
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN AND WHERE TO RESET MATTERS FOR
LONG-TERM TEST-TIME ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

When continual test-time adaptation (TTA) persists over the long term, errors ac-
cumulate in a model and further lead it to predict only a few classes regardless of
the input, known as model collapse. Recent studies have explored reset strategies
that erase these accumulated errors completely. However, their periodic resets lead
to suboptimal adaptation, as they occur independently of collapse. Also, their full
resets cause the catastrophic loss of knowledge acquired over time, even though it
could be beneficial in future. To this end, we propose 1) an Adaptive and Selective
Reset (ASR) scheme that dynamically determines when and where to reset, 2) an
importance-aware regularizer to recover essential knowledge lost from reset, and
3) an on-the-fly adaptation adjustment scheme to enhance adaptability under chal-
lenging domain shifts. Extensive experiments across long-term TTA benchmarks
demonstrate the effectiveness of our approach, particularly under challenging con-
ditions. Our code will be released.

1 INTRODUCTION

Test-time adaptation (TTA) (Liang et al., 2020; Sun et al., 2020; Wang et al., 2021) aims to address
the growing challenge of distribution shifts in real-world applications by enabling model adaptation
at test time. Recently, TTA research has expanded to continual scenarios (Wang et al., 2022; Döbler
et al., 2023), allowing models to adapt to a non-stationary stream of domains, where updates progress
continuously, while errors accumulate over time. However, when domain shifts persist over the long
term, these errors further result in model collapse (Niu et al., 2023; Shumailov et al., 2024), in which
models converge to generate incorrect predictions concentrated on only a few classes across inputs.
To address this, recent studies have explored methods seeking to preserve knowledge from the source
domain when adapting to target domains (Wang et al., 2022; Marsden et al., 2024; Press et al., 2023).
A straightforward yet effective method involves periodically resetting model parameters to those of
the source model (Press et al., 2023), which erases accumulated updates and errors, thereby rescuing
the model from irreversible collapse. However, such a mechanism forces resets to depend on a single
pre-defined reset interval across all situations, leading to too frequent or infrequent resets. Moreover,
this completely erases knowledge acquired during adaptation, thereby disrupting forward knowledge
transfer within the continuously adapting model (Dı́az-Rodrı́guez et al., 2018).
To this end, we propose an Adaptive and Selective Reset (ASR) scheme that dynamically determines
when and where to reset based on the concentration of predicted classes, which is utilized to estimate
the risk of model collapse. We trigger a reset once the risk is deemed significant, and adjust its scope
based on how significant the risk is. Several studies (Bai et al., 2021; Yang et al., 2024) showed that
corruption from label noise begins at the end of the network. Since this corruption results in collapse,
we prioritize layers closer to the output for reset. Fig. 1 illustrates how our ASR scheme differs from
the aforesaid naive reset approach. Besides, we introduce an importance-aware regularizer to recover
essential knowledge lost from reset. We estimate parameter importance through a newly formulated
Fisher information. Based on this, parameters regarded as crucial to previous tasks are aligned with
their accumulated state, which incorporates all prior target knowledge. Finally, we propose to adjust
our adapting mechanism on the fly based on domain discrepancy. We define prediction inconsistency
to quantify this discrepancy, and then use it to update model hyperparameters via reparameterization,
improving our adaptability under challenging domain shifts. Our contributions are as follows:

• We propose an Adaptive and Selective Reset (ASR) scheme that dynamically determines when and
where to reset, effectively preventing model collapse while mitigating knowledge loss.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

RDumb (Acc. 9.77%)

Fixed Reset Intervals
Full Reset

: Layer
ASR (Ours; Acc. 17.10%)

Dynamic Reset Intervals
Selective Reset

: Layer

Dataset: CCC-Hard Dataset: CCC-Hard

Figure 1: Illustrative comparison between a naive reset approach (RDumb; Press et al. (2023)) and
our Adaptive and Selective Reset (ASR) on the same model (ETA; Niu et al. (2022)). RDumb fully
resets parameters at fixed intervals (e.g., every 1000 steps), whereas ASR dynamically decides when
and where to reset, achieving more stable (smaller fluctuations) and higher (+7.33%p) performance.
Dotted vertical lines indicate when resets occur.

• Beyond the reset strategy, we introduce an importance-aware regularizer to recover parameters
that are inevitably reset but deemed crucial to prior tasks, and on-the-fly adaptation adjustment
that updates model hyperparameters according to domain discrepancy to enhance adaptability.

• Extensive experimental results across various long-term TTA benchmarks demonstrate the effec-
tiveness of our method. Remarkably, our method yields a substantial 44.12% improvement over
the state of the art on the challenging CCC-Hard (Press et al., 2023).

2 RELATED WORK

Test-time adaptation. TTA enables a model to adapt to unknown target environments without any
target assumptions. Since true labels are unavailable at test time, early works have explored effective
unsupervised adaptation (Kundu et al., 2020; Li et al., 2020; Liang et al., 2020). Initial TTA research
proposed to adjust batch normalization statistics (Schneider et al., 2020; Mirza et al., 2022), which
evolved toward integrating self-training schemes (Zhang et al., 2022; Goyal et al., 2022), such as
entropy minimization, improving predictive confidence on target data (Wang et al., 2021), which has
been developed to prevent wrong confidence intensification (Zhang et al., 2025a; Han et al., 2025).
Continual test-time adaptation. Self-training methods face a critical challenge in a non-stationary
domain stream, where their performance gradually deteriorates over time with noisy pseudo-labeling
repeated (Wang et al., 2022; Niu et al., 2023). It accumulates errors, enhancing predictive confidence
in incorrect predictions, eventually leading them to converge to suboptimal solutions, a phenomenon
known as model collapse (Niu et al., 2023; Shumailov et al., 2024). Several studies (Niu et al., 2023;
Hoang et al., 2024) empirically illustrated that once collapsing, a model assigns all inputs into a few
dominant classes. CoTTA (Wang et al., 2022) addresses this collapse by stabilizing its self-training
scheme using augmentation-averaged pseudo-labels and preventing source knowledge forgetting via
stochastic parameter restoration. On the one hand, to handle error accumulation, recent research has
explored reliable adaptation, such as using adaptive learning rates (Park et al., 2024; Maharana et al.,
2025) or adaptive loss functions (Liu et al., 2024a).
Long-term test-time adaptation. While effective at preventing collapse in standard continual set-
tings, TTA methods struggle under more realistic environments, such as gradual (Döbler et al., 2023)
or smooth (Press et al., 2023) domain shifts that persist over the long term. To overcome these chal-
lenges, ROID (Marsden et al., 2024) introduces weight ensembling as a smooth restoration scheme,
where the adapting model is updated by combining with the weighted pre-trained model. CMF (Lee
& Chang, 2024) improves it by updating the pre-trained model based on the adapting model, inspired
by the Kalman filter (Särkkä & Svensson, 2023). On the one hand, more aggressive alternatives have
also been proposed. One such alternative is to periodically reset all parameters to their original state
(Press et al., 2023). Others trigger such a reset only when extremely high predictive confidence (Niu
et al., 2023) or a significant distribution discrepancy from the source (Wang et al., 2024) is identified.
Another line of research has developed regularization techniques to constrain the deviation between
pre-trained and adapting parameters, such as weighting regularization with Fisher information (Niu
et al., 2022) or adjusting the regularization coefficient based on parameter divergence from the origi-
nal state (Hoang et al., 2024). This coefficient can also be dynamically assigned for each single layer
based on its location (Yang et al., 2024) or its sensitivity to distribution shifts (Choi et al., 2022). In
this study, our research aligns with the emerging trend of long-term TTA (denoting TTA under more
realistic environments where domain shifts persist over the long term), addressing the drawbacks of
conventional reset mechanisms that reset too often or too rarely and completely erase the knowledge

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

33 3

𝒞𝑡
ҧ𝒞𝑡−1

3 24 4 1 21 33

1 33 3 23

𝒞𝑡
ҧ𝒞𝑡−1 𝒞𝑡

ҧ𝒞𝑡−1 𝒞𝑡
ҧ𝒞𝑡−1

1 3 4

1 3 4

Adaptive Reset by
𝒞𝑡 > ҧ𝒞𝑡−1

Selective Reset with
𝒞𝑡 − ҧ𝒞𝑡−1 (Eq. (3))

𝒞𝑡: Pred. concentration (Eq. (1))
 ҧ𝒞𝑡−1: Cum. concentration (Eq. (2))

Long Domain Stream

Time

Online Batch Stream

Time

Figure 2: Overview of our Adaptive and Selective Reset (ASR) scheme, which compares prediction
concentration Ct with its cumulative counterpart C̄t−1 for each test batch from a long domain stream,
triggers a reset when Ct > C̄t−1, indicating that the model is corrupted severely enough to collapse,
and determines layers to reset based on Ct−C̄t−1, which reflects how severely the model is corrupted.
On the upper side, icons inside dashed boxes, labeled with numbers, denote class labels. White icons
represent correct predictions, while black icons represent incorrect predictions.

accumulated for extended periods. However, our approach dynamically determines when and where
to reset, while recovering significant knowledge lost.

3 METHOD

3.1 PROBLEM DEFINITION

Given a pre-trained source model fθ0 , our goal is to improve its performance at test time over a long
sequence of test domains without access to source data. A handful of test samples arrive in sequence
and are then inaccessible once processed via the model. At step t, the current model fθt−1 is given a
test sample xi

t and generate a prediction ŷit = σ(fθt−1(x
i
t)), where f∗ yields logit outputs and σ is the

softmax function. The model is evaluated using its predictions ŷt, and is then adapted as θt−1 → θt
using unsupervised objective functions. Besides, we also aim to achieve stable adaptation, ensuring
that performance does not deteriorate over time under collapse-prone scenarios such as perpetually
changing or cyclically recurring domain streams. To this end, we address the limitations of existing
reset approaches, such as suboptimal reset timing and the catastrophic erasure of knowledge, through
the following three main components: (1) Adaptive and Selective Reset (ASR; illustrated in Fig. 2),
(2) importance-aware knowledge recovery, and (3) on-the-fly adaptation adjustment.

3.2 MOTIVATION

First, we observed that RDumb (Press et al., 2023)’s fixed periodic reset is only fit for standard TTA
benchmarks where domain shifts occur at a regular interval. In real-world settings, however, domain
shifts do not follow a fixed schedule and their timing can vary significantly. In these settings, RDumb
resets either too early or too late, misaligned with the actual risk of collapse, leading to suboptimal or
unstable adaptation. Second, as shown in Fig. 1, RDumb suffers from a substantial performance drop
immediately after each reset. This is primarily due to its full-parameter recovery, which discards all
adaptation knowledge accumulated so far, while causing significant recovery delays as well. These
observations motivated our reset strategy, which triggers resets only when the model is at risk and
mitigates knowledge erasure from the reset. We further support the second motivation by quantifying
post-reset performance drops and recovery delays in Appendix F.1.

3.3 ADAPTIVE AND SELECTIVE RESET

When to reset. We introduce an adaptive reset scheme that triggers a reset only when a high risk of
collapse is detected. To achieve it, we define prediction concentration Ct, leveraging the notion that
entropy reflects the uniformity of a distribution, where Softmax(Mean(Logits)) serves as the
underlying measure, as follows:

Ct =
C∑

c=1

p̂tc log(p̂tc) where p̂t = σ

 1

|Bt|

|Bt|∑
i=1

fθt−1(x
i
t)

 , (1)

C is the total number of classes, and p̂tc indicates the probability of the c-th class in p̂t, obtained by
applying the softmax function σ to the average logits of the batch Bt at time step t. Although we can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

measure the concentration of predicted classes, it remains unclear when it is high enough to suggest
that the model is on the verge of collapse. We argue that when the concentration Ct deviates from its
long-term normal behavior, it can be regarded as an indication that collapse is likely to emerge, and
define cumulative concentration C̄t, computed via exponential moving average (EMA), as follows:

C̄t = µC · C̄t−1 + (1− µC) · Ct, (2)

where µC is the momentum coefficient, and C̄0 is initialized as − log(α0 · C) using a pre-defined
α0. We compare the concentration Ct with its cumulative counterpart C̄t−1 to judge whether to
trigger a reset at each step t. C̄t−1 is reinitialized as − log(α0 · C) if the model is reset; oth-
erwise it is updated via Eq. (2). We choose α0 such that the initial cumulative value is always
sufficiently larger than Ct for any t (see top-right of Fig. 2). C̄t−1 is guaranteed with time to ap-
proximate the long-term normal behavior of Ct. We render a reset triggered right after Ct > C̄t−1 is
detected to prevent accumulating corrupted Fisher information, which will be described in Sec. 3.4.

6.7 6.6 6.5 6.4 6.3
Prediction Concentration

0

10

20

Ac
cu

ra
cy

 (%
) r = 0.88

Figure 3: Corr. of Ct and Acc.

To demonstrate that our prediction concentration Ct is an effec-
tive metric for detecting a high collapse risk, we evaluate its cor-
relation with accuracy in Fig. 3, where low accuracy represents a
higher risk of collapse. We observe a strong Pearson correlation
of 0.88, confirming the reliability of our Ct. A detailed setup and
additional analysis are provided in Appendix C.1.
Where to reset. The critical drawback of reset is the catastrophic
loss of knowledge acquired over time. To alleviate this, we ex-
ploit the hierarchical nature of deep neural networks. In the early
stages of collapse, layers closer to the input tend to be more ro-
bust to corruption than those closer to the output, since corrup-
tion from label noise begins at the end of the network (Bai et al., 2021; Yang et al., 2024). Inspired
by this insight, we propose a selective reset strategy that decides which layers to reset according to
how likely the model is to collapse, prioritizing those closer to the output. Since collapse progresses
with the number of corrupted layers increasing, the model facing a higher risk of collapse tends to
have more corrupted layers. As a result, reset targets should scale with the risk of collapse. We can
measure this risk via how far our concentration metric deviates from its normal behavior, denoted as
Ct − C̄t−1. We define a selective reset factor rt that specifies which layers to reset, as follows:

rt = r0 + λr · (Ct − C̄t−1), (3)

where r0 and λr are pre-defined as the minimum size of reset targets and the risk scaling factor. The
factor rt is always greater than r0, as the model is reset only when Ct > C̄t−1, and is also subject to
an upper bound of 1, indicating a full reset. It specifies target layers to reset starting from the output,
such that the last rt proportion of layers are reset, while the remaining 1− rt are preserved1.

3.4 IMPORTANCE-AWARE KNOWLEDGE RECOVERY

Although we attempt to mitigate the catastrophic knowledge loss from reset, some highly important
knowledge is still inevitably erased. To further address this issue, we introduce an importance-aware
regularizer designed to recover essential knowledge lost. At every iteration, we accumulate learnable
parameters and their importance matrices computed via Fisher information (Kirkpatrick et al., 2017;
Zenke et al., 2017; Schwarz et al., 2018). We then apply the regularizer to strongly guide parameters
deemed significant for previous tasks toward alignment with the accumulated ones, as follows:

L(Bt; θt−1) = Lu(Bt; θt−1) + λF

|θt−1|∑
i=1

F̄ i
(
θit−1 − θ̄i

)2
, (4)

where L and Lu are total and unsupervised losses, F̄ i and θ̄i are the i-th accumulated Fisher matrix
and accumulated parameter, θit−1 ∈ θt−1 is the i-th learnable parameter from θt−1, and λF is the
regularization coefficient.
In the accumulation phase, the following dilemma arises: While parameters and their Fisher matri-
ces increasingly align with the current domain, their proximity to reset makes them more vulnerable
to corruption. Conceptually, proximity to reset indicates that, as a model has adapted for a long time,
errors have also accumulated substantially, compromising its integrity and signaling that it requires

1For example, with 15 layers and rt = 0.5, the 8 deepest layers are reset (rounded off).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a reset. We further provide empirical evidence to support it in Appendix F.2. EMA is a widely used
accumulation technique, but it is not an ideal choice here, as it inherently prioritizes recent informa-
tion. To address this, we propose a hybrid accumulation scheme that combines cumulative moving
average (CMA) with EMA. At every iteration, CMA accumulates learnable parameters and their
Fisher matrices equally. EMA then aggregates the CMA-accumulated values at each reset-triggered
point, after which CMA is reinitialized to zero. The EMA-accumulated parameters and Fisher ma-
trices correspond to θ̄ and F̄ in Eq. (4). More details about this knowledge accumulation scheme
are provided in Appendix C.2, and its computational efficiency is analyzed in Appendix C.4. More-
over, we provide both theoretical and empirical evidence for the view that our regularizer effectively
recovers essential knowledge erased by resets in Appendix E.6.

3.5 ON-THE-FLY ADAPTATION ADJUSTMENT

While we assume domain-evolving settings, we have not yet taken account of how evolution unfolds
when designing our method. Under challenging domain shifts, our adaptability may struggle to keep
pace, as resets are occasionally required. In such cases, strong guidance from the Fisher regularizer
becomes crucial to exploit additional knowledge about target domains, and source–target discrepan-
cies are also amplified, thereby worsening label noise. Pseudo-labels are more likely to be randomly
assigned (Semenova et al., 2023), which complicates robust inference of prediction concentration Ct
and renders stable updates of C̄t−1 in Eq. (2) particularly challenging. To address this, we propose to
adjust model adaptation on the fly based on domain discrepancy. We define prediction inconsistency
ϕt to quantify domain discrepancy, as follows:

ϕt =
1

|Bt|

|Bt|∑
i=1

I
(
π(y̆it) ̸= π(ŷit)

)
, (5)

where I is the indicator function, π is the argmax operation, and y̆it and ŷit are the softmax probabil-
ities of the source fθ0 and current fθt−1

models for the i-th test sample in Bt, respectively. Higher
ϕt values (i.e., closer to 1) indicate greater domain discrepancy. Based on this, we adjust adaptation
on the fly by updating the regularization coefficient λF in Eq. (4) and the momentum coefficient µC
in Eq. (2) through reparameterization as follows:

λF = λ0 · ϕ2
t , (6)

µC = 1− µ0 · (1− ϕt), (7)

where λ0 and µ0 are pre-defined. As ϕt increases, λF grows exponentially within [0, λ0] for stronger
regularization in Eq. (4), and µC grows linearly within [1− µ0, 1] to minimize unstable updating of
C̄t−1 in Eq. (2). If λ0 = 0, no knowledge recovery occurs; if µ0 = 0, no update of C̄t−1 occurs.

4 EXPERIMENTS

4.1 SETUP

Datasets. As discussed in Press et al. (2023), standard TTA benchmarks are inadequate for validat-
ing the stability of continual TTA methods in long-term scenarios that are prone to model collapse.
To address this, we adopt recently introduced benchmarks (1, 2) specifically designed for collapse,
and modify the existing TTA benchmarks (3, 4) to better reflect long-term collapse-prone scenarios.
We conduct experiments on the following four benchmarks: 1) Continually Changing Corruptions
(CCC) (Press et al., 2023) is a benchmark systematically processed from ImageNet-C (Hendrycks &
Dietterich, 2019). This assumes smooth domain shifts over the long term, where one fades gradually
as another emerges, with the two overlapping. It is also divided into three adaptation difficulty levels
(Easy / Medium / Hard), each incorporating three corruption orderings and three corruption evolving
speeds, resulting in nine variations in total. 2) Concatenated ImageNet-C (CIN-C) is an extended
version of ImageNet-C, containing 50K images per corruption, ten times larger than the original, in
which 15 corruption types are sequenced under the highest corruption condition (level 5). It is often
used by several studies (Wang et al., 2022; Niu et al., 2022; Gong et al., 2022; Brahma & Rai, 2023)
to demonstrate their adaptation stability, while exposing collapse in Tent (Wang et al., 2021). Lastly,
the following two standard TTA benchmarks, 3) ImageNet-C (IN-C) and 4) ImageNet-D109 (IN-
D109) (Peng et al., 2019) are processed to reflect model collapse, following prior works (Press et al.,
2023; Hoang et al., 2024). IN-C cyclically repeats the sequence of corruptions 20 times, consisting
of only four types on which the source model achieves less than 10% accuracy, indicating hard-level

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CCC CIN-C IN-C IN-D109

Method Easy Medium Hard i.i.d. non-i.i.d. Visit 1 / 20 Mean Visit 1 / 20 Mean

Source 33.89±0.2 16.87±0.2 1.27±0.0 18.01±0.0 18.01±0.0 3.08 / 3.08 3.08±0.0 32.52 / 32.52 32.52±0.0
RoTTA (CVPR’23) 2.28±0.6 1.76±0.6 0.69±0.2 29.05±2.0 29.71±1.7 12.45 / 12.96 17.60±2.8 39.89 / 34.34 40.61±3.1
ViDA (ICLR’24) 12.68±0.8 5.75±0.5 0.42±0.0 17.76±0.1 17.76±0.1 3.09 / 2.84 2.99±0.1 0.01 / 0.01 0.01±0.0
PALM (AAAI’25) 1.56±0.2 0.74±0.3 0.13±0.0 12.69±6.3 12.08±6.1 24.66 / 30.98 30.70±1.4 13.86 / 1.42 2.06±2.7

EATA (ICML’22) 49.52±0.9 39.19±1.7 0.82±0.4 47.81±0.2 47.54±0.2 31.31 / 36.35 36.32±1.2 41.62 / 41.32 41.61±0.3
+ COME (ICLR’25) 46.67±3.3 36.63±1.6 0.80±0.4 44.14±0.3 44.09±0.3 30.20 / 32.06 33.02±1.1 42.94 / 44.91 45.11±0.6
CoTTA (CVPR’22) 17.50±1.0 9.83±0.9 1.52±0.5 35.51±2.6 35.29±2.4 18.78 / 37.22 34.39±4.8 41.76 / 40.55 43.91±2.1
SAR (ICLR’23) 37.94±1.2 22.25±1.9 2.03±0.5 40.35±1.8 40.07±0.6 24.38 / 34.93 34.09±2.4 40.86 / 33.11 39.09±3.4
+ COME (ICLR’25) 48.42±0.4 37.06±1.2 2.08±0.7 42.96±0.3 42.56±0.3 23.67 / 35.24 34.28±2.7 40.59 / 34.96 42.10±3.1
CMF (ICLR’24) 49.31±0.9 40.61±1.6 0.89±0.6 48.61±0.1 48.28±0.2 35.07 / 39.40 39.35±1.0 44.69 / 45.46 45.25±0.3
PeTTA (NeurIPS’24) 36.89±2.2 22.64±2.8 6.00±0.8 31.55±0.1 31.61±0.1 11.91 / 12.40 12.65±0.3 39.56 / 42.69 42.76±0.8

ETA (ICML’22) 43.24±1.0 19.03±6.9 0.32±0.1 43.61±0.4 43.63±0.4 30.64 / 35.80 35.88±1.2 41.24 / 34.21 37.22±2.1
+ RDumb (NeurIPS’23) 49.47±0.8 39.42±1.5 9.77±1.8 46.39±0.2 46.13±0.2 30.71 / 30.94 34.66±2.2 40.93 / 41.59 41.45±0.4
+ ASR (Ours) 51.20±0.8 41.88±1.6 17.10±2.1 47.17±0.2 46.83±0.2 28.68 / 39.10 36.90±2.9 40.61 / 41.32 41.53±0.3

ROID (WACV’24) 49.88±0.8 40.47±1.4 12.48±2.6 48.58±0.1 48.25±0.1 35.32 / 38.02 37.96±0.6 46.02 / 46.17 46.16±0.1
+ RDumb (NeurIPS’23) 49.69±0.8 40.05±1.4 15.41±1.5 48.00±0.1 47.67±0.1 35.60 / 35.75 37.18±1.2 46.07 / 45.62 45.99±0.2
+ ASR (Ours) 51.41±0.8 42.80±1.5 22.21±1.2 49.50±0.2 49.14±0.2 35.66 / 42.96 41.56±1.7 46.13 / 46.32 46.49±0.1

Table 1: Comparison with state-of-the-art continual TTA methods across four datasets using Accu-
racy (%). Results for each level of CCC (Easy / Medium / Hard) are averaged over nine variations,
considering three different corruption orderings and three corruption evolving speeds. CIN-C results
are averaged over ten runs. In the non-i.i.d. setting, we use a Dirichlet parameter δ = 0.1, following
prior works (Gong et al., 2022; Yuan et al., 2023). For IN-C and IN-D109, we report averages across
domains at the initial and last (20th) visits, as well as overall averages across all visits. Gray denotes
model collapse, defined as performance worse than the source model (Press et al., 2023).

corruptions. IN-D109 is processed in the same way as IN-C, but it selects four hard-level corruptions
according to less than 50% accuracy.
Baselines. We compare our approach with state-of-the-art continual TTA approaches. We categorize
them into two groups based on whether they incorporate an explicit mechanism to prevent collapse.
The first group, which lacks an explicit safeguard against collapse, consists of ETA (Niu et al., 2022),
RoTTA (Yuan et al., 2023), ViDA (Liu et al., 2024b), C-MAE (Liu et al., 2024a), PALM (Maharana
et al., 2025), and REM (Han et al., 2025). The second group, which integrates an explicit safeguard
against collapse, is composed of EATA (Niu et al., 2022), CoTTA (Wang et al., 2022), RDumb (Press
et al., 2023), SAR (Niu et al., 2023), ROID (Marsden et al., 2024), CMF (Lee & Chang, 2024), and
PeTTA (Hoang et al., 2024). COME (Zhang et al., 2025a) does not belong to either group because it
can be combined with any method using an entropy minimization objective. RDumb was originally
implemented on ETA, but as a naive reset strategy, we apply it to other methods to ensure a reliable
evaluation for our reset method.
Implementation details. We re-implement all methods in PyTorch (Paszke et al., 2019) within
a unified TTA repository (Marsden et al., 2024), and all reported results are obtained by re-running
these methods for a fair and consistent comparison. Experiments are conducted on ResNet-50 (He
et al., 2016), provided by either torchvision or RobustBench (Croce et al., 2021). We also
test on ViT-B-16 (Dosovitskiy et al., 2021) for CCC to further assess generalization. For ASR, we
follow the implementation details of ETA (Niu et al., 2022) and ROID (Marsden et al., 2024), since
we use them as our TTA baselines. We determine hyperparameters using only 5% of a holdout split
(transition speed 2000, random seed 44) out of the nine available from CCC-Hard, and apply them
to all datasets and settings. We also evaluate robustness to hyperparameter variations across all CCC
levels in Appendix E.5. The loss Lu in Eq. (4) is defined based on what our TTA baseline uses as its
final loss. More details of our implementation are available in Appendix C.3. For analysis on CCC,
we consistently use a single split (transition speed 2000, random seed 44).

4.2 MAIN RESULTS

a) CCC. Table 1 presents the limitations of existing continual TTA methods on CCC. All methods
(except for the source model) in the first row collapse across all CCC levels. Following Press et al.
(2023), model collapse is defined as performance worse than the source model. Most methods in the
second row achieve stable adaptation, but some fail on CCC-Hard and lack competitive performance.
In the last row, RDumb (Press et al., 2023) effectively avoids collapse and further enhances ETA (Niu
et al., 2022); however, it degrades ROID (Marsden et al., 2024) on CCC-Easy/-Medium. Our method
demonstrates its effectiveness by achieving stable and improved performance across all baselines. It
particularly achieves 22.21% (average) accuracy on the most challenging CCC-Hard, outperforming
the best state-of-the-art by 44.12%. We further assess the generalization of our method on ViT-B-16

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Easy Medium Hard Mean

Source 54.92±0.2 41.74±0.6 14.83±0.6 37.16±16.7
CMF 61.52±0.7 51.50±6.3 1.79±1.7 38.27±26.4
C-MAE 51.15±2.3 43.48±3.9 26.92±2.3 40.52±10.5
REM 66.16±0.3 57.99±0.9 10.97±9.9 45.04±25.0

ETA 45.07±10.4 33.71±4.6 1.22±0.5 26.67±19.7
+ RDumb 59.99±0.6 50.50±1.4 23.27±1.1 44.58±15.6
+ ASR 60.58±0.7 51.63±1.6 24.45±0.9 45.55±15.4

ROID 60.85±0.7 52.19±1.3 14.30±8.2 42.45±20.8
+ RDumb 60.60±0.7 51.68±1.3 25.72±1.4 46.00±14.8
+ ASR 61.48±0.7 53.55±1.3 28.09±0.6 47.71±14.3

Table 2: Acc. (%) comparison on ViT.

Ct rt F̄ λ0 µ0 CCC

(Eq. (1)) (Eq. (3)) (Eq. (4)) (Eq. (6)) (Eq. (7)) Easy Medium Hard Mean

✗ ✗ ✗ ✗ ✗ 49.74 40.19 11.81 33.91
✗ ✓ ✓ ✓ ✗ 49.83 40.58 17.16 35.86
✓ ✗ ✓ ✓ ✓ 49.83 40.35 15.99 35.39
✓ ✓ ✗ ✓ ✓ 51.04 42.19 20.18 37.80
✓ ✓ ✓ ✗ ✓ 51.07 42.33 20.27 37.89
✓ ✓ ✓ ✓ ✗ 50.82 41.86 20.70 37.79
✓ ✓ ✓ ✓ ✓ 51.19 42.42 21.36 38.32

Table 3: Effect of components in ASR on ROID .

using CCC, as reported in Table 2. We compare with baselines that have reported their performance
on the ViT. While CMF (Lee & Chang, 2024) and REM (Han et al., 2025) achieve strong results on
CCC-Easy and -Medium, they fail to prevent collapse on CCC-Hard. In contrast, C-MAE (Liu et al.,
2024a) demonstrates its effectiveness on CCC-Hard, but does not generalize well to other levels. Our
approach, however, not only maintains strong performance on CCC-Hard but also achieves the best
average performance.
b) CIN-C. Table 1 presents results on CIN-C, reporting average accuracy over ten permutations, in
which 15 corruption types are shuffled. Methods that achieve stable adaptation on CCC also perform
well on CIN-C. Weight ensembling (Marsden et al., 2024; Lee & Chang, 2024), often referred to as
smooth parameter restoration, demonstrates its effectiveness, achieving the top two ranks among the
baselines. Our method still attains the best performance even in CIN-C that is less prone to collapse.
Most existing studies assume label-i.i.d. test environments, but such assumptions do not always hold
in real-world applications. Recently, increasing attention has been given to non-i.i.d. settings where
labels are temporally correlated. Following Gong et al. (2022); Yuan et al. (2023), we use a Dirichlet
parameter δ = 0.1 to adjust the class distribution of test samples. Our method consistently improves
our baselines (ETA, ROID) and achieves the best performance on ROID.
c) IN-C. We report average accuracy over a sequence of corruptions at the first and last (20th) visits,
as well as the overall average across all visits for IN-C, as shown in Table 1. Most baselines succeed
in avoiding collapse and achieve substantial improvements over the source model. IN-C is less prone
to collapse; however, our method, originally designed to address such risks, also proves effective in
enhancing adaptability, showing the best results consistently across the first, last, and overall visits.
d) IN-D109. Results for IN-D109 are reported in the same manner as for IN-C (Table 1). Several of
the methods exhibit decreased performance when comparing visit 1 and 20. This indicates the early
stages of collapse, which may be due to the reduced number of classes. IN-D109 contains only 109
classes, roughly ten times fewer than other datasets. Consequently, a skewed prediction distribution
is more clearly observed in IN-D109 than in the other datasets. In contrast, our method demonstrates
stable and superior performance on IN-D109.

4.3 ABLATION STUDIES

We ablate each component from our approach to validate its individual effectiveness. Table 3 shows
that dynamically determining when and where to reset is the most critical factor, as demonstrated
by the first and second component-ablated results. To ablate our adaptive reset, we replace it with a
fixed-interval reset scheme using T = 20000. In this case, µ0 is omitted as Ct is no longer computed.
To ablate our selective reset, we adopt a full reset mechanism. The remaining components (i.e., the
importance-aware regularizer and hyperparameter reparameterization) have relatively small individ-
ual impact, but when combined, they yield meaningful performance gains. When λ0 is ablated, λF
is fixed to 5.0 in Eq. (4). When µ0 is ablated, µC is fixed to 0.995 in Eq. (2). More experiments for
the ablation study is provided in Appendix E

4.4 EMPIRICAL STUDIES ON MODEL COLLAPSE

Model collapse refers to a terminal state where long-term error accumulation has severely degraded
performance, eventually leading the model to predict only a few classes for all inputs. It is therefore
crucial to anticipate collapse. However, it is a non-trivial task because true labels are inaccessible at
test time, making such accumulation undetectable. The only reliable signal for detecting collapse is
a biased prediction distribution, even though it does not hold under non-i.i.d. or imbalanced class pri-
ors. We will discuss a way to address these class priors in Sec. 4.5. Mean(Softmax(Logits))
is the most straightforward way to measure the bias of a prediction distribution. However, what we
suggest is Softmax(Mean(Logits)).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

5

10

15

20 20.99

0.69

CCC-Hard

0

10

20

30

40 41.13 39.09

CCC-Easy

Softmax(Mean(Logits)) Mean(Softmax(Logits))

Figure 4: σ(µ) vs. µ(σ).

67 136 264 123648
50
52
54

50.48 50.50 50.52 50.26

Accuracy (%)
CCC-Easy

87 162 344 1557
Avg. Var(Logit Scales)

18
20
22
24

20.97 20.99 21.02
20.11

CCC-Hard

Figure 5: Robust to Var(|logit|).

-log(700)
-log(800)

-log(900)
-log(1000)

(Ours)
Threshold for True-Positive Reset

48

49

50

Ac
cu

ra
cy

 (%
)

48.46
48.1848.23

48.59

49.37 ROID +ASR

Figure 6: False vs. True-Pos.

44

46

48

50

Ac
c.

 (%
)

43.75

48.46

46.21
47.6447.31

49.37=0.1

20

30

40

24.47

40.27
34.41

39.7739.62 41.72
=0.01

10

20

30

40

9.48

33.91
26.36

33.5333.17 35.39
=0.05

ETA
ROID

ETA + RDumb
ROID + RDumb

ETA + ASR (Ours)
ROID + ASR (Ours)

Figure 7: Comparison of ETA / ROID and its variants with RDumb and ASR over different Dirichlet
parameters δ on non-i.i.d. CIN-C. The lower the δ, the more imbalanced the label distribution.

Q: Why is Softmax(Mean(Logits)) effective to detect collapse?
A: Models tend to update predominantly based on high-confidence predictions. Collapse is similarly
driven by these predictions. Its early sign emerges when they begin to concentrate on a small subset
of classes. Since large-scale logits reflect high-confidence predictions (Wei et al., 2022), averaging
raw logits highlights these predictions. However, Mean(Softmax(Logits)) normalizes logits,
so it discards confidence information. In contrast, Softmax(Mean(Logits)) is sensitive to the
growing concentration of high-confidence predictions, thereby enabling more reliable detection of
early collapse signs. Fig. 4 demonstrates that using Softmax(Mean(Logits)) enables reliable
adaptation in collapse-prone scenarios (e.g., CCC), whereas using Mean(Softmax(Logits))
leads to degraded performance and fails to adapt. In the figure, the green ones represent our method
with ROID, which will be described later.
Q: Is Softmax(Mean(Logits)) invariant to the logit-scale variance?
A: We empirically verify that the logit-scale variance within a batch is not a significant concern. We
adjust this variance by modifying logits within each batch as follows. For each sample, we subtract
the mean of its logits to obtain deviations, scale these deviations by a factor, and then add the mean
back. This scales the logit-scale variance, while preserving the logit-scale mean. As a result, large-
scale logits become amplified and small-scale logits become compressed, or vice versa, depending
on the factor. For this experiment, we use a single split (transition speed 1000; random seed 43) of
CCC-Easy and -Hard with ROID (Marsden et al., 2024) as our base model. Fig. 5 shows that our
method based on Mean(Softmax(Logits)) is highly stable across a wide range of logit-scale
variances. Even when we increase the variance by more than 15×, accuracy keeps nearly unchanged
(<0.3%p on CCC-Easy and <1%p on CCC-Hard). This shows that Mean(Softmax(Logits))
remains reliable even when logits of substantially different scales occur within a batch.

4.5 RISK OF FALSE-POSITIVE RESET

One may question “whether our method still works well under label imbalance, even though predic-
tions are typically highly concentrated”. The answer is that the imbalanced setting does not actually
disrupt our method. As predictions are more concentrated, the cumulative prediction concentration
C̄t−1 rises accordingly, then a high risk of collapse is favorably captured when a much higher Ct is
detected. We show that imbalanced class priors do not undermine our method by evaluating it under
various label-imbalanced settings, as shown in Fig. 7.
Following this, one may ask “if the much higher Ct could arise temporarily from extremely label-
imbalanced inputs”. In response, we argue that performing a reset at a high Ct is beneficial, regard-
less of what label distribution incoming inputs follow. Regardless of whether predictions are correct
or incorrect, highly concentrated predictions produce biased update signals, ultimately leading the
model to collapse. To test whether false-positive resets, triggered by temporarily high concentration
in correctly adapting models, are beneficial, we conduct a controlled experiment under a non-i.i.d. la-
bel scenario, where such resets are common. We prepare a batch with i.i.d. labels to ensure that any
triggered reset would be considered a true-positive. We use a single split of CIN-C (the first split in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CCC-Easy Original Gain (%) Modified Gain (%)

ETA 43.46 - 43.17 -
+ RDumb 49.53 +13.9% 47.36 +9.7%
+ ASR (Ours) 51.27 +17.9% 51.15 +18.4%

ROID 49.95 - 49.54 -
+ RDumb 49.76 -0.3% 49.33 -0.4%
+ ASR (Ours) 51.47 +3.0% 51.46 +3.8%

Table 4: Acc. (%) of original and modified CCC-
Easy using seed 43. Gains (%) are relative to each
corresponding baseline.

CCC-Hard Original Gain (%) Modified Gain (%)

ETA 0.41 - 1.83 -
+ RDumb 9.46 +2207% 11.88 +549%
+ ASR (Ours) 15.95 +3790% 17.61 +862%

ROID 9.63 - 16.51 -
+ RDumb 14.03 +45.6% 15.99 -3.1%
+ ASR (Ours) 21.22 +120% 21.56 +30.5%

Table 5: Acc. (%) of original and modified CCC-
Hard using seed 43. Gains (%) are relative to each
corresponding baseline.

30
32
34
36
38
40
42

34.28
36.93 36.91

34.00
36.74 36.85

34.27
37.04 37.14

34.02
36.41 36.76

34.37
36.37 36.80

34.67
35.94 36.63 36.43

34.23

35.08

38.58 38.72 39.20 39.30 39.71 39.94 40.45 40.32 40.65 40.41 40.40 41.15 40.75 41.07 41.33 41.05 40.80 41.10 41.34

ROID +RDumb +ASR (Ours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Revisit(#)

30
32
34
36
38
40
42

33.76

36.66 36.67
34.30

37.01 37.26

33.51

36.69 36.76
34.44

36.16 37.19
34.38

36.55 36.52
35.05 35.77

36.98 36.34
33.80

33.62

36.95 37.89 38.37
39.54 39.49 40.42 40.22 40.63 40.83 40.77 41.23 41.24 41.48 41.60 41.66 41.99 41.82 41.51 41.68

Accuracy (%); = 1 (top); = 10 (bottom)

Figure 8: Performance comparison over revisits on IN-C with CDC settings.

Table D.5) with ROID as our baseline. For each reset, we compute Ct in Eq. (1) for that i.i.d. batch
and apply a threshold to determine whether the reset is truly necessary. We initialize the threshold
as described below Eq. (2). A higher threshold reduces false-positive ones, while allowing for more
true-positive ones. Fig. 6 demonstrates that allowing false-positive resets (i.e., small threshold) leads
to improved performance. This confirms that interrupting biased parameter updates, even when the
model appears to adapt correctly, helps maintain stable long-term adaptation.

4.6 DYNAMICALLY CHANGING CORRUPTIONS: A VARIANT OF CCC
Although we noted in our motivation (Sec. 3.2) that real-world domain shifts do not follow a fixed
schedule, our benchmarks do not include varying domain-shift intervals. To better evaluate robust-
ness under such conditions, we construct modified CCC variants, which we refer to as Dynamically
Changing Corruptions, where the length of each corruption is randomly sampled from 1,000, 2,000,
or 5,000 batches. In the original CCC setting, each corruption persists for a fixed length (e.g., always
2,000 batches). This modification introduces a stochastic corruption-transition schedule that allows
us to evaluate robustness under real-world-like data streams. For a reliable evaluation, we compare
results on our modified CCC variants with those on the original CCC benchmarks, as summarized in
Table 4–5. In CCC-Easy, performance gains seen in the original setting are similarly reproduced in
the modified setting across all methods. In contrast, CCC-Hard reveals a difference. ROID+RDumb
exhibits degraded performance under the modified setting, and we conjecture that RDumb’s fixed
reset schedule is unable to adapt when challenging corruptions evolve unpredictably. However, our
method consistently preserves performance gains, demonstrating that it adapts effectively even when
corruptions are severe and evolve irregularly.

4.7 CDC SETTING FOR DYNAMIC DOMAIN-SHIFT SCHEDULE

We demonstrate the robustness of our approach under dynamic domain shifts by applying the Con-
tinual Dynamic Change (CDC; Zhang et al. (2025b)) protocol to IN-C. This IN-C variant explic-
itly introduces fast switching between domains and stochastic domain durations, controlled via the
Dirichlet parameter δ. We evaluate our approach under both a standard CDC setting (δ = 1.0) and a
more dynamic setting (δ = 10.0) to further emphasize its robustness. We show the results in Fig. 8.
For δ = 1.0, RDumb experiences repeated drops, e.g., accuracy falls from 36.91 to 34.00 at the 4th
transition. In contrast, ASR steadily improves over time, rising from 35.08 to 41.34 across 20 tran-
sitions and maintaining more stable performance than RDumb. Similarly, under δ = 10.0, RDumb
again suffers repeated drops, whereas ASR gradually improves and remains stable, reaching 41.68
at the 20th transition. These results demonstrate that our method reliably maintains high and stable
performance, even under rapid and stochastic domain shifts in real-world dynamic settings. We also
provide full experimental results under CDC settings in Appendix D.5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
30

40
Accuracy (%) ASR (Ours): 36.72% RDumb: 32.88%

59.0 59.5 60.0 60.5 61.0
Test Batches (×103)

30

40

Figure 9: Comparison between ASR and RDumb
on ETA using Accuracy (%) from a global view
(top) covering 0 to 110K batches and a local view
(bottom) ranging from 59K to 61K batches.

128 96 64 32 16
Batch Size

25

30

35

40

Ac
cu

ra
cy

 (%
)

ROID + RDumb + ASR (Ours)

Figure 10: Accuracy (%) of ROID and its vari-
ants with RDumb and ASR over different batch
sizes, averaged across all CCC levels.

0 25 50 75 100
Test Batches (×103)

0.00

0.25

0.50

0.75

1.00

Cl
as

sR
at

io
(%

) (a) ETA

0 25 50 75 100
Test Batches (×103)

(b) + RDumb

0 25 50 75 100
Test Batches (×103)

(c) + ASR (Ours)

Figure 11: Histogram of predictions on CCC-Hard for ten fixed, randomly selected class labels,
comparing ETA, RDumb, and ASR to evaluate robustness against model collapse. Results are mea-
sured every 103 batches, with class labels color-coded consistently.

4.8 ANALYSIS

Stability analysis over time. Beyond quantitative results, we examine whether our approach consis-
tently maintains strong performance over time, as stabilization is crucial for reliable use in real-world
applications. Fig. 9 illustrates accuracy (%) over time for ASR and RDumb on ETA2. For each step,
we compute the average accuracy over 103 batches across all CCC levels. Finally, ASR consistently
outperforms RDumb from the global view (top), and the stability of ASR is demonstrated by smaller
performance fluctuations from the local view (bottom).
Robustness to batch size. We assess the robustness of our method to batch size, as illustrated in
Fig. 10. We report the average accuracy across all CCC levels, varying the batch size from 128 down
to 16. As expected, performance generally decreases with smaller batch sizes. However, our method
demonstrates more graceful degradation than ROID and RDumb. Moreover, in the extreme case of
sequential single-sample inputs, this can be effectively addressed by stacking samples over time and
adapting only when a sufficient number is obtained, following Gong et al. (2023); Niu et al. (2024).
We further present results for truly small batch sizes (i.e., fewer than 16) in Appendix F.4.
Collapse analysis. We analyze how models are affected by collapse. Experiments are conducted on
CCC-Hard under the common assumption that class labels follow a uniform distribution. We select
ten fixed class labels and track how models generate predictions over time. ETA (Niu et al., 2022) is
used as our baseline since it is highly vulnerable to collapse, allowing a clear analysis. Fig. 11 shows
that ETA initially predicts a variety of classes, but its label diversity abruptly decreases afterward. It
sometimes fails to assign any of the ten fixed class labels. RDumb (Press et al., 2023) helps prevent
collapse, but its class distribution remains unstable and biased. In contrast, our method demonstrates
superior robustness against collapse by maintaining a uniform class distribution until the end.

5 CONCLUSION

In this paper, we mitigate model collapse in long-term TTA via Adaptive and Selective Reset (ASR),
combined with importance-aware knowledge recovery and on-the-fly adaptation adjustment. Exper-
imental results demonstrate the effectiveness of our proposed method across long-term TTA bench-
marks, particularly in challenging settings. Specifically, our method outperforms the state-of-the-art
by 44.12% on CCC-Hard. We hope that our work motivates further exploration into advanced reset
mechanisms for long-term TTA, aiming at robust and stable adaptation while preventing collapse.

2Two methods are identical at t = 0, but the initial point in Fig. 9 (top) denotes the average over t ∈ [0, 999].

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, and Tongliang
Liu. Understanding and improving early stopping for learning with noisy labels. In NeurIPS,
2021.

Dhanajit Brahma and Piyush Rai. A probabilistic framework for lifelong test-time adaptation. In
CVPR, 2023.

Sungha Choi, Seunghan Yang, Seokeon Choi, and Sungrack Yun. Improving test-time adaptation
via shift-agnostic weight regularization and nearest source prototypes. In ECCV, 2022.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. In NeurIPS Datasets and Benchmarks Track, 2021.

Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there
is more than forgetting: new metrics for continual learning. arXiv preprint arXiv:1810.13166,
2018.

Mario Döbler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual
test-time adaptation. In CVPR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui Zhang, Nian Shi, and Lin Luo. Decorate
the newcomers: Visual domain prompt for continual test time adaptation. In AAAI, 2023.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note:
Robust continual test-time adaptation against temporal correlation. In NeurIPS, 2022.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust
test-time adaptation on noisy data streams. In NeurIPS, 2023.

Sachin Goyal, Mingjie Sun, Aditi Raghunanthan, and Zico Kolter. Test-time adaptation via conju-
gate pseudo-labels. In NeurIPS, 2022.

Jisu Han, Jaemin Na, and Wonjun Hwang. Ranked entropy minimization for continual test-time
adaptation. In ICML, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In ICLR, 2019.

Trung-Hieu Hoang, Duc Minh Vo, and Minh N Do. Persistent test-time adaptation in recurring
testing scenarios. In NeurIPS, 2024.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
ICLR, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. PNAS, 2017.

Jogendra Nath Kundu, Naveen Venkat, Rahul M V, and R. Venkatesh Babu. Universal source-free
domain adaptation. In CVPR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jae-Hong Lee and Joon-Hyuk Chang. Continual momentum filtering on parameter space for online
test-time adaptation. In ICLR, 2024.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsupervised
domain adaptation without source data. In CVPR, 2020.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, 2020.

Jiaming Liu, Ran Xu, Senqiao Yang, Renrui Zhang, Qizhe Zhang, Zehui Chen, Yandong Guo, and
Shanghang Zhang. Continual-mae: Adaptive distribution masked autoencoders for continual test-
time adaptation. In CVPR, 2024a.

Jiaming Liu, Senqiao Yang, Peidong Jia, Renrui Zhang, Ming Lu, Yandong Guo, Wei Xue, and
Shanghang Zhang. Vida: Homeostatic visual domain adapter for continual test time adaptation.
In ICLR, 2024b.

Sarthak Kumar Maharana, Baoming Zhang, and Yunhui Guo. Palm: Pushing adaptive learning rate
mechanisms for continual test-time adaptation. In AAAI, 2025.

Robert A Marsden, Mario Döbler, and Bin Yang. Universal test-time adaptation through weight
ensembling, diversity weighting, and prior correction. In WACV, 2024.

M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
Dynamic unsupervised domain adaptation by normalization. In CVPR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In ICML, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In ICLR, 2023.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
adaptation with only forward passes. In ICML, 2024.

Junyoung Park, Jin Kim, Hyeongjun Kwon, Ilhoon Yoon, and Kwanghoon Sohn. Layer-wise auto-
weighting for non-stationary test-time adaptation. In WACV, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In ICCV, 2019.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 1992.

Ori Press, Steffen Schneider, Matthias Kümmerer, and Matthias Bethge. Rdumb: A simple approach
that questions our progress in continual test-time adaptation. In NeurIPS, 2023.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing. Cambridge university press,
2023.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
NeurIPS, 2020.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In ICML, 2018.

Lesia Semenova, Harry Chen, Ronald Parr, and Cynthia Rudin. A path to simpler models starts with
noise. In NeurIPS, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 2024.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2021.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In
CVPR, 2022.

Ziqiang Wang, Zhixiang Chi, Yanan Wu, Li Gu, Zhi Liu, Konstantinos Plataniotis, and Yang Wang.
Distribution alignment for fully test-time adaptation with dynamic online data streams. In ECCV,
2024.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural
network overconfidence with logit normalization. In ICML, 2022.

Xu Yang, Xuan Chen, Moqi Li, Kun Wei, and Cheng Deng. A versatile framework for continual
test-time domain adaptation: Balancing discriminability and generalizability. In CVPR, 2024.

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios. In
CVPR, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS, 2022.

Qingyang Zhang, Yatao Bian, Xinke Kong, Peilin Zhao, and Changqing Zhang. Come: Test-time
adaption by conservatively minimizing entropy. In ICLR, 2025a.

Yunbei Zhang, Akshay Mehra, Shuaicheng Niu, and Jihun Hamm. Dpcore: Dynamic prompt coreset
for continual test-time adaptation. In ICML, 2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDICES

A Discussions 15

B More Details on Datasets 16

C Additional Details of ASR 17
C.1 More Details on Prediction Concentration . 17
C.2 More Details on Knowledge Accumulation . 17
C.3 Implementation Details . 18
C.4 Computational Efficiency . 18
C.5 ASR under Abrupt Domain Changes . 19
C.6 Algorithm . 20

D Additional Results 21
D.1 Full Results on ResNet . 21
D.2 Full Results on ViT . 24
D.3 Results for CIFAR10-C/100-C . 25
D.4 Results on ViT-Tiny . 26
D.5 Results under CDC Settings . 26

E Additional Ablation Studies 27
E.1 Effect of Adaptive Reset . 27
E.2 Effect of Selective Reset . 27
E.3 Effect of Hybrid Knowledge Accumulation . 28
E.4 Optimality of Reparameterization . 28
E.5 Hyperparameter Sensitivity . 29
E.6 Effect of Knowledge Recovery . 30

F Additional Analysis 32
F.1 Limitations of Full-Parameter Reset . 32
F.2 Risk of Proximity to Reset . 32
F.3 Fair Comparison for Reset . 33
F.4 Robustness to Truly Small Batch Sizes . 33

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DISCUSSIONS

Q: Does your method rely on incremental and heuristic solutions for long-term TTA?
A: Our method is not a collection of small fixes. We reframe long-term TTA through a reset-based
view, in which preventing collapse is considered as a continuous decision-making task rather than
following a fixed schedule. Prior work typically adopts resets at fixed intervals (Press et al., 2023)
or only after collapse occurs (Niu et al., 2023). In contrast, our approach continuously estimates the
risk of collapse. Moreover, we integrate several components (Sec. 3.3–3.4) under a single principle:
balancing the forgetting and retaining of knowledge. This unified framing has not been explored in
prior TTA research. We describe how these components work together in Appendix E.6.
Q: Does your method fail to overcome the need for reset in long-term TTA?
A: Reset is an essential and widely recognized mechanism to prevent collapse in long-term TTA.
Neural networks typically converge to sharp minima, making it difficult to escape and find better
solutions through standard gradient updates (Keskar et al., 2017). Collapse is an even more chal-
lenging state than a sharp minimum, making recovery nearly impossible without reset (Hoang et al.,
2024). Despite its importance, reset has been largely unexplored: existing approaches simply adopt
resets at fixed intervals with full-parameter recovery. We tackle these fundamental limitations, ef-
fectively exploring the potential of reset and proposing a strategy that dynamically adjusts both its
timing and extent based on the model’s state.
Q: Are the marginal gains worth the engineering effort, or would simpler variants suffice?
A: Designed to tackle model collapse in long-term TTA, our method is highly effective in challeng-
ing and realistic scenarios. CCC-Hard best reflects such scenarios, where we achieve a substantial
44.12% improvement over the state of the art, demonstrating that our approach effectively handles
difficult tasks. In contrast, other benchmarks, such as IN-C or IN-D109, are easier, and the mod-
est improvements are what any method could achieve in such simple settings. This shows that the
smaller gains on easy tasks do not imply that simpler variants would be sufficient for the more chal-
lenging benchmarks. As more benchmarks prone to collapse are available, we expect the benefits of
our approach to become even clearer.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B MORE DETAILS ON DATASETS

In this paper, we evaluate the stable adaptability of continual TTA methods across the following four
benchmarks known for their susceptibility to collapse.
1) Continually Changing Corruptions (CCC) is introduced by RDumb (Press et al., 2023), which
is systematically processed using the ImageNet-C dataset. This converts ImageNet-C’s abrupt cor-
ruption transitions into smooth ones by interpolating integer corruption levels (1–5) to floating-point
values between 0 and 5 in steps of 0.25, where one fades gradually (e.g., 1→ 0) as another emerges
(e.g., 0→ 1), with the two overlapping. A smooth transition path consists of two key aspects: levels
at which two corruptions start, and how they gradually fade and emerge. They are determined by the
source model’s accuracy (0% / 20% / 40%), which reflects the adaptation difficulty (Easy / Medium /
Hard). Different corruption types are incorporated into each level’s path, as reported in Table B.1. A
transition speed, defined as the number of images per step along the path, has three variations (1000
/ 2000 / 5000), and a corruption ordering also has three variations, determined randomly using seeds
(43 / 44 / 45). CCC contains 7.5M images for each combination of path, speed, and ordering. Lastly,
CCC incorporates widely-recognized contributors to model collapse, including long-term corruption
transitions (Wang et al., 2022), consistent adaptation difficulty across corruptions (Press et al., 2023),
and repeated corruption occurrences (Hoang et al., 2024).

Level Corruption Types
Easy Gaussian noise, Shot noise, Impulse noise, Contrast

Medium Gaussian noise, Shot noise, Impulse noise, Defocus blur,
Glass blur, Motion blur, Zoom blur, Snow, Frost, Fog,
Contrast, Elastic, Pixelate

Hard Gaussian noise, Shot noise, Impulse noise, Defocus blur,
Glass blur, Motion blur, Zoom blur, Snow, Frost, Fog,
Contrast, Elastic, Pixelate, JPEG

Table B.1: Corruption types per smooth transition path for each level of adaptation difficulty.

2) Concatenated ImageNet-C (CIN-C) consists of image samples from the ImageNet-C validation
set with 15 corruption types—Gaussian noise, Shot noise, Impulse noise, Defocus blur, Glass blur,
Motion blur, Zoom blur, Snow, Frost, Fog, Contrast, Brightness, Elastic, Pixelate, JPEG—at the
highest severity (level 5). CIN-C contains 50K images for each corruption type, which is totally ten
times larger than the original set.
3) ImageNet-C (IN-C) is processed to evaluate stability against model collapse. It consists of only
four corruption types at the highest severity (level 5), including Gaussian noise, Shot noise, Impulse
noise, Contrast, for which the source model achieves less than 10% accuracy, ensuring consistent
adaptation difficulty across corruptions. Each type contains 5K images, and IN-C contains a total of
400K images by repeating the corruption sequence 20 times, satisfying another known contributor to
model collapse. Finally, IN-C uses the following ordering: Gaussian noise→ Shot noise→ Impulse
noise→ Contrast.
4) ImageNet-D109 (IN-D109) is also processed to evaluate stability against collapse. It consists of
only four domains—Clipart, Infograph, Painting, Sketch—out of six available, for which the source
model achieves less than 50% accuracy, ensuring consistent adaptation difficulty across domains. It
uses the ordering of the domain sequence as Clipart→ Infograph→ Painting→ Sketch, and repeats
the sequence 20 times to account for another key contributor to collapse. Finally, it has only classes
that are shared with the DomainNet dataset, resulting in 109 classes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ADDITIONAL DETAILS OF ASR

C.1 MORE DETAILS ON PREDICTION CONCENTRATION

To compute the correlation in Fig. 3, we use ETA as a TTA model and CCC-Hard as a benchmark,
because they exhibits explicit collapse and are therefore suitable for demonstrating the link between
collapse and prediction concentration Ct. Moreover, Fig. 3 does not include temporal information,
so points corresponding to single batches toward the right do not represent later adaptation steps.
One may question that “could the pattern in Fig. 3 be an artifact of logit averaging from Eq. (1)?”
To address it, we measure prediction concentration Ct after excluding the largest-scale logit in each
batch, and also measure it after excluding the top 10% of logits by scale. We compute their Pearson
correlations, as shown in Table C.1. Although slightly lower than the original value of 0.88 (refer to
Fig. 3), the variant values of 0.85 and 0.77 are also meaningful. As a result, the effect of extremely
large-scale logits is minimal, and the pattern in Fig. 3 cannot be attributed entirely to an artifact. In
addition, as a model approaches collapse, its predictions assign increasingly large logit values to a
few dominant classes, causing the overall logit scale to grow as well. Consequently, the pattern in
Fig. 3 reflects contributions from many logits, not just a few extreme ones.

Excluded logits Pearson correlation

None 0.88
Top-1 0.85
Top-10% 0.77

Table C.1: Effect of large-scale logits on the correlation in Fig. 3.

C.2 MORE DETAILS ON KNOWLEDGE ACCUMULATION

We achieve knowledge recovery by guiding parameters through regularization using their accumu-
lated values and importance, as described in Sec. 3.4. Moreover, particular caution is required during
the accumulation phase, as a trade-off exists: achieving better representations for the current domain
comes at the cost of increased vulnerability to corruption, as errors accumulate over time. To address
this, we propose a hybrid accumulation strategy that combines cumulative moving average (CMA)
with exponential moving average (EMA). First of all, at every iteration, we accumulate the squared

loss derivatives with respect to each parameter,
(
∇θi

t−1
L(Bt; θt−1)

)2

, defined as the diagonal of the

Fisher information matrix, as well as learnable parameters θit−1 via CMA, as follows:

F̃ i
t =

(t− 1− t∗latest) · F̃ i
t−1 +

(
∇θi

t−1
L(Bt; θt−1)

)2

t− t∗latest
, (C.1)

θ̃it =
(t− 1− t∗latest) · θ̃it−1 + θit−1

t− t∗latest
, (C.2)

where t∗latest is the latest step of reset prior to step t, and F̃ i
t and θ̃it represent the CMA-accumulated

Fisher matrix and parameter for the i-th parameter θi, both initialized to zero at t = 0. We then ac-
cumulate the CMA-accumulated Fisher matrices and parameters via EMA at each reset, as follows:

F̄ i ← µF · F̄ i + (1− µF) · F̃ i
t , (C.3)

θ̄i ← µθ · θ̄i + (1− µθ) · θ̃it, (C.4)
where µF and µθ are the momentum coefficients, both of which are pre-defined as 0.9, and F̄ i and
θ̄i are the EMA-accumulated Fisher matrix and parameter for the i-th parameter θi, both initialized
to zero. After the EMA update, F̃ i

t and θ̃it are reinitialized to zero.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.3 IMPLEMENTATION DETAILS

Detailed hyperparameters are listed in Table C.2.

Hyperparameter Description Reference ResNet-50 ViT-B-16

α0 Initialization factor for C̄t−1 Below Eq. (2) (Sec. 3.3) 0.5 5.0× 10−4

µC EMA update momentum for C̄t−1 Eq. (2) (Sec. 3.3) 0.995 0.995
r0 Minimum reset proportion Eq. (3) (Sec. 3.3) 0.5 0.5
λr Reset proportion scaling factor Eq. (3) (Sec. 3.3) 20.0 0.1
λF Fisher regularization coefficient Eq. (4) (Sec. 3.4) 5.0 5.0
λ0 Initialization factor for λF Eq. (6) (Sec. 3.5) 5.0 5.0
µ0 Initialization factor for µC Eq. (7) (Sec. 3.5) 0.15 1.0× 10−3

Table C.2: Hyperparameters used for ResNet-50 and ViT-B-16 across all benchmarks.

C.4 COMPUTATIONAL EFFICIENCY

Table C.3 compares baselines, ASR and its ablations in terms of # trainable/total parameters, com-
putation time (secs per batch) and average accuracy (%) across all CCC levels. Parameter restoration
methods (i.e., ROID, RDumb, and ASR) double the memory to retain the initial state, and the ad-
ditional cost for our extra parameters (mostly Fisher information) is negligible compared to a total
model size of 25.5M. Specifically, θ̄ and θ̃ have a size of |θ|, respectively. Each of F̄ and F̃ also has
a size of |θ|, as they store only the diagonal elements of the Fisher matrix, following the standard
practice in Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017). This indicates that each
of the four occupies just 0.025M parameters (i.e., 0.098% of the total). Regarding the computational
cost, Fisher information is computed once per batch (with size 64), adding only less than 0.001s per
batch. Therefore, the computation and memory overhead of our extra parameters is minimal, making
our method highly efficient in practice.

Method # Trainable # Param Time Acc.

ETA 53.1K 25.5M .083 21.72
ROID 53.1K 51.1M .125 33.91
+ RDumb 53.1K 51.1M .125 35.39
+ ASR (Ours) 53.1K 51.2M .200 38.32

+ w/o recovery (Sec. 3.4) 53.1K 51.1M .200 37.80
+ w/o on-the-fly (Sec. 3.5) 53.1K 51.2M .181 37.89

Table C.3: Computational analysis on CCC. # Trainable denotes the number of learnable parameters;
Param denotes the total number of parameters; Time denotes seconds per batch of 64 samples; and
Acc. denotes the average accuracy (%) across all CCC levels.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.5 ASR UNDER ABRUPT DOMAIN CHANGES

Gan et al. (2023) find that prediction confidence rapidly changes along with domain shifts. Similarly,
we observe that prediction concentration exhibits abrupt dynamics together with domain changes, as
illustrated in Fig. C.1. Since ASR relies on prediction concentration, we check whether such abrupt
behavior negatively impacts it. An abrupt decline in prediction concentration may be interpreted as
random predictions. In reality, it is not severe enough to cause such predictions. However, an abrupt
rise in prediction concentration often results in Ct > C̄t−1, thereby unintentionally triggering a reset.
Zhang et al. (2025b) point out that negative knowledge transfer may occur along with a domain shift
and should thus be addressed. In this regard, such unintended resets can serve as a safeguard against
this transfer. Finally, the abrupt dynamics of prediction concentration along with domain shifts pose
no risk of disrupting ASR.

Figure C.1: Prediction concentration (Eq. (1)) over time under fifteen corruptions in CIN-C. Dashed
vertical lines (Red) denote corruption (domain) boundaries. Colored ellipses indicate abrupt dynam-
ics along with domain shifts (Yellow : abrupt decline, Green : abrupt rise).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.6 ALGORITHM

The complete ASR workflow is presented in Algorithm 1.

Algorithm 1: Adaptive and Selective Reset (ASR)

Input: Test batches {Bt}Tt=1, adapting model fθ∗ , source model fθ0 , cumulative concentration
initialization factor α0, regularization coefficient initialization factor λ0, EMA update
momentum initialization factor µ0, minimum reset proportion r0, reset proportion
scaling factor λr, and EMA update momentums {µF , µθ}.

Initialize C̄0 ← − log(α0 · C), F̃0 ← 0 and θ̃0 ← 0;
for t ∈ {1, . . . , T} do

// 1) Model Adaptation
Generate logits zt = fθt−1(Bt);
Compute loss L(Bt; θt−1) in Eq. (4);
// CMA-based Knowledge Accumulation

Update F̃t and θ̃t via Eq. (C.1) and Eq. (C.2);
Update θt ← Optim

θt−1

L(Bt; θt−1);

// 2) On-the-fly Adaptation Adjustment

Compute prediction inconsistency ϕt =
1

|Bt|
∑|Bt|

i=1 I
(
π(y̆it) ̸= π(ŷit)

)
where π(y̆it) = argmaxc[σ(fθ0(x

i
t))]c and π(ŷit) = argmaxc[σ(z

i
t)]c;

Adjust regularization coefficient λF = λ0 · ϕ2
t

and momentum coefficient µC = 1− µ0 · (1− ϕt);
// 3) Adaptive and Selective Reset

Compute prediction concentration Ct =
∑C

c=1 p̂tc log(p̂tc) where p̂t = σ
(

1
|Bt|

∑|Bt|
i=1 z

i
t

)
;

if Ct − C̄t−1 ≤ 0 then
Update C̄t ← µC · C̄t−1 + (1− µC) · Ct;

end
else

Compute selective reset factor rt = r0 + λr · (Ct − C̄t−1) where rt ∈ [r0, 1];
Reset only the last rt proportion of total layers;
Initialize C̄t ← − log(α0 · C);
// EMA-based Knowledge Accumulation

Update F̄ ← EMA(F̄ , F̃t, µF) in Eq. (C.3);
Update θ̄ ← EMA(θ̄, θ̃t, µθ) in Eq. (C.4);
Initialize F̃t ← 0 and θ̃t ← 0;

end
end

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS

D.1 FULL RESULTS ON RESNET

In Tables D.1–D.7, we present the full evaluation results on ResNet-50, extending Table 1.

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 33.89 33.97 33.95 33.69 33.90 33.99 33.34 34.06 34.23 33.89±0.2
RMT (CVPR’23) 48.15 46.78 47.38 46.70 46.44 47.80 48.61 45.03 48.07 47.22±1.0
RoTTA (CVPR’23) 1.76 1.49 1.88 2.43 1.84 2.28 2.50 3.06 3.28 2.28±0.6
SANTA (TMLR’23) 47.33 47.47 47.49 47.87 47.68 47.77 48.32 47.11 48.10 47.68±0.4
LAW (WACV’24) 2.71 2.50 2.92 2.99 2.44 3.25 2.79 2.20 3.55 2.82±0.4
ViDA (ICLR’24) 13.52 12.28 12.74 13.68 12.32 11.89 13.81 12.29 11.61 12.68±0.8
DPLOT (CVPR’24) 36.68 35.71 35.84 36.18 34.02 35.79 33.55 32.94 34.61 35.04±1.2
PALM (AAAI’25) 1.55 1.34 1.66 1.67 1.29 1.70 1.84 1.23 1.73 1.56±0.2

EATA (ICML’22) 48.53 48.65 48.48 49.52 49.47 49.35 51.00 50.07 50.64 49.52±0.9
+ COME (ICLR’25) 46.99 47.04 47.00 37.50 47.72 47.63 49.11 48.26 48.80 46.67±3.3
CoTTA (CVPR’22) 17.01 15.98 16.24 18.05 17.02 17.13 19.33 18.10 18.60 17.50±1.0
SAR (ICLR’23) 36.65 36.24 36.47 39.21 37.55 38.75 39.92 37.84 38.83 37.94±1.2
+ COME (ICLR’25) 47.99 48.16 48.01 48.57 48.36 48.25 49.23 48.32 48.87 48.42±0.4
PETAL (CVPR’23) 2.57 2.52 2.64 2.62 2.54 2.71 2.66 2.43 2.64 2.59±0.1
CMF (ICLR’24) 48.29 48.33 48.20 49.38 49.25 49.12 50.87 49.95 50.40 49.31±0.9
DATTA (ECCV’24) 9.87 18.26 23.48 28.49 24.46 20.79 25.26 29.36 23.65 22.62±5.5
PeTTA (NeurIPS’24) 34.61 34.43 34.56 36.45 36.26 36.40 40.43 38.90 40.01 36.89±2.2

ETA (ICML’22) 42.13 42.23 42.12 43.46 43.13 42.87 45.25 43.86 44.07 43.24±1.0
+ RDumb (NeurIPS’23) 48.55 48.57 48.49 49.53 49.42 49.35 50.79 49.97 50.57 49.47±0.8
+ ASR (Ours) 50.33 50.31 50.13 51.27 51.12 50.92 52.73 51.78 52.21 51.20±0.8

ROID (WACV’24) 49.02 49.03 48.92 49.95 49.81 49.74 51.15 50.37 50.94 49.88±0.8
+ RDumb (NeurIPS’23) 48.82 48.85 48.74 49.76 49.63 49.56 50.91 50.15 50.75 49.69±0.8
+ ASR (Ours) 50.50 50.58 50.42 51.47 51.36 51.19 52.86 51.94 52.35 51.41±0.8

Table D.1: Performance comparison with state-of-the-art methods on CCC-Easy, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 16.95 16.78 16.95 16.59 16.87 16.97 16.57 16.91 17.20 16.87±0.2
RMT (CVPR’23) 35.48 35.38 35.60 36.07 35.65 34.08 35.41 31.42 36.09 35.02±1.4
RoTTA (CVPR’23) 1.23 1.00 1.36 1.84 1.31 1.70 2.76 2.08 2.54 1.76±0.6
SANTA (TMLR’23) 33.75 33.77 34.17 35.65 34.18 34.26 35.94 33.79 34.57 34.45±0.8
LAW (WACV’24) 1.56 1.09 1.50 1.66 0.64 1.57 1.38 0.76 1.57 1.30±0.4
ViDA (ICLR’24) 6.16 6.10 6.20 5.73 6.19 5.78 4.95 5.65 5.01 5.75±0.5
DPLOT (CVPR’24) 14.64 10.70 18.70 12.05 7.58 18.07 9.50 6.83 20.08 13.13±4.7
PALM (AAAI’25) 0.76 0.50 0.98 0.63 0.37 1.47 0.51 0.62 0.83 0.74±0.3

EATA (ICML’22) 37.36 36.91 37.40 39.98 38.66 38.80 41.52 40.47 41.58 39.19±1.7
+ COME (ICLR’25) 34.81 34.63 35.02 37.47 36.03 36.15 38.86 37.87 38.79 36.63±1.6
CoTTA (CVPR’22) 9.62 8.65 9.10 10.04 9.06 10.30 10.56 9.52 11.63 9.83±0.9
SAR (ICLR’23) 19.98 21.20 20.01 23.25 20.91 21.19 23.89 24.91 24.89 22.25±1.9
+ COME (ICLR’25) 35.75 35.99 35.48 37.95 36.75 36.58 38.28 37.68 39.11 37.06±1.2
PETAL (CVPR’23) 2.14 1.92 2.18 2.06 1.84 2.18 2.02 1.69 1.98 2.00±0.2
CMF (ICLR’24) 38.77 38.41 38.79 41.32 40.28 40.28 42.84 41.93 42.85 40.61±1.6
DATTA (ECCV’24) 9.42 10.96 9.19 12.78 13.28 12.85 19.46 14.37 17.49 13.31±3.2
PeTTA (NeurIPS’24) 19.34 19.30 19.65 23.41 21.92 22.13 27.34 25.19 25.47 22.64±2.8

ETA (ICML’22) 22.28 13.05 18.40 25.36 17.55 22.01 20.87 3.37 28.41 19.03±6.9
+ RDumb (NeurIPS’23) 37.72 37.45 37.83 40.21 39.05 39.15 41.55 40.46 41.34 39.42±1.5
+ ASR (Ours) 40.10 39.78 40.04 42.34 41.47 41.49 44.13 43.35 44.25 41.88±1.6

ROID (WACV’24) 38.79 38.64 38.91 41.24 40.16 40.19 42.44 41.44 42.41 40.47±1.4
+ RDumb (NeurIPS’23) 38.42 38.26 38.56 40.85 39.75 39.77 42.00 40.94 41.90 40.05±1.4
+ ASR (Ours) 41.13 40.91 41.20 43.40 42.49 42.42 44.77 43.98 44.91 42.80±1.5

Table D.2: Performance comparison with state-of-the-art methods on CCC-Medium, including nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 1.29 1.23 1.31 1.31 1.23 1.30 1.33 1.19 1.25 1.27±0.0
RMT (CVPR’23) 12.13 13.18 13.12 9.43 10.74 12.83 7.73 0.86 9.27 9.92±3.7
RoTTA (CVPR’23) 0.50 0.77 0.74 0.66 0.77 0.96 0.79 0.17 0.87 0.69±0.2
SANTA (TMLR’23) 9.28 9.93 9.16 9.08 9.89 9.14 8.96 9.77 9.97 9.46±0.4
LAW (WACV’24) 0.34 0.17 0.22 0.31 0.17 0.22 0.27 0.16 0.20 0.23±0.1
ViDA (ICLR’24) 0.44 0.39 0.45 0.45 0.40 0.44 0.48 0.38 0.38 0.42±0.0
DPLOT (CVPR’24) 0.53 0.88 0.77 0.64 0.24 0.31 1.22 0.12 0.36 0.56±0.3
PALM (AAAI’25) 0.14 0.12 0.10 0.14 0.11 0.17 0.13 0.12 0.16 0.13±0.0

EATA (ICML’22) 1.25 0.80 0.57 1.11 0.49 0.64 1.67 0.32 0.51 0.82±0.4
+ COME (ICLR’25) 0.74 0.96 0.79 1.07 0.29 0.85 1.51 0.21 0.79 0.80±0.4
CoTTA (CVPR’22) 1.73 1.98 1.95 1.43 1.71 2.09 1.44 0.20 1.19 1.52±0.5
SAR (ICLR’23) 1.54 1.64 1.52 1.61 2.29 1.67 2.90 2.50 2.56 2.03±0.5
+ COME (ICLR’25) 2.90 1.94 1.94 1.22 1.98 2.04 2.18 1.06 3.50 2.08±0.7
PETAL (CVPR’23) 0.68 0.64 0.74 0.81 0.56 0.80 0.96 0.14 0.55 0.65±0.2
CMF (ICLR’24) 1.06 0.62 0.46 1.08 0.40 0.73 2.41 0.29 0.95 0.89±0.6
DATTA (ECCV’24) 3.00 2.48 2.57 1.49 1.51 1.56 1.61 1.70 1.53 1.94±0.5
PeTTA (NeurIPS’24) 4.93 5.44 4.70 5.88 6.53 5.71 6.58 7.12 7.15 6.00±0.8

ETA (ICML’22) 0.67 0.28 0.26 0.41 0.18 0.29 0.34 0.19 0.24 0.32±0.1
+ RDumb (NeurIPS’23) 7.58 9.64 6.90 9.46 11.08 8.74 10.33 12.67 11.57 9.77±1.8
+ ASR (Ours) 15.01 18.18 13.36 15.95 18.57 15.83 18.07 18.32 20.59 17.10±2.1

ROID (WACV’24) 12.64 15.79 13.28 9.63 12.65 11.81 10.66 8.72 17.12 12.48±2.6
+ RDumb (NeurIPS’23) 14.13 15.92 13.74 14.03 16.05 14.06 15.48 17.34 17.98 15.41±1.5
+ ASR (Ours) 20.99 22.51 20.40 21.22 22.93 21.36 22.37 23.84 24.25 22.21±1.2

Table D.3: Performance comparison with state-of-the-art methods on CCC-Hard, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Method 1 2 3 4 5 6 7 8 9 10 Mean

Source 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01±0.0
RMT (CVPR’23) 47.68 45.48 44.09 43.87 46.48 45.70 44.68 44.86 43.61 43.64 45.01±1.3
+ Source-free 42.33 39.13 33.49 36.63 40.32 38.21 37.75 34.24 33.02 33.63 36.88±3.1
RoTTA (CVPR’23) 27.21 31.85 27.23 24.99 28.56 30.99 30.55 29.61 30.70 28.85 29.05±2.0
SANTA (TMLR’23) 40.00 39.85 39.83 39.77 39.84 39.53 39.83 39.85 39.63 39.98 39.81±0.1
LAW (WACV’24) 22.91 17.65 1.14 14.63 24.72 17.70 10.91 11.27 11.66 2.06 13.47±7.4
ViDA (ICLR’24) 17.87 17.81 17.62 17.76 17.78 17.83 17.77 17.80 17.79 17.60 17.76±0.1
DPLOT (CVPR’24) 37.52 33.86 30.34 31.38 33.64 29.72 32.60 30.58 29.99 30.38 32.00±2.3
PALM (AAAI’25) 21.14 15.12 3.47 16.37 23.57 14.06 8.57 11.02 8.86 4.75 12.69±6.3

EATA (ICML’22) 48.03 47.60 47.85 47.42 48.18 47.87 47.75 47.78 48.01 47.62 47.81±0.2
+ COME (ICLR’25) 44.34 43.66 44.13 43.59 44.48 44.24 44.04 44.16 44.62 44.13 44.14±0.3
CoTTA (CVPR’22) 39.59 36.76 31.44 35.60 38.70 36.71 36.41 34.66 33.18 32.03 35.51±2.6
SAR (ICLR’23) 41.62 41.13 40.77 40.04 41.61 40.71 41.48 40.63 40.44 35.11 40.35±1.8
+ COME (ICLR’25) 43.47 42.97 42.62 42.69 43.46 43.12 43.00 42.95 42.79 42.50 42.96±0.3
PETAL (CVPR’23) 40.87 38.09 33.08 38.92 40.03 38.73 37.50 36.94 34.65 34.03 37.28±2.5
CMF (ICLR’24) 48.74 48.41 48.67 48.35 48.83 48.61 48.57 48.58 48.80 48.56 48.61±0.1
DATTA (ECCV’24) 35.97 37.58 33.45 37.68 35.69 32.80 31.88 36.86 28.88 34.81 34.56±2.7
PeTTA (NeurIPS’24) 31.57 31.57 31.44 31.59 31.56 31.36 31.60 31.40 31.65 31.76 31.55±0.1

ETA (ICML’22) 43.68 43.69 42.97 42.91 44.19 44.12 43.84 43.79 43.88 43.03 43.61±0.4
+ RDumb (NeurIPS’23) 46.44 46.09 46.48 46.06 46.54 46.39 46.40 46.46 46.75 46.31 46.39±0.2
+ ASR (Ours) 47.50 46.89 47.10 46.89 47.51 47.43 47.26 47.22 47.15 46.79 47.17±0.2

ROID (WACV’24) 48.66 48.53 48.57 48.47 48.66 48.56 48.56 48.53 48.66 48.56 48.58±0.1
+ RDumb (NeurIPS’23) 48.01 47.92 48.07 47.90 48.02 47.96 48.04 48.02 48.10 48.00 48.00±0.1
+ ASR (Ours) 49.76 49.31 49.40 49.20 49.78 49.63 49.42 49.60 49.54 49.32 49.50±0.2

Table D.4: Accuracy (%) on CIN-C over ten random permutations of the corruption order.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Method 1 2 3 4 5 6 7 8 9 10 Mean

Source 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01 18.01±0.0
RMT (CVPR’23) 46.53 44.99 42.80 44.17 45.95 44.01 43.88 43.59 42.99 42.92 44.18±1.2
+ Source-free 42.07 38.68 32.79 36.20 40.16 37.47 37.30 34.04 32.34 33.08 36.41±3.2
RoTTA (CVPR’23) 29.33 32.30 27.21 27.16 29.09 32.17 30.24 30.19 30.41 28.96 29.71±1.7
SANTA (TMLR’23) 39.60 39.38 39.28 39.28 39.54 39.52 39.37 39.44 39.42 39.16 39.40±0.1
LAW (WACV’24) 21.82 15.81 1.47 15.34 24.20 16.41 9.00 13.86 13.06 2.74 13.37±6.9
ViDA (ICLR’24) 17.86 17.82 17.60 17.77 17.77 17.85 17.78 17.80 17.79 17.60 17.76±0.1
DPLOT (CVPR’24) 36.98 34.19 30.29 30.54 34.04 27.87 33.05 30.02 29.84 29.38 31.62±2.7
PALM (AAAI’25) 19.09 14.37 3.18 16.71 22.72 13.95 7.52 10.76 8.30 4.23 12.08±6.1

EATA (ICML’22) 47.70 47.29 47.63 47.12 47.89 47.63 47.51 47.52 47.71 47.41 47.54±0.2
+ COME (ICLR’25) 44.26 43.69 44.11 43.62 44.41 44.11 43.86 44.24 44.55 44.05 44.09±0.3
CoTTA (CVPR’22) 39.10 36.39 31.57 35.61 38.40 36.41 36.15 34.40 32.14 32.73 35.29±2.4
SAR (ICLR’23) 40.75 40.57 40.08 39.04 40.89 39.68 40.30 39.52 39.44 40.40 40.07±0.6
+ COME (ICLR’25) 42.98 42.66 42.36 42.17 43.00 42.72 42.57 42.58 42.48 42.10 42.56±0.3
PETAL (CVPR’23) 26.41 23.71 17.45 22.96 24.88 22.74 22.97 20.34 17.88 19.07 21.84±2.9
CMF (ICLR’24) 48.44 48.06 48.28 48.03 48.57 48.33 48.15 48.27 48.44 48.19 48.28±0.2
DATTA (ECCV’24) 7.94 3.30 2.42 1.81 3.75 2.46 1.66 4.07 2.72 2.37 3.25±1.7
PeTTA (NeurIPS’24) 31.49 31.62 31.60 31.55 31.57 31.69 31.66 31.47 31.69 31.74 31.61±0.1

ETA (ICML’22) 43.75 43.61 43.29 43.09 44.32 43.95 43.90 43.56 43.72 43.08 43.63±0.4
+ RDumb (NeurIPS’23) 46.21 45.92 46.34 45.68 46.20 46.12 46.19 46.18 46.42 46.00 46.13±0.2
+ ASR (Ours) 47.31 46.62 46.93 46.47 47.04 47.00 46.72 46.87 46.81 46.50 46.83±0.2

ROID (WACV’24) 48.46 48.32 48.25 48.11 48.28 48.27 48.17 48.24 48.24 48.16 48.25±0.1
+ RDumb (NeurIPS’23) 47.64 47.60 47.77 47.60 47.64 47.72 47.58 47.72 47.75 47.66 47.67±0.1
+ ASR (Ours) 49.37 48.98 49.07 48.84 49.45 49.27 49.04 49.27 49.16 48.99 49.14±0.2

Table D.5: Accuracy (%) on non-i.i.d. CIN-C over ten random permutations of the corruption order.

Recurring visit −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Source 3.08±0.0
RMT 27.63 33.91 37.28 39.08 39.99 40.78 41.18 41.36 41.72 41.76 41.76 41.92 42.01 42.02 41.96 42.05 42.10 42.08 42.08 42.09 40.24±3.5
+ Source-free 27.63 34.15 37.14 38.11 38.70 38.87 39.22 39.43 39.40 39.60 39.60 39.60 39.71 39.80 39.76 39.68 39.74 39.79 39.76 39.76 38.47±2.8
RoTTA 12.45 17.22 19.19 20.77 19.92 21.29 21.88 21.23 19.71 19.25 18.70 18.00 17.33 16.91 16.20 15.58 14.97 14.44 13.97 12.96 17.60±2.8
SANTA 27.28 27.75 27.30 27.20 27.10 26.94 27.04 26.81 26.91 26.59 26.49 26.42 26.53 26.39 26.25 26.38 26.18 26.17 26.25 25.94 26.70±0.5
LAW 23.83 30.62 31.98 32.03 31.60 31.11 30.75 30.34 30.06 29.76 29.65 29.52 29.44 29.36 29.37 29.35 29.41 29.37 29.31 29.24 29.81±1.6
ViDA 3.09 3.09 3.08 3.08 3.07 3.05 3.02 3.03 3.02 3.02 3.02 2.99 2.97 2.95 2.92 2.91 2.89 2.89 2.88 2.84 2.99±0.1
DPLOT 30.16 33.83 35.76 36.61 36.94 37.07 37.18 37.14 37.28 37.41 37.35 37.33 37.36 37.38 37.35 37.34 37.35 37.36 37.37 37.39 36.65±1.7
PALM 24.66 31.70 32.18 31.71 31.29 30.79 30.71 30.74 30.76 30.76 30.81 30.78 30.78 30.86 30.82 30.91 30.93 30.92 30.96 30.98 30.70±1.4

EATA 31.31 36.38 36.70 36.90 36.98 36.67 36.56 36.60 36.73 36.79 36.52 36.56 36.47 36.40 36.46 36.52 36.54 36.45 36.48 36.35 36.32±1.2
+ COME 30.20 34.59 34.90 34.52 34.17 33.88 33.82 33.44 33.25 32.99 32.97 32.82 32.57 32.44 32.40 32.48 32.52 32.35 32.10 32.06 33.02±1.1
CoTTA 18.78 24.90 29.02 31.39 33.47 34.66 35.47 35.96 36.28 36.55 36.70 36.94 37.05 37.17 37.24 37.25 37.20 37.25 37.24 37.22 34.39±4.8
SAR 24.38 31.54 33.42 34.06 34.40 34.52 34.70 34.85 35.00 35.08 35.11 35.02 35.02 35.03 34.94 34.98 34.93 34.99 34.97 34.93 34.09±2.4
+ COME 23.67 30.97 33.02 33.97 34.50 35.10 35.15 35.20 35.30 35.41 35.36 35.40 35.38 35.39 35.33 35.27 35.27 35.30 35.28 35.24 34.28±2.7
PETAL 18.74 25.64 29.12 30.91 31.76 32.36 32.80 33.28 33.55 33.75 33.89 34.04 34.10 34.18 34.21 34.24 34.22 34.24 34.24 34.24 32.18±3.7
CMF 35.07 38.66 39.22 39.52 39.58 39.62 39.90 39.95 39.92 39.76 39.70 39.73 39.28 39.61 39.54 39.65 39.52 39.84 39.52 39.40 39.35±1.0
DATTA 20.11 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.69±0.1
PeTTA 11.91 12.63 12.61 12.83 12.65 13.16 12.96 12.76 12.61 12.72 12.72 12.27 12.72 12.74 12.80 12.60 12.88 12.33 12.73 12.40 12.65±0.3

ETA 30.64 35.80 36.56 36.67 36.76 36.58 36.45 36.47 36.28 36.16 36.08 36.00 36.06 36.01 35.96 35.91 35.86 35.76 35.82 35.80 35.88±1.2
+ RDumb 30.71 35.95 36.80 30.73 35.66 36.30 31.97 35.98 36.97 32.71 34.87 36.66 34.06 33.88 36.60 35.83 33.07 36.51 36.92 30.94 34.66±2.2
+ ASR (Ours) 28.68 33.09 34.65 33.52 33.00 34.86 36.24 37.32 38.02 38.60 38.79 38.86 38.89 38.86 38.97 39.23 39.07 39.16 39.07 39.10 36.90±2.9

ROID 35.32 37.74 38.21 37.96 38.00 38.16 38.02 38.02 38.10 38.08 38.43 38.51 37.95 38.20 38.15 38.16 37.98 38.16 37.97 38.02 37.96±0.6
+ RDumb 35.60 38.28 38.34 35.08 38.02 38.34 35.21 37.61 37.76 35.12 37.72 38.48 36.00 37.49 38.25 37.16 37.32 38.34 37.70 35.75 37.18±1.2
+ ASR (Ours) 35.66 39.42 39.64 40.42 41.03 41.40 41.74 41.83 41.87 42.20 42.46 42.48 42.76 42.12 42.06 42.60 42.67 42.86 43.08 42.96 41.56±1.7

Table D.6: Accuracy (%) on IN-C across 20 recurring visits of the domain sequence.

Recurring visit −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Source 32.52±0.0
RMT 43.16 45.54 46.26 46.51 46.74 46.78 46.81 46.83 46.88 46.88 46.87 46.88 46.90 46.89 46.90 46.90 46.89 46.88 46.86 46.87 46.56±0.8
+ Source-free 42.24 43.73 43.82 43.92 43.94 43.98 43.81 43.86 43.87 43.88 43.77 43.81 43.80 43.76 43.75 43.71 43.68 43.68 43.68 43.65 43.72±0.4
RoTTA 39.89 43.06 44.03 44.36 44.34 43.94 43.66 43.26 42.71 42.07 41.41 40.63 40.04 39.38 38.66 37.85 37.04 36.20 35.23 34.34 40.61±3.1
SANTA 41.52 41.68 41.74 41.66 41.75 41.80 41.68 41.59 41.65 41.54 41.44 41.47 41.39 41.58 41.50 41.41 41.42 41.34 41.40 41.29 41.54±0.1
LAW 40.19 35.70 32.19 30.78 30.25 30.01 29.85 29.78 29.75 29.72 29.68 29.67 29.65 29.67 29.67 29.67 29.66 29.66 29.66 29.67 30.74±2.6
ViDA 0.01±0.0
DPLOT 42.09 42.46 42.35 42.26 42.24 42.12 42.17 42.16 42.14 42.12 42.12 42.12 42.12 42.10 42.10 42.11 42.11 42.10 42.09 42.10 42.16±0.1
PALM 13.86 1.74 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 2.06±2.7

EATA 41.62 42.42 42.21 41.77 41.99 41.96 41.96 41.58 41.57 41.34 41.30 41.46 41.50 41.54 41.10 41.23 41.37 41.57 41.43 41.32 41.61±0.3
+ COME 42.94 45.13 45.46 45.36 45.73 45.46 45.30 45.24 45.52 45.30 45.11 45.48 45.29 45.16 45.04 45.25 44.89 44.87 44.78 44.91 45.11±0.6
CoTTA 41.76 45.70 46.79 46.90 46.72 46.30 45.85 45.42 44.99 44.62 44.30 43.91 43.43 42.87 42.49 41.92 41.54 41.22 40.82 40.55 43.91±2.1
SAR 40.86 42.94 43.26 43.15 42.93 42.50 42.06 41.53 40.87 40.17 39.47 38.76 38.01 37.23 36.49 35.70 34.97 34.22 33.59 33.11 39.09±3.4
+ COME 40.59 43.57 44.50 44.98 45.19 45.22 45.12 44.91 44.65 44.16 43.58 43.02 42.31 41.53 40.78 39.89 38.91 37.74 36.48 34.96 42.10±3.1
PETAL 0.03 0.03 0.02 0.03 0.03 0.09 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.28±0.2
CMF 44.69 45.21 45.42 45.25 45.38 45.59 44.92 45.14 45.31 45.55 45.72 45.52 45.18 45.26 44.94 45.00 45.02 45.13 45.27 45.46 45.25±0.3
DATTA 33.75 3.50 1.33 0.88 0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 2.65±7.2
PeTTA 39.56 42.05 42.84 43.02 43.12 43.27 43.26 43.23 43.12 43.08 42.94 42.95 42.91 42.93 42.98 42.96 42.81 42.75 42.70 42.69 42.76±0.8

ETA 41.24 40.92 40.30 39.86 39.07 38.49 38.26 37.64 37.28 36.96 36.51 36.14 36.28 35.94 35.67 35.47 35.09 34.74 34.37 34.21 37.22±2.1
+ RDumb 40.93 41.36 42.11 41.66 41.18 41.46 41.28 41.84 41.31 40.78 41.90 42.09 41.70 40.85 41.60 41.44 41.59 41.52 40.75 41.59 41.45±0.4
+ ASR (Ours) 40.61 41.46 41.49 41.74 41.79 42.04 41.82 41.70 41.84 41.88 41.74 41.76 41.60 41.38 41.27 41.36 41.16 41.28 41.36 41.32 41.53±0.3

ROID 46.02 46.22 46.03 46.33 46.22 46.29 46.14 45.94 46.32 46.04 46.12 46.26 46.03 46.13 46.16 46.20 46.23 46.22 46.19 46.17 46.16±0.1
+ RDumb 46.07 46.34 46.32 46.25 46.24 46.23 46.16 46.04 46.07 46.14 45.86 45.86 45.86 45.94 45.79 45.75 45.80 45.81 45.68 45.62 45.99±0.2
+ ASR (Ours) 46.13 46.50 46.53 46.63 46.52 46.52 46.49 46.61 46.70 46.55 46.56 46.63 46.53 46.54 46.48 46.39 46.48 46.33 46.40 46.32 46.49±0.1

Table D.7: Accuracy (%) on IN-D109 across 20 recurring visits of the domain sequence.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 FULL RESULTS ON VIT

In Tables D.8–D.10, we present the full evaluation results on ViT-B-16, extending Table 2.

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 54.74 55.18 54.47 54.97 55.03 54.77 55.09 54.88 55.12 54.92±0.2
CMF (ICLR’24) 60.68 60.96 60.59 61.51 61.74 61.51 62.66 62.52 61.52 61.52±0.7
CMAE (CVPR’24) 48.11 49.94 48.19 50.68 50.44 52.57 51.04 54.89 54.50 51.15±2.3
REM (ICML’25) 65.82 66.12 65.79 66.14 66.23 66.05 66.93 66.02 66.36 66.16±0.3

ETA (ICML’22) 47.95 47.68 47.47 48.71 15.74 48.44 49.92 49.78 49.93 45.07±10.4
+ RDumb (NeurIPS’23) 59.25 59.56 59.13 59.74 60.07 59.74 60.76 60.75 60.91 59.99±0.6
+ ASR (Ours) 59.62 59.99 59.59 60.34 60.69 60.46 61.57 61.33 61.62 60.58±0.7

ROID (WACV’24) 60.01 60.32 59.88 60.67 60.99 60.68 61.66 61.64 61.82 60.85±0.7
+ RDumb (NeurIPS’23) 59.78 60.09 59.65 60.44 60.75 60.43 61.35 61.39 61.56 60.60±0.7
+ ASR (Ours) 60.61 60.86 60.51 61.28 61.54 61.30 62.46 62.21 62.52 61.48±0.7

Table D.8: Performance comparison with state-of-the-art methods on CCC-Easy, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 41.76 41.47 40.49 42.32 41.10 41.49 42.15 42.39 42.51 41.74±0.6
CMF (ICLR’24) 52.17 51.63 51.87 34.21 53.49 53.59 55.41 55.33 55.82 51.50±6.3
CMAE (CVPR’24) 41.76 36.63 41.88 43.16 40.52 44.40 45.02 46.41 51.52 43.48±3.9
REM (ICML’25) 57.34 57.23 56.92 58.36 57.28 57.68 58.94 58.41 59.71 57.99±0.9

ETA (ICML’22) 34.62 23.74 28.04 34.04 34.54 36.05 35.36 38.07 38.97 33.71±4.6
+ RDumb (NeurIPS’23) 49.02 48.88 48.57 50.77 50.16 50.28 51.97 52.25 52.58 50.50±1.4
+ ASR (Ours) 49.86 49.69 49.57 51.96 51.39 51.46 53.31 53.55 53.92 51.63±1.6

ROID (WACV’24) 50.72 50.67 50.39 52.61 51.91 52.00 53.62 53.72 54.08 52.19±1.3
+ RDumb (NeurIPS’23) 50.23 50.20 49.81 52.11 51.45 51.39 53.09 53.26 53.62 51.68±1.3
+ ASR (Ours) 52.14 52.08 51.98 53.91 53.07 53.26 55.03 54.95 55.57 53.55±1.3

Table D.9: Performance comparison with state-of-the-art methods on CCC-Medium, including nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

Transition speed 1000 2000 5000 Acc. (%)

Corruption ordering 43 44 45 43 44 45 43 44 45 Mean

Source 14.40 15.44 15.40 14.16 15.38 14.10 13.90 15.31 15.40 14.83±0.6
CMF (ICLR’24) 1.22 0.30 2.74 2.17 0.14 0.85 3.23 0.13 5.34 1.79±1.7
CMAE (CVPR’24) 26.47 26.78 22.70 25.95 28.33 24.96 26.60 30.27 30.20 26.92±2.3
REM (ICML’25) 3.80 8.53 7.03 5.58 5.94 9.39 10.67 38.45 9.31 10.97±9.9

ETA (ICML’22) 1.34 0.33 1.66 0.99 1.34 1.02 1.97 1.58 0.79 1.22±0.5
+ RDumb (NeurIPS’23) 22.41 24.43 22.01 23.52 25.54 23.39 22.16 23.52 22.42 23.27±1.1
+ ASR (Ours) 24.67 25.88 24.14 23.93 25.21 24.26 22.76 23.96 25.20 24.45±0.9

ROID (WACV’24) 11.74 23.23 1.00 25.75 9.08 25.10 12.49 6.75 13.55 14.30±8.2
+ RDumb (NeurIPS’23) 24.17 25.40 23.76 25.05 26.62 24.84 26.25 27.37 28.01 25.72±1.4
+ ASR (Ours) 27.69 28.76 27.31 27.62 28.82 27.52 27.58 28.67 28.85 28.09±0.6

Table D.10: Performance comparison with state-of-the-art methods on CCC-Hard, containing nine
variations with three corruption transition speeds (1000 / 2000 / 5000) and three corruption orderings
determined by random seeds (43 / 44 / 45).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.3 RESULTS FOR CIFAR10-C/100-C

We are interested in more challenging yet realistic environments, as proposed by Press et al. (2023).
Standard CIFAR without repeating corruptions is relatively simple and less realistic. Thus, we group
corruption types into three levels (Easy / Medium / Hard) for consistent adaptation difficulty across
corruptions, and repeat them cyclically, following Press et al. (2023); Hoang et al. (2024). We report
corruption types for each level in Table D.11 for CIFAR10-C and Table D.12 for CIFAR100-C. We
also provide experimental results for CIFAR10-C/100-C, as shown in Fig. D.1–D.2.

Level Corruption Types
Easy Motion blur, Snow, Fog, Elastic, JPEG

Medium Defocus blur, Glass blur, Zoom blur,
Frost, Contrast, Pixelate

Hard Gaussian noise, Shot noise, Impulse noise

Table D.11: Corruption types for each level of CIFAR10-C.

Level Corruption Types
Easy Impulse noise, Defocus blur, Motion blur,

Zoom blur, Snow, Brightness, Elastic

Medium Glass blur, Frost, Fog, Contrast, JPEG

Hard Gaussian noise, Shot noise, Pixelate

Table D.12: Corruption types for each level of CIFAR100-C.

50

60

70

80

90

Ac
c.

 (%
)

47.85

85.5384.26 85.3886.11 86.98
C10-C-Easy

50

60

70

80

90

44.95

84.2383.09 84.1383.97 84.80
C10-C-Medium

40

60

80

35.60

79.3077.78 78.7880.63 82.69C10-C-Hard

ETA
ROID

ETA + RDumb
ROID + RDumb

ETA + ASR (Ours)
ROID + ASR (Ours)

Figure D.1: Comparison of ETA / ROID and its variants with RDumb and ASR across three levels
of CIFAR10-C using accuracy (%), averaged over 1000 recurring visits of the corruption sequence.

50

60

70

Ac
c.

 (%
)

51.72

72.93
70.45

72.8571.15 72.96
C100-C-Easy

50

60

70

50.27

69.36
66.96

69.20
67.33

69.63
C100-C-Medium

50

60

70

43.10

68.66
65.70

68.53
66.43

68.70
C100-C-Hard

ETA
ROID

ETA + RDumb
ROID + RDumb

ETA + ASR (Ours)
ROID + ASR (Ours)

Figure D.2: Comparison of ETA / ROID and its variants with RDumb and ASR across three levels
of CIFAR100-C using accuracy (%), averaged over 1000 recurring visits of the corruption sequence.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.4 RESULTS ON VIT-TINY

We evaluate our method on one of the lightweight backbones (i.e., ViT-Tiny). Table D.13 shows that
our method consistently improves over baselines on CCC-Medium and -Easy. Because the backbone
capacity is extremely limited, adapting to CCC-Hard is particularly challenging, which is reflected
in the table where all ROID variants achieve only 0.1% accuracy. Even with such low accuracies,
our method achieves performance gains similar to those in Table 2, demonstrating its effectiveness
despite severe capacity constraints.

ViT-Tiny CCC-Hard CCC-Medium CCC-Easy

ETA 2.29 34.20 47.09
+ RDumb 4.45 32.51 45.51
+ ASR (Ours) 5.30 36.48 47.23

ROID 0.10 32.14 45.29
+ RDumb 0.10 31.61 44.92
+ ASR (Ours) 0.10 34.47 45.64

Table D.13: Accuracy (%) on ViT-Tiny across CCC benchmarks.

D.5 RESULTS UNDER CDC SETTINGS

We present full experimental results under CDC settings, extending Fig. 8.

Recurring visit −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
δ = 1.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

ETA 30.62 35.77 36.19 36.21 36.14 35.99 35.84 35.76 35.73 35.63 35.42 35.43 35.31 35.33 35.30 35.22 35.25 35.20 35.17 35.08 35.33
+ RDumb 30.62 35.73 36.20 30.88 35.24 36.24 30.83 34.62 36.11 32.01 35.14 36.39 33.46 34.56 36.67 34.33 32.97 36.23 36.16 31.11 34.28
+ ASR (Ours) 28.48 30.25 33.48 33.03 32.42 35.28 35.33 35.27 35.72 36.19 36.85 37.43 38.49 38.34 38.65 38.41 38.94 38.92 38.96 38.98 35.97

ROID 34.11 36.82 37.04 36.99 36.86 36.78 37.20 37.05 36.59 36.89 36.68 36.74 36.86 36.95 36.66 36.83 36.62 36.68 36.67 36.84 36.69
+ RDumb 34.28 36.93 36.91 34.00 36.74 36.85 34.27 37.04 37.14 34.02 36.41 36.76 34.37 36.37 36.80 34.67 35.94 36.63 36.43 34.23 35.84
+ ASR (Ours) 35.08 38.58 38.72 39.20 39.30 39.71 39.94 40.45 40.32 40.65 40.41 40.40 41.15 40.75 41.07 41.33 41.05 40.80 41.10 41.34 40.07

Table D.14: Results on IN-C with CDC for δ = 1.0 across revisit steps.

Recurring visit −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
δ = 10.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

ETA 29.79 34.80 35.72 35.68 35.72 35.56 35.33 35.47 35.31 35.23 35.23 35.09 35.02 35.01 34.88 34.78 34.83 34.75 34.70 34.62 34.88
+ RDumb 29.53 35.62 36.09 31.11 35.54 36.10 30.86 35.04 36.16 32.19 34.86 36.30 32.64 34.03 36.51 34.39 33.35 36.66 36.86 29.56 34.17
+ ASR (Ours) 29.40 35.06 35.55 36.01 36.63 36.71 36.92 37.25 37.31 37.30 37.41 37.53 37.79 37.79 37.92 37.96 38.08 38.14 38.19 38.11 36.85

ROID 33.60 36.70 36.51 37.06 36.74 36.99 37.11 36.82 36.79 37.04 36.71 37.23 36.86 37.06 36.99 36.77 36.59 36.82 36.87 36.99 36.71
+ RDumb 33.76 36.66 36.67 34.30 37.01 37.26 33.51 36.69 36.76 34.44 36.16 37.19 34.38 36.55 36.52 35.05 35.77 36.98 36.34 33.80 35.79
+ ASR (Ours) 33.62 36.95 37.89 38.37 39.54 39.49 40.42 40.22 40.63 40.83 40.77 41.23 41.24 41.48 41.60 41.66 41.99 41.82 41.51 41.68 40.15

Table D.15: Results on IN-C with CDC for δ = 10.0 across revisit steps.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E ADDITIONAL ABLATION STUDIES

E.1 EFFECT OF ADAPTIVE RESET

We validate the effectiveness of our adaptive reset by comparing to variants using fixed reset inter-
vals. Table E.1 demonstrates that our adaptive reset can effectively identify when the model is likely
to collapse and thereby find optimal reset timing, resulting in strong performance.

Reset interval Easy Medium Hard Mean

Fixed
T = 1000 15.96 5.91 1.10 7.66
T = 10000 49.88 39.69 15.75 35.11
T = 20000 49.83 40.58 17.16 35.86
T = 50000 49.90 40.16 14.26 34.77

Dynamic
ASR (Ours) 51.19 42.42 21.36 38.32

Table E.1: Comparison with our variants using fixed reset intervals T on CCC using Accuracy (%).

E.2 EFFECT OF SELECTIVE RESET

Table E.2 demonstrates the effectiveness of our selective reset in comparison with fixed-proportion
variants. We find that resetting the latter half of the layers (i.e., 50%) achieves the best results among
the variants. Similarly, our selective reset also starts with 50% when adjusting the reset proportion
(i.e., r0 = 0.5). As a result, this suggests that our selective reset is effective and that at least a 50%
reset should be ensured to effectively remove accumulated errors.

Reset target Easy Medium Hard Mean

Fixed
20% 49.27 40.01 16.83 35.37
50% 50.91 42.07 20.80 37.93
80% 50.72 41.40 19.68 37.27
100% 49.83 40.35 15.99 35.39

Dynamic
ASR (Ours) 51.19 42.42 21.36 38.32

Table E.2: Comparison with our variants that reset a fixed % of layers closer to the output.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.3 EFFECT OF HYBRID KNOWLEDGE ACCUMULATION

In our hybrid knowledge accumulation strategy of EMA on top of CMA, CMA highlights (locally)
past information to reduce the effect of recent parameters near collapse, and EMA weights (globally)
recent information to reflect distribution shifts. Table E.3 compares our hybrid scheme to the CMA-
only baseline, evaluated across all CCC levels with accuracy (%) reported.

Method Easy Medium Hard Mean

CMA-only 50.03 41.13 18.42 36.53
Hybrid (Ours) 51.19 42.42 21.36 38.32

Table E.3: Effect of our hybrid accumulation scheme.

E.4 OPTIMALITY OF REPARAMETERIZATION

We check whether our reparameterization (Eq. (6)–(7)) is optimal. For modeling reparameterization,
we use only 5% of a holdout set (transition speed 2000; random seed 44) from CCC-Hard, and select
an expression that best balances simplicity and performance efficacy. As reported in Tables E.4-E.5,
we compare our expression to other expressions across all CCC levels. We often observe comparable
results between two expressions. Either expression with high performance on CCC-Hard should be
preferable to mitigate the risk of poor adaptation in real-world applications.

λF Range Easy Medium Hard Mean

λ0 {λ0} 51.07 42.33 20.27 37.89
ϕt [0, 1] 51.09 42.26 20.56 37.97
λ0 · (1− ϕt)

2 [λ0, 0] 51.15 42.34 20.42 37.97
λ0 · ϕt [0, λ0] 51.16 42.40 21.27 38.28
λ0 · ϕ2

t [0, λ0] 51.19 42.42 21.36 38.32

Table E.4: Comparison with different expressions for λF across all CCC levels using accuracy (%).

µC Range Easy Medium Hard Mean

1− µ0 {1− µ0} 50.82 41.86 20.70 37.79
ϕt [0, 1] 51.48 42.42 0.31 31.40
1− µ0 · ϕt [1, 1− µ0] 51.17 42.47 4.07 32.57
1− µ0 · (1− ϕ2

t) [1− µ0, 1] 51.14 42.40 21.11 38.22
1− µ0 · (1− ϕt) [1− µ0, 1] 51.19 42.42 21.36 38.32

Table E.5: Comparison with different expressions for µC across all CCC levels using accuracy (%).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.5 HYPERPARAMETER SENSITIVITY

Since validation sets are not available in TTA, tuning hyperparameters optimally is challenging. In-
stead, we tune hyperparameters using only 5% of a holdout set (transition speed 2000; random seed
44) from CCC-Hard. In addition, we demonstrate that our method is less sensitive to hyperparameter
changes. We evaluate performance across all levels of CCC, slightly modifying the tuned values; the
standard values are provided in Table C.2. Fig. E.1 demonstrates the effectiveness of our method in
terms of robustness to hyperparameter variations. It also should be noted that the slight performance
differences, observed in the figure below, are negligible. Finally, the use of the same hyperparameter
settings across all benchmarks further highlights the advantage of our method.

0.3 0.4 0.5 0.6
50

51

52

CC
C-

Ea
sy

Ac
cu

ra
cy

 (%
)

0 (Eq. (2))

10 20 30 40

r (Eq. (3))

2 5 10 20

0 (Eq. (6))

0.05 0.10 0.15 0.20

0 (Eq. (7))

0.3 0.4 0.5 0.6

41

42

43

CC
C-

M
ed

iu
m

Ac
cu

ra
cy

 (%
)

10 20 30 40 2 5 10 20 0.05 0.10 0.15 0.20

0.3 0.4 0.5 0.6
20

22

24

CC
C-

Ha
rd

Ac
cu

ra
cy

 (%
)

10 20 30 40 2 5 10 20 0.05 0.10 0.15 0.20
Figure E.1: Hyperparameter sensitivity analysis.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.6 EFFECT OF KNOWLEDGE RECOVERY

Theoretically, our proposed regularizer can be seen to recover essential knowledge lost due to resets.
This theoretical grounding stems from two key mechanisms. First, we accumulate updated parame-
ters using a combination of CMA and EMA, preserving adaptation information in a manner similar
to Polyak averaging (Polyak & Juditsky, 1992), which provides a reliable reference for previously
acquired knowledge. Second, the Fisher-based regularization follows the principle of Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017), assigning stronger penalties to parameters that are
important for prior domains. Together, these mechanisms encourage important parameters to remain
close to their pre-reset values, effectively restoring knowledge that would otherwise be lost.
We integrate several components to complement each other. In particular, the knowledge recovery
module is introduced in Sec. 3.4 to effectively restore information erased by resets. We evaluate its
effectiveness under the same setup as Table D.6 by measuring how much knowledge from previous
domains is recovered. Knowledge recovery is measured as the gap between the current performance
and the best performance achieved so far for each domain, which is then averaged across domains.
Positive values indicate recovery, while negative values indicate forgetting. As shown in Table E.6,
our method consistently recovers substantial knowledge without forgetting. For instance, at revisit
#10, ETA+ASR achieves 0.58 compared to -1.94 without recovery, and ROID+ASR achieves 0.16
compared to -0.52 without recovery. This confirms that the recovery module effectively compensates
for knowledge erasure from reset. Note that knowledge refers to information encoded in the model
weights accumulated during adaptation, which correspond to θ̄ in Eq. (4). Essential knowledge is
identified via Fisher information, which highlights weights that are more informative about previous
domains. Direct quantification for knowledge is challenging; therefore, we use task performance as
a proxy to assess it.

Recovery (Revisit#) 1 ... 10 15 20 Mean

ETA + ASR (Ours) 0.0 ... +0.58 +0.08 +0.02 +0.24
+ w/o knowledge recovery 0.0 ... -1.94 -1.16 -0.76 -0.56

ROID + ASR (Ours) 0.0 ... +0.16 +0.24 +0.01 +0.12
+ w/o knowledge recovery 0.0 ... -0.52 -0.42 -0.10 -0.14

Table E.6: Knowledge recovery measured across multiple revisits on IN-C.

Additionally, we evaluate the effectiveness of knowledge recovery through accuracy. We also use a
domain-recurring setting on IN-C, where the same domain reappears multiple times, to test whether
a model preserves previously learned information even though it has been reset. We compare our
method with a variant without the knowledge recovery module (Sec. 3.4). As shown in Table E.7, the
variant without the recovery module gradually declines in accuracy across later revisits, while our
method consistently maintains its performance, demonstrating that the recovery module effectively
mitigates the forgetting of prior domains’ knowledge.

Accuracy (Revisit#) 1 ... 10 15 20 Mean

ETA 30.64 ... 36.16 35.96 35.80 35.88
+ ASR (Ours) 28.68 ... 38.60 38.97 39.10 36.90
+ w/o knowledge recovery 28.64 ... 37.45 36.49 36.34 36.56

ROID 35.32 ... 38.08 38.15 38.02 37.96
+ ASR (Ours) 35.66 ... 42.20 42.06 42.96 41.56
+ w/o knowledge recovery 35.35 ... 41.64 41.64 41.19 40.96

Table E.7: Performance comparison across multiple revisits on IN-C.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The benefit of knowledge recovery appears negligible because evaluation in Table E.7 is conducted
under an easy-to-adapt setting. However, its benefit is not negligible in challenging adaptation sce-
narios. Indeed, Table E.7 confirms that the knowledge recovery module is functioning as intended,
but IN-C is not an appropriate benchmark for measuring its performance contribution. As described
in Sec. 3.5, under challenging adaptation scenarios, we increase the regularization coefficient to en-
courage the model to reuse prior-domain information, thereby enhancing the effect of the knowledge
recovery module. However, IN-C is relatively easy to adapt to. Table 1 also shows that baseline ac-
curacies are very similar in IN-C, so the benefit of knowledge recovery does not manifest strongly
in this setting.
We consider CCC-Hard to illustrate the recovery module’s contribution. In several splits (e.g., 4, 7,
and 8), removing the knowledge recovery module leads to substantial accuracy drops, while the full
model consistently maintains higher accuracy. These observations indicate that the module functions
flexibly, providing effective support under challenging domain shifts.

Acc. (Split#) 1 2 3 4 5 6 7 8 9

ROID 12.64 15.79 13.28 9.63 12.65 11.81 10.66 8.72 17.12
+ ASR (Ours) 20.99 22.51 20.40 21.22 22.93 21.36 22.37 23.84 24.25
+ w/o recovery 20.95 22.50 20.35 18.28 22.69 20.18 9.70 15.67 23.57

Table E.8: Performance comparison across nine splits in CCC-Hard.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F ADDITIONAL ANALYSIS

F.1 LIMITATIONS OF FULL-PARAMETER RESET

a) Performance drops. We measure post-reset performance drops for RDumb on CCC-Hard under
the same setup as Fig. 1 to demonstrate the limitation of full-parameter reset. We compute the change
in average accuracy by comparing 10 batches before and after each reset, and then average these
values over all reset points. RDumb exhibits an average 1.26%p drop per reset, which corresponds
to roughly 12% of its overall average accuracy (9.77%). This confirms that RDumb’s degradation at
each reset is non-trivial.
b) Recovery delays. To measure recovery delays after a reset, we count how many batches RDumb
requires to reach the highest accuracy observed in the reset-preceding 20 batches. When full recov-
ery does not occur before the next reset, we count all batches until that reset. On average, RDumb
requires 330 batches to recover, while it resets every 1000 batches. Therefore, RDumb takes substan-
tially long to regain its pre-reset performance, which highlights the inefficiency of its full-parameter
reset mechanism.

F.2 RISK OF PROXIMITY TO RESET

As we noted, proximity to reset potentially compromises parameter integrity and ultimately harms
adaptation. We empirically demonstrate this risk by slightly delaying resets, which allows corrupted
parameters to accumulate in θ̄ from Eq. (4). Under recurring scenarios (IN-C), we observe harmful
effects when corrupted domain information is re-utilized. Normally, resets have been triggered when
Ct > C̄t−1. For the delayed variant, we postpone the resets until Ct−C̄t−1 > ϵ, retaining parameters
beyond the standard reset points. As shown in Table F.1, delaying resets leads to substantial perfor-
mance drops, even below ETA, confirming that parameters are particularly vulnerable to corruption
after the standard reset points, and that such corruption significantly impairs adaptation.

IN-C (Revisit#) ϵ 1 5 10 15 20 Mean

ETA - 30.64 36.76 36.16 35.96 35.80 35.88
+ ASR (Ours) 0.0 28.68 33.00 38.60 38.97 39.10 36.90
+ w/ delay 0.001 28.42 33.39 37.80 38.82 39.02 36.25
+ w/ delay 0.01 27.94 28.06 27.94 28.30 28.12 28.29

ROID - 35.32 38.00 38.08 38.15 38.02 37.96
+ ASR (Ours) 0.0 35.66 41.03 42.20 42.06 42.96 41.56
+ w/ delay 0.001 35.08 40.01 41.42 41.96 41.54 40.85
+ w/ delay 0.01 35.60 37.78 38.28 38.61 38.62 38.07

Table F.1: Performance on IN-C with and without delayed resets. ϵ indicates the delay threshold.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.3 FAIR COMPARISON FOR RESET

We compare our reset mechanism with existing reset mechanisms, proposed by SAR (Niu et al.,
2023), RDumb (Press et al., 2023), and DA-TTA (Wang et al., 2024), with ROID across all CCC
levels, as demonstrated in Table F.2. They reset all model parameters periodically (RDumb), and
only when extremely high confidence (SAR) or a significant distribution discrepancy from the source
(DA-TTA) is detected. For our approach (ASR), we isolate other components except for our reset
mechanism for a fair comparison; otherwise results are reported as 51.19%, 42.42%, and 21.36%
for CCC-Easy, -Medium, and -Hard. Existing approaches, except for SAR, improve performance
on CCC-Hard but degrade it on the other levels. However, our approach consistently outperforms
the others, surpassing the second-best by +2.8%p on average.

Method Easy Medium Hard Mean

ROID 49.74 40.19 11.81 33.91
+ SAR 49.73 40.06 5.29 31.69
+ RDumb 49.56 39.77 14.06 34.46
+ DA-TTA 45.98 35.76 15.53 32.42
+ ASR (Ours) 50.70 41.72 19.36 37.26

Table F.2: Performance comparison across reset mechanisms on CCC levels.

F.4 ROBUSTNESS TO TRULY SMALL BATCH SIZES

We evaluate our method on truly small batch sizes, specifically 2 and 4, on a single split (transition
speed 1000; random seed 43) of CCC-Easy with ROID as our base model, following the setting of
Fig. 10. As shown in Table F.3, our method consistently outperforms baselines. At batch size 4,
ASR achieves 25.58, compared to 17.85 for RDumb, demonstrating that its robustness extends to
smaller batch sizes than 16. However, at batch size 2, the gap between ASR and RDumb narrows,
as our reset mechanism requires a minimum number of samples to function effectively. Please note
that, online TTA and continual TTA are different settings, and our focus is on a variation of the latter
one: long-term continual TTA. Online TTA is an extreme scenario with the batch size of 1, and
most TTA methods fail to work under such an extreme condition. All methods including ASR yield
near-random performance (∼0.1). One practical approach for ASR in this setting is to temporarily
store online samples and evaluate the reset criterion once enough samples are collected.

Batch size 2 4

ROID 0.13 16.91
+ RDumb 5.87 17.85
+ ASR (Ours) 6.46 25.58

Table F.3: Performance comparison for truly small batch sizes

33

	Introduction
	Related Work
	Method
	Problem Definition
	Motivation
	Adaptive and Selective Reset
	Importance-Aware Knowledge Recovery
	On-the-Fly Adaptation Adjustment

	Experiments
	Setup
	Main Results
	Ablation Studies
	Empirical Studies on Model Collapse
	Risk of False-Positive Reset
	Dynamically Changing Corruptions: A Variant of CCC
	CDC Setting for Dynamic Domain-Shift Schedule
	Analysis

	Conclusion
	Discussions
	More Details on Datasets
	Additional Details of ASR
	More Details on Prediction Concentration
	More Details on Knowledge Accumulation
	Implementation Details
	Computational Efficiency
	ASR under Abrupt Domain Changes
	Algorithm

	Additional Results
	Full Results on ResNet
	Full Results on ViT
	Results for CIFAR10-C/100-C
	Results on ViT-Tiny
	Results under CDC Settings

	Additional Ablation Studies
	Effect of Adaptive Reset
	Effect of Selective Reset
	Effect of Hybrid Knowledge Accumulation
	Optimality of Reparameterization
	Hyperparameter Sensitivity
	Effect of Knowledge Recovery

	Additional Analysis
	Limitations of Full-Parameter Reset
	Risk of Proximity to Reset
	Fair Comparison for Reset
	Robustness to Truly Small Batch Sizes

