuracy in Fig. 3, where low accuracy represents a  §29 » T oo
higher risk of collapse. We observe a strong Pearson correlation &

of 0.88, confirming the reliability of our C;. A detailed setup and glo

additional analysis are provided in Appendix C.1I. <,

Where to reset. The critical drawback of reset is the catastrophic 67 —66 —65 —64 -6.3
loss of knowledge acquired over time. To alleviate this, we ex- Prediction Concentration

ploit the hierarchical nature of deep neural networks. In the early ~ Figure 3: Corr. of C; and Acc.
stages of collapse, layers closer to the input tend to be more ro-

bust to corruption than those closer to the output, since corrup-

tion from label noise begins at the end of the network (Bai et al., 2021; Yang et al., 2024). Inspired
by this insight, we propose a selective reset strategy that decides which layers to reset according to
how likely the model is to collapse, prioritizing those closer to the output. Since collapse progresses
with the number of corrupted layers increasing, the model facing a higher risk of collapse tends to
have more corrupted layers. As a result, reset targets should scale with the risk of collapse. We can
measure this risk via how far our concentration metric deviates from its normal behavior, denoted as
C: — Cy—1. We define a selective reset factor r; that specifies which layers to reset, as follows:

Tt=7‘0+)\r'(ct—ét—1), €))

where rg and ), are pre-defined as the minimum size of reset targets and the risk scaling factor. The
factor 7, is always greater than o, as the model is reset only when C; > C;_1, and is also subject to
an upper bound of 1, indicating a full reset. It specifies target layers to reset starting from the output,
such that the last 7, proportion of layers are reset, while the remaining 1 — r, are preserved'.

3.4 IMPORTANCE-AWARE KNOWLEDGE RECOVERY

Although we attempt to mitigate the catastrophic knowledge loss from reset, some highly important
knowledge is still inevitably erased. To further address this issue, we introduce an importance-aware
regularizer designed to recover essential knowledge lost. At every iteration, we accumulate learnable
parameters and their importance matrices computed via Fisher information (Kirkpatrick et al., 2017;
Zenke et al., 2017; Schwarz et al., 2018). We then apply the regularizer to strongly guide parameters
deemed significant for previous tasks toward alignment with the accumulated ones, as follows:

[0 —1]
L(Be;0-1) = Lu(Beiber) +Ar > F(6i_, — )7, @)

i=1

where £ and L,, are total and unsupervised losses, Fiand 6° are the i-th accumulated Fisher matrix
and accumulated parameter, 0;_; € 6;,_; is the ¢-th learnable parameter from 6,_;, and Ar is the
regularization coefficient.

In the accumulation phase, the following dilemma arises: While parameters and their Fisher matri-
ces increasingly align with the current domain, their proximity to reset makes them more vulnerable
to corruption. Conceptually, proximity to reset indicates that, as a model has adapted for a long time,
errors have also accumulated substantially, compromising its integrity and signaling that it requires

"For example, with 15 layers and r, = 0.5, the 8 deepest layers are reset (rounded off).
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a reset. We further provide empirical evidence to support it in Appendix F.2. EMA is a widely used
accumulation technique, but it is not an ideal choice here, as it inherently prioritizes recent informa-
tion. To address this, we propose a hybrid accumulation scheme that combines cumulative moving
average (CMA) with EMA. At every iteration, CMA accumulates learnable parameters and their
Fisher matrices equally. EMA then aggregates the CMA-accumulated values at each reset-triggered
point, after which CMA is reinitialized to zero. The EMA-accumulated parameters and Fisher ma-
trices correspond to # and F in Eq. (4). More details about this knowledge accumulation scheme
are provided in Appendix C.2, and its computational efficiency is analyzed in Appendix C.4. More-
over, we provide both theoretical and empirical evidence for the view that our regularizer effectively
recovers essential knowledge erased by resets in Appendix E.6.

3.5 ON-THE-FLY ADAPTATION ADJUSTMENT

While we assume domain-evolving settings, we have not yet taken account of how evolution unfolds
when designing our method. Under challenging domain shifts, our adaptability may struggle to keep
pace, as resets are occasionally required. In such cases, strong guidance from the Fisher regularizer
becomes crucial to exploit additional knowledge about target domains, and source—target discrepan-
cies are also amplified, thereby worsening label noise. Pseudo-labels are more likely to be randomly
assigned (Semenova et al., 2023), which complicates robust inference of prediction concentration C;
and renders stable updates of C;_1 in Eq. (2) particularly challenging. To address this, we propose to
adjust model adaptation on the fly based on domain discrepancy. We define prediction inconsistency
¢, to quantify domain discrepancy, as follows:

¢ = = > T(w () # 7(@7)) , )

where I is the indicator function, 7 is the argmax operation, and ¢ and 4 are the softmax probabil-
ities of the source fy, and current fp, , models for the i-th test sample in B;, respectively. Higher
¢, values (i.e., closer to 1) indicate greater domain discrepancy. Based on this, we adjust adaptation
on the fly by updating the regularization coefficient A r in Eq. (4) and the momentum coefficient p¢c
in Eq. (2) through reparameterization as follows:

Ar = Ao - 97, (6)
pe =1—po- (1 — ), (7)

where A\ and p are pre-defined. As ¢; increases, A x grows exponentially within [0, Ag] for stronger
regularization in Eq. (4), and ¢ grows linearly within [1 — p, 1] to minimize unstable updating of
Ci—1in Eq. (2). If Ag = 0, no knowledge recovery occurs; if 1o = 0, no update of C;_; occurs.

4 EXPERIMENTS

4.1 SETUP

Datasets. As discussed in Press et al. (2023), standard TTA benchmarks are inadequate for validat-
ing the stability of continual TTA methods in long-term scenarios that are prone to model collapse.
To address this, we adopt recently introduced benchmarks (1, 2) specifically designed for collapse,
and modify the existing TTA benchmarks (3, 4) to better reflect long-term collapse-prone scenarios.
We conduct experiments on the following four benchmarks: 1) Continually Changing Corruptions
(CCQ) (Press et al., 2023) is a benchmark systematically processed from ImageNet-C (Hendrycks &
Dietterich, 2019). This assumes smooth domain shifts over the long term, where one fades gradually
as another emerges, with the two overlapping. It is also divided into three adaptation difficulty levels
(Easy / Medium / Hard), each incorporating three corruption orderings and three corruption evolving
speeds, resulting in nine variations in total. 2) Concatenated ImageNet-C (CIN-C) is an extended
version of ImageNet-C, containing SOK images per corruption, ten times larger than the original, in
which 15 corruption types are sequenced under the highest corruption condition (level 5). It is often
used by several studies (Wang et al., 2022; Niu et al., 2022; Gong et al., 2022; Brahma & Rai, 2023)
to demonstrate their adaptation stability, while exposing collapse in Tent (Wang et al., 2021). Lastly,
the following two standard TTA benchmarks, 3) ImageNet-C (IN-C) and 4) ImageNet-D109 (IN-
D109) (Peng et al., 2019) are processed to reflect model collapse, following prior works (Press et al.,
2023; Hoang et al., 2024). IN-C cyclically repeats the sequence of corruptions 20 times, consisting
of only four types on which the source model achieves less than 10% accuracy, indicating hard-level
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| CCcC | CIN-C | IN-C | IN-D109

Method | Easy Medium Hard | iid non-ii.d. | Visit1/20 Mean | Visit 1/20 Mean
Source 33.89+02 16.87x02 1.27+00 | 18.01x00 18.01+0.0 3.08/3.08 3.08+0.0 | 32.52/32.52  32.52+00
ROTTA (CVPR23) 29.05+2.0 29.71+1.7 | 12.45/12.96 17.60+2.8 | 39.89/34.34 40.61+3.1
ViDA (ICLR24) 3.09/ /

PALM (AAAI'25) 24.66/30.98 30.70+14 /

EATA (CML'22) 49.52+09  39.19+1.7 | 47.81+02 47.54x02 | 31.31/36.35 36.32+12 | 41.62/41.32 41.61+03
+ COME (ICLR25) 46.67+£33  36.63+1.6 44.14£03 44.09+03 | 30.20/32.06 33.02+1.1 | 42.94/4491 45.11+06
CoTTA (CVPR'22) 1.52+05 | 35.51+26 35.29+24 | 18.78/37.22 34.39+4.8 | 41.76/40.55 43.91+2.1

SAR (ICLR*23) 3794412 22.25+19  2.03+05 | 40.35+£18 40.07+06 | 24.38/34.93  34.09+24 | 40.86/33.11 39.09+34
+ COME (ICLR’25) 48.42404 37.06+12  2.08+07 4296403 42.56+03 | 23.67/35.24 34.28+27 | 40.59/34.96 42.10+3.1

CMF (ICLR’24) 49.31+09 40.61+1.6 48.61+0.1 4828402 | 35.07/39.40 39.35+1.0 | 44.69/45.46 45.25+03
PeTTA (NeurIPS’24) 36.89+22 22.64+28 6.00+08 | 31.55+0.1 31.61+0.1 | 11.91/12.40 12.65+0.3 | 39.56/42.69 42.76+0.8
ETA (cML22) 4324+10 19.03+6.9 \ 43.61+04 43.63+04 | 30.64/35.80 35.88+12 | 41.24/34.21 37.22+2.1
+ RDumb (NeurIPS’23) | 49.47+0.8 39.42+15 9.77+1.8 46.39+02 46.13+02 | 30.71/30.94 34.66+22 | 40.93/41.59 41.45+04
+ ASR (Ours) 51.20+08 41.88+1.6 17.10+2.1 47.17+02 46.83+02 | 28.68/39.10 36.90+2.9 | 40.61/41.32 41.53+03
ROID (WACV*24) 49.88+08 40.47+14 1248126 | 48.58+0.1 48.25+0.1 | 35.32/38.02 37.96+06 | 46.02/46.17 46.16+0.1
+ RDumb (NeurIPS'23) | 49.69+0.8 40.05+1.4 1541+15 48.00+0.1 47.67+0.1 | 35.60/35.75 37.18+12 | 46.07/45.62 45.99+0.2
+ ASR (Ours) 51.41+08 42.80+15 22.21+12 49.50+02 49.14+02 | 35.66/42.96 41.56:1.7 | 46.13/46.32 46.49+0.1

Table 1: Comparison with state-of-the-art continual TTA methods across four datasets using Accu-
racy (%). Results for each level of CCC (Easy / Medium / Hard) are averaged over nine variations,
considering three different corruption orderings and three corruption evolving speeds. CIN-C results
are averaged over ten runs. In the non-i.i.d. setting, we use a Dirichlet parameter § = 0.1, following
prior works (Gong et al., 2022; Yuan et al., 2023). For IN-C and IN-D109, we report averages across
domains at the initial and last (20th) visits, as well as overall averages across all visits. denotes
model collapse, defined as performance worse than the source model (Press et al., 2023).

corruptions. IN-D109 is processed in the same way as IN-C, but it selects four hard-level corruptions
according to less than 50% accuracy.

Baselines. We compare our approach with state-of-the-art continual TTA approaches. We categorize
them into two groups based on whether they incorporate an explicit mechanism to prevent collapse.
The first group, which lacks an explicit safeguard against collapse, consists of ETA (Niu et al., 2022),
RoTTA (Yuan et al., 2023), ViDA (Liu et al., 2024b), C-MAE (Liu et al., 2024a), PALM (Maharana
etal.,, 2025), and REM (Han et al., 2025). The second group, which integrates an explicit safeguard
against collapse, is composed of EATA (Niu et al., 2022), CoTTA (Wang et al., 2022), RDumb (Press
etal., 2023), SAR (Niu et al., 2023), ROID (Marsden et al., 2024), CMF (L.ee & Chang, 2024), and
PeTTA (Hoang et al., 2024). COME (Zhang et al., 2025a) does not belong to either group because it
can be combined with any method using an entropy minimization objective. RDumb was originally
implemented on ETA, but as a naive reset strategy, we apply it to other methods to ensure a reliable
evaluation for our reset method.

Implementation details. We re-implement all methods in PyTorch (Paszke et al., 2019) within
a unified TTA repository (Marsden et al., 2024), and all reported results are obtained by re-running
these methods for a fair and consistent comparison. Experiments are conducted on ResNet-50 (He
et al., 2016), provided by either torchvision or RobustBench (Croce et al., 2021). We also
test on ViT-B-16 (Dosovitskiy et al., 2021) for CCC to further assess generalization. For ASR, we
follow the implementation details of ETA (Niu et al., 2022) and ROID (Marsden et al., 2024), since
we use them as our TTA baselines. We determine hyperparameters using only 5% of a holdout split
(transition speed 2000, random seed 44) out of the nine available from CCC-Hard, and apply them
to all datasets and settings. We also evaluate robustness to hyperparameter variations across all CCC
levels in Appendix E.5. The loss L,, in Eq. (4) is defined based on what our TTA baseline uses as its
final loss. More details of our implementation are available in Appendix C.3. For analysis on CCC,
we consistently use a single split (transition speed 2000, random seed 44).

4.2 MAIN RESULTS

a) CCC. Table | presents the limitations of existing continual TTA methods on CCC. All methods
(except for the source model) in the first row collapse across all CCC levels. Following Press et al.
(2023), model collapse is defined as performance worse than the source model. Most methods in the
second row achieve stable adaptation, but some fail on CCC-Hard and lack competitive performance.
In the last row, RDumb (Press et al., 2023) effectively avoids collapse and further enhances ETA (Niu
etal., 2022); however, it degrades ROID (Marsden et al., 2024) on CCC-Easy/-Medium. Our method
demonstrates its effectiveness by achieving stable and improved performance across all baselines. It
particularly achieves 22.21% (average) accuracy on the most challenging CCC-Hard, outperforming
the best state-of-the-art by 44.12%. We further assess the generalization of our method on ViT-B-16
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Method |  Easy Medium Hard | Mean
Source | 5492402 417406 14.83+06 | 37164167 G rt F Ao o | cce
CMF 61.52+0.7  51.50+6.3 38.27+26.4 (Eq. (1)) (Eq.(3)) (Eq.(4)) (Eq.(6)) (Eq.(7) \ Easy Medium Hard \ Mean
C-MAE 4348439  26.92+23 | 40.52£105

49.74 40.19 11.81 3391
REM 66.16+£03  57.99+09 45.04+25.0 v v v 49.83 40.58 1716 | 3586
ETA v v v 4 49.83 4035 1599 | 3539
+RDumb | 59.99+06 50.50+14 23.27+1.1 | 44.58+15.6 v v v v 51.04 42.19 20.18 | 37.80
+ASR 60.58+07 51.63:16 24.45£09 | 45.55:154 v v v v 5107 4233 2027 | 37.89
ROID 60.85+0.7  52.19+1.3 42.45+20.8 4 v v v 50.82 41.86 20.70 | 37.79
+RDumb | 60.60+0.7 51.68+13 25.72+14 | 46.00+14.8 v v v v v 5119 4242 2136 38.32
+ASR 61.48+07 53.55+1.3 28.09+0.6 | 47.71+14.3

Table 2: Acc. (%) comparison on ViT. Table 3: Effect of components in ASR on ROID .

using CCC, as reported in Table 2. We compare with baselines that have reported their performance
on the ViT. While CMF (Lee & Chang, 2024) and REM (Han et al., 2025) achieve strong results on
CCC-Easy and -Medium, they fail to prevent collapse on CCC-Hard. In contrast, C-MAE (Liu et al.,
2024a) demonstrates its effectiveness on CCC-Hard, but does not generalize well to other levels. Our
approach, however, not only maintains strong performance on CCC-Hard but also achieves the best
average performance.

b) CIN-C. Table | presents results on CIN-C, reporting average accuracy over ten permutations, in
which 15 corruption types are shuffled. Methods that achieve stable adaptation on CCC also perform
well on CIN-C. Weight ensembling (Marsden et al., 2024; Lee & Chang, 2024), often referred to as
smooth parameter restoration, demonstrates its effectiveness, achieving the top two ranks among the
baselines. Our method still attains the best performance even in CIN-C that is less prone to collapse.
Most existing studies assume label-i.i.d. test environments, but such assumptions do not always hold
in real-world applications. Recently, increasing attention has been given to non-i.i.d. settings where
labels are temporally correlated. Following Gong et al. (2022); Yuan et al. (2023), we use a Dirichlet
parameter 6 = 0.1 to adjust the class distribution of test samples. Our method consistently improves
our baselines (ETA, ROID) and achieves the best performance on ROID.

¢) IN-C. We report average accuracy over a sequence of corruptions at the first and last (20th) visits,
as well as the overall average across all visits for IN-C, as shown in Table 1. Most baselines succeed
in avoiding collapse and achieve substantial improvements over the source model. IN-C is less prone
to collapse; however, our method, originally designed to address such risks, also proves effective in
enhancing adaptability, showing the best results consistently across the first, last, and overall visits.

d) IN-D109. Results for IN-D109 are reported in the same manner as for IN-C (Table 1). Several of
the methods exhibit decreased performance when comparing visit 1 and 20. This indicates the early
stages of collapse, which may be due to the reduced number of classes. IN-D109 contains only 109
classes, roughly ten times fewer than other datasets. Consequently, a skewed prediction distribution
is more clearly observed in IN-D109 than in the other datasets. In contrast, our method demonstrates
stable and superior performance on IN-D109.

4.3 ABLATION STUDIES

We ablate each component from our approach to validate its individual effectiveness. Table 3 shows
that dynamically determining when and where to reset is the most critical factor, as demonstrated
by the first and second component-ablated results. To ablate our adaptive reset, we replace it with a
fixed-interval reset scheme using 7" = 20000. In this case, p is omitted as C; is no longer computed.
To ablate our selective reset, we adopt a full reset mechanism. The remaining components (i.e., the
importance-aware regularizer and hyperparameter reparameterization) have relatively small individ-
ual impact, but when combined, they yield meaningful performance gains. When ) is ablated, A »
is fixed to 5.0 in Eq. (4). When g is ablated, pc is fixed to 0.995 in Eq. (2). More experiments for
the ablation study is provided in Appendix E

4.4 EMPIRICAL STUDIES ON MODEL COLLAPSE

Model collapse refers to a terminal state where long-term error accumulation has severely degraded
performance, eventually leading the model to predict only a few classes for all inputs. It is therefore
crucial to anticipate collapse. However, it is a non-trivial task because true labels are inaccessible at
test time, making such accumulation undetectable. The only reliable signal for detecting collapse is
a biased prediction distribution, even though it does not hold under non-i.i.d. or imbalanced class pri-
ors. We will discuss a way to address these class priors in Sec. 4.5. Mean (Softmax (Logits))
is the most straightforward way to measure the bias of a prediction distribution. However, what we
suggest is Softmax (Mean (Logits) ).
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Figure 7: Comparison of ETA / ROID and its variants with RDumb and ASR over different Dirichlet
parameters § on non-i.i.d. CIN-C. The lower the §, the more imbalanced the label distribution.

Q: Why is Softmax (Mean (Logits) ) effective to detect collapse?

A: Models tend to update predominantly based on high-confidence predictions. Collapse is similarly
driven by these predictions. Its early sign emerges when they begin to concentrate on a small subset
of classes. Since large-scale logits reflect high-confidence predictions (Wei et al., 2022), averaging
raw logits highlights these predictions. However, Mean (Softmax (Logits) ) normalizes logits,
so it discards confidence information. In contrast, Softmax (Mean (Logits) ) is sensitive to the
growing concentration of high-confidence predictions, thereby enabling more reliable detection of
early collapse signs. Fig. 4 demonstrates that using Softmax (Mean (Logits) ) enables reliable
adaptation in collapse-prone scenarios (e.g., CCC), whereas using Mean (Softmax (Logits))

leads to degraded performance and fails to adapt. In the figure, the green ones represent our method
with ROID, which will be described later.

Q: Is Softmax (Mean (Logits) ) invariant to the logit-scale variance?

A: We empirically verify that the logit-scale variance within a batch is not a significant concern. We
adjust this variance by modifying logits within each batch as follows. For each sample, we subtract
the mean of its logits to obtain deviations, scale these deviations by a factor, and then add the mean
back. This scales the logit-scale variance, while preserving the logit-scale mean. As a result, large-
scale logits become amplified and small-scale logits become compressed, or vice versa, depending
on the factor. For this experiment, we use a single split (transition speed 1000; random seed 43) of
CCC-Easy and -Hard with ROID (Marsden et al., 2024) as our base model. Fig. 5 shows that our
method based on Mean (Softmax (Logits)) is highly stable across a wide range of logit-scale
variances. Even when we increase the variance by more than 15, accuracy keeps nearly unchanged
(<0.3%p on CCC-Easy and <1%p on CCC-Hard). This shows that Mean (Softmax (Logits) )

remains reliable even when logits of substantially different scales occur within a batch.

4.5 RISK OF FALSE-POSITIVE RESET

One may question “whether our method still works well under label imbalance, even though predic-
tions are typically highly concentrated”. The answer is that the imbalanced setting does not actually
disrupt our method. As predictions are more concentrated, the cumulative prediction concentration
Ci_1 rises accordingly, then a high risk of collapse is favorably captured when a much higher C; is
detected. We show that imbalanced class priors do not undermine our method by evaluating it under
various label-imbalanced settings, as shown in Fig. 7.

Following this, one may ask “if the much higher C; could arise temporarily from extremely label-
imbalanced inputs”. In response, we argue that performing a reset at a high C; is beneficial, regard-
less of what label distribution incoming inputs follow. Regardless of whether predictions are correct
or incorrect, highly concentrated predictions produce biased update signals, ultimately leading the
model to collapse. To test whether false-positive resets, triggered by temporarily high concentration
in correctly adapting models, are beneficial, we conduct a controlled experiment under a non-i.i.d. la-
bel scenario, where such resets are common. We prepare a batch with i.i.d. labels to ensure that any
triggered reset would be considered a true-positive. We use a single split of CIN-C (the first split in
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CCC-Easy Original  Gain (%) Modified Gain (%) CCC-Hard Original ~ Gain (%) Modified Gain (%)

ETA 43.46 - 43.17 - ETA 0.41 - 1.83 -
+ RDumb 49.53 +13.9% 47.36 +9.7% + RDumb 9.46 +2207% 11.88 +549%
+ ASR (Ours)  51.27 +17.9% 51.15 +18.4% + ASR (Ours)  15.95 +3790% 17.61 +862%
ROID 49.95 - 49.54 - ROID 9.63 - 16.51 -
+ RDumb 49.76 -0.3% 49.33 -0.4% + RDumb 14.03 +45.6% 15.99 -3.1%

+ ASR (Ours) 5147 +3.0% 51.46 +3.8% + ASR (Ours)  21.22 +120% 21.56 +30.5%

Table 4: Acc. (%) of original and modified CCC- Table 5: Acc. (%) of original and modified CCC-
Easy using seed 43. Gains (%) are relative to each Hard using seed 43. Gains (%) are relative to each

corresponding baseline. corresponding baseline.
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Figure 8: Performance comparison over revisits on IN-C with CDC settings.

Table D.5) with ROID as our baseline. For each reset, we compute C; in Eq. (1) for that i.i.d. batch
and apply a threshold to determine whether the reset is truly necessary. We initialize the threshold
as described below Eq. (2). A higher threshold reduces false-positive ones, while allowing for more
true-positive ones. Fig. 6 demonstrates that allowing false-positive resets (i.e., small threshold) leads
to improved performance. This confirms that interrupting biased parameter updates, even when the
model appears to adapt correctly, helps maintain stable long-term adaptation.

4.6 DYNAMICALLY CHANGING CORRUPTIONS: A VARIANT OF CCC

Although we noted in our motivation (Sec. 3.2) that real-world domain shifts do not follow a fixed
schedule, our benchmarks do not include varying domain-shift intervals. To better evaluate robust-
ness under such conditions, we construct modified CCC variants, which we refer to as Dynamically
Changing Corruptions, where the length of each corruption is randomly sampled from 1,000, 2,000,
or 5,000 batches. In the original CCC setting, each corruption persists for a fixed length (e.g., always
2,000 batches). This modification introduces a stochastic corruption-transition schedule that allows
us to evaluate robustness under real-world-like data streams. For a reliable evaluation, we compare
results on our modified CCC variants with those on the original CCC benchmarks, as summarized in
Table 4-5. In CCC-Easy, performance gains seen in the original setting are similarly reproduced in
the modified setting across all methods. In contrast, CCC-Hard reveals a difference. ROID+RDumb
exhibits degraded performance under the modified setting, and we conjecture that RDumb’s fixed
reset schedule is unable to adapt when challenging corruptions evolve unpredictably. However, our
method consistently preserves performance gains, demonstrating that it adapts effectively even when
corruptions are severe and evolve irregularly.

4.7 CDC SETTING FOR DYNAMIC DOMAIN-SHIFT SCHEDULE

We demonstrate the robustness of our approach under dynamic domain shifts by applying the Con-
tinual Dynamic Change (CDC; Zhang et al. (2025b)) protocol to IN-C. This IN-C variant explic-
itly introduces fast switching between domains and stochastic domain durations, controlled via the
Dirichlet parameter §. We evaluate our approach under both a standard CDC setting (6 = 1.0) and a
more dynamic setting (§ = 10.0) to further emphasize its robustness. We show the results in Fig. 8.
For 6 = 1.0, RDumb experiences repeated drops, e.g., accuracy falls from 36.91 to 34.00 at the 4th
transition. In contrast, ASR steadily improves over time, rising from 35.08 to 41.34 across 20 tran-
sitions and maintaining more stable performance than RDumb. Similarly, under 6 = 10.0, RDumb
again suffers repeated drops, whereas ASR gradually improves and remains stable, reaching 41.68
at the 20th transition. These results demonstrate that our method reliably maintains high and stable
performance, even under rapid and stochastic domain shifts in real-world dynamic settings. We also
provide full experimental results under CDC settings in Appendix D.5.
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Figure 11: Histogram of predictions on CCC-Hard for ten fixed, randomly selected class labels,
comparing ETA, RDumb, and ASR to evaluate robustness against model collapse. Results are mea-
sured every 10 batches, with class labels color-coded consistently.

4.8 ANALYSIS

Stability analysis over time. Beyond quantitative results, we examine whether our approach consis-
tently maintains strong performance over time, as stabilization is crucial for reliable use in real-world
applications. Fig. 9 illustrates accuracy (%) over time for ASR and RDumb on ETA”. For each step,
we compute the average accuracy over 103 batches across all CCC levels. Finally, ASR consistently
outperforms RDumb from the global view (top), and the stability of ASR is demonstrated by smaller
performance fluctuations from the local view (bottom).

Robustness to batch size. We assess the robustness of our method to batch size, as illustrated in
Fig. 10. We report the average accuracy across all CCC levels, varying the batch size from 128 down
to 16. As expected, performance generally decreases with smaller batch sizes. However, our method
demonstrates more graceful degradation than ROID and RDumb. Moreover, in the extreme case of
sequential single-sample inputs, this can be effectively addressed by stacking samples over time and
adapting only when a sufficient number is obtained, following Gong et al. (2023); Niu et al. (2024).
We further present results for truly small batch sizes (i.e., fewer than 16) in Appendix F.4.

Collapse analysis. We analyze how models are affected by collapse. Experiments are conducted on
CCC-Hard under the common assumption that class labels follow a uniform distribution. We select
ten fixed class labels and track how models generate predictions over time. ETA (Niu et al., 2022) is
used as our baseline since it is highly vulnerable to collapse, allowing a clear analysis. Fig. 11 shows
that ETA initially predicts a variety of classes, but its label diversity abruptly decreases afterward. It
sometimes fails to assign any of the ten fixed class labels. RDumb (Press et al., 2023) helps prevent
collapse, but its class distribution remains unstable and biased. In contrast, our method demonstrates
superior robustness against collapse by maintaining a uniform class distribution until the end.

5 CONCLUSION

In this paper, we mitigate model collapse in long-term TTA via Adaptive and Selective Reset (ASR),
combined with importance-aware knowledge recovery and on-the-fly adaptation adjustment. Exper-
imental results demonstrate the effectiveness of our proposed method across long-term TTA bench-
marks, particularly in challenging settings. Specifically, our method outperforms the state-of-the-art
by 44.12% on CCC-Hard. We hope that our work motivates further exploration into advanced reset
mechanisms for long-term TTA, aiming at robust and stable adaptation while preventing collapse.

2Two methods are identical at ¢ = 0, but the initial point in Fig. 9 (top) denotes the average over ¢t € [0,999].
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A DISCUSSIONS

Q: Does your method rely on incremental and heuristic solutions for long-term TTA?

A: Our method is not a collection of small fixes. We reframe long-term TTA through a reset-based
view, in which preventing collapse is considered as a continuous decision-making task rather than
following a fixed schedule. Prior work typically adopts resets at fixed intervals (Press et al., 2023)
or only after collapse occurs (Niu et al., 2023). In contrast, our approach continuously estimates the
risk of collapse. Moreover, we integrate several components (Sec. 3.3—-3.4) under a single principle:
balancing the forgetting and retaining of knowledge. This unified framing has not been explored in
prior TTA research. We describe how these components work together in Appendix E.6.

Q: Does your method fail to overcome the need for reset in long-term TTA?

A: Reset is an essential and widely recognized mechanism to prevent collapse in long-term TTA.
Neural networks typically converge to sharp minima, making it difficult to escape and find better
solutions through standard gradient updates (Keskar et al., 2017). Collapse is an even more chal-
lenging state than a sharp minimum, making recovery nearly impossible without reset (Hoang et al.,
2024). Despite its importance, reset has been largely unexplored: existing approaches simply adopt
resets at fixed intervals with full-parameter recovery. We tackle these fundamental limitations, ef-
fectively exploring the potential of reset and proposing a strategy that dynamically adjusts both its
timing and extent based on the model’s state.

Q: Are the marginal gains worth the engineering effort, or would simpler variants suffice?

A: Designed to tackle model collapse in long-term TTA, our method is highly effective in challeng-
ing and realistic scenarios. CCC-Hard best reflects such scenarios, where we achieve a substantial
44.12% improvement over the state of the art, demonstrating that our approach effectively handles
difficult tasks. In contrast, other benchmarks, such as IN-C or IN-D109, are easier, and the mod-
est improvements are what any method could achieve in such simple settings. This shows that the
smaller gains on easy tasks do not imply that simpler variants would be sufficient for the more chal-
lenging benchmarks. As more benchmarks prone to collapse are available, we expect the benefits of
our approach to become even clearer.
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B MORE DETAILS ON DATASETS

In this paper, we evaluate the stable adaptability of continual TTA methods across the following four
benchmarks known for their susceptibility to collapse.

1) Continually Changing Corruptions (CCC) is introduced by RDumb (Press et al., 2023), which
is systematically processed using the ImageNet-C dataset. This converts ImageNet-C’s abrupt cor-
ruption transitions into smooth ones by interpolating integer corruption levels (1-5) to floating-point
values between 0 and 5 in steps of 0.25, where one fades gradually (e.g., 1 — 0) as another emerges
(e.g., 0 — 1), with the two overlapping. A smooth transition path consists of two key aspects: levels
at which two corruptions start, and how they gradually fade and emerge. They are determined by the
source model’s accuracy (0% / 20% / 40%), which reflects the adaptation difficulty (Easy / Medium /
Hard). Different corruption types are incorporated into each level’s path, as reported in Table B.1. A
transition speed, defined as the number of images per step along the path, has three variations (1000
/2000 / 5000), and a corruption ordering also has three variations, determined randomly using seeds
(43 /44 /45). CCC contains 7.5M images for each combination of path, speed, and ordering. Lastly,
CCC incorporates widely-recognized contributors to model collapse, including long-term corruption
transitions (Wang et al., 2022), consistent adaptation difficulty across corruptions (Press et al., 2023),
and repeated corruption occurrences (Hoang et al., 2024).

Level \ Corruption Types

Easy \Gaussian,noise, Shot_noise, Impulse_noise, Contrast

Medium | Gaussian_noise, Shot_noise, Impulse_noise, Defocus_blur,
Glass blur, Motion_blur, Zoomblur, Snow, Frost, Fog,
Contrast, Elastic, Pixelate

Hard Gaussian_noise, Shot_noise, Impulse_noise, Defocus_blur,
Glass blur, Motion blur, Zoomblur, Snow, Frost, Fog,
Contrast, Elastic, Pixelate, JPEG

Table B.1: Corruption types per smooth transition path for each level of adaptation difficulty.

2) Concatenated ImageNet-C (CIN-C) consists of image samples from the ImageNet-C validation
set with 15 corruption types—Gaussian noise, Shot noise, Impulse noise, Defocus blur, Glass blur,
Motion blur, Zoom blur, Snow, Frost, Fog, Contrast, Brightness, Elastic, Pixelate, JPEG—at the
highest severity (level 5). CIN-C contains 50K images for each corruption type, which is totally ten
times larger than the original set.

3) ImageNet-C (IN-C) is processed to evaluate stability against model collapse. It consists of only
four corruption types at the highest severity (level 5), including Gaussian noise, Shot noise, Impulse
noise, Contrast, for which the source model achieves less than 10% accuracy, ensuring consistent
adaptation difficulty across corruptions. Each type contains 5K images, and IN-C contains a total of
400K images by repeating the corruption sequence 20 times, satisfying another known contributor to
model collapse. Finally, IN-C uses the following ordering: Gaussian noise — Shot noise — Impulse
noise — Contrast.

4) ImageNet-D109 (IN-D109) is also processed to evaluate stability against collapse. It consists of
only four domains—Clipart, Infograph, Painting, Sketch—out of six available, for which the source
model achieves less than 50% accuracy, ensuring consistent adaptation difficulty across domains. It
uses the ordering of the domain sequence as Clipart — Infograph — Painting — Sketch, and repeats
the sequence 20 times to account for another key contributor to collapse. Finally, it has only classes
that are shared with the DomainNet dataset, resulting in 109 classes.
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C ADDITIONAL DETAILS OF ASR

C.1 MORE DETAILS ON PREDICTION CONCENTRATION

To compute the correlation in Fig. 3, we use ETA as a TTA model and CCC-Hard as a benchmark,
because they exhibits explicit collapse and are therefore suitable for demonstrating the link between
collapse and prediction concentration C;. Moreover, Fig. 3 does not include temporal information,
so points corresponding to single batches toward the right do not represent later adaptation steps.
One may question that “could the pattern in Fig. 3 be an artifact of logit averaging from Eq. (1)?”
To address it, we measure prediction concentration C; after excluding the largest-scale logit in each
batch, and also measure it after excluding the top 10% of logits by scale. We compute their Pearson
correlations, as shown in Table C.1. Although slightly lower than the original value of 0.88 (refer to
Fig. 3), the variant values of 0.85 and (.77 are also meaningful. As a result, the effect of extremely
large-scale logits is minimal, and the pattern in Fig. 3 cannot be attributed entirely to an artifact. In
addition, as a model approaches collapse, its predictions assign increasingly large logit values to a
few dominant classes, causing the overall logit scale to grow as well. Consequently, the pattern in
Fig. 3 reflects contributions from many logits, not just a few extreme ones.

Excluded logits  Pearson correlation

None 0.88
Top-1 0.85
Top-10% 0.77

Table C.1: Effect of large-scale logits on the correlation in Fig. 3.

C.2 MORE DETAILS ON KNOWLEDGE ACCUMULATION

We achieve knowledge recovery by guiding parameters through regularization using their accumu-
lated values and importance, as described in Sec. 3.4. Moreover, particular caution is required during
the accumulation phase, as a trade-off exists: achieving better representations for the current domain
comes at the cost of increased vulnerability to corruption, as errors accumulate over time. To address
this, we propose a hybrid accumulation strategy that combines cumulative moving average (CMA)
with exponential moving average (EMA). First of all, at every iteration, we accumulate the squared

2
loss derivatives with respect to each parameter, (VQLI L(By; Gt,l)) , defined as the diagonal of the

Fisher information matrix, as well as learnable parameters 02'_1 via CMA, as follows:

~ . 2
(t =1 = taes) - Fies + (Vo L(Bii0r1))

i , C.1
t t— tikatest ( )

latest

where t;,, ., is the latest step of reset prior to step ¢, and F; and 6} represent the CMA-accumulated
Fisher matrix and parameter for the i-th parameter 6°, both initialized to zero at ¢ = 0. We then ac-
cumulate the CMA-accumulated Fisher matrices and parameters via EMA at each reset, as follows:

Flepr-Fi4+(1—pr) - F, (C.3)
0" g - 0" + (1 — pg) - 0%, (C.4)
where 117 and jug are the momentum coefficients, both of which are pre-defined as 0.9, and F* and

6" are the EMA-accumulated Fisher matrix and parameter for the i-th parameter #?, both initialized
to zero. After the EMA update, F; and 6 are reinitialized to zero.
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C.3 IMPLEMENTATION DETAILS

Detailed hyperparameters are listed in Table C.2.

Hyperparameter  Description Reference ResNet-50  ViT-B-16
ag Initialization factor for C;_1 Below Eq. (2) (Sec. 3.3) 0.5 5.0 x 107%
e EMA update momentum for Cr1 Eq. (2) (Sec. 3.3) 0.995 0.995
o Minimum reset proportion Eq. (3) (Sec. 3.3) 0.5 0.5

Ar Reset proportion scaling factor Eq. (3) (Sec. 3.3) 20.0 0.1

AF Fisher regularization coefficient Eq. (4) (Sec. 3.4) 5.0 5.0

Ao Initialization factor for Az Eq. (6) (Sec. 3.5) 5.0 5.0

Lo Initialization factor for p¢c Eq. (7) (Sec. 3.5) 0.15 1.0 x 1073

Table C.2: Hyperparameters used for ResNet-50 and ViT-B-16 across all benchmarks.

C.4 COMPUTATIONAL EFFICIENCY

Table C.3 compares baselines, ASR and its ablations in terms of # trainable/total parameters, com-
putation time (secs per batch) and average accuracy (%) across all CCC levels. Parameter restoration
methods (i.e., ROID, RDumb, and ASR) double the memory to retain the initial state, and the ad-
ditional cost for our extra parameters (mostly Fisher information) is negligible compared to a total
model size of 25.5M. Specifically, # and 6 have a size of ||, respectively. Each of F and F also has
a size of |0, as they store only the diagonal elements of the Fisher matrix, following the standard
practice in Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017). This indicates that each
of the four occupies just 0.025M parameters (i.e., 0.098% of the total). Regarding the computational
cost, Fisher information is computed once per batch (with size 64), adding only less than 0.001s per
batch. Therefore, the computation and memory overhead of our extra parameters is minimal, making
our method highly efficient in practice.

Method # Trainable # Param Time Acc.
ETA 53.1K 25.5M .083 21.72
ROID 53.1K 51.1M 125 3391
+ RDumb 53.1K 51.1M 125 35.39
+ ASR (Ours) 53.1K 51.2M 200 38.32

+ w/o recovery (Sec. 3.4) 53.1K 51.1M 200 37.80
+ w/o on-the-fly (Sec. 3.5) 53.1K 51.2M 181  37.89

Table C.3: Computational analysis on CCC. # Trainable denotes the number of learnable parameters;
# Param denotes the total number of parameters; Time denotes seconds per batch of 64 samples; and
Acc. denotes the average accuracy (%) across all CCC levels.
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C.5 ASR UNDER ABRUPT DOMAIN CHANGES

Gan et al. (2023) find that prediction confidence rapidly changes along with domain shifts. Similarly,
we observe that prediction concentration exhibits abrupt dynamics together with domain changes, as
illustrated in Fig. C.1. Since ASR relies on prediction concentration, we check whether such abrupt
behavior negatively impacts it. An abrupt decline in prediction concentration may be interpreted as
random predictions. In reality, it is not severe enough to cause such predictions. However, an abrupt
rise in prediction concentration often results in C; > C;_1, thereby unintentionally triggering a reset.
Zhang et al. (2025b) point out that negative knowledge transfer may occur along with a domain shift
and should thus be addressed. In this regard, such unintended resets can serve as a safeguard against
this transfer. Finally, the abrupt dynamics of prediction concentration along with domain shifts pose
no risk of disrupting ASR.
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Figure C.1: Prediction concentration (Eq. (1)) over time under fifteen corruptions in CIN-C. Dashed
vertical lines (Red) denote corruption (domain) boundaries. Colored ellipses indicate abrupt dynam-
ics along with domain shifts ( Yellow : abrupt decline, Green : abrupt rise).
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C.6 ALGORITHM

The complete ASR workflow is presented in Algorithm 1.

Algorithm 1: Adaptive and Selective Reset (ASR)

Input: Test batches {83, }7_,, adapting model fy_, source model fy,, cumulative concentration
initialization factor oy, regularization coefficient initialization factor Ao, EMA update
momentum initialization factor po, minimum reset proportion 7, reset proportion
scaling factor \,., and EMA update momentums {1, 1}

Initialize Cy < — log(ag - O), Fo + 0and 6y « 0;

fort e {1,...,T} do

// 1) Model Adaptation

Generate logits z: = fo,_, (B:);

Compute loss L(B;; 0;—1) in Eq. (4);

// CMA-based Knowledge Accumulation

Update F; and 0; via Eq. (C.1) and Eq. (C.2);

Update 0; < Optim L(B;;0:-1);
011

// 2) On-the-fly Adaptation Adjustment

Compute prediction inconsistency ¢; = ﬁ > Litll I (w(gf) # =(97))
where 7(yj;) = argmax_[o(fa, (27))]c and 7(3;) = argmax [0 (})]e:

Adjust regularization coefficient A\x = )¢ - ¢?

and momentum coefficient ye = 1 — pg - (1 — ¢4);
// 3) Adaptive and Selective Reset

Compute prediction concentration C; = 2521 Pt log(p, ) where py = o (I Blt‘ Zyitl\ zz),
ifCt — ét,1_§ 0 then B
| Update C; < pi¢ - Cr—1 + (1 — pe) - Co;
end
else
Compute selective reset factor 7; = rg + A, - (C; — C;_1) where r; € [ro, 1];
Reset only the last r; proportion of total layers;
Initialize C; + — log(ay - C);
// EMA-based Knowledge Accumulation
Update F < EMA(F, Fy, pr) in Eq. (C.3);
Update 6 + EMA(A, 0, j19) in Eq. (C.4);
Initialize ]:'t < 0 and ét +— 0;

end

end
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D ADDITIONAL RESULTS

D.1 FULL RESULTS ON RESNET

In Tables D.1-D.7, we present the full evaluation results on ResNet-50, extending Table 1.

Transition speed ‘ 1000 ‘ 2000 ‘ 5000 | Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean
Source 33.89 3397 3395 | 33.69 3390 3399 | 33.34 34.06 34.23 | 33.89+0.2
RMT (CVPR’23) 48.15 46.78 47.38 | 46.70 46.44 47.80 | 48.61 45.03 48.07 | 47.22+1.0
ROTTA (CVPR’23) 1.76 1.49 1.88 2.43 1.84 2.28 2.50 3.06 3.28 2.28+0.6
SANTA (TMLR’23) 4733 4747 4749 | 4787 47.68 47.77 | 48.32 47.11 48.10 | 47.68+0.4
LAW (WACV’24) 2.71 2.50 2.92 2.99 2.44 3.25 2.79 2.20 3.55 2.82+0.4
ViDA (ICLR’24) 13.52 1228 12.74 | 13.68 12.32 11.89 | 13.81 12.29 11.61 | 12.684+0.8
DPLOT (CVPR’24) 36.68 35.71 35.84 | 36.18 34.02 3579 | 33.55 3294 3461 | 35.04+1.2
PALM (AAAT25) 1.55 1.34 1.66 1.67 1.29 1.70 1.84 1.23 1.73 1.56+0.2
EATA (1cML22) 48.53 48.65 4848 | 49.52 4947 49.35 | 51.00 50.07 50.64 | 49.52+0.9
+ COME (ICLR25) 4699 47.04 47.00 | 37.50 47.72 47.63 | 49.11 4826 48.80 | 46.67+3.3
CoTTA (CVPR22) 17.01 1598 16.24 | 18.05 17.02 17.13 | 1933 18.10 18.60 | 17.50+1.0
SAR (ICLR’23) 36.65 36.24 36.47 | 39.21 37.55 3875 | 39.92 37.84 38.83 | 37.94+1.2
+ COME (ICLR25) 4799 48.16 48.01 | 48.57 48.36 48.25 | 49.23 48.32 48.87 | 48.42+0.4
PETAL (CVPR’23) 2.57 2.52 2.64 2.62 2.54 2.71 2.66 2.43 2.64 2.5940.1
CMF (ICLR"24) 48.29 48.33 48.20 | 49.38 49.25 49.12 | 50.87 49.95 50.40 | 49.31+0.9
DATTA (ECCV’24) 9.87 1826 2348 | 28.49 2446 20.79 | 2526 29.36 23.65 | 22.62+5.5
PeTTA (NeurlPS’24) 34.61 3443 3456 | 36.45 3626 3640 | 4043 3890 40.01 | 36.89+2.2
ETA (acMmL22) 42,13 4223 4212 | 4346 43.13 42.87 | 4525 43.86 44.07 | 43.24+1.0
+ RDumb (NeurIPS’23) | 48.55 48.57 48.49 | 49.53 49.42 4935 | 50.79 4997 50.57 | 49.474+0.8
+ ASR (Ours) 50.33 5031 50.13 | 51.27 51.12 5092 | 52.73 51.78 5221 | 51.20+0.8
ROID (WACV’24) 49.02 49.03 48.92 | 4995 49.81 49.74 | 51.15 50.37 50.94 | 49.88+0.8
+ RDumb (NeurlPS’23) | 48.82 48.85 48.74 | 49.76 49.63 49.56 | 50.91 50.15 50.75 | 49.6940.8
+ ASR (Ours) 50.50 50.58 5042 | 51.47 5136 51.19 | 52.86 51.94 5235 | 51.41+0.8

Table D.1: Performance comparison with state-of-the-art methods on CCC-Easy, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed 1000 2000 5000 ‘ Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean
Source 1695 16.78 1695 | 16.59 16.87 1697 | 16.57 1691 17.20 | 16.87+0.2
RMT (CVPR'23) 3548 3538 35.60 | 36.07 35.65 34.08 | 3541 3142 36.09 | 35.02+1.4
ROTTA (CVPR’23) 1.23 1.00 1.36 1.84 1.31 1.70 | 276 2.08 254 1.76+0.6
SANTA (TMLR'23) 33,75 33.77 34.17 | 35.65 34.18 34.26 | 3594 33.79 34.57 | 34.454+0.8
LAW (WACV24) 1.56 1.09 1.50 1.66 0.64 1.57 1.38 0.76 1.57 1.30+0.4
ViDA (ICLR*24) 6.16 6.10 620 | 573 6.19 578 | 495 565 5.01 5.754+0.5
DPLOT (CVPR'24) 14.64 10.70 18.70 | 12.05 7.58 18.07 | 9.50 6.83 20.08 | 13.13+4.7
PALM (AAAT'25) 076 050 098 | 0.63 0.37 1.47 | 0.51 0.62 0.83 | 0.744+0.3
EATA (CML'22) 37.36 3691 37.40 | 3998 38.66 38.80 | 41.52 4047 41.58 | 39.19+1.7
+ COME (ICLR25) 34.81 34.63 35.02 | 3747 36.03 36.15 | 38.86 37.87 38.79 | 36.63+1.6
CoTTA (CVPR22) 9.62 8.65 9.10 | 10.04 9.06 1030 | 10.56 9.52 11.63 | 9.83+0.9
SAR (ICLR’23) 19.98 21.20 20.01 | 23.25 2091 21.19 | 23.89 2491 24.89 | 22.25+1.9
+ COME (ICLR"25) 3575 35.99 3548 | 37.95 36.75 36.58 | 38.28 37.68 39.11 | 37.06+1.2
PETAL (CVPR’23) 2.14 1.92 2.18 2.06 1.84 2.18 2.02 1.69 1.98 2.00+0.2
CMF (ICLR’24) 38.77 38.41 3879 | 41.32 40.28 40.28 | 42.84 4193 42.85 | 40.61%+1.6
DATTA (ECCV*24) 942 1096 9.19 | 12.78 1328 12.85 | 19.46 1437 1749 | 13.31£3.2
PeTTA (NeurIPS'24) 19.34 1930 19.65 | 23.41 21.92 22.13 | 27.34 25.19 2547 | 22.64+2.8
ETA (acML22) 2228 13.05 18.40 | 25.36 17.55 22.01 | 20.87 3.37 28.41 | 19.03+6.9
+ RDumb (NeurlPS'23) | 37.72 37.45 37.83 | 40.21 39.05 39.15 | 41.55 40.46 41.34 | 39.42+1.5
+ ASR (Ours) 40.10 39.78 40.04 | 42.34 41.47 41.49 | 44.13 43.35 44.25 | 41.88+1.6
ROID (WACV*24) 38.79 38.64 3891 | 41.24 40.16 40.19 | 4244 4144 4241 | 4047+1.4
+ RDumb (NeurlPS'23) | 38.42 3826 38.56 | 40.85 39.75 39.77 | 42.00 40.94 41.90 | 40.05+1.4
+ ASR (Ours) 41.13 4091 41.20 | 43.40 42.49 4242 | 44.77 43.98 4491 | 42.80+1.5

Table D.2: Performance comparison with state-of-the-art methods on CCC-Medium, including nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).
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Transition speed \ 1000 \ 2000 \ 5000 | Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean
Source 1.29 1.23 1.31 1.31 1.23 1.30 1.33 1.19 1.25 1.274+0.0
RMT (CVPR’23) 12.13 13.18 13.12 | 943 1074 12.83 | 773 0.86 9.27 | 9.92+3.7
ROTTA (CVPR’23) 050 077 074 | 066 077 096 | 079 0.17 0.87 | 0.69+0.2
SANTA (TMLR'23) 928 993 9.16 | 908 9.89 9.14 | 896 977 997 | 9.46+04
LAW (WACV*24) 034 0.17 022 | 031 0.17 022 | 027 0.16 0.20 | 0.23+0.1
ViDA (ICLR™24) 044 039 045 045 040 044 | 048 038 0.38 | 0.424+0.0
DPLOT (CVPR24) 053 0.88 0.77 | 064 024 0.31 122 0.12 036 | 0.56+0.3
PALM (AAAT25) 0.14 0.12 0.10 0.14 0.11 0.17 0.13 0.12 0.16 0.13+0.0
EATA (ICML'22) 1.25 0.80 0.57 1.11 0.49 0.64 1.67 0.32  0.51 0.82+0.4
+ COME (ICLR"25) 074 096 0.79 1.07 029 0.85 1.51 021  0.79 | 0.80+0.4
CoTTA (CVPR22) 1.73 1.98 1.95 1.43 1.71 2.09 1.44 0.20 1.19 1.52+0.5
SAR (ICLR’23) 1.54 1.64 1.52 1.61 229 1.67 | 290 250 2.56 | 2.03+0.5
+ COME (ICLR25) 2.90 1.94 1.94 1.22 1.98 2.04 | 2.18 1.06  3.50 | 2.08+0.7
PETAL (CVPR’23) 0.68 0.64 074 | 081 056 0.80 | 096 0.14 0.55 | 0.65+0.2
CMF (ICLR’24) 1.06 0.62 046 1.08 040 0.73 241 029 0.95 | 0.89+0.6
DATTA (ECCV’24) 3.00 248 257 1.49 1.51 1.56 1.61 1.70 1.53 1.9440.5
PeTTA (NeurIPS'24) 493 544 470 | 588 653 571 6.58 7.12 7.15 | 6.00+0.8
ETA (1CML'22) 0.67 0.28 0.26 0.41 0.18 0.29 0.34 0.19 0.24 0.32+0.1
+ RDumb (NeurlPS23) | 7.58 9.64 690 | 946 11.08 8.74 | 10.33 12.67 11.57 | 9.77+1.8
+ ASR (Ours) 15.01 18.18 13.36 | 1595 18.57 15.83 | 18.07 18.32 20.59 | 17.10+2.1
ROID (WACV*24) 1264 15779 1328 | 9.63 12.65 11.81 | 10.66 872 17.12 | 12.484+2.6
+ RDumb (NeurlPS'23) | 14.13 1592 13.74 | 14.03 16.05 14.06 | 1548 17.34 1798 | 1541+£1.5
+ ASR (Ours) 20.99 22.51 2040 | 21.22 2293 21.36 | 22.37 23.84 2425 | 2221+1.2

Table D.3: Performance comparison with state-of-the-art methods on CCC-Hard, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Method | 1 2 3 4 5 6 7 8 9 10 | Mean

Source 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 | 18.0140.0
RMT (CVPR’23) 47.68 4548 44.09 4387 4648 4570 4468 4486 43.61 43.64 | 45.01£1.3
+ Source-free 4233 39.13 3349 36.63 40.32 3821 37.75 3424 33.02 33.63 | 36.88+3.1
ROTTA (CVPR’23) 2721 31.85 2723 2499 2856 3099 3055 29.61 30.70 28.85 | 29.05+2.0
SANTA (TMLR’23) 40.00 39.85 39.83 39.77 39.84 39.53 39.83 39.85 39.63 39.98 | 39.81+0.1
LAW (WACV24) 2291 17.65 1.14 14,63 2472 1770 1091 1127 11.66 2.06 | 13.47+7.4
ViDA (ICLR’24) 17.87 17.81 17.62 17.76 17.78 17.83 17.77 17.80 17.79 17.60 | 17.76%0.1
DPLOT (CVPR24) 37.52 3386 3034 3138 33.64 29.72 32.60 30.58 29.99 30.38 | 32.00+2.3
PALM (AAAI'25) 21.14 15.12 347 1637 2357 1406 857 11.02 886 475 | 12.69+6.3
EATA (ICML22) 48.03 47.60 4785 4742 48.18 47.87 4775 47778 48.01 47.62 | 47.81+0.2
+ COME (ICLR25) 4434 43,66 44.13 4359 4448 4424 4404 4416 44.62 44.13 | 44.14£03
CoTTA (CVPR22) 39.59 36.76 3144 35.60 38.70 36.71 36.41 34.66 33.18 32.03 | 35.51%+2.6
SAR (ICLR’23) 41.62 41.13 40.77 40.04 41.61 40.71 4148 40.63 40.44 35.11 | 40.35£1.8
+ COME (ICLR25) 4347 4297 4262 42.69 4346 43.12 43.00 4295 4279 42.50 | 42.96+0.3
PETAL (CVPR’23) 40.87 38.09 33.08 3892 40.03 38.73 3750 3694 34.65 34.03 | 37.28+2.5
CMF (ICLR24) 48.74 4841 48.67 4835 48.83 48.61 4857 4858 48.80 48.56 | 48.61+0.1
DATTA (ECCV’24) 3597 37.58 3345 37.68 3569 3280 31.88 36.86 28.88 34.81 | 34.56+2.7
PeTTA (NeurIPS’24) 31.57 31.57 3144 3159 3156 3136 31.60 3140 31.65 31.76 | 31.55%0.1
ETA (cML22) 43.68 43.69 4297 4291 44.19 44.12 4384 4379 4388 43.03 | 43.61+04
+ RDumb (NeurIPS’23) | 46.44 46.09 46.48 46.06 46.54 4639 4640 4646 46.75 4631 | 46.39+0.2
+ ASR (Ours) 4750 46.89 47.10 46.89 4751 4743 4726 4722 4715 46.79 | 47.17£0.2
ROID (WACV’24) 48.66 48.53 4857 4847 48.66 48.56 48.56 4853 48.66 48.56 | 48.58+0.1
+ RDumb (NeurIPS’23) | 48.01 4792 48.07 4790 48.02 4796 48.04 48.02 48.10 48.00 | 48.00£0.1
+ ASR (Ours) 49.76 4931 49.40 4920 49.78 49.63 4942 49.60 49.54 49.32 | 49.50+0.2

Table D.4: Accuracy (%) on CIN-C over ten random permutations of the corruption order.

22



Under review as a conference paper at ICLR 2026

Method | 1 2 3 4 5 6 7 8 9 10 | Mean

Source 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 | 18.01£0.0
RMT (CVPR’23) 46.53 4499 4280 44.17 4595 4401 43.88 4359 4299 4292 | 44.18+1.2
+ Source-free 42.07 38.68 32.79 36.20 40.16 3747 37.30 34.04 3234 33.08 | 36.41+£3.2
ROTTA (CVPR’23) 29.33 3230 27.21 27.16 29.09 32.17 3024 30.19 30.41 2896 | 29.71+1.7
SANTA (TMLR’23) 39.60 3938 39.28 39.28 39.54 39.52 39.37 3944 3942 39.16 | 39.40+0.1
LAW (WACV’24) 21.82 15.81 147 1534 2420 1641 9.00 13.86 13.06 2.74 | 13.374+6.9
ViDA (ICLR’24) 1786 17.82 17.60 17.77 17.77 17.85 17.78 17.80 17.79 17.60 | 17.76+0.1
DPLOT (CVPR’24) 3698 34.19 30.29 30.54 34.04 27.87 33.05 30.02 29.84 29.38 | 31.62+2.7
PALM (AAAT25) 19.09 1437 3.18 1671 2272 1395 7.52 10.76 8.30 423 | 12.08+6.1
EATA (1ICML22) 4770 4729 47.63 47.12 4789 47.63 47.51 4752 4771 4741 | 47.54+0.2
+ COME (ICLR25) 4426 43.69 44.11 43.62 4441 4411 4386 4424 4455 44.05 | 44.09+0.3
CoTTA (CVPR’22) 39.10 36.39 31.57 3561 3840 3641 36.15 3440 32.14 32.73 | 35.29+24
SAR (ICLR23) 40.75 40.57 40.08 39.04 40.89 39.68 40.30 39.52 39.44 40.40 | 40.07+0.6
+ COME (ICLR"25) 4298 4266 4236 42.17 43.00 42772 4257 4258 4248 42.10 | 42.56+0.3
PETAL (CVPR’23) 2641 2371 1745 2296 2488 2274 2297 2034 17.88 19.07 | 21.84+29
CMF (ICLR’24) 48.44 48.06 48.28 48.03 4857 4833 48.15 4827 4844 48.19 | 48.28+0.2
DATTA (ECCV’24) 7.94 3.30 2.42 1.81 3.75 2.46 1.66 4.07 2.72 2.37 3.25+1.7
PeTTA (NeurIPS’24) 3149 31.62 31.60 31.55 3157 31.69 31.66 3147 31.69 31.74 | 31.61+0.1
ETA (acMmL22) 4375 43.61 4329 43.09 4432 4395 4390 4356 43.72 43.08 | 43.63+0.4
+ RDumb (NeurIPS’23) | 46.21 4592 46.34 45.68 4620 46.12 46.19 46.18 4642 46.00 | 46.13+£0.2
+ ASR (Ours) 4731 46.62 4693 4647 47.04 47.00 46.72 46.87 46.81 46.50 | 46.83+0.2
ROID (WACV24) 48.46 4832 4825 48.11 4828 4827 48.17 4824 4824 48.16 | 48.25+0.1
+ RDumb (NeurIPS*23) | 47.64 47.60 47.77 47.60 47.64 4772 47.58 4772 4775 47.66 | 47.67+0.1
+ ASR (Ours) 49.37 4898 49.07 48.84 4945 4927 49.04 4927 49.16 48.99 | 49.14+0.2

Table D.5: Accuracy (%) on non-i.i.d. CIN-C over ten random permutations of the corruption order.

Recurring visit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ‘ Mean

Method

Source 308 308 308 308 308 308 308 308 308 308 308 308 308 308 308 308 308 308 308 3.08 | 3.08+0.0
RMT 27.63 3391 3728 39.08 39.99 40.78 41.18 4136 41.72 4176 41.76 41.92 4201 4202 4196 4205 42.10 42.08 4208 42.09 | 40.24+3.5
+ Source-free | 27.63 34.15 37.14 3811 3870 38.87 39.22 3943 3940 39.60 39.60 39.60 39.71 39.80 39.76 39.68 39.74 39.79 39.76 39.76 | 38.47+2.8
RoTTA 1245 1722 19.19 2077 19.92 2129 21.88 2123 1971 1925 1870 18.00 1733 1691 1620 1558 1497 1444 1397 12.96 | 17.60+2.8
SANTA 27.28 2775 2730 2720 27.10 2694 27.04 2681 2691 2659 2649 2642 2653 2639 2625 2638 26.18 26.17 2625 2594 | 26.70+0.5
LAW 2383 30.62 3198 3203 3160 31.11 3075 3034 3006 2976 29.65 29.52 2944 2936 2937 2935 2941 2937 2931 2924 | 29.81£1.6
ViDA 309 309 308 308 307 305 302 303 302 302 302 299 297 295 292 291 289 289 283 284 | 2.99+0.1

DPLOT 30.16 33.83 3576 36.61 3694 37.07 37.18 37.14 3728 3741 3735 3733 3736 3738 3735 3734 3735 3736 3737 37.39 | 36.65£1.7
PALM 24.66 3170 3218 3171 3129 30.79 3071 3074 30.76 30.76 30.81 30.78 30.78 30.86 30.82 3091 30.93 30.92 30.96 30.98 | 30.70+1.4
EATA 3131 3638 3670 3690 3698 36.67 36.56 36.60 36.73 3679 36.52 36.56 3647 3640 36.46 3652 36.54 3645 3648 36.35 | 36.32+1.2
+ COME 3020 3459 3490 3452 3417 3383 33.82 3344 3325 3299 3297 32.82 3257 3244 3240 3248 3252 3235 3210 32.06 | 33.02%1.1
CoTTA 1878 2490 29.02 31.39 3347 3466 3547 3596 3628 3655 3670 36.94 37.05 37.17 3724 3725 3720 3725 3724 3722 | 3439+4.8
SAR 2438 31.54 3342 3406 3440 3452 3470 3485 3500 3508 3511 3502 3502 3503 3494 3498 3493 3499 3497 3493 | 34.09+2.4
+ COME 23.67 3097 33.02 3397 3450 3510 3515 3520 3530 3541 3536 3540 3538 3539 3533 3527 3527 3530 3528 3524 | 3428427
PETAL 1874 2564 29.12 3091 31.76 3236 32.80 3328 3355 33.75 33.89 34.04 34.10 34.18 3421 3424 3422 3424 3424 3424 | 32.18+37
CMF 3507 38.66 3922 39.52 39.58 39.62 39.90 3995 3992 3976 39.70 39.73 39.28 39.61 39.54 39.65 39.52 39.84 39.52 39.40 | 39.35£1.0
DATTA 2011 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 | 19.69£0.1
PeTTA 1191 1263 1261 1283 1265 13.16 1296 1276 1261 1272 1272 1227 1272 1274 1280 12,60 12.88 1233 1273 1240 | 12.65+0.3
ETA 30.64 3580 36.56 36.67 36.76 36.58 3645 3647 3628 36.16 36.08 36.00 36.06 3601 3596 3591 3586 3576 3582 35.80 | 35.88+1.2
+ RDumb 30.71 3595 36.80 30.73 35.66 3630 31.97 3598 3697 3271 34.87 36.66 34.06 33.88 36.60 3583 33.07 36.51 36.92 30.94 | 34.66+2.2
+ASR (Ours) | 28.68 33.09 34.65 33.52 33.00 3486 36.24 3732 3802 3860 3879 38.86 38.89 3886 3897 3923 39.07 39.16 39.07 39.10 | 36.90+2.9
ROID 3532 3774 3821 3796 3800 3816 38.02 3802 3810 3808 3843 3851 3795 3820 3815 3816 3798 3816 3797 38.02 | 37.96+0.6
+ RDumb 3560 3828 3834 3508 3802 3834 3521 3761 3776 35.12 37.72 3848 36.00 3749 3825 37.6 37.32 3834 3770 3575 | 37.18%1.2
+ASR (Ours) | 35.66 3942 39.64 4042 41.03 4140 41.74 41.83 4187 4220 4246 4248 4276 4212 4206 4260 42.67 42.86 43.08 4296 | 41.56+1.7

Table D.6: Accuracy (%) on IN-C across 20 recurring visits of the domain sequence.

Recurring visit
1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ‘ Mean

Method

Source 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 3252 | 32.52+0.0
RMT 43.16 4554 4626 4651 4674 4678 46.81 46.83 46.88 46.88 4687 4688 4690 4689 4690 4690 46.89 46.88 46.86 46.87 | 46.56+0.8
+ Source-free | 42.24 43.73 43.82 4392 4394 4398 4381 4386 43.87 43.88 43.77 43.81 43.80 4376 4375 4371 4368 43.68 43.68 43.65 | 43.72+0.4
RoTTA 39.80 43.06 44.03 4436 4434 4394 43.66 4326 4271 4207 4141 40.63 40.04 3938 38.66 37.85 37.04 3620 3523 3434 | 40.61£3.1
SANTA 4152 41.68 4174 41.66 41.75 41.80 41.68 41.59 41.65 41.54 4144 4147 4139 4158 4150 4141 4142 4134 4140 4129 | 41.54+0.1
LAW 40.19 3570 3219 30.78 3025 30.01 29.85 29.78 29.75 29.72 29.68 29.67 29.65 29.67 29.67 29.67 29.66 29.66 29.66 29.67 | 30.74£2.6
ViDA 001 001 001 001 001 00l 00l 00l 00l 00l 00l 00l 00l 00l 00l 00l 00l 001 00l 001 | 0.01+00
DPLOT 42,09 4246 4235 4226 4224 4212 4217 42,16 42,14 42,12 42,12 42,12 4212 4210 42.10 42.11 42.11 42,10 42.09 42.10 | 42.16:£0.1
PALM 13.86 1.74 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 | 2.06+£2.7
EATA 41.62 4242 4221 4177 4199 4196 41.96 41.58 41.57 4134 4130 4146 4150 4154 41.10 4123 4137 41.57 4143 4132 | 41.61£03
+COME 4294 4513 4546 4536 4573 4546 4530 4524 4552 4530 45.11 4548 4529 4516 4504 4525 44.89 4487 4478 4491 | 45.1120.6
CoTTA 4176 4570 4679 4690 4672 4630 4585 4542 4499 4462 4430 4391 4343 4287 4249 4192 41.54 4122 4082 4055 | 4391+2.1
SAR 40.86 4294 4326 43.15 4293 4250 42.06 41.53 40.87 40.17 3947 3876 3801 3723 3649 3570 3497 3422 3359 33.11 | 39.09+£34
+COME 40.59 4357 4450 4498 4519 4522 4512 4491 4465 4416 4358 43.02 4231 4153 4078 39.89 3891 37.74 3648 34.96 | 42.10£3.1
PETAL 0.03 003 002 003 003 009 039 039 039 039 039 039 03 039 039 039 039 039 039 039 | 0.28+0.2
CMF 4469 4521 4542 4525 4538 4559 4492 4514 4531 4555 4572 4552 4518 4526 4494 4500 4502 4513 4527 4546 | 4525403
DATTA 3375 350 133 088 085 084 084 084 084 084 084 084 084 084 084 084 084 084 084 084 | 2.65+7.2
PeTTA 39.56 4205 42.84 4302 4312 4327 4326 4323 4312 4308 4294 4295 4291 4293 4298 4296 4281 4275 4270 4269 | 42.76+0.8
ETA 4124 4092 4030 39.86 39.07 3849 3826 37.64 3728 3696 36.51 36.14 3628 3594 3567 3547 3509 3474 3437 3421 | 37.22+2.1
+ RDumb 4093 4136 4211 41.66 41.18 4146 4128 41.84 41.31 4078 4190 4209 4170 4085 41.60 41.44 4159 4152 4075 41.59 | 41.45+£04
+ASR (Ours) | 40.61 41.46 4149 4174 4179 4204 4182 4170 41.84 41.88 41.74 41.76 41.60 4138 4127 4136 41.16 4128 4136 41.32 | 41.53+0.3
ROID 46.02 4622 4603 4633 4622 4629 46.14 4594 4632 4604 46.12 4626 4603 46.13 46.16 4620 46.23 4622 46.19 46.17 | 46.16:0.1
+RDumb 46.07 4634 4632 4625 4624 4623 46.16 46.04 46.07 46.14 4586 4586 4586 4594 4579 4575 4580 4581 45.68 45.62 | 45.99+0.2
+ASR (Ours) | 46.13  46.50 46.53 46.63 46.52 4652 4649 46.61 4670 46.55 46.56 46.63 46.53 46.54 4648 4639 4648 4633 4640 46.32 | 46.49+0.1

Table D.7: Accuracy (%) on IN-D109 across 20 recurring visits of the domain sequence.
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D.2 FULL RESULTS ON VIT
In Tables D.8-D.10, we present the full evaluation results on ViT-B-16, extending Table 2.

Transition speed | 1000 | 2000 | 5000 | Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean
Source 5474 55.18 5447 | 5497 55.03 5477 | 55.09 54.88 55.12 | 54.92+0.2
CMF (ICLR24) 60.68 60.96 60.59 | 61.51 61.74 61.51 | 62.66 6252 6152 | 61.524+0.7
CMAE (CVPR24) 48.11 4994 48.19 | 50.68 50.44 52.57 | 51.04 54.89 54.50 | 51.15£2.3
REM (1CML25) 65.82 66.12 65.79 | 66.14 6623 66.05 | 6693 66.02 66.36 | 66.16+0.3
ETA acmr22) 4795 47.68 4747 | 4871 15774 48.44 | 4992 49.78 49.93 | 45.07£10.4
+ RDumb (NeurIPS’23) | 59.25 59.56 59.13 | 59.74 60.07 59.74 | 60.76 60.75 6091 | 59.99+0.6
+ ASR (Ours) 59.62 5999 59.59 | 60.34 60.69 60.46 | 61.57 6133 61.62 | 60.58+0.7
ROID (WACV’24) 60.01 60.32 59.88 | 60.67 60.99 60.68 | 61.66 61.64 61.82 | 60.85+0.7
+ RDumb (NeurIPS’23) | 59.78 60.09 59.65 | 60.44 60.75 60.43 | 61.35 6139 61.56 | 60.60+0.7
+ ASR (Ours) 60.61 60.86 60.51 | 61.28 61.54 6130 | 6246 62.21 62.52 | 61.48+0.7

Table D.8: Performance comparison with state-of-the-art methods on CCC-Easy, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed | 1000 | 2000 | 5000 | Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean

Source 41.76 4147 4049 | 42.32 41.10 4149 | 42.15 4239 4251 | 41.74£0.6
CMF (ICLR24) 52.17 51.63 51.87 | 3421 5349 5359 | 5541 5533 55.82 | 51.50+6.3
CMAE (CVPR*24) 41.76  36.63 41.88 | 43.16 40.52 4440 | 45.02 4641 51.52 | 43.484+3.9
REM (1cML25) 5734 5723 5692 | 5836 57.28 57.68 | 58.94 5841 59.71 | 57.99+0.9
ETA (1cML22) 34.62 2374 28.04 | 34.04 3454 36.05 | 3536 38.07 38.97 | 33.71+4.6
+ RDumb (NeurIPS’23) | 49.02 48.88 48.57 | 50.77 50.16 50.28 | 51.97 52.25 52.58 | 50.50+1.4
+ ASR (Ours) 49.86 49.69 49.57 | 51.96 5139 5146 | 5331 53.55 53.92 | 51.63£1.6
ROID (WACV*24) 50.72  50.67 50.39 | 52.61 5191 52.00 | 53.62 53.72 54.08 | 52.19+1.3
+ RDumb (NeurlPS’23) | 50.23 50.20 49.81 | 52.11 5145 51.39 | 53.09 53.26 53.62 | 51.68£1.3
+ ASR (Ours) 52.14 52.08 51.98 | 5391 53.07 53.26 | 55.03 5495 5557 | 53.55£1.3

Table D.9: Performance comparison with state-of-the-art methods on CCC-Medium, including nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed | 1000 | 2000 | 5000 | Acc. (%)
Corruption ordering | 43 44 45 | 43 44 45 | 43 44 45 | Mean

Source 1440 1544 1540 | 14.16 1538 14.10 | 13.90 1531 1540 | 14.83+0.6
CMF (ICLR"24) 1.22 0.30 2.74 2.17 0.14 0.85 3.23 0.13 5.34 1.79+1.7
CMAE (CVPR*24) 2647 2678 22.70 | 2595 28.33 2496 | 26.60 30.27 30.20 | 26.92+2.3
REM (1cML25) 3.80 853 7.03 558 594 939 | 10.67 3845 9.31 | 10.97+9.9
ETA (acMmL22) 1.34 0.33 1.66 0.99 1.34 1.02 1.97 1.58 0.79 1.22+0.5
+ RDumb (NeurlPS’23) | 22.41 2443 22.01 | 23.52 25.54 2339 | 22.16 23.52 2242 | 23.27+1.1
+ ASR (Ours) 24.67 25.88 24.14 | 2393 2521 2426 | 22.76 23.96 2520 | 24.45+0.9
ROID (WACV’24) 11.74 2323 1.00 | 25775 9.08 25.10 | 1249 6.75 13.55 | 14.30+8.2
+ RDumb (NeurlPS*23) | 24.17 25.40 23.76 | 25.05 26.62 24.84 | 26.25 2737 28.01 | 25.72£14
+ ASR (Ours) 27.69 2876 27.31 | 27.62 28.82 2752 | 27.58 28.67 28.85 | 28.09+0.6

Table D.10: Performance comparison with state-of-the-art methods on CCC-Hard, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).
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D.3 RESULTS FOR CIFAR10-C/100-C

We are interested in more challenging yet realistic environments, as proposed by Press et al. (2023).
Standard CIFAR without repeating corruptions is relatively simple and less realistic. Thus, we group
corruption types into three levels (Easy / Medium / Hard) for consistent adaptation difficulty across
corruptions, and repeat them cyclically, following Press et al. (2023); Hoang et al. (2024). We report
corruption types for each level in Table D.1 1 for CIFAR10-C and Table D.12 for CIFAR100-C. We
also provide experimental results for CIFAR10-C/100-C, as shown in Fig. D.1-D.2.

Level | Corruption Types

Easy | Motionblur, Snow, Fog, Elastic, JPEG

Medium | Defocus_blur, Glass_blur, Zoom.blur,
Frost, Contrast, Pixelate

Hard |Gaussian_noise, Shot_noise, Impulse_noise

Table D.11: Corruption types for each level of CIFAR10-C.

Level | Corruption Types

Easy Impulse_noise, Defocus_blur, MotionDblur,
Zoom blur, Snow, Brightness, Elastic

Medium | Glass_blur, Frost, Fog, Contrast, JPEG

Hard |Gaussian_noise, Shot_noise, Pixelate

Table D.12: Corruption types for each level of CIFAR100-C.

C10-C-Easy C10-C-Medium C10-C-Hard
86.98 90, 80.63

86.11 8553 8538 83.09 83.97 84.23 84.13 84.80 g 77.78 79.30 78.78

ETA m ETA + RDumb BN ETA + ASR (Ours)
W ROID mmm ROID + RDumb HEl ROID + ASR (Ours)

Figure D.1: Comparison of ETA / ROID and its variants with RDumb and ASR across three levels
of CIFAR10-C using accuracy (%), averaged over 1000 recurring visits of the corruption sequence.

C100-C-Easy C100-C-Medium C100-C-Hard

72.93 72.85 72.96 70| 69.36 69.20 69.63 68.66 68.53 68.70
70.45 71.15 66.96 67.33 65.70 66.43

ETA W ETA + RDumb BN ETA + ASR (Ours)
@mm ROID mmm ROID + RDumb mmm ROID + ASR (Ours)

Figure D.2: Comparison of ETA / ROID and its variants with RDumb and ASR across three levels
of CIFAR100-C using accuracy (%), averaged over 1000 recurring visits of the corruption sequence.
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D.4 RESULTS ON VIT-TINY

We evaluate our method on one of the lightweight backbones (i.e., ViT-Tiny). Table D.13 shows that
our method consistently improves over baselines on CCC-Medium and -Easy. Because the backbone
capacity is extremely limited, adapting to CCC-Hard is particularly challenging, which is reflected
in the table where all ROID variants achieve only 0.1% accuracy. Even with such low accuracies,
our method achieves performance gains similar to those in Table 2, demonstrating its effectiveness
despite severe capacity constraints.

ViT-Tiny CCC-Hard CCC-Medium CCC-Easy
ETA 2.29 34.20 47.09
+ RDumb 4.45 32.51 45.51
+ ASR (Ours) 5.30 36.48 47.23
ROID 0.10 32.14 45.29
+ RDumb 0.10 31.61 44.92
+ ASR (Ours) 0.10 34.47 45.64

Table D.13: Accuracy (%) on ViT-Tiny across CCC benchmarks.

D.5 RESULTS UNDER CDC SETTINGS

We present full experimental results under CDC settings, extending Fig. 8.

Recurring visit

=10 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean
ETA 30.62 3577 36.19 3621 36.14 3599 3584 3576 3573 3563 3542 3543 3531 3533 3530 3522 3525 3520 3517 3508 3533
+RDumb 30.62 3573 3620 30.88 3524 3624 30.83 3462 36.11 3201 3514 3639 3346 3456 36.67 3433 3297 3623 36.16 31.11 3428
+ASR (Ours) 2848 3025 3348 33.03 3242 3528 3533 3527 3572 3619 3685 3743 3849 3834 38.65 3841 3894 3892 3896 3898 3597
ROID 3411 36.82 37.04 3699 36.86 3678 37.20 37.05 36.59 36.89 36.68 36.74 36.86 36.95 36.66 36.83 36.62 36.68 36.67 36.84 36.69
+ RDumb 3428 3693 3691 3400 3674 3685 3427 37.04 37.14 3402 3641 3676 3437 3637 3680 34.67 3594 36.63 3643 3423 3584
+ASR (Ours) 35.08 3858 3872 3920 3930 39.71 39.94 4045 4032 40.65 4041 4040 41.15 4075 41.07 4133 41.05 4080 41.10 41.34 40.07
Table D.14: Results on IN-C with CDC for § = 1.0 across revisit steps.
R visit
§=10.0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean
ETA 29.79 3480 3572 3568 3572 3556 3533 3547 3531 3523 3523 3509 3502 3501 3488 3478 3483 3475 3470 3462 34.88
+ RDumb 29.53 3562 36.09 31.11 3554 36.10 30.86 3504 36.16 3219 3486 3630 32.64 34.03 36.51 3439 3335 36.66 36.86 29.56 34.17
+ASR (Ours) 2940 3506 3555 3601 36.63 3671 3692 3725 3731 3730 3741 3753 3779 3779 37.92 3796 38.08 3814 3819 3811 3685
ROID 33.60 3670 3651 37.06 3674 3699 37.11 3682 3679 37.04 3671 37.23 3686 37.06 3699 3677 36.59 3682 36.87 3699 36.71
+ RDumb 3376 36.66 36.67 3430 37.01 3726 33.51 36.69 3676 3444 36.16 37.19 3438 36.55 3652 3505 3577 3698 3634 3380 3579
+ASR (Ours) 33.62 3695 37.89 3837 39.54 3949 4042 4022 40.63 40.83 40.77 4123 41.24 4148 4160 41.66 41.99 4182 41.51 41.68 40.15

Table D.15: Results on IN-C with CDC for § = 10.0 across revisit steps.
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E ADDITIONAL ABLATION STUDIES

E.1 EFFECT OF ADAPTIVE RESET

We validate the effectiveness of our adaptive reset by comparing to variants using fixed reset inter-
vals. Table E.| demonstrates that our adaptive reset can effectively identify when the model is likely
to collapse and thereby find optimal reset timing, resulting in strong performance.

Reset interval | Easy Medium Hard | Mean

Fixed

T = 1000 15.96 5.91 1.10 7.66
T = 10000 49.88 39.69 15.75 | 35.11
T =20000 49.83 40.58 17.16 | 35.86
T = 50000 49.90 40.16 14.26 | 34.77

Dynamic
ASR (Ours) | 51.19 4242  21.36 | 38.32

Table E.1: Comparison with our variants using fixed reset intervals 7" on CCC using Accuracy (%).

E.2 EFFECT OF SELECTIVE RESET

Table E.2 demonstrates the effectiveness of our selective reset in comparison with fixed-proportion
variants. We find that resetting the latter half of the layers (i.e., 50%) achieves the best results among
the variants. Similarly, our selective reset also starts with 50% when adjusting the reset proportion
(i.e., 7o = 0.5). As aresult, this suggests that our selective reset is effective and that at least a 50%
reset should be ensured to effectively remove accumulated errors.

Reset target | Easy Medium Hard | Mean

Fixed

20% 49.27  40.01 16.83 | 35.37
50% 50.91 42.07 20.80 | 37.93
80% 50.72 4140 19.68 | 37.27
100% 49.83 4035 15.99 | 35.39
Dynamic

ASR (Ours) | 51.19 4242  21.36 | 38.32

Table E.2: Comparison with our variants that reset a fixed % of layers closer to the output.
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E.3 EFFECT OF HYBRID KNOWLEDGE ACCUMULATION

In our hybrid knowledge accumulation strategy of EMA on top of CMA, CMA highlights (locally)
past information to reduce the effect of recent parameters near collapse, and EMA weights (globally)
recent information to reflect distribution shifts. Table E.3 compares our hybrid scheme to the CMA-
only baseline, evaluated across all CCC levels with accuracy (%) reported.

Method Easy Medium Hard Mean

CMA-only 50.03 41.13 18.42 36.53
Hybrid (Ours) 51.19 4242  21.36 38.32

Table E.3: Effect of our hybrid accumulation scheme.

E.4 OPTIMALITY OF REPARAMETERIZATION

We check whether our reparameterization (Eq. (6)—(7)) is optimal. For modeling reparameterization,
we use only 5% of a holdout set (transition speed 2000; random seed 44) from CCC-Hard, and select
an expression that best balances simplicity and performance efficacy. As reported in Tables E.4-E.5,
we compare our expression to other expressions across all CCC levels. We often observe comparable
results between two expressions. Either expression with high performance on CCC-Hard should be
preferable to mitigate the risk of poor adaptation in real-world applications.

AF | Range | Easy Medium Hard | Mean
Ao {No} | 51.07 42.33 20.27 | 37.89
o1 [0,1] | 51.09 42.26 20.56 | 37.97
Mo (1—¢0)% | [Mo,0] | 5115 4234 2042 | 37.97
Ao - bt [0, o] | 51.16 42.40 21.27 | 38.28
Ao - @7 [0, o] | 51.19 4242  21.36 | 38.32

Table E.4: Comparison with different expressions for A across all CCC levels using accuracy (%).

% | Range | Easy Medium Hard | Mean
1—po {1—po} | 50.82 41.86 20.70 | 37.79
o [0, 1] 51.48 42.42 0.31 | 31.40
1— o - & 1,1 po) | 5117 4247 407 | 32.57

1—po-(1—¢2) | [1—po,1] | 51.14 4240  21.11 | 38.22
1—po-(1—¢y) | [1—po,1] | 5119 4242 2136 | 38.32

Table E.5: Comparison with different expressions for pic across all CCC levels using accuracy (%).
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E.5 HYPERPARAMETER SENSITIVITY

Since validation sets are not available in TTA, tuning hyperparameters optimally is challenging. In-
stead, we tune hyperparameters using only 5% of a holdout set (transition speed 2000; random seed
44) from CCC-Hard. In addition, we demonstrate that our method is less sensitive to hyperparameter
changes. We evaluate performance across all levels of CCC, slightly modifying the tuned values; the
standard values are provided in Table C.2. Fig. E.| demonstrates the effectiveness of our method in

terms of robustness to hyperparameter variations. It also should be noted that

the slight performance

differences, observed in the figure below, are negligible. Finally, the use of the same hyperparameter
settings across all benchmarks further highlights the advantage of our method.
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Figure E.1: Hyperparameter sensitivity analysis.
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E.6 EFFECT OF KNOWLEDGE RECOVERY

Theoretically, our proposed regularizer can be seen to recover essential knowledge lost due to resets.
This theoretical grounding stems from two key mechanisms. First, we accumulate updated parame-
ters using a combination of CMA and EMA, preserving adaptation information in a manner similar
to Polyak averaging (Polyak & Juditsky, 1992), which provides a reliable reference for previously
acquired knowledge. Second, the Fisher-based regularization follows the principle of Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017), assigning stronger penalties to parameters that are
important for prior domains. Together, these mechanisms encourage important parameters to remain
close to their pre-reset values, effectively restoring knowledge that would otherwise be lost.

We integrate several components to complement each other. In particular, the knowledge recovery
module is introduced in Sec. 3.4 to effectively restore information erased by resets. We evaluate its
effectiveness under the same setup as Table D.6 by measuring how much knowledge from previous
domains is recovered. Knowledge recovery is measured as the gap between the current performance
and the best performance achieved so far for each domain, which is then averaged across domains.
Positive values indicate recovery, while negative values indicate forgetting. As shown in Table E.6,
our method consistently recovers substantial knowledge without forgetting. For instance, at revisit
#10, ETA+ASR achieves 0.58 compared to -1.94 without recovery, and ROID+ASR achieves 0.16
compared to -0.52 without recovery. This confirms that the recovery module effectively compensates
for knowledge erasure from reset. Note that knowledge refers to information encoded in the model
weights accumulated during adaptation, which correspond to # in Eq. (4). Essential knowledge is
identified via Fisher information, which highlights weights that are more informative about previous
domains. Direct quantification for knowledge is challenging; therefore, we use task performance as
a proxy to assess it.

Recovery (Revisit#) 1 10 15 20 Mean
ETA + ASR (Ours) 0.0 .. +0.58 +0.08 +0.02  +0.24
+ w/o knowledge recovery 0.0 .. -1.94 -1.16 -0.76 -0.56
ROID + ASR (Ours) 00 .. +0.16 +0.24  +0.01 +0.12
+ w/o knowledge recovery 0.0 ... -0.52 -0.42 -0.10 -0.14

Table E.6: Knowledge recovery measured across multiple revisits on IN-C.

Additionally, we evaluate the effectiveness of knowledge recovery through accuracy. We also use a
domain-recurring setting on IN-C, where the same domain reappears multiple times, to test whether
a model preserves previously learned information even though it has been reset. We compare our
method with a variant without the knowledge recovery module (Sec. 3.4). As shown in Table E.7, the
variant without the recovery module gradually declines in accuracy across later revisits, while our
method consistently maintains its performance, demonstrating that the recovery module effectively
mitigates the forgetting of prior domains’ knowledge.

Accuracy (Revisit#) 1 10 15 20 Mean
ETA 3064 ... 36.16 3596 3580 35.88
+ ASR (Ours) 28.68 .. 38.60 3897 39.10 36.90
+ w/o knowledge recovery 28.64 .. 3745 3649 36.34 36.56
ROID 3532 ... 38.08 3815 38.02 3796
+ ASR (Ours) 35.66 ... 4220 42.06 4296 41.56
+ w/o knowledge recovery 3535 .. 41.64 41.64 41.19 40.96

Table E.7: Performance comparison across multiple revisits on IN-C.
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The benefit of knowledge recovery appears negligible because evaluation in Table E.7 is conducted
under an easy-to-adapt setting. However, its benefit is not negligible in challenging adaptation sce-
narios. Indeed, Table E.7 confirms that the knowledge recovery module is functioning as intended,
but IN-C is not an appropriate benchmark for measuring its performance contribution. As described
in Sec. 3.5, under challenging adaptation scenarios, we increase the regularization coefficient to en-
courage the model to reuse prior-domain information, thereby enhancing the effect of the knowledge
recovery module. However, IN-C is relatively easy to adapt to. Table 1 also shows that baseline ac-
curacies are very similar in IN-C, so the benefit of knowledge recovery does not manifest strongly
in this setting.

We consider CCC-Hard to illustrate the recovery module’s contribution. In several splits (e.g., 4, 7,
and 8), removing the knowledge recovery module leads to substantial accuracy drops, while the full
model consistently maintains higher accuracy. These observations indicate that the module functions
flexibly, providing effective support under challenging domain shifts.

Acc. (Split#) 1 2 3 4 5 6 7 8 9

ROID 12.64 1579 1328 9.63 12.65 11.81 1066 872 17.12
+ ASR (Ours) 2099 2251 2040 21.22 2293 2136 2237 23.84 2425
+ w/orecovery 20.95 2250 20.35 1828 22.69 20.18 9770 15.67 23.57

Table E.8: Performance comparison across nine splits in CCC-Hard.
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F ADDITIONAL ANALYSIS

F.1 LIMITATIONS OF FULL-PARAMETER RESET

a) Performance drops. We measure post-reset performance drops for RDumb on CCC-Hard under
the same setup as Fig. | to demonstrate the limitation of full-parameter reset. We compute the change
in average accuracy by comparing 10 batches before and after each reset, and then average these
values over all reset points. RDumb exhibits an average 1.26%p drop per reset, which corresponds
to roughly 12% of its overall average accuracy (9.77%). This confirms that RDumb’s degradation at
each reset is non-trivial.

b) Recovery delays. To measure recovery delays after a reset, we count how many batches RDumb
requires to reach the highest accuracy observed in the reset-preceding 20 batches. When full recov-
ery does not occur before the next reset, we count all batches until that reset. On average, RDumb
requires 330 batches to recover, while it resets every 1000 batches. Therefore, RDumb takes substan-
tially long to regain its pre-reset performance, which highlights the inefficiency of its full-parameter
reset mechanism.

F.2 RISK OF PROXIMITY TO RESET

As we noted, proximity to reset potentially compromises parameter integrity and ultimately harms
adaptation. We empirically demonstrate this risk by slightly delaying resets, which allows corrupted
parameters to accumulate in 6 from Eq. (4). Under recurring scenarios (IN-C), we observe harmful
effects when corrupted domain information is re-utilized. Normally, resets have been triggered when
C: > C;_1. For the delayed variant, we postpone the resets until C; — C;_1 > ¢, retaining parameters
beyond the standard reset points. As shown in Table F.1, delaying resets leads to substantial perfor-
mance drops, even below ETA, confirming that parameters are particularly vulnerable to corruption
after the standard reset points, and that such corruption significantly impairs adaptation.

IN-C (Revisit#) € 1 5 10 15 20 Mean
ETA - 30.64 36.76 36.16 3596 3580 35.88
+ ASR (Ours) 0.0 28.68 33.00 38.60 3897 39.10 36.90
+ w/ delay 0.001 28.42 3339 37.80 38.82 39.02 36.25
+ w/ delay 0.01 2794 28.06 2794 28.30 28.12 28.29
ROID - 3532 38.00 38.08 38.15 38.02 37.96
+ ASR (Ours) 0.0 3566 41.03 4220 42.06 4296 41.56
+ w/ delay 0.001 35.08 40.01 4142 4196 4154 40.85
+ w/ delay 0.01 35.60 37.78 3828 38.61 38.62 38.07

Table F.1: Performance on IN-C with and without delayed resets. € indicates the delay threshold.
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F.3 FAIR COMPARISON FOR RESET

We compare our reset mechanism with existing reset mechanisms, proposed by SAR (Niu et al.,
2023), RDumb (Press et al., 2023), and DA-TTA (Wang et al., 2024), with ROID across all CCC
levels, as demonstrated in Table F.2. They reset all model parameters periodically (RDumb), and
only when extremely high confidence (SAR) or a significant distribution discrepancy from the source
(DA-TTA) is detected. For our approach (ASR), we isolate other components except for our reset
mechanism for a fair comparison; otherwise results are reported as 51.19%, 42.42%, and 21.36%
for CCC-Easy, -Medium, and -Hard. Existing approaches, except for SAR, improve performance
on CCC-Hard but degrade it on the other levels. However, our approach consistently outperforms
the others, surpassing the second-best by +2.8%p on average.

Method | Easy Medium Hard | Mean
ROID 49.74 40.19 11.81 | 33.91
+ SAR 49.73 40.06 5.29 | 31.69
+ RDumb 49.56 39.77 14.06 | 34.46

+ DA-TTA 4598  35.76 15.53 | 32.42
+ ASR (Ours) | 50.70  41.72  19.36 | 37.26

Table F.2: Performance comparison across reset mechanisms on CCC levels.

F.4 ROBUSTNESS TO TRULY SMALL BATCH SIZES

We evaluate our method on truly small batch sizes, specifically 2 and 4, on a single split (transition
speed 1000; random seed 43) of CCC-Easy with ROID as our base model, following the setting of
Fig. 10. As shown in Table F.3, our method consistently outperforms baselines. At batch size 4,
ASR achieves 25.58, compared to 17.85 for RDumb, demonstrating that its robustness extends to
smaller batch sizes than 16. However, at batch size 2, the gap between ASR and RDumb narrows,
as our reset mechanism requires a minimum number of samples to function effectively. Please note
that, online TTA and continual TTA are different settings, and our focus is on a variation of the latter
one: long-term continual TTA. Online TTA is an extreme scenario with the batch size of 1, and
most TTA methods fail to work under such an extreme condition. All methods including ASR yield
near-random performance (~0.1). One practical approach for ASR in this setting is to temporarily
store online samples and evaluate the reset criterion once enough samples are collected.

Batch size 2 4
ROID 0.13 1691
+ RDumb 5.87 17.85

+ASR (Ours) 6.46 25.58

Table F.3: Performance comparison for truly small batch sizes
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