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Abstract

Disease progression models, in which a patient’s latent severity is modeled as1

progressing over time and producing observed symptoms, have developed great po-2

tential to help with disease detection, prediction, and drug development. However,3

a significant limitation of existing models is that they do not typically account for4

healthcare disparities that can bias the observed data. We draw attention to three5

key disparities: certain patient populations may (1) start receiving care only when6

their disease is more severe, (2) experience faster disease progression even while7

receiving care, or (3) receive care less frequently conditional on disease severity.8

To address this, we develop an interpretable Bayesian disease progression model9

that captures these three disparities. We show theoretically and empirically that10

our model correctly estimates disparities and severity from observed data, and that11

failing to account for these disparities produces biased estimates of severity.12

1 Introduction13

Using observed data to model the progression of a latent variable over time is useful for making14

predictions in many settings. Models of infrastucture deterioration use physical observations and15

inspection results to model a system’s overall health changing over time [1]; models of human16

aging use a person’s observed physical and biological characteristics to learn the progression of their17

underlying “biological age” [2]; and disease progression models, the setting we focus on in this paper,18

use observed symptoms to learn a patient’s evolving latent disease severity [3]. Disease progression19

models provide insight on both individual-level disease trajectories and general representations20

of disease dynamics. Accurately modeling disease progression offers great promise in enabling21

healthcare providers to better personalize care and predict a patient’s disease trajectory, detect diseases22

at earlier stages, and study interventions such as drug development [4, 5].23

In order for the benefits of these models to apply to all patients equitably, it is crucial that they24

make accurate predictions for all populations of patients. However, disease progression models have25

typically failed to account for systemic disparities in the healthcare process. Disparities have been26

shown to exist along many demographic features including socioeconomic status [6, 7], proximity to27

care [8, 9], and race [10] — intuitively, we expect that models not accounting for these disparities will28

make predictions that are consistently inaccurate for some patient groups. In this paper, we define29

three main axes along which we observe and analyze disparities:30

1. Certain patient groups may start receiving care only when their disease is more severe31

(leaving more of their disease trajectory unobserved).32

2. Certain patient groups may experience faster disease progression even while receiving care33

(indicating consistent differences in the efficacy or quality of treatment).34
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3. Certain patient groups may receive care less frequently conditional on disease severity35

(decreasing the frequency with which they are observed in the data).36

As such, our key contributions are: (1) we propose an interpretable Bayesian model that learns disease37

progression while accounting for disparities along all three of these axes, (2) we show theoretically38

and empirically that failing to account for any of these disparities will lead to biased severity estimates,39

and (3) we outline the beginning of a heart failure case study. We anticipate that the results from this40

case study, which we are working on in close collaboration with the New York-Presbyterian hospital41

system, will have two main applications: descriptions of healthcare disparities across demographic42

groups can help to target future interventions, and validating the model in a real healthcare setting43

will demonstrate that it is possible to make predictions without bias from these disparities.44

2 Related Work45

Disease progression modeling. Disease progression models have been developed for many chronic46

diseases, including Parkinson’s disease [3], Alzheimer’s disease [11], diabetes [12], and cancer [13].47

A key feature of the progression models we consider is that a latent severity Zt progresses over time48

and gives rise to the observed symptoms Xt. Models in this family include variants of hidden markov49

models (HMM) [14, 15, 16, 17, 18] and recurrent neural networks (RNN) [19, 20, 21, 22, 23, 24, 25].50

Healthcare disparities. Disparities have been documented in many parts of the healthcare process.51

Factors such as distance from hospitals [8, 9], distrust of the healthcare system [26], or lack of52

insurance [27] can result in underutilization of health services. Biases in the judgements of healthcare53

providers can lead to minority groups receiving later screening [28], fewer referrals [29], or generally54

worse care [30]. And issues such as limited health literacy or trust in healthcare can create disparities55

in follow-through for appointments or effectiveness of at-home care [31, 32].56

These disparities have been shown to emerge along the three axes that we identify: (1) how severe a57

patient’s disease gets before they start to receive care [33, 34, 35]; (2) how quickly their latent severity58

Zt progresses even while receiving care [36, 37]; and (3) how likely they are to visit a clinician59

at a given disease severity level [38]. Despite thorough literature showing the existence of these60

disparities and their impact on healthcare, disease progression models have not (to the best of our61

knowledge) accounted for disparities when making predictions.62

3 Model63

We build on a standard setup for disease progression modeling, in which each patient i has an64

underlying latent disease severity Zt
(i) that progresses over time and gives rise to a set of observed65

features Xt
(i) [39, 40]. For notational convenience, we will omit the (i) superscript from here on.66

We characterize a patient’s severity Zt ∈ R at timestep t by their initial severity Z0 at their first67

observation (which we denote as t = 0) and their rate of progression R after that point:68

Zt = Z0 +R · t
While we expect our approach to extend naturally to non-linear models of progression, estimating69

the slope of a potentially non-linear progression still provides valuable insight on a patient’s general70

disease trajectory relative to others. The assumption of linear progression over time to capture71

long-term disease trajectory is a common approach in existing models [11, 2].72

Whether a patient actually visits a healthcare provider at time t is captured by an observed binary73

indicator Dt ∈ {0, 1}. If a patient does visit at time t, we will observe some recorded set of disease-74

relevant features Xt ∈ Rd (e.g., lab results, imaging, and symptoms). At any given timestep, a75

clinician will not necessarily observe or record all features — we model the features that are observed76

as a noisy function of latent severity Zt:77

Xt = f(Zt) + ϵt

where diagonal covariance matrix σϵ ∈ Rd×d parameterizes feature-specific noise ϵt ∼ N(0, σϵ)78

(accounting for both measurement error and variation in how the patient’s physical state can fluctuate79

day-to-day). We specifically instantiate f as a linear function f(Zt) = F · Zt + Fint, where80
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Figure 1: Plate diagram of generative model, capturing N patients over T timesteps. Shaded nodes
indicate observed features, and red arrows indicate dependencies capturing health disparities.

Fint ∈ Rd is a feature-specific intercept and F ∈ Rd has its first element constrained to be positive81

for identifiability; we leave extending this to non-linear functions for future work.82

Capturing disparities. We next specify a demographic feature vector A for each patient. A can83

capture multiple social determinants of health (each element of A can encode any continuous or84

categorical feature), but for simplicity in exposition, we assume A encodes a single categorical label85

(e.g., a patient’s race group). By modeling dependence between A and other aspects of the model,86

depicted in Figure 1, we can capture health disparities along three interpretable axes; as we discuss in87

§2, the existence of these disparities has been well-documented in past studies:88

1. Underserved patients may start receiving care only when their disease is more severe.89

We capture this by learning group-specific distributions of Z0, a patient’s disease severity at90

first visit. We pin Z0 for one group (A = a0) to be drawn from a unit normal distribution (as91

is standard because it fixes the scale of Zt). For other groups A = a, Z0 ∼ N
(
µ
(a)
Z0

, σ
(a)
Z0

)
,92

where µ
(a)
Z0

and σ
(a)
Z0

are learned group-specific parameters for group a.93

2. Underserved patients may experience faster disease progression even while receiving94

care. This we capture by learning group-specific distributions of progression rate R ∼95

N
(
µ
(a)
R , σ

(a)
R

)
, where µ

(a)
R and σ

(a)
R are learned group-specific parameters for group a.96

3. Underserved patients may receive care frequently conditional on disease severity. This97

we capture by modeling patient visits as generated by an inhomogeneous Poisson process98

parameterized by a non-negative, time-varying rate parameter λt that depends on both Zt99

and A for all groups a: log(λt) = β0 + (βZ · Zt) + β
(a)
A , where βZ and β0 are learned100

parameters for the entire population and β
(a)
A is a learned group-specific parameter for group101

a. We pin β
(a0)
A at 0 as a reference for all other groups.102

Overall, our model parameters (on which we place weakly informative priors) are F , Fint, σϵ, {µ(a)
Z0

},103

{σ(a)
Z0

}, {µ(a)
R }, {σ(a)

R }, β0, βZ , and {β(a)
A } for all demographic groups a. We learn these values104

from our observed data Xt, Dt, and A. Figure 1 summarizes the data generating process.105

4 Theoretical analysis106

4.1 Identifiability107

As we show in §A.1, our model is identifiable, meaning different sets of parameters yield different108

observed data distributions [41, 42]:109

Theorem 4.1. All parameters of the model are identified by P (Xt, Dt | A).110

We confirm our theoretical identifiability results experimentally in §5, showing that the model does111

indeed recover the true parameters in synthetic data.112
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4.2 Bias in models that do not account for disparities113

Next we show that disease progression models will produce biased estimates of severity if they fail114

to account for any of the three disparity types we capture. We use the strict Monotone Likelihood115

Ratio Property (MLRP) to characterize the existence of disparities between two populations [43].116

Our results apply to any setting in which data is generated according to the relationships depicted in117

Figure 1 and disparities exist, not relying on the parametric assumptions of our implemented model.118

First, we prove that any model failing to account for disparity 1 will produce biased severity estimates:119

Theorem 4.2. A model that does not take into account demographic disparities in initial disease120

severity Z0 will underestimate the disease severity of groups with higher values of initial severity and121

overestimate that of groups with lower values of initial severity.122

That is (for the underestimation case), if P (Z0 = z0 | A = a) strictly MLRPs P (Z0 = z0) for some123

group a, then E[Zt | Xt = xt] < E[Zt | Xt = xt, A = a]. A full proof is provided in §B.1. We then124

prove that failing to account for disparity 2 or disparity 3 will also lead to biased estimates of severity125

(full proofs in §B.2 and §B.3, respectively):126

Theorem 4.3. A model that does not take into account demographic disparities in rate of progression127

R will underestimate the disease severity of groups with higher progression rates and overestimate128

that of groups with lower progression rates.129

Theorem 4.4. A model that does not take into account demographic disparities in visit frequency λt130

will underestimate the disease severity of groups with lower visit frequency and overestimate that of131

groups with higher visit frequency.132

5 Synthetic experiments133

We implement our model in Stan, a Bayesian inference package [44], to validate our theoretical134

results in simulations with synthetic data.135

5.1 Identifiability136

We first verify Theorem 4.1 in simulations, showing our model can accurately recover the true137

data-generating parameters for synthetic data. Across 50 runs, we find high correlation between138

the true parameters and the posterior mean estimates (mean Pearson’s r 0.98 across all parameters;139

median 0.98), and good calibration (mean linear regression slope 0.97; median 0.98). We provide140

scatterplots of all parameter recovery in Appendix C.141

5.2 Bias in models that do not account for disparities142

We now verify in simulation that failing to account for disparities can lead to biased severity estimates.143

We generate simulated data for two groups, A = 0 and A = 1, where group 1 is underserved with144

respect to each of the three disparities we capture (i.e., µ(1)
Z0

> µ
(0)
Z0

, µ(1)
R > µ

(0)
R , and β

(0)
A > β

(1)
A ).145

We then fit our main model, which accounts for all disparities, alongside three models that each fail146

to account for one of the disparities, on the same set of data to compare their recovery of individual147

patient severity values. As seen in Figure 2, the models that do not account for disparities all148

underestimate severity for the underserved group 1 and overestimates severity for the other group —149

these simulations empirically support Theorems 4.2, 4.3, and 4.4. While our main model achieves150

average error (mean inferred estimate minus mean true value for a single run) −0.004 and −0.02151

for groups 0 and 1 respectively, the other models have error 1.03, 0.01, and 0.42 for group 0 (all152

overestimated) and error −0.78, −0.24, and −0.88 for group 1 (all underestimated).153
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Figure 2: Failing to account for disparities produces biased estimates of severity Zt. We compare
severity estimates from four models: our full model (upper left), which accounts for all disparities,
and three models that each fail to account for one axis of disparity. Each model is fit on the same
simulated data, in which members of group 1 (red) tend to be underserved. While our main model
produces accurate and well-calibrated severity estimates (estimates lie near dotted line indicating
equality), the other models overestimate severity for group 0 and underestimate it for group 1.
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A Identifiability Proofs284

A.1 Proof of Theorem 4.1285

Proof. We want to show that each set of parameter assignments leads to a different distribution over286

the observed data. To do this, we divide our argument into four lemmas:287

Lemma A.1. Parameters F, Fint, σϵ are identified by P (Xt | A = a0).288

Proof. would probably cut the restatement of model definitions here and throughout289

the proofs.First we restate relevant details of the generative model for group a0:290

Z0 ∼ N(0, 1)
291

Zt = Z0 +R · t
292

Xt = F · Zt + Fint + ϵt, where ϵt ∼ N(0, σϵ) (1)

We first note that at t = 0 we have Zt = Z0 and thus Zt ∼ N(0, 1). Then equation293

(1) captures a factor analysis modelwe should cite the source of the expression with294

factor loading matrix F and diagonal covariance matrix σϵ. So at t = 0, we have295

for group a0 that296

X0 ∼ N(Fint, FFT + σϵ).

my guess is that it should be σ2 not σ. In general, let’s use a different variable297

besides sigma to refer to the covariance matrix - capital sigma I think could be298

fine. I think the following sentence should come first and be less conversational.299

We want to show that each set of assignments to F, Fint, σϵ leads to a different300

distribution of X0 for group a0, i.e. we can uniquely determine the values of these301

three parameters by observing P (X0 | A = a0). To do this, we show that the302

mapping from the parameter values to observed distribution P (X0 | A = a0) is an303

injective function — we assume there are two sets of parameters {F, Fint, σϵ} and304

{F ′, Fint
′, σϵ

′} that lead to the same observed distribution of X0 and show that305

the parameter values must be equal.306

Assuming the two sets of parameters map to distributions of X0 with the same307

mean, it must hold that Fint = Fint
′. Thus, parameter Fint is identified by data308

distribution P (X0 | A = a0).309

Further, the covariance matrix of X0 induced by each set of parameters must be310

the same: F (F )T +σϵ = F ′(F ′)T +σϵ
′. Element-wise equality of the covariance311

matrix gives us the following, where subscripts i refer to the i-th element of each312

parameter vector:313

FiFj = F ′
iF

′
j ∀i, j, i ̸= j (2)

314

(Fi)
2 + σϵi = (F ′

i )
2 + σϵ

′
i (3)

Combining equality constraint (2) for multiple pairs of indices, we have that for all315

assignments of distinct indices i, j, k:316

(FiFj = F ′
iF

′
j) ∧ (FiFk = F ′

iF
′
k) =⇒

F ′
j

Fj
=

F ′
k

Fk
317

(FjFk = F ′
jF

′
k) ∧

(
F ′
j

Fj
=

F ′
k

Fk

)
=⇒ (Fj = αF ′

j) ∧ (Fk = αF ′
k),
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where α ∈ {−1,+1}not exactly sure how second line follows, is there some way318

to better-epxlain the argument?. Since we have fixed F0 > 0 for all factor loading319

matrices F , we have:320

F0 = αF ′
0 =⇒ α = 1 =⇒ Fi = F ′

i ∀i ∈ [0, d), (4)

meaning we have identified F .321

Lastly, using equations (3) and (4) we get Fi = F ′
i =⇒ σϵi = σϵ

′
i. We have322

now shown that if two parameter sets induce the same distribution of X at time323

t = 0, they must have the same exact value assignments. Therefore F, Fint, σϵ are324

identified by P (Xt | A = a0).325

Lemma A.2. Parameters µ(a)
Z0

, σ
(a)
Z0

, µ
(a)
R , σ

(a)
R are identified by P (Xt | A = a) for all groups aI326

might write this using the full set of parameters, including F etc (those covered in lemma 1). And I’m327

not sure I would say for all groups a; I might just say p(Xt|A).328

Proof. Since we have shown that F, Fint, σϵ are identified by themselves based on329

the observed data, we take their values as given in this argumentlet’s say this more330

formally. Ideally I think we should just keep saying throughout “we show that if331

two parameter sets X and X’ yield the same observed data distribution p(blar), they332

must be identical. By Lemma 1, we know that if subsetX and subsetX’ yield same333

distirbution subsetBlar, they must be identical. [Rest of proof].. For each group a,334

we model the following:335

Z0 ∼ N
(
µ
(a)
Z0

, σ
(a)
Z0

)
336

R ∼ N
(
µ
(a)
R , σ

(a)
R

)
337

Zt = Z0 +R · t =⇒ Zt ∼ N
(
µ
(a)
R · t+ µ

(a)
Z0

, σ
(a)
R · t2 + σ

(a)
Z0

)
338

Xt = F · Zt + Fint + ϵt, where ϵt ∼ N(0, σϵ) (5)

lowercase sigma standardly refers to standard deviation, not covariance, so I think339

some of the entries above should be σ2 probably also we should find a notation for340

the intercept term besides Fint, which is a bit clunky.one other notational thing -341

might be easier to use tilde for the alternate parameters not prime - e.g. µ̃(a) takes342

up less space because the tilde just goes over the letter For convenience we will343

omit the (a) superscript for the rest of the proof. We see that equation (5) captures a344

factor analysis model with factor loading matrix F and diagonal covariance matrix345

σϵ. So we have that346

Xt ∼ N(Fint + F (µR · t+ µZ0
), F (σR · t2 + σZ0

)FT + σϵ).

We want to show that every set of assignments to µZ0
, σZ0

, µR, σR leads to a347

different distribution of Xt at any time t, i.e. we can uniquely determine the348

values of these four parameters by observing P (Xt | A = a). To do this, we349

show that the mapping from the parameter values to observed distribution P (Xt |350

A = a) is an injective function — we assume there are two sets of parameters351

{µZ0 , σZ0 , µR, σR} and {µZ0
′, σZ0

′, µR
′, σR

′} that lead to the same observed352

distribution of Xt at all t.353

We first consider t = 0, where X0 ∼ N(Fint + FµZ0
, F (σZ0

)FT + σϵ). For the354

two parameter sets to map to distributions of X0 with the same mean, it must hold355

that356

Fint + FµZ0 = Fint + FµZ0

′ =⇒ µZ0 = µZ0

′,

and for the two parameter sets to map to distributions with the same covariance357

matrix, it must hold that358

F (σZ0
)FT + σϵ = F (σZ0

′)FT + σϵ =⇒ σZ0
= σZ0

′.
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So we have identified µZ0 and σZ0 . We next consider any time t ̸= 0, where359

Xt ∼ N(Fint + F (µR · t + µZ0), F (σR · t2 + σZ0)F
T + σϵ). For the two360

parameter sets to map to distributions of Xt with the same mean, it must hold that361

Fint + F (µR · t+ µZ0
) = Fint + F (µR

′ · t+ µZ0

′) =⇒ µR = µR
′,

this looks right, but I might say explicitly it follows because we’ve already shown362

that µZ0 must equal µ′
Z0, and similarly below.363

and for the two parameter sets to map to distributions with the same covariance364

matrix, it must hold that365

F (σR · t2 + σZ0
)FT + σϵ = F (σR

′ · t2 + σZ0

′)FT + σϵ =⇒ σR = σR
′.

So we have identified µR and σR. Thus we have shown that for any group a,366

group-specific values of µZ0
, σZ0

, µR, σR are identified by P (Xt | A = a).367

368

Lemma A.3. Parameters β0, βZ are identified by P (Dt | Zt, A = a0)this can’t be quite the right369

theorem statement because we dont’ observe Zt; I think we want to say p(D|A, t).370

Proof. Since we have shown that all group-specific distribution parameters371

µ
(a)
R , σ

(a)
R are identified by the observed data, we take their values as given in372

this argument. This means that we know the distributions of Z0 (pinned) and R for373

group a0rewrite more formally as suggested above. In addition, we observe each374

event when a patient in group a0 visits the hospital (Dt = 1), which means that the375

value λt can be recovered for all timepoints t. As described in §3, we model λt376

as a function of severity Zt and demographic group. More specifically, we have377

log(λt) = β0 + βZ · Zt + β
(a)
A . We define βA

(a0) as 0 for reference, so for group378

a0 we have log(λt) = β0 + βZ · Zt = β0 + βZ(Z0 +R · t).379

We want to show that our observations of patient visits identify the parameters380

β0 and βZ . First, we find it is more straightforward to reason abouttoo informal381

log(λt), which has a one-to-one correspondence with λt since λt is positive and382

log(·) is a bijection over R+. Further, instead of the value log(λt) itself, which383

is dependent on each individual patient’s value of Z0 and R, we reason about384

the expectation of log(λt) over the known group-level distributions of Z0 and R.385

Each set of observations EZ0,R[log(λt)] ∀t uniquely defines the visit distribution386

of the group a0 over time, so by showing that different parameters β0, βZ lead to387

different values of EZ0,R[log(λt)] we complete the proof that unique parameters388

β0, βZ lead to a unique distribution of visit times over group a0I think this is389

true, but we need to make the argument more succinct + precise. I think you’re390

basically trying to say that if two distributions have unique E[log(lambda)], they391

must have unique p(D|t). So if we can show that different parameter sets yield392

unique E[log(lambda)] they must have unique p(D|t). And then we just show393

that different parameter sets yield unique E[log(lambda)]. But we need to make394

the first part of the claim more precise and actually show it’s true. I think one way395

to do this is to argue that distributions with unique E[log(λ)] have unique E[λ],396

and then use the definition of p(D) in terms of lambda to argue taht if you have397

unique E[λ] you have unique p(D).?.398

We want to show that every set of assignments β0, βZ leads to a unique observation399

of EZ0,R[log(λt)] = EZ0,R[β0 + βZ(Z0 + R · t)] across time t. To do this, we400

show that the mapping from parameter values to the expected value of log(λt) over401

group a0 is an injective function — we assume there are two sets of parameters402

{β0, βZ} and {β0
′, βZ

′} that generate the same observed values EZ0,R[log(λt)] at403

all timesteps t. We want to show it must be the case that β0 = β0
′ and βZ = βZ

′.404

We first consider some timestep t′ such that we observe data at t = t′ and t = t′+1.405

At timestep t′, we observe:406

EZ0,R[β0 + βZ · Z0 + βZ ·R · t′] = EZ0,R[β0
′ + βZ

′ · Z0 + βZ
′ ·R · t′]. (6)
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At timestep t′ + 1, we observe:407

EZ0,R[β0+βZ ·Z0+βZ ·R·(t′+1)] = EZ0,R[β0
′+βZ

′ ·Z0+βZ
′ ·R·(t′+1)]. (7)

Using linearity of expectation to combine results from (6) and (7), we have that408

EZ0,R[βZ ·R] = EZ0,R[βZ
′·R] =⇒ βZ ·EZ0,R[R] = βZ

′·EZ0,R[R] =⇒ βZ = βZ
′.

hm, this doesn’t follow if E[R] is 0?409

So we have identified βZ . We also note that at t = 0:410

EZ0,R[β0 + βZ · Z0] = EZ0,R[β0
′ + βZ

′ · Z0]

=⇒ β0 + βZ · EZ0,R[Z0] = β0
′ + βZ

′ · EZ0,R[Z0]

=⇒ β0 = β0
′

Thus we have shown that β0, βZ are identified by P (Dt | Zt, A = a0).411

412

Lemma A.4. Parameters β(a)
A is identified by P (Dt | Zt, A = a) for all other groups a.413

Proof. I’m willing to believe that similar reasoning works here if it works on414

the last part, but let’s clean up the last part first.Since we have shown that all415

group-specific distribution parameters µ(a)
Z0

, σ
(a)
Z0

, µ
(a)
R , σ

(a)
R are identified by the416

observed data, as well as group-agnostic parameters of the poisson process β0, βZ ,417

we take their values as given in this argument. We use an approach very similar418

to that for Lemma A.3. We let Da denote the distributions of Z0 and R for group419

a (parameterized by µ
(a)
Z0

, σ
(a)
Z0

, µ
(a)
R , σ

(a)
R ). Then, since each set of observations420

EZ0,R∼Da [log(λt)] ∀t uniquely characterizes the distribution of visits for group421

a over time, we can prove identifiability by showing that different values of β(a)
A422

will induce different values of EZ0,R∼Da [log(λt)]. Note that we omit the (a)423

superscript for the rest of the proof, since we only reason about one group at a time.424

We want to show that every value of βA leads to a unique observation of425

EZ0,R∼Da
[log(λt)] across time t. To do this, we show that the mapping from426

βA to the expected value of log(λt) over group a is an injective function — we427

assume there are two values βA and βA
′ that generate the same observed values428

EZ0,R∼Da [log(λt)] at all timesteps t. We want to show it must be the case that429

βA = βA
′.430

As described in §3, log(λt) = β0 + βZ · Zt + βA = β0 + βZ(Z0 + R · t) + βA.431

Considering an arbitrary time t, we have by assumption that432

EZ0,R∼Da
[β0 + βZ(Z0 +R · t) + βA] = EZ0,R∼Da

[β0 + βZ(Z0 +R · t) + βA
′]

=⇒ β0 + βZ · EZ0,R∼Da
[Z0 +R · t] + βA = β0 + βZ · EZ0,R∼Da

[Z0 +R · t] + βA
′

=⇒ βA = βA
′

Thus we have shown that βA is identified by P (Dt | Zt, A = a) for all other433

groups a.434

435

By showing that each parameter of the model is uniquely recovered from the observed data, we have436

proved that our model is identifiable.437

438

B Proofs of Bias439

In this section, we assume that all PDFs and conditional PDFs have positive support over their entire440

domain. We also assume that all PDFs are differentiable.441
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B.1 Proof of Theorem 4.2442

We make the following assumptions about the existence of disparities in our setting:443

Assumption B.1. A patient’s severity over time can be estimated by Zt = f(R, t) + Z0, where f is444

monotonically increasing in progression rate R.445

Assumption B.2. There exists some underserved group a that tends to start receiving care at later,446

more severe stages of their disease: P (Z0 = z0 | A = a) strictly MLRPs P (Z0 = z0) with respect447

to Z0, i.e. P (Z0=z0|A=a)
P (Z0=z0)

is a strictly increasing function of Z0.448

Assumption B.3. On average, this underserved group progresses no slower than the overall popula-449

tion: E[R | Xt = xt, A = a] ≥ E[R | Xt = xt].450

Proof. We want to show that E[Zt | Xt = xt, A = a] > E[Zt | Xt = xt]. We first show that451

P (Z0 = z0 | Xt = x,A = a) strictly MLRPs P (Z0 = z0 | Xt = xt) with respect to Z0:452

∂

∂Z0

(
P (Z0 = z0 | Xt = xt, A = a)

P (Z0 = z0 | Xt = xt)

)
=

∂

∂Z0

 P (Xt=xt|Z0=z0,A=a)P (Z0=z0|A=a)
P (Xt=xt|A=a)

P (Xt=xt|Z0=z0)P (Z0=z0)
P (Xt=xt)


(Bayes Rule)

=
∂

∂Z0

 P (Z0=z0|A=a)
P (Xt=xt|A=a)

P (Z0=z0)
P (Xt=xt)

 (Xt ⊥ A | Z0, R)

=
P (Xt = xt)

P (Xt = xt | A = a)
· ∂

∂Z0

(
P (Z0 = z0 | A = a)

P (Z0 = z0)

)
> 0 (Assumption B.2)

Since MLRP implies FOSD [43], this also implies that P (Z0 = z0 | Xt = xt, A = a) strictly453

FOSDs P (Z0 = z0 | Xt = xt). It follows directly that E[Z0 | Xt = xt, A = a] > E[Z0 | Xt = xt].454

Furthermore,455

E[R | Xt = xt, A = a] ≥ E[R | Xt = xt] (Assumption B.3)
=⇒ E[f(R, t) | Xt = xt, A = a] ≥ E[f(R, t) | Xt = xt], ∀t ≥ 0 (Assumption B.1)
=⇒ E[f(R, t) | Xt = xt, A = a] + E[Z0 | Xt = xt, A = a]

> E[f(R, t) | Xt = xt] + E[Z0 | Xt = xt], ∀t ≥ 0

=⇒ E[f(R, t) + Z0 | Xt = xt, A = a] > E[f(R, t) + Z0 | Xt = xt], ∀t ≥ 0

=⇒ E[Zt | Xt = xt, A = a] > E[Zt | Xt = xt]

It is clear to see that this argument extends naturally to show that if a group is “overserved”, i.e. they456

tend to get care earlier than the rest of the population, that their severity will be overestimated: If457

there exists a group a′ such that P (Z0 = z0) strictly MLRPs P (Z0 = z0 | A = a′) with respect458

to Z0 and E[R | Xt = xt] ≥ E[R | Xt = xt, A = a′], then we will see that E[Zt | Xt = xt, A =459

a′] < E[Zt | Xt = xt]. Hence any model that does not take into account demographic disparities in460

initial disease severity levels at a patient’s first visit will lead to biased estimates of severity.461

B.2 Proof of Theorem 4.3462

We make the following assumptions about the existence of disparities in our setting:463

Assumption B.4. A patient’s severity over time can be estimated by Zt = f(R, t) + Z0, where f is464

strictly monotonically increasing in progression rate R.465

Assumption B.5. There exists some group a that tends to progress more quickly: P (R = r | A = a)466

strictly MLRPs P (R = r) with respect to R, i.e. P (R=r|A=a)
P (R=r) is a strictly increasing function of R.467

Assumption B.6. On average, this underserved group is, on average, first observed no earlier than468

the overall population: E[Z0 | Xt = xt, A = a] ≥ E[Z0 | Xt = xt].469
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Proof. We want to show that E[Zt | Xt = xt, A = a] > E[Zt | Xt = xt]. We first show that470

P (R = r | Xt = xt, A = a) strictly MLRPs P (R = r | Xt = xt) with respect to R:471

∂

∂R

(
P (R = r | Xt = xt, A = a)

P (R = r | Xt = xt)

)
=

∂

∂R

 P (Xt=xt|R=r,A=a)P (R=r|A=a)
P (Xt=xt|A=a)

P (Xt=xt|R=r)P (Zt=zt)
P (Xt=xt)

 (Bayes Rule)

=
∂

∂R

 P (R=r|A=a)
P (Xt=xt|A=a)

P (R=r)
P (Xt=xt)

 (X ⊥ A | Z0, R)

=
P (Xt = xt)

P (Xt = xt | A = a)
· ∂

∂R

(
P (R = r | A = a)

P (R = r)

)
> 0 (Assumption B.5)

Since MLRP implies FOSD [43], this also implies that P (R = r | Xt = xt, A = a) strictly FOSDs472

P (R = r | Xt = xt). It follows directly that:473

E[R | Xt = xt, A = a] > E[R | Xt = xt]

=⇒ E[f(R, t) | Xt = xt, A = a] > E[f(R, t) | Xt = xt], ∀t > 0 (Assumption B.4)
=⇒ E[f(R, t) | Xt = xt, A = a] + E[Z0 | Xt = xt, A = a]

> E[f(R, t) | Xt = xt] + E[Z0 | Xt = xt], ∀t > 0 (Assumption B.6)
=⇒ E[f(R, t) + Z0 | Xt = xt, A = a] > E[f(R, t) + Z0 | Xt = xt], ∀t > 0

=⇒ E[Zt | Xt = xt, A = a] > E[Zt | Xt = xt]

It is clear to see that this argument extends naturally to show that if a group is “overserved”,474

i.e. they tend to progress more slowly than the rest of the population, that their severity will be475

overestimated: if there exists a group a′ such that P (R = r) strictly MLRPs P (R = r | A = a′)476

with respect to R and E[Z0 | Xt = xt] ≥ E[Z0 | Xt = xt, A = a′], then we will see that477

E[Zt | Xt = xt, A = a′] < E[Zt | Xt = xt]. Thus any model that does not take into account478

demographic disparities in patient progression rates will lead to biased estimates of severity.479

B.3 Proof of Theorem 4.4480

We make the following assumptions about the existence of disparities in our setting and patient visit481

rates:482

Assumption B.7. A patient’s visit pattern can be estimated using an inhomogeneous poisson process483

characterized by visit rate Λ, such that log(Λ) = g(Zt) + βA
(A) for some function of severity g(Zt)484

and group-specific adjustments βA
(A).485

Assumption B.8. There exists some group a that tends to receive care less frequently than other486

groups, conditional on disease severity: β(a)
A < βA

(A) for all A ̸= a.487

Assumption B.9. Visit rate increases with disease severity: g(Zt) is a strictly monotonically increas-488

ing function of severity.489

Proof. We want to show that E[Zt | Λ = λ,A = a] > E[Zt | Λ = λ]. We do this by calculating490

each term separately.491

492

We first consider E[Zt | Λ = λ,A = a]. The strictly monotone assumption in B.9 ensures g is493

invertible, and the fact that all visit rates Λ are characterized by log(Λ) = g(Zt) + βA
(A) ensures494

that this holds over the entire range of Λ values. This gives us:495

E[Zt | Λ = λ,A = a] = E
[
g−1

(
log(Λ)− βA

(A)
) ∣∣∣∣ Λ = λ,A = a

]
= g−1

(
log(λ)− β

(a)
A

)

13



We next consider the case where a model infers severity without taking into account disparities in496

visit rate conditional on severity. Estimating severity Zt based solely on visit observations gives:497

E[Zt | Λ = λ] = P (A = a) · E[Zt | Λ = λ,A = a] + P (A ̸= a) · E[Zt | Λ = λ,A ̸= a]

= P (A = a) · E
[
g−1

(
log(Λ)− βA

(A)
) ∣∣∣∣ Λ = λ,A = a

]
+ P (A ̸= a) · E

[
g−1

(
log(Λ)− βA

(A)
) ∣∣∣∣ Λ = λ,A ̸= a

]
< P (A = a) · E

[
g−1

(
log(Λ)− βA

(A)
) ∣∣∣∣ Λ = λ,A = a

]
+ P (A ̸= a) · E

[
g−1

(
log(Λ)− β

(a)
A

) ∣∣∣∣ Λ = λ,A = a

]
(*)

= P (A = a) ·
(
g−1

(
log(λ)− β

(a)
A

))
+ P (A ̸= a) ·

(
g−1

(
log(λ)− β

(a)
A

))
= g−1

(
log(λ)− β

(a)
A

)
= E[Zt | Λ = λ,A = a]

As justification for (∗):498

β
(a)
A < βA

(A), ∀A ̸= a,∀Λ (Assumption B.8)

=⇒ log(Λ)− β
(a)
A > log(Λ)− βA

(A), ∀A ̸= a,∀Λ

=⇒ g−1
(
log(Λ)− β

(a)
A

)
> g−1

(
log(Λ)− βA

(A)
)
, ∀A ̸= a,∀Λ

(Assumption B.9 =⇒ g−1(Zt) strictly monotonically increasing)

=⇒ E
[
g−1

(
log(Λ)− β

(a)
A

) ∣∣∣∣ Λ = λ,A = a

]
> E

[
g−1

(
log(Λ)− βA

(A)
) ∣∣∣∣ Λ = λ,A ̸= a

]
It is clear to see that this argument extends naturally to show that if a group is “overserved”, i.e.499

they tend to visit the hospital more frequently conditional on severity, that their severity will be500

overestimated: if there exists a group a′ such that βA
a′) > βA

(A) for all A ̸= a′, then we will see501

that E[Zt | Λ = λ,A = a′] < E[Zt | Λ = λ]. Thus any model that does not take into account502

demographic disparities in patient visit rates given their severity will lead to biased estimates of503

severity.504

C Simulations505

Figure 3 shows the results of 50 simulation runs, where we randomly instantiate the parameters of506

our model and then generate data to fit on. We visualize the recovery of each parameter by plotting507

true parameter values versus recovered posterior mean values, with one dot per run.508
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Figure 3: Parameter recovery on 50 runs of fitting our model to synthetic data.
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