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ABSTRACT

Self-Supervised Learning (SSL) presents an exciting opportunity to unlock the
potential of vast, untapped clinical datasets, for various downstream applications
that suffer from the scarcity of labeled data. While SSL has revolutionized fields
like natural language processing and computer vision, their adoption in 3D med-
ical image computing has been limited by three key pitfalls: Small pre-training
dataset sizes, architectures inadequate for 3D medical image analysis, and insuf-
ficient evaluation practices. We address these issues by i) leveraging a large-scale
dataset of 44k 3D brain MRI volumes and ii) using a Residual Encoder U-Net
architecture within the state-of-the-art nnU-Net framework. iii) A robust develop-
ment framework, incorporating 5 development and 8 testing brain MRI segmenta-
tion datasets, allowed performance-driven design decisions to optimize the simple
concept of Masked Auto Encoders (MAEs) for 3D CNNs. The resulting model
not only surpasses previous SSL methods but also outperforms the strong nnU-Net
baseline by an average of approximately 3 Dice points. Furthermore, our model
demonstrates exceptional stability, achieving the highest average rank of 2 out of
7 methods, compared to the second-best method’s mean rank of 3. Our code is
made available here.

1 INTRODUCTION

In recent years, the concept of Self-Supervised Learning (SSL) has emerged as a driving factor in
data-rich domains, enabling large-scale pre-training that facilitates the learning of robust and trans-
ferrable general-purpose representations (Assran et al., 2023; Oquab et al., 2023; He et al., 2022).
This paradigm shift has been instrumental in advancing various fields, particularly in domains with
abundant labeled data like NLP or natural vision. In the domain of 3D medical image computing,
this trend has not caught on.

Currently, the domain is either focused on training from-scratch, mainly using the nnU-Net frame-
work by Isensee et al. (2021), or using supervised pretraining, which is limited by the cost associated
with annotated data (Wasserthal et al., 2023; Ulrich et al., 2023; Huang et al., 2023). The usage of su-
pervised pretraining implies the willingness of the domain to adopt pretraining and calls to question
the currently established SSL methods in the domain. We believe this lack of widespread adoption
of previously established methods can be attributed to three major pitfalls of previous SSL research
in this field:

P1 - Limited dataset size: Many SSL approaches have been developed on very few unlabeled vol-
umes, often being trained on fewer than 10,000 images Zhou et al. (2021); Wu et al. (2024); Tang
et al. (2024; 2022); Zhuang et al. (2023); Hatamizadeh et al. (2021), almost approaching scales of
supervised dataset sizes. These datasets tend to be pooled from publicly available annotated datasets,
as larger datasets pose a greater hurdle to acquire. While many hospitals possess 3D medical images
in the millions, they are locked away from the public due to patient privacy concerns. While some
larger open-source datasets exist, e.g., the Adolescent Brain Cognitive Decline (ABCD) dataset of
the NIH (N=40k) or the UK Biobank (UK-BB) (N=120k), they restrict access pending an internal
review board’s approval, posing a hurdle for open science. More recently, the UK-BB stopped allow-
ing downloading data to local hardware, signaling a public decrease in the community’s willingness
to share data.
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P2 - Outdated Backbones: Many studies develop their SSL method on non-state-of-the-art archi-
tectures, e.g., utilizing transformers (Wu et al., 2024; Tang et al., 2022; Wang et al., 2023; Chen
et al., 2023). While transformers are prevalent in the 2D natural imaging domain (Dosovitskiy,
2020), recent architectures leveraging attention (Vaswani, 2017) have so far not been able to reach
state-of-the-art performance in 3D medical segmentation. In fact, well-configured 3D U-Net (Çiçek
et al., 2016; Ronneberger et al., 2015) inspired CNNs dominate 3D medical image segmentation,
outperforming transformer-based models by a large margin Isensee et al. (2024). This underscores
the need for SSL methods that can be seamlessly integrated with CNNs to harness their full potential
in medical image analysis on downstream tasks.

P3 - Insufficient Evaluation: Existing methods often lack rigorous evaluation, masking the meth-
ods’ efficacy (or lack thereof). This is represented through: i) Evaluating on too few datasets to
show generalization of the pre-training ii) Stacking multiple contributions, e.g., novel architecture
with new pre-training, which does not allow one to draw conclusions if the pre-training is effective
without the architecture (Wang et al., 2023) iii) Comparing to bad from-scratch baselines, like a
badly configured, outdated Çiçek et al. (2016) model instead of a well-configured 3D nnU-Net CNN
baseline (Isensee et al., 2021). iv) Evaluating their method on seen data they pre-trained on. We want
to emphasize that we do not intend to point fingers, but to raise awareness that evaluation matters
and insufficient evaluation can lead to a lack of clarity which methods are the best. This observation
is similar to the recent study by Isensee et al. (2024), that shows that this is also prevalent in the field
of medical image segmentation when training from-scratch.

In this paper, we carefully avoided all these pitfalls while exploring the Masked Auto Encoder
(MAE) paradigm for 3D CNNs, with the recent adaptations introduced by Tian et al. (2023); Woo
et al. (2023), and highlight that MAEs are exceeding the current state-of-the-art SSL methods in 3D
medical image segmentation given proper configuration. Our contributions can be summarized as
follows:

1. We evade Pitfall 1 by leveraging a dataset collection of 44k 3D MRI volumes to develop
our self-supervised pretraining, exceeding the majority of 3D medical image segmentation
SSL methods in scale (Zhou et al., 2021; Wu et al., 2024; Tang et al., 2024; 2022; Zhuang
et al., 2023; Hatamizadeh et al., 2021).

2. We evade Pitfall 2 by utilizing the state-of-the-art Residual Encoder U-Net CNN architec-
ture from Isensee et al. (2024) as the backbone. Moreover, we use this backbone for all
baseline SSL methods - allowing us to quantify the utility of the pre-training scheme for
pre-training CNNs.

3. We evade Pitfall 3 by employing 5 development and 7 testing datasets, spanning a diverse
set of downstream targets. This includes head and neck organs and pathologies, datasets
with novel image modalities not seen during pre-training, and datasets of the same pathol-
ogy acquired at different centers.

By subsequently optimizing MAEs for CNNs based on performance on the development pool, we
propose the novel sparse MAE inspired pre-training paradigm, unleashing the potential of huge
amounts of not annotated data in the medical domain. We show that the choice of the best fine-
tuning strategy is crucial. Moreover, we evaluate our method across a range of critical 3D medical
scenarios, including low-data regimes, accelerated fine-tuning schedules, and generalization across
unseen centers and modalities.

2 DEVELOPMENT FRAMEWORK

The goal of this paper is to develop a robust SSL pretraining method. Due to the limited prior work
in the 3D medical domain, many design choices need to be made. We address this by sequentially
validating each methodological contribution on five downstream development datasets before
testing the final configuration on eight untouched test datasets. To reduce the search space and
disentangle the effects of SSL pre-training from other basic design choices, we choose to keep some
parameters fixed based on best practices in the domain:
(i) The architecture used is always the same state-of-the-art residual encoder U-Net architecture
(ResEnc U-Net) (Isensee et al., 2024). (ii) The input patch size is [160x160x160]. (iii) All images
are resampled to the target spacing of [1x1x1] mm3 (Roy et al., 2023). (iv) All images are z-score
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Figure 1: Overview of the model development pipeline. During pretraining, we carefully develop
our method with 44k images (P1), with a state-of-the-art residual encoder U-Net (P2) and evaluate
it on dive development datasets (P3). In the testing phase we utilize a total of thirteen datasets (P3)
to verify the utility of our developed method.

normalized to zero mean and unit variance (Isensee et al., 2021). (v) As optimizer, we use SGD
with a decreasing poly-learning rate (Chen et al., 2018) following nnU-Net (Isensee et al., 2021).
(vi) We always employ random sampling during pre-training, irrespective of the prevalence of the
different MR modalities.

Pre-training Dataset To develop our pre-training method, we utilize a proprietary brain MRI
dataset sourced from over 44 centers containing over 9k patients comprising a total of approx. 44k
3D MRI scans. Due to the variety of data sources, this dataset contains images from more than 10
different MR scanners, various MR modalities and a diverse patient population. For more details on
the distributions we refer to Figure 2.

Since this data is sourced directly from clinical examinations, it includes empty or broken images,
poor-quality images and so-called scout scans used to determine the field of view of the patient
in the MR. Since these scans are not used in diagnostics, these images are filtered by discarding
(a) images with a field of view of < 50mm in any axis, (b) images with a spacing > 6.5mm in any
direction and (c) images of file size < 200kb, which indicate an empty image. Moreover due to the
low quantity of MR Angiography, Susceptibility weighted Images (SWI) and Proton Density (PD)
weighted images, we restrict our training data to only include T1, T2, T1 FLAIR and T2 FLAIR
images, resulting in our final pre-training dataset of 39, 168 MR images.

Development Datasets After pre-training we fine-tune on five datasets and calculate the average
Dice Similarity Coefficient (DSC) per dataset to evaluate the effectiveness of the pre-training. The
multiple datasets are essential to ensure that our design choices do not overfit to a specific MRI
modality or pathological target. Specifically, we utilize:

1. MS FLAIR (D1): Consensus delineations of multiple sclerosis (MS) lesions on T2-
weighted FLAIR images(Muslim et al., 2022).

2. Brain Mets (D2): Brain metastases imaged through T1, contrast enhanced gradient echo
T1ce, contrast enhanced spin echo T1 and a T2 FLAIR sequence acquired in the Stanford
University Hospital (Grøvik et al., 2020).

3. Hippocampus (D3): The Hippocampus dataset, task 4 of the medical segmentation de-
cathlon (MSD) (Antonelli et al., 2022), contains delineations of the anterior and posterior
Hippocampus in T1 weighted MRI (Simpson et al., 2019).

4. Atlas22 (D4): Anatomical Tracings of Lesions After Stroke (ATLAS) on T1 weighted
images. We use the Atlas R2.0 dataset from Liew et al. (2022).

5. CrossModa (D5): Delineations of intra-meatal and extra-meatal vestibular schwannoma
tumors and cochlea delineations in contrast enhanced T1 weighted MRI (Dorent et al.,
2023).
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Of all these datasets, we set aside a hold-out test set comprising 20% of all images before start of
the method development process. The remaining images were further split 80/20 into training and
validation sets for the development process.

Test Datasets Additionally, eight hold-out test sets were used to evaluate the efficacy of our
learned representations when fine-tuning them to segment other target structures.

1. Cosmos (D6): This dataset features carotid vessel wall segmentation and atherosclerosis
diagnosis, of which we use the contours to evaluate segmentation performance (Chen et al.,
2022).

2. HaNSeg (D7): This dataset contains segmentations of 30 organs at risk (OAR), with as-
sociated T1 MRI and CT, of which we only use the MR images for model development
(Podobnik et al., 2023).

3. Isles22 (D8): This dataset contains annotations of ischemic stroke lesions, with associated
diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and T2 FLAIR
(Hernandez Petzsche et al., 2022).

4. HNTS-MRG24(D9): T2-weighted MR images of pre-treatment oropharyngeal cancer and
metastatic lymph nodes with associated annotations (Wahid et al., 2024).

5. BraTS Africa (D10): This dataset contains 1.5 Tesla T1, T1ce, T2, and T2 FLAIR MRIs
of glioblastoma and high-grade gliomas imaged in Nigeria.

6. T2 Aneurysms (D11): This proprietary dataset contains 240 T2 MRI images of segmented
brain aneurysms with the surrounding brain tissue.

7. TOF Angiography Aneurysms (D12): This proprietary dataset contains 144 time-of-
flight MR-angiography images of segmented brain aneurysms with the surrounding brain
tissue.

8. BraTS Mets (D13): This dataset holds brain metastases segmentations on T1ce MRIs,
similar to D2. However, instead of fine-tuning on it we use it to measure generalization
when inferring models trained on D2 on it.

For all test datasets that are fine-tuned on (D6-D11) we use an 80/20 split for fine-tuning and for
testing, as we fine-tune each method only once without any interventions. For D13 all data is used,
as no training is conducted.

3 REVISITING 3D MAES

Masked autoencoders (MAEs) are a well-established pre-training paradigm in the natural imaging
domain and in the medical image segmentation domain for transformers. In this section, we in-
vestigate this paradigm and optimize it for 3D medical image segmentation using a ResEnc U-Net
architecture of Isensee et al. (2024).

Default parameters MAEs are trained by masking an input image to a certain degree and training
the network to reconstruct the occluded regions, minimizing deviations betweem reconstruction and
original image. In our experiments, we train the MAE with a L2-Loss in the z-score normalized
voxel space and only calculate the reconstruction loss where regions were masked. Moreover, we
do not remove skip-connections, following the general consensus of Woo et al. (2023), Tian et al.
(2023), and He et al. (2022). The default hyperparameters (as used by the model denoted in gray
in Table 1) are learning rate 1e-2, weight decay 3e-5, batch size 6, SGD optimizer with Nesterov
momentum 0.99, masking ratio of 75% trained with a PolyLR schedule for 250k steps (this represent
1000 epochs in the nnU-Net framework) and minor spatial augmentations of affine scaling, rotation
and mirroring.

Sparsification When masking the input image, CNNs are not able to ignore the masked regions
in the same manner as transformers can. To address this, Tian et al. (2023) proposed to adapt the
CNN architectures to better fit the sparse inputs: (a) Sparse Convolutions and Normalization:
Through the receptive field of convolutions masked-out regions are iteratively eroded from their
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[t]

Figure 2: Hierarchical composition of the nnSSL foundation model’s pre-training dataset. (a) Ge-
ographic distribution of 44 participating centers. (b) Patient demographics (age, sex, weight). (c)
Scanner specifications (magnetic field strength, manufacturer, scanner) of examinations. (d) Acqui-
sition parameters (orientation, contrast administration, weighting) of image volumes.

boundaries. By re-applying the masked regions after every convolution this problem can be resolved.
Moreover, the masks can introduce a problematic shift in the normalization layer statistics due to the
introduced zero values. To resolve this normalization is constrained to only consider the non-masked
values. (b) Mask Token: Instead of feeding the light-weight decoder feature maps with zeroed
mask regions, the regions are densified by filling them with a learnable mask token, simplifying the
reconstruction task of the decoder. (c) Densification Convolution: After filling the masks with the
Mask Token and before passing the feature maps to the decoder, a [3x3x3] convolution is applied to
the feature maps at every resolution except the highest resolution to prepare the representations for
decoding.

Results of these changes are visualized in Table 1a. The adaptations are introduced iteratively,
meaning the ’MaskToken’ ablation is only applied together with the Sparse Convolutions and Nor-
malization. It can be observed that the full set of adaptations improves performance by an average
of 0.3 DSC points across our development datasets. Subsequently, all adaptations are kept and the
following evaluations are presented with these changes applied.

Masking strategy The masked region is determined by sampling randomly in the CNN’s bottle-
neck of shape [5x5x5] and up-sampling these regions to the input resolution, to ensure the masks
align in the bottleneck of the CNN architectures. This results in masking regions of [32x32x32]
voxels of non-overlapping regions in the input. As a sampling strategy, we follow random masking,
as previous work showed no benefit of structured masking for images nor videos (He et al., 2022;
Feichtenhofer et al., 2022). In the scope of the development phase we explore 5 static masking ratios
between 30 and 90%, and evaluate a dynamic masking ratio randomly masking between 60% and
90%.

Results are presented in Table Table 1b and highlight that the masking ratios of 60%, 75%, and the
dynamic masking ratio of 60% to 90% perform equally well. Due to the highly similar performance,
we choose to proceed with a dynamic masking ratio over the static masking ratio, due to expecting
this masking to be more difficult to learn and with the upcoming scaling experiment in mind. We
refer to this model as Spark3D-Base (S3D-B= going forward.
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Configuration D1 D2 D3 D4 D5 Avg. D1-D5

Base 49.96 72.62 89.03 63.45 81.67 71.35
+ Sparse Conv. + BN. 50.34 73.34 88.91 62.96 81.25 71.36
+ w/ Mask Token 50.02 73.21 88.92 62.84 81.83 71.37
+ w/ Dens. Conv. 51.02 74.07 88.91 62.81 81.50 71.66

(a) Sparsification: Introducing all sparsification adaptations showed best results, with most gains from adding
the additional densification conv layer between encoder and decoder.

Mask ratio D1 D2 D3 D4 D5 Avg. D1-D5

30 % 50.25 71.37 88.90 63.18 81.70 71.08
45 % 50.60 70.83 88.97 63.27 81.73 71.08
60 % 50.62 73.56 88.96 63.37 81.48 71.60
75 % 51.02 74.07 88.91 62.81 81.50 71.66
90 % 50.56 72.51 88.98 62.41 81.49 71.19
U[60%-90%] 51.49 74.01 88.83 62.39 81.54 71.65

(b) Masking ratio: Masking ratios between 60% and 75% worked best when choosing static ratios with a
dynamic range including higher masking ratios performing the best.

Pretraining D1 D2 D3 D4 D5 Avg. D1-D5

No Dyn. 45.56 72.26 88.80 60.44 82.61 69.93
No Fixed 49.37 69.13 88.78 60.74 81.33 69.87
VoCo 50.35 67.20 88.22 57.82 80.29 68.77
VF 49.93 69.58 88.83 61.75 81.48 70.31
MG 50.50 71.14 88.83 63.29 82.15 71.18

S3D-B (ours) 51.49 74.01 88.83 62.39 81.54 71.65
S3D-L (ours) 51.42 72.84 89.09 63.30 82.15 71.76

(c) Compound scaling: When comparing our scaled S3D-L, trained for more iterations with higher batch size
and lr, only a modest increase in performance can be observed over the much more compute-efficient S3D-
B. Moreover, when comparing models on the same scale S3D-B exceeds all baselines on our development
validation datasets.

Table 1: Development Experiments: During development, we evaluate the Average DSC on all
development datasets to quantify the best configuration. Methods of the same configuration are
denoted through common colors.

Scaling MAEs are known to benefit from scaling. We evaluate the effect of compound scaling by
increasing the batch size by x8 to 48, the learning rate to 3e− 2, and the iterations by x4 to 1M . We
refer to this model as S3D-Large (S3D-L) to denote the higher compute resources, but note that the
architecture remains identical, to maintain easy adaptation of the parameters. Results are presented
in Table 1c. It can be observed that this x32 increase in compute only resulted in a slight increase in
performance of 0.1 DSC points.

Fine-tuning strategy Given a pre-trained model, a crucial question arises: Which weights to
transfer and how to schedule the fine-tuning? We investigated various different schedules. Regard-
ing weight transfer we investigated transferring (i) both the encoder and decoder , or (ii) only the
encoder with a randomly initialized decoder. Regarding the fine-tuning schedule, we investigate
whether to use a learning rate warm-up of 12.5k steps, ramping the learning rate up to the maximum
LR. When only transferring the encoder, an additional warm-up of only the decoder is investigated
to adapt the randomly initialized decoder to the pre-trained encoder. In some configurations, this
results in two learning rate warm-ups of 12.5k steps each. Additionally, we investigate whether to
keep the encoder frozen for the entire fine-tuning process, or to fine-tuning encoder weights as
well. Lastly, we investigate whether to decrease the peak learning rate to 1e − 3, 1e − 4 or to keep
it at the default of 1e− 2.
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Transfer 1. Warm-Up 2. Warm-Up Tr. Stage Max. LR D1 D2 D3 D4 D5 Avg

- - 1e-2 45.56 72.26 88.80 60.44 82.61 69.93‡

- - 1e-2 49.37 69.13 88.78 60.74 81.33 69.87

- - 1e-2 50.37 70.64 88.61 61.51 81.91 70.61
- - 1e-3 49.98 71.04 88.68 61.45 82.12 70.65

- 1e-2 49.84 72.56 88.45 62.16 81.75 70.95
- 1e-3 51.54 72.74 88.85 62.44 82.33 71.58
- 1e-4 50.66 72.98 88.68 62.73 82.09 71.43

- - 1e-2 50.81 68.55 88.52 60.73 80.77 69.87
- - 1e-3 50.11 73.90 88.58 61.82 81.48 71.18

- 1e-2 51.39 72.06 88.65 61.70 81.78 71.12
- 1e-3 51.04 72.72 88.91 62.84 81.19 71.34

1e-2 48.81 72.92 88.84 62.46 82.04 71.02
1e-3 51.42 72.84 89.09 63.30 82.15 71.76
1e-4 50.13 72.26 88.72 61.70 81.93 70.95

Table 2: Fine-tuning matters. We compare various combinations of weight transfer and fine-tuning
schedules. Transfer: Transfer all, Transfer encoder only. Warm-Up and Training: Only
decoder weights trained, Encoder and decoder weights trained. ‡: nnU-Net default (Dynamic)

Results are presented in Table 2 and allow three important observations to be made: (i) Warm-up
stages are essential: Not applying a warm-up step significantly reduces performance. Including a
warm-up for both the encoder and decoder boosts accuracy by 0.6 to 1 DSC points. (ii) Learning
rate adjustments matter: Reducing the peak learning rate to 1e-3 during fine-tuning consistently
yields better results than the default 1e-2, with the best performance seen when fine-tuning both the
encoder and decoder with lower learning rates. (iii) Freezing encoder weights is detrimental: The
encoder should not remain fixed during fine-tuning. Allowing the encoder to be fine-tuned improves
the model’s performance compared to when only the decoder is fine-tuned.

4 RESULTS AND DISCUSSION

We compare our final models S3D-B and S3D-L against VoCo (Wu et al., 2024), VolumeFusion
(VF) by Wang et al. (2023), as well as MG Models Genesis (Zhou et al., 2021). The baselines are
pre-trained using the same framework on the same data with the same backbone and the same hy-
perparameters - where possible - and are scaled to fully utilize an A100 40GB GPU, optimized for
250k steps. We provide explicit baseline method and configuration details in Appendix A. Moreover,
we compare against two from-scratch baselines. The first, ’No (Dyn.)’, represents a non-pretrained
(i.e., from scratch) default nnU-Net 3D fullres architecture that was planned and preprocessed
on each downstream dataset individually, potentially resulting in different architectures, data pre-
processing, and spacings. The second from-scratch baseline, ’No (Fixed)’, is an nnU-Net training
with the same plans and preprocessing as defined by our pre-training. The dataset-wise mean DSC
and mean NSD values across our test dataset suite are provided in Table 3. Additionally, ranking
stability of the methods is evaluated through bootstrapping and is provided in Fig. 3.

4.1 OBSERVATIONS

SSL pre-training works Across all tested datasets, SSL pre-trained methods demonstrate im-
proved downstream segmentation performance. Comparing our S3D-B method to the most similar
from-scratch baseline ’No (Fixed)’, we observe higher DSC scores in 10 out of 11 test datasets, with
an average increase of +2 DSC points and +1.6 NSD points. This improvement is not limited to our
method; MG and VF also achieve higher performance than the baseline, indicating the utility of SSL
methods when applied to sufficient data and a state-of-the-art architecture.

MAEs dominate Throughout our test dataset pool, SSL schemes using the masked image model-
ing paradigm (MG, S3D-B, and S3D-L) consistently rank higher than the contrastive VoCo or the
pseudo-segmentation-based VolumeFusion pre-training method for CNN pre-training. Given the age
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SSL Method No (Dyn.) No (Fixed) VoCo VF MG S3D-B S3D-L

Dataset Dice Similarity Coefficient (DSC)
MS FLAIR (D1) 57.81 59.82 59.70 59.29 58.64 60.35 59.85
Brain Mets (D2) 63.66 56.53 56.25 61.01 65.39 65.24 64.81
Hippocampus (D3) 89.18 89.24 88.78 89.03 89.38 89.60 89.34
Atlas22 (D4) 63.28 65.52 62.97 65.76 65.93 66.95 64.58
CrossModa (D5) 85.64 83.44 83.07 84.24 83.91 84.08 84.02
Cosmos22 (D6) 60.28 78.17 77.40 80.09 79.67 80.00 80.01
ISLES22 (D7) 77.94 79.44 78.14 78.96 78.85 79.70 79.89
Hanseg (D8) 59.00 61.85 57.47 61.49 62.52 62.11 61.93
HNTS-MRG24 (D9) 66.73 65.90 67.65 63.34 68.00 68.62 67.94
BRATS24 Africa (D10) 93.07 92.51 91.97 92.16 92.36 92.19 92.90
T2 Aneurysms (D11) 46.76 41.97 40.16 44.96 45.48 47.26 44.15

Avg. DSC 69.40 70.40 69.41 70.94 71.83 72.37 71.77
Avg. Rank 4.64 4.55 6.27 4.36 3.18 2.00 3.00

Dataset Normalized Surface Distance (NSD)
MS FLAIR (D1) 78.77 80.16 79.70 79.57 79.16 80.03 80.40
Brain Mets (D2) 80.72 76.72 72.77 79.20 81.51 82.53 82.32
Hippocampus (D3) 99.46 99.42 99.43 99.46 99.39 99.46 99.44
Atlas22 (D4) 70.52 73.77 70.15 73.67 74.22 75.35 73.45
CrossModa (D5) 99.85 99.76 99.72 99.78 99.74 99.81 99.80
Cosmos22 (D6) 72.60 96.47 94.48 96.89 96.95 97.45 96.75
ISLES22 (D7) 88.55 90.45 89.39 90.28 89.59 90.59 90.72
Hanseg (D8) 82.20 85.94 80.44 85.29 85.94 85.80 86.20
HNTS-MRG24 (D9) 71.83 71.26 73.47 67.88 73.22 74.07 73.17
BRATS24 Africa (D10) 95.66 95.36 94.95 94.94 95.33 95.06 95.72
T2 Aneurysms (D11) 62.24 55.56 51.79 58.97 59.38 61.18 57.07

Avg. NSD 82.04 84.08 82.39 84.17 84.95 85.58 85.00
Avg. NSD Rank 4.27 4.27 5.82 4.64 4.00 2.18 2.82

Table 3: S3D out-performs all baselines: Mean DSC and NSD results across the test datasets,
representing a broad selection of brain MR tasks, are presented. ’No Fixed’ represents a from-
scratch baseline sharing the same architecture, preprocessing and downstream training steps as all
SSL methods. ’No Dyn.’ represents the original nnU-Net adapted to each downstream dataset
individually.

of ’Models Genesis’ - published in 2019 - it is surprising to see it outperform the more recent VoCo
or VF. We attribute this to a combination of two factors: 1. Models Genesis was originally pub-
lished and trained on an outdated 3D-UNet (Çiçek et al., 2016) and outside of the powerful nnU-Net
framework (Isensee et al., 2021). This highlights the importance of avoiding Pitfall 2: Training on
a state-of-the-art backbone. 2. VoCo and VF were introduced in conjunction with architectures they
were optimized for. By transferring them to a CNN setting, hyperparameters chosen to optimize the
method for their original architecture-pretraining combination may be suboptimal for the new CNN
backbone.

S3D-B ranks first with respect to DSC and Normalized Surface Distance (NSD), while S3D-L and
MG share the second place. Although S3D-L and MG are very close in Average DSC, S3D-L
consistently achieves lower ranks across all datasets. Moreover, according to the bootstrapped ag-
gregated rank (Fig. 3), this superior ranking is reliably higher than that of MG. These results indicate
the overall efficacy of our pre-training method compared to currently established methods for CNN
pre-training.

Impact of dynamic configuration Comparing the ’No (Dyn.)’ and ’No (Fixed)’ configurations,
both trained from scratch, reveals that selecting the appropriate configuration for each dataset can
significantly influence performance. For instance, on datasets D2 and D11, the dynamic configura-
tion outperforms the fixed by +7 and +5 DSC points, respectively, while for D6, the fixed configura-
tion yields results +18 DSC points higher. In the majority of datasets where the fixed configuration
underperforms relative to the dynamic nnU-Net, pre-training helps to recover performance. How-
ever, in some cases, such as with D5, the dynamic default nnU-Net still proves superior.
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Figure 3: Dataset rank stability In addition to absolute mean performance, we report the ranking
stability of the methods through bootstrapping for all test datasets as well as the aggregated rank
across all datasets.

4.2 ABLATION EXPERIMENTS

Low-Data Regime While previous experiments focused on comparing SSL pre-training against
a from-scratch baseline with full-scale datasets available, many applications in the medical domain
have access to only a very small amount of labeled images. To measure the benefits of pre-training
in such a low-data regime, we artificially reduced the total amount of data available for training to
10, 20, 30, or 40 labeled images.

Results are presented in Table 4. It is evident that our pre-trained S3D-B model leads to better
downstream performance compared to training from scratch in this setting. With just 40 trained
images, the fine-tuned model nearly matches the performance of the from-scratch model trained on
the full dataset. Future research could explore whether optimizing the training duration or learning
rate schedule could prevent the pre-trained network from overfitting during fine-tuning on such a
limited number of training images.

Generalization Performance To assess the generalization capability of the proposed pre-training
method, we tested two scenarios. First, we evaluated fine-tuning our method on an unseen modality
using the TOF Angiography Aneurysms dataset (D12). As shown in Table 7, without pretraining, the
fixed configuration suffers a performance drop of 20 Dice points. We attribute this to the significant
difference in median spacing for the downstream task ([0.50, 0.43, 0.43] mm), which has a higher
resolution than the fixed target spacing of [1, 1, 1] mm used in the pre-training experiments. This
lower resolution likely increases the difficulty of segmenting small aneurysms. Despite this decrease,
pre-training mitigates some of this degradation and proves highly beneficial compared to training the
same configuration from scratch. Interestingly, ModelGenesis achieves the best results, potentially
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due to its use of intensity augmentations during pre-training, which increases robustness against
brightness shifts, such as when generalizing to different MRI sequences. Second, we fine-tuned
on the D2 dataset using only the T1 contrast-enhanced (T1ce) sequence and applied these models
directly to D13 without any additional fine-tuning. While the dynamic configuration performed
best on the in-distribution validation cases of D2, the results on D13 indicate that MAE pre-training
improves generalization across different centers, with our S3D model yielding the best performance.

Pre-training Time Previous studies have demonstrated the positive impact of extended training
schedules on the quality of learned representations for downstream tasks (He et al., 2022; Feichten-
hofer et al., 2022). To explore the relevance of this factor in the 3D medical domain, we conducted
a similar experiment, evaluating training durations ranging from 62.5k to 1M steps. Our results
indicate that the benefits of longer training schedules begin to degrade after 250k steps, as evident
in Table 5. This could explain why our scaled model did not achieve further performance improve-
ments.

Fine-tuning length Initializing from pre-trained weights has the potential to reduce the compu-
tational resources needed for the network to adapt to new tasks. To assess this, we tested different
pre-training durations on our development datasets. While maintaining 12.5k iterations for both
the decoder and full network warm-up phases, we experimented with varying subsequent training
lengths. As shown in Table 8, adding just 12.5k additional iterations (37.5k total) already outper-
forms training from scratch. However, achieving optimal performance still requires completing the
full fine-tuning schedule.

Multi-Channel Input In many medical examinations, it is common to perform multiple scans, as
clinicians often require images with different characteristics for accurate decision-making. Conse-
quently, some datasets, like D2, D8, and D10, contain multiple input modalities. While pre-training
may involve all modalities, we only feed one modality at a time into the network since not all pa-
tients have scans in every modality. This raises the question of how to handle datasets with multiple
registered images. To address this, we conducted a 5-fold cross-validation on the D2 development
dataset. We evaluated the replication of each input modality along with random initialization of the
input stem weights. Additionally, we tested freezing the stem weights during the decoder warm-up
phase. As shown in Table 6, the most stable and consistently effective approach was replicating the
pre-trained stem and keeping it frozen during the decoder’s warm-up period.

5 CONCLUSION

This work is the first to demonstrate the potential of properly configured MAEs in 3D medical im-
age segmentation. By overcoming key pitfalls in previous research, such as limited dataset sizes,
outdated architectures, and insufficient evaluation, we show a consistent performance improvement
over previous SSL methods. Notably, for the first time, we achieve consistent gains over the dy-
namic, dataset-adaptive nnU-Net baseline, validated across a large and diverse set of development
and testing datasets. While our findings are promising, several avenues remain open for future ex-
ploration. Notably, increasing training time and batch size did not lead to performance gains, but
the question remains of whether scaling the pre-training dataset size or the model parameters could
unlock new potential. Furthermore, the intensity shifts employed by ModelGenesis SSL task hint at
intriguing possibilities for improving generalization across unseen MRI modalities, which needs to
be further explored for MAEs. Lastly, a data-centric approach to curating the most relevant data for
SSL represents an exciting frontier for future research. Raw clinical datasets often contain images
not intended for diagnostic purposes, such as those used for scanner calibration, which can dilute
the effectiveness of pre-training. While we applied basic filtering to exclude low-quality data, more
sophisticated filtering techniques could significantly enhance the quality of the pre-training process.

This work follows the spirit of prior studies like nnU-Net Isensee et al. (2021), or XXX, showing
that a robust development strategy, informed model configuration, and rigorous validation lead to
true and sustainable performance gains, contrasting the current hype for employing and modifying
the latest network architecture. With our dynamic open-source framework, we hope to contribute
to a cultural shift in the community towards validation-driven development enabling true scientific
progress.
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A METHOD CONFIGURATION

Across all baseline methods, we utilize a common set of hyperparameters. For all baseline methods
we utilize the same pre-training dataset with the same image preprocessing. Moreover we use the
same amount of pre-training steps (250k) as for our S3D-B method and the same fine-tuning scheme,
as highlighted in Table 8. Aside from this, we employ the SGD optimizer with LR 1e-2 with a
PolyLR schedule, momentum 0.99 and weight decay 3e-5 across all pre-training experiments, as
they showed to be highly robust and reliable in the supervised medical image segmentation setting
using CNNs (Isensee et al., 2021). Moreover, we denote that all these methods have their backbones
replaced with a ResEnc U-Net to minimize confounding effects of different architectures.

A.1 MODELS GENESIS

Models genesis (Zhou et al., 2021) pre-text task is centered around restoring original patches from
transformed versions. The transformed version is achieved by applying four different transforma-
tions in various combinations, with the following transformations: a composition of four separate
pre-training schemes: (i) Non-linear intensity transformation: Alters the intensity distribution
while preserving the anatomy, focusing on learning the appearance of organs. (ii) Out-painting:
Removes part of the image and requires the model to extrapolate from the remaining image, forcing
it to learn the global structure of the organs. (iii) In-painting: Masks a part of the image, and the
model learns to restore the missing parts, focusing on local continuity and context. After having
transformed the original image through these augmentations, the model is trained to recover the
original image through a convolutional encoder-decoder architecture. This approach consolidates
different tasks (appearance, texture, and context learning) into one unified image restoration task,
making the model more robust and generalizable.

Model specific Hyperparameters: The entire set of hyperparameters of Models Genesis are con-
tained within the data-augmentation. This allows us to transfer this transformation pipeline, as
provided in the official https://github.com/MrGiovanni/ModelsGenesis without any changes to the
hyperparameters.

A.2 VOLUMEFUSION

Volume Fusion (Wang et al., 2023) is a pseudo-segmentation task using two sub-volumes from
different 3D scans, which are fused together based on random voxel-level fusion coefficients. The
fused image is treated as input, and the model predicts the fusion category of each voxel, mimicking
a segmentation task. Pretraining is optimized using a combination of Dice loss and cross-entropy
loss.

Method specific parameters: Volume Fusion has unique parameters defining the size ranges of
the rectangles used for fusing together images. In our experiments we utilize a rectangle size range
between [8, 100] sampled uniformly for each axis. This represent the 62.5% of our input patch size,
and identical percentage as in the original paper. Moreover the amount of rectangles sampled is an
important parameter. Like in the original paper we sample M Ũ(10, 40) different rectangles, itera-
tively. Lastly, the number of categories was chosen to be 5, as in the original paper (this represent K
= 4).

A.3 VOCO

The ’Volume Contrastive Learning Framework’ (VoCo) (Wu et al., 2024) is designed to enhance self-
supervised learning for 3D medical image analysis by leveraging the consistent contextual positions
of anatomical structures. The method involves generating base crops from different regions of 3D
images and using these as class assignments. The framework then contrasts random sub-volume
crops against these base crops, predicting their contextual positions using a contrastive learning
approach. The authors utilize a Swin-UNETR model architecture, employing the AdamW optimizer
with a cosine learning rate schedule for 100,000 pre-training steps. The specific hyperparameters
include cropping non-overlapping volumes with a size of 64x64x64, and generating 4x4 base crops
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SSL Method N Train D1 D2 D3 D4 D5 Avg. D1-D5

Scratch

10 40.78 43.52 84.94 44.11 76.66 58.00
20 44.46 59.46 86.75 46.33 78.67 63.13
30 45.42 64.20 87.14 48.22 78.47 64.69
40 49.37* 60.13 87.59 50.43 78.37 65.18
full 49.37 69.13 88.78 60.74 81.33 69.87

S3D-B (ours)

10 43.48 48.44 84.12 41.51 77.70 59.05
20 46.58 65.30 86.61 45.50 79.52 64.70
30 48.12 68.41 86.77 51.62 78.88 66.76
40 51.49* 72.91 87.46 53.05 80.82 69.15
full 51.49 74.01 88.83 62.39 81.54 71.65

Table 4: Forty images with SSL are almost as good as all data from-scratch! S3D-B model
almost reaches the performance of the model trained from-scratch with only 40 training cases. * D1
has only 38 training cases for the train split.

Table 5: Pre-training length ablation: Longer pre-training does not lead to improved performance.
Interestingly, when exceeding 250k steps.

PT Iterations D1 D2 D3 D4 D5 Avg. D1-D5 Train Time [h]

62.5k 49.49 70.79 88.82 62.95 81.27 70.67 28
125k 50.56 70.48 88.86 62.51 81.69 70.82 56
250k 51.02 74.07 88.91 62.81 81.50 71.66 112
500k 50.93 72.71 88.88 62.17 81.86 71.31 224
1M 50.45 71.55 88.92 62.78 81.82 71.10 448

during the position prediction task. This represents an input patch size of 384×384×96 which is
rescaled and resized to fit exactly 4x4 64x64x64 crops.

Since our chosen patch size 160x160x160 is incompatible with the 64 cube length, we adjusted our
patch size for VoCo to 192x192x64. This accommodates a 3x3 grid of 64x64x64. Unfortunately
the 4x4 grid led to exceeding the memory limit hence a reduction was necessary. Moreover we
increased the target crop size from 4 originally to 5 and increased the batch size from 6 (default in
our other experiments) to 12, to fully utilize the 40GB VRAM of an A100 node.

B ADDITIONAL RESULTS

Aside from the quantitative data on the development and test dataset, we provide the quantiative
data of the ablation experiments here. The following additional results are provided: 1. Results
when fine-tuning in a low-data regime are presented in Table 4. 2. Experiment on how to best
transfer weights when transferring to a dataset with more than 1 input channel is provided in Table 6
3. Results on how the pre-training effects generalization is provided in Table 7. 4. Experiment results
of investigating if one can reduce the fine-tuning steps are presented in Table 8

Initialization Decoder Warm-Up Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Average STD

Replication Frozen 72.84 64.42 66.11 62.86 62.85 65.82 4.15
Replication Unfrozen 72.68 63.07 65.60 66.02 61.08 65.69 4.39
Random Frozen 74.38 60.89 65.10 67.55 61.31 65.85 5.51
Random Unfrozen 72.20 63.16 62.25 66.71 61.47 65.16 4.42

Table 6: Replicating the pre-trained stem weights and freezing them during the decoder warm-up
phase yields the most stable and equally best results.
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Experiment Setting No Dyn. No Fixed VoCo VF MG S3D-B S3D-L

Modality shift TOF Angio. Aneurysms(D12) 42.61 22.76 22.32 31.21 34.60 28.72 26.90

In Distribution Brain Mets (D2) 72.81 67.93 64.34 71.69 69.05 71.56 72.53
Patient shift Brain Mets (D13) 64.08 61.61 56.78 63.95 64.22 64.54 64.95

Table 7: Pre-training can improve generalization: We investigate generalization to a new modal-
ity time-of-flight (ToF) MRI (top), and the generalization of a resulting method when translating it
to a different clinic (bottom).

Table 8: Fine-tuning length: When initializing from our pre-trained checkpoint, it is possible to
achieve a large fraction of the final performance after less than 15% of the normal training time.
Despite this a full training schedule reaches better performance.

FT Iterations D1 D2 D3 D4 D5 Avg. D1-D5

25k 50.85 73.99 88.51 55.49 46.00 62.97
37.5k 51.69 74.03 88.85 60.22 81.68 71.29
50k 51.13 73.53 88.93 60.14 81.92 71.13
75k 51.41 72.80 89.08 63.14 81.83 71.65
150k 50.95 71.28 88.96 62.51 81.92 71.13
275k 53.10 71.24 89.14 63.55 82.53 71.91
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