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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) improves reasoning in
LLMs but struggles with exploration, an issue that still persists for Multimodal
LLMs (MLLMs). Current methods treat the visual input as a fixed, determinis-
tic condition, overlooking a critical source of ambiguity and struggling to build
policies robust to plausible visual variations. We introduce VOGUE (Visual-
Uncertainty–Guided Exploration), a novel method that shifts exploration from
the output (text) to the input (visual) space. By treating the image as a stochas-
tic context, VOGUE quantifies the policy’s sensitivity to visual perturbations
using the symmetric KL divergence between a “raw” and “noisy” branch, cre-
ating a direct signal for uncertainty-aware exploration. This signal shapes the
learning objective via an uncertainty-proportional bonus, which, combined with
a token-entropy bonus and an annealed sampling schedule, effectively balances
exploration and exploitation. Implemented within GRPO on two model scales
(Qwen2.5-VL-3B/7B), VOGUE boosts pass@1 accuracy by an average of 2.6%
on three visual math benchmarks and 3.7% on three general-domain reasoning
benchmarks, while simultaneously increasing pass@4 performance and mitigat-
ing the exploration decay commonly observed in RL fine-tuning. Our work shows
that grounding exploration in the inherent uncertainty of visual inputs is an effec-
tive strategy for improving multimodal reasoning.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has substantially improved the reasoning
abilities of large language models (LLMs) by optimizing against ground-truth answers (Luong et al.,
2024; Lambert et al., 2024; Guo et al., 2025; Su et al., 2025). However, this outcome-centric ap-
proach often biases learning toward exploitation, suppressing trajectories with valid intermediate
reasoning that conclude with an incorrect answer. This limitation stifles exploration and can lead to
brittle policies (Dai et al., 2025). While this challenge is recognized in text-only domains, with mit-
igation strategies including uncertainty-aware objectives (Cheng et al., 2025), diversity-promoting
rewards (Li et al., 2025a), pass@k rewards (Chen et al., 2025b; Walder and Karkhanis, 2025), and
intermediate feedback (Setlur et al., 2024), these methods do not address the unique sources of
uncertainty inherent to multimodal reasoning.

This exploration problem is arguably amplified in Multimodal LLMs (MLLMs), where textual rea-
soning is grounded in complex visual inputs (Huang et al., 2025; Tan et al., 2025; Peng et al., 2025).
Current multimodal RLVR approaches typically treat the image as a fixed, deterministic condition.
This overlooks a key source of ambiguity: the visual modality itself. An image can contain am-
biguous objects, be subject to multiple valid interpretations, or have its crucial details altered by
plausible perturbations. By not probing these visual uncertainties, existing methods do not explic-
itly incentivize policies to test the robustness of their visual understanding. Consequently, models
may learn spurious visual-text correlations rather than developing deep, generalizable reasoning,
leaving a critical question unanswered: How can we leverage visual uncertainty to drive more
effective exploration?

To address this gap, we introduce Visual-Uncertainty–Guided Exploration (VOGUE), a novel
method that makes exploration modality-aware. As illustrated in Figure 1, VOGUE shifts explo-
ration from the output (text) space to the input (visual) space by treating the image as a stochastic

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Policy
Model

Visual
Uncertainty

Entropy
Bonus

Entropy
Bonus

Policy
Update

N
oise Injection

Raw Branch

 Noisy Branch

Branch Sampler

Figure 1: VOGUE for RL fine-tuning. Our method uses a dual-branch forward pass: the raw
branch processes the original image, while the noisy branch receives a perturbed view. Token-level
symmetric KL between branches provides a visual-uncertainty signal used to shape the noisy-branch
advantage. An entropy bonus on both branches maintains output stochasticity, and an annealed sam-
pling schedule balances exploration and exploitation by favoring the noisy branch early in training.

context. For each training example, we perform a dual-branch forward pass: one for a “raw” branch
using the original image and another for a “noisy” branch using a semantics-preserving perturbed
view. We quantify visual uncertainty as the symmetric KL divergence between the policy distribu-
tions induced by these two views. This identifies states where the model’s predictions are brittle
to plausible visual perturbations and are therefore states worthy of exploration. We then shape ad-
vantages with (i) a capped, uncertainty-proportional visual uncertainty bonus on the noisy branch
to focus exploration on visually ambiguous inputs, and (ii) a token-entropy bonus on both branches
to maintain policy stochasticity. To manage the exploration–exploitation trade-off, we employ an
annealed branch-sampling schedule that prioritizes uncertainty-driven exploration early in training
before shifting focus to the original view as learning stabilizes. In essence, VOGUE couples textual
exploration with a measure of visual confidence, pushing the model to resolve ambiguities and build
more robust reasoning skills.

We implement VOGUE within GRPO (Shao et al., 2024) and evaluate it on six diverse mathematical
and general-domain reasoning benchmarks: MathVerse (Zhang et al., 2024), MathVista (Lu et al.,
2023), WeMath (Qiao et al., 2024), HallusionBench (Guan et al., 2024), ChartQA (Masry et al.,
2022), and LogicVista (Xiao et al., 2024). On Qwen2.5-VL-3B and 7B models (Bai et al., 2023)
trained on MMRL30k (Zhu et al., 2025a), VOGUE delivers substantial improvements over strong
baselines at both model scales, boosting pass@1 accuracy by an average of 2.6% on three visual
math benchmarks and 3.7% on three general-domain reasoning benchmarks (Table 1 and Table 2).
Crucially, VOGUE also increases pass@4 performance, effectively mitigating the exploration decay
often seen in RL fine-tuning, a challenge that methods like GRPO face (Table 3). Furthermore,
VOGUE consistently outperforms Pass@k Training, a dedicated exploration-promoting method pri-
marily demonstrated effective in text-only settings, yielding both higher pass@1 and more consistent
pass@k gains. In summary, our contributions are three-fold:

• We identify visual uncertainty as a key, yet overlooked, mechanism for exploration in MLLMs
and propose to leverage it to improve MLLM reasoning.

• We introduce VOGUE, a practical method that uses a dual-branch architecture to quantify vi-
sual uncertainty, a capped, uncertainty-proportional advantage bonus, and an annealed sampling
schedule.

• We provide extensive empirical validation demonstrating that VOGUE consistently improves both
exploitation (pass@1) and exploration (pass@k) over strong baselines.
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2 PRELIMINARIES

We adopt GRPO (Shao et al., 2024) as the underlying RL algorithm in this work. In GRPO, given
an input x, a group of responses {oi}Gi=1 are sampled from the old policy πθold , each associated with
a reward ri. Then the normalized advantage for response oi is defined as:

Ai =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
. (1)

As in PPO, GRPO uses clipped importance sampling to stabilize policy updates. Let ρi(θ) =
πθ(oi|x)
πθold (oi|x)

denote the probability ratio between the new and old policies. The GRPO objective is to
maximize the following:

JGRPO(θ) = Ex∼D,{oi}∼πθold (·|x)

[
1

G

G∑
i=1

min
(
ρi(θ)Ai, clip

(
ρi(θ), 1− ϵclip, 1 + ϵclip

)
Ai

)]
, (2)

where ϵclip is the clipping hyperparameter.

3 VISUAL UNCERTAINTY-GUIDED EXPLORATION

To encourage exploration in multimodal RLVR, we propose visual-uncertainty–guided explo-
ration (VOGUE). Formally, with input x = (xtext, ximage), we aim to optimize an MLLM policy
network πθ by maximizing a surrogate objective in Eq. 2. As illustrated in Figure 1, our approach
employs a dual-branch forward pass and treats the image as a stochastic context. For each input, the
policy is evaluated on both the raw and a semantics-preserving noisy view, and visual uncertainty is
quantified via the symmetric KL divergence between the resulting text policy distributions. This vi-
sual uncertainty then guides advantage shaping and, combined with an annealed sampling schedule,
steers the model to explore visually ambiguous states early while focusing on the original view as
training stabilizes. The full procedure is summarized in Algorithm 1.

3.1 VISUAL UNCERTAINTY

The core of our approach is to enhance exploration in multimodal RLVR by shifting the focus
from the output (text) space to the input (visual) space, treating the image as a stochastic context
rather than a fixed condition. To this end, we introduce controlled perturbations to the visual input
and define visual uncertainty as the extent to which the model’s output distribution varies under
semantics-preserving transformations of the image. Variation of the model’s predictions indicate
regions of the visual state space where additional exploration is likely to improve policy reasoning
and robustness.

To induce these perturbations for encouraging exploration, we apply stochastic image augmenta-
tion. For each image ximage in the training dataset, we create a perturbed counterpart x′

image through
a stochastic augmentation function T . This function applies a composition of transformations:
x′

image = T (ximage), where T includes random horizontal/vertical flips, rotations, color jittering,
and the addition of Gaussian noise. These augmentations are designed to preserve the core semantic
content of the image while altering its low-level feature representation, ensuring that differences in
the model’s output reflect true sensitivity to visual variations.

Then we employ a dual-branch forward pass. The raw branch processes the original input x =
(xtext, ximage) to produce an output probability distribution P = πθ(·|x), while the noisy branch
uses the perturbed input x′ = (xtext, x

′
image) to produce a distribution Q = πθ(·|x′). After obtaining

the two distributions, we represent the visual uncertainty Uv as the divergence between them. We
measure this using a symmetric KL divergence, which is calculated as the mean of the forward and
backward KL divergences, encouraging exploration while maintaining stability:

Uv =
1

2

(
DKL(P ||Q) +DKL(Q||P )

)
. (3)

3.2 ADVANTAGE SHAPING

We maintain separate advantage calculations for the raw and noisy branches, as shown in Fig-
ure 1. To encourage exploration, we introduce a visual uncertainty bonus Bv to the noisy

3
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Algorithm 1 Visual-Uncertainty-Guided Exploration (VOGUE)

Require: Dataset D, total training steps Stotal, group size G, annealing schedule parameters
pstart, pend, scaling factors αv, βv, αe, βe, augmentation function T

1: Initialize policy parameters θ, old policy θold ← θ
2: for s = 1 to Stotal do
3: Sample input x = (xtext, ximage) ∼ D
4: Construct perturbed image x′

image = T (ximage), x′ = (xtext, x
′
image)

5: Sample group of responses {oi}Gi=1 ∼ πθold(· | x), {o′i}Gi=1 ∼ πθold(· | x′)
6: Compute annealed probability: pnoi(s) = pend + (pstart − pend) ·max

(
0, 1− s

Stotal

)
7: for i = 1 to G do
8: Compute raw advantage Araw

i , noisy advantage Anoi
i (Eq. 1)

9: Compute token entropy H raw
i and Hnoi

i for each branch
10: Compute visual uncertainty Uv using token-level symmetric KL divergence (Eq. 3)
11: Compute bonuses:

Bv = min
(

|Anoi
i |

βv
, αv · stopgrad(Uv)

)
Braw

e = min
(

|Araw
i |
βe

, αe · stopgrad(H raw
i )

)
, Bnoi

e = min
(

|Anoi
i |

βe
, αe · stopgrad(Hnoi

i )
)

12: Compute shaped advantages:

Âraw
i = Araw

i +Braw
e , Ânoi

i = Anoi
i +Bnoi

e +Bv

13: Sample branch selector zi ∼ Bernoulli(pnoi(s))
14: Select final advantage (with corresponding selected (x, oi) or (x′, o′i)):

Âi = zi · Ânoi
i + (1− zi) · Âraw

i

15: end for
16: Compute surrogate objective with shaped advantages (Eq. 2)
17: Update policy parameters θ ← θ + η∇θJVOGUE(θ)
18: Periodically update old policy θold ← θ
19: end for

branch. This bonus, based on the visual uncertainty Uv , guides the branch to explore regions
of the state space that may not be reachable by the raw branch. The bonus Bv is defined as:
Bv = min

(
|Anoi|
βv

, αv · stopgrad(Uv)
)
, where Anoi is the advantage for the noisy branch, αv and

βv are scaling factors, stopgrad(·) is the stop gradient operator. Furthermore, to promote gen-
eral policy stochasticity and exploration, we incorporate an entropy bonus Be for both branches.
This bonus is based on the token entropy H of the policy’s output distribution, which is de-
fined as: H = −

∑
v∈V πθ (v | x, o<t) log πθ (v | x, o<t) . The entropy bonus Be is defined as:

Be = min
(

|A|
βe

, αe · stopgrad(H)
)
, where αe and βe are scaling factors, and V denotes the vocab-

ulary. Therefore, for the raw branch, the shaped advantage is calculated as: Âraw = Araw + Braw
e ,

and for the noisy branch: Ânoi = Anoi + Bnoi
e + Bv. When implementing VOGUE with GRPO, we

use GRPO’s standard estimator to compute the base advantages Anoi and Araw (see Eq. 1).

The policy gradient for the noisy branch can be expressed as follows:

∇θJVOGUE(θ) ∝ Eo′∼πθold

[
(Anoi +Bnoi

e + αv Uv)∇θ log πθ(o
′ | x′)

]
(4)

From a gradient perspective, this formulation encourages more effective exploration compared
to standard RLVR approaches such as GRPO. We omit caps/clipping for clarity. The term
αv Uv∇θ log πθ(o

′ | x′) explicitly encourages the policy to increase the probability of action se-
quences that follow from visually uncertain states, guiding the model to acquire more informative
visual features. There is also an entropy bonus Be. This acts as a general-purpose exploration mech-
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anism that complements the exploration driven by Bv . While Bv directs exploration toward visual
uncertainty, Be maintains stochasticity in the textual output space.

3.3 ANNEALED SAMPLING FOR POLICY OPTIMIZATION

During training, it is crucial to balance the aggressive exploration driven by the noisy branch with
the stable learning provided by the raw branch. A policy trained exclusively on the noisy branch
may become overly stochastic and fail to converge, while a policy trained solely on the raw branch
may not explore enough to find the optimal path. To manage this trade-off, we employ an annealed
sampling strategy. At each training step, for each sample in the batch, we stochastically choose
which advantage estimate to use for the policy update. We define pnoi as the probability of selecting
the advantage from the noisy branch, which is expressed as:

pnoi(s) = pend + (pstart − pend) ·max
(
0, 1− s

Stotal

)
(5)

where s is the current training step, Stotal is the total training steps. pstart is the initial step sam-
pling probability and pend is the final step sampling probability. This probability is annealed over
the course of training according to a linear decay schedule. Initially, pnoi is high to promote broad
exploration of the state space. As training progresses, pnoi is gradually decreased, causing the opti-
mizer to favor the more stable advantage estimates from the raw branch. This allows the policy to
first explore and then fine-tune its reasoning based on the original, unperturbed data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train all models on the dataset MMRL30k (Zhu et al., 2025a) for 200 steps. The training is
performed on 8 GPUs, using the AdamW optimizer (Loshchilov and Hutter, 2019) with a learning
rate of 1e− 6 and weight decay of 0.01. To inject noise into images, we apply Gaussian noise with
zero mean and standard deviation σ = 0.4. When transferring token entropy and visual uncertainty
for advantage shaping, we set αe = 0.4, βe = 2.0 following the setup of Cheng et al. (2025), and set
αv = 1.0, and βv = 2.0. The annealed sampling schedule is defined by pstart = 1.0 and pend = 0.
We adopt a rollout batch size G of 256 and generate n = 5 responses per input. The implementation
builds on the framework EasyR1 (Zheng et al., 2025).

We conduct direct RL training on top of base models of Qwen2.5-VL-3B and 7B (Bai et al., 2023).
The models are trained to generate responses in a structured format, where the reasoning process
is enclosed within <think></think> tags and the final answer is presented in \boxed{}. The
reward function is a weighted combination of a format reward and an accuracy reward, with coeffi-
cients of 0.1 and 0.9, respectively.

We compare VOGUE to two baselines trained under the same setup for a fair comparison: GRPO
(Shao et al., 2024) and Pass@k Training (Chen et al., 2025b) (with k = 4). For broader context, we
also report published results from 7B models: R1-One-Vision-7B (Yang et al., 2025), Vision-R1-
7B (Huang et al., 2025), OpenVLThinker-7B (Deng et al., 2025), VLAA-Thinker-7B (Chen et al.,
2025a), MM-Eureka-Qwen-7B (Meng et al., 2025), ThinkLite-VL-7B (Wang et al., 2025b), and
VL-Rethinker-7B (Wang et al., 2025a). We evaluate pass@1 and pass@4 accuracy on six bench-
marks, including MathVerse (Zhang et al., 2024), MathVista (Lu et al., 2023), WeMath (Qiao et al.,
2024), HallusionBench (Guan et al., 2024), ChartQA (Masry et al., 2022), and LogicVista (Xiao
et al., 2024). These benchmarks span diverse aspects of multimodal reasoning, covering mathemat-
ical problem solving, hallucination detection, chart understanding, and logical reasoning. Because
Vision-R1-7B used WeMath as training data, we omit its results on that benchmark. For evaluation,
we use Qwen2.5-72B-Instruct (Bai et al., 2025) to extract final answers from model responses and
assess their correctness against reference answers following prior RLVR work (Su et al., 2025).

4.2 MAIN RESULTS

We compare VOGUE against multiple baselines on mathematical and general-domain reasoning.
First, we conduct a quantitative evaluation on mathematical reasoning benchmarks, including Math-
Verse, MathVista, and WeMath (Table 1). Across Qwen2.5-VL 3B and 7B, VOGUE consistently
outperforms the strong RLVR baseline GRPO, demonstrating improved mathematical reasoning. By
contrast, Pass@k Training (Chen et al., 2025b), which optimizes the policy with a pass@k-based
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Table 1: Model performance of pass@1 accuracy on diverse visual mathematical reasoning
benchmarks. We compare VOGUE with prior SFT+RL and Zero-RL methods, as well as with
GRPO and Pass@k Training baselines on Qwen2.5-VL 3B and 7B models. VOGUE consistently
improves over GRPO across both models. And Qwen2.5-VL-7B + VOGUE achieves the strongest
average performance across benchmarks.

Model MathVerse MathVista WeMath Avg.
SFT + RL

R1-One-Vision-7B (Yang et al., 2025) 42.6 62.9 60.3 55.3
Vision-R1-7B (Huang et al., 2025) 48.0 71.2 - -
OpenVLThinker-7B (Deng et al., 2025) 45.4 70.0 65.8 60.4
VLAA-Thinker-7B (Chen et al., 2025a) 45.8 69.3 64.3 59.8

Zero RL

MM-Eureka-Qwen-7B (Meng et al., 2025) 47.5 71.2 65.6 61.4
ThinkLite-VL-7B (Wang et al., 2025b) 44.8 73.1 64.7 60.9
VL-Rethinker-7B (Wang et al., 2025a) 49.5 73.3 57.8 60.2

Qwen2.5-VL-3B (Bai et al., 2023) 35.3 55.7 52.5 47.8
+ GRPO 40.6 66.4 62.8 56.6
+ Pass@k Training (Chen et al., 2025b) 30.2 56.2 45.6 44.0
+ VOGUE 42.7 68.9 63.0 58.2

Qwen2.5-VL-7B (Bai et al., 2023) 43.0 66.1 62.6 57.2
+ GRPO 48.0 72.1 69.5 63.2
+ Pass@k Training (Chen et al., 2025b) 39.6 64.6 57.0 53.7
+ VOGUE 52.1 74.2 71.1 65.8

reward, underperforms other methods. This highlights the unique challenges of multimodal rea-
soning and provides evidence that exploration strategies designed for text-only settings may
not readily transfer.

To assess generalization beyond mathematical reasoning, we extend our evaluation to a set of
broader reasoning tasks using HallusionBench, ChartQA, and LogicVista (Table 2). VOGUE again
outperforms GRPO on all three benchmarks, with Qwen2.5-VL-7B + VOGUE achieving the best
average performance. The training accuracy reward in Figure 2 further supports this, showing
VOGUE’s reward curve is consistently above GRPO’s for both the 3B and 7B models. These
consistent gains across diverse problem types demonstrate that VOGUE’s benefits are robust
and not confined to a single domain.

Finally, we report the pass@4 accuracy across diverse benchmarks in Table 3. While performance
in a few cases falls below the base model, a phenomenon well observed in prior works (Yue et al.,
2025; Zhu et al., 2025b), VOGUE consistently outperforms the GRPO baseline, and achieves the
highest average pass@4 accuracy. These results confirm VOGUE’s effectiveness in promoting
exploration.

Taken together, these results show that VOGUE successfully improves both final-answer accuracy
(pass@1) and enhances exploration (pass@4), confirming that guiding exploration with visual un-
certainty is an effective strategy for multimodal RLVR.

4.3 ABLATION STUDIES

To validate the contribution of each component in VOGUE, we perform a series of ablation stud-
ies using the Qwen2.5-VL-7B model. Specifically, we analyze the effects of the visual uncertainty
bonus, the token entropy bonus, the annealed strategy, as well as the influence of alternative diver-
gence measures and varying noise levels. We present the training curves in Figure 3 and provide the
evaluation results for each setting on six multimodal benchmarks in Appendix A.3.

Effectiveness of Visual Uncertainty. We first examine the role of the visual uncertainty by dis-
abling the visual uncertainty term Uv during advantage shaping. As shown in Figure 3a, the resulting
learning curve lags behind that of the full VOGUE approach. This degradation confirms that in-
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Table 2: Model performance of pass@1 accuracy on diverse visual general-domain reasoning
benchmarks. We compare VOGUE with prior SFT+RL and Zero-RL methods, as well as with
GRPO and Pass@k Training baselines on Qwen2.5-VL 3B and 7B models. VOGUE consistently
improves over GRPO, with Qwen2.5-VL-7B + VOGUE achieving the strongest average perfor-
mance across benchmarks.

Model HallusionBench ChartQA LogicVista Avg.
SFT + RL

R1-One-Vision-7B (Yang et al., 2025) 67.2 78.3 45.5 63.7
Vision-R1-7B Huang et al. (2025) 57.8 82.7 47.8 62.7
OpenVLThinker-7B (Deng et al., 2025) 60.0 80.2 47.3 62.5
VLAA-Thinker-7B (Chen et al., 2025a) 70.0 80.2 47.3 65.8

Zero RL

MM-Eureka-Qwen-7B (Meng et al., 2025) 66.4 79.9 47.3 64.5
ThinkLite-VL-7B (Wang et al., 2025b) 70.9 81.4 48.9 67.0
VL-Rethinker-7B (Wang et al., 2025a) 69.5 81.0 48.4 66.3

Qwen2.5-VL-3B (Bai et al., 2023) 61.4 73.8 33.3 56.2
+ GRPO 65.5 77.6 39.3 60.8
+ Pass@k Training (Chen et al., 2025b) 62.3 72.6 36.8 57.2
+ VOGUE 67.0 78.1 44.0 63.0

Qwen2.5-VL-7B (Bai et al., 2023) 66.9 79.8 45.5 64.1
+ GRPO 68.6 81.9 42.0 64.2
+ Pass@k Training (Chen et al., 2025b) 65.2 78.6 46.4 63.4
+ VOGUE 71.0 84.0 48.7 67.9

(a) Qwen2.5-VL-3B (b) Qwen2.5-VL-7B

Figure 2: Training accuracy rewards of GRPO and VOGUE on Qwen2.5-VL 3B and 7B mod-
els. VOGUE consistently achieves higher rewards than GRPO throughout training.

corporating visual uncertainty is helpful for guiding the agent toward visually uncertain states
and thereby enhancing exploration.

Effectiveness of Token Entropy. Next, we analyze the impact of the token entropy by remov-
ing the Be bonus. As illustrated in Figure 3a, performance drops compared to the full approach.
Whereas the visual uncertainty targets exploration in the visual state space, token entropy encour-
ages stochasticity in the textual output space. Removing both the visual uncertainty and token en-
tropy bonuses causes a more severe degradation. This is further supported by the results in Table 4
and Table 5 in Appendix A.3. These results demonstrates that maintaining textual stochasticity
is a complementary and beneficial mechanism alongside visually-guided exploration.

Effectiveness of Annealed Sampling. We evaluate the annealed sampling mechanism, which
gradually adjusts the probability of selecting the noisy branch versus the raw branch. To isolate
its effect, we replace it with a fixed sampling probability of 0.5. The results in Figure 3b show infe-
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Table 3: Model performance of pass@4 accuracy on diverse visual reasoning benchmarks. On
both Qwen2.5-VL 3B and 7B models, VOGUE consistently improves over GRPO and achieves the
highest average pass@4 accuracy.

Model MathVerse MathVista WeMath ChartQA LogicVista Avg.
Qwen2.5-VL-3B (Bai et al., 2023) 56.5 76.8 79.0 82.0 74.1 73.7

+ GRPO 53.5 77.6 82.2 81.6 65.8 72.1
+ Pass@k Training (Chen et al., 2025b) 54.2 77.5 78.9 84.3 73.4 73.7
+ VOGUE 55.9 79.2 83.9 83.3 67.6 74.0

Qwen2.5-VL-7B (Bai et al., 2023) 60.9 82.8 82.2 85.8 77.0 77.7
+ GRPO 60.2 82.5 85.0 85.1 72.1 77.0
+ Pass@k Training (Chen et al., 2025b) 60.5 80.6 80.5 85.5 75.7 76.6
+ VOGUE 61.0 83.7 86.0 87.0 72.3 78.0

(a) (b) (c)

(d) (e) (f)

Figure 3: Ablation studies on the effects of visual uncertainty, token entropy, sampling strat-
egy, divergence measure, and noise level. (a) Visual uncertainty and token entropy bonuses each
improve performance, and together yield the best results. (b) Annealed sampling outperforms fixed
sampling, confirming the benefit of dynamically controlling. (c–d) Symmetric KL provides stable
gains, while forward KL causes excessive visual uncertainty and degraded accuracy. (e–f) Moderate
noise (σ = 0.4) yields the best accuracy, while low noise limits exploration and high noise increases
variance.

rior performance compared to the full annealed strategy. Similar trends are observed in Table 6 and
Table 7 in Appendix A.3. This underscores the benefit of dynamically balancing the trade-off,
as early-stage exploration requires more noisy-branch updates while later-stage convergence
benefits from the stability of the raw branch.

Alternative Divergence Measures. To estimate visual uncertainty, we experiment with a forward
KL formulation instead of symmetric KL. However, as shown in Figure 3c, the forward KL diver-
gence leads to unstable training with accuracy declining. This occurs because forward KL encour-
ages the model to diverge excessively, which is reflected in Figure 3d, where the resulting visual
uncertainty becomes excessively large. Results in Table 8 and Table 9 in Appendix A.3 further con-
firm this finding. These results validate our choice of symmetric KL for promoting exploration
while maintaining training stability.

Different Noise Levels. Finally, We evaluate VOGUE under different noise injection levels by
varying the standard deviation of the Gaussian perturbation in the noisy branch (σ ∈ 0.2, 0.4, 0.8).
The results in Figure 3e indicate that moderate noise (σ = 0.4) provides the best accuracy. Low noise
(σ = 0.2) yields insufficient visual exploration, while high noise (σ = 0.8) introduces excessive
variance. Results in Table 10 and Table 11 in Appendix A.3 align with this observation. This shows
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that while noise is essential for quantifying uncertainty, an appropriate level is needed to avoid
both insufficient exploration and excessive variance.

Taken together, these ablation studies confirm that each component of VOGUE plays a distinct
and complementary role. The visual uncertainty bonus directs exploration in the visual space, to-
ken entropy sustains diversity in the textual output space, and annealed sampling adaptively balances
noisy and raw branches. Our analysis of divergence measures and noise levels further validates the
design choices that make VOGUE effective and stable.

5 RELATED WORK

Exploration in Text-Based Reasoning. Recent work on text-only RLVR has begun to tackle ex-
ploration explicitly. Complementary to outcome rewards, i-MENTOR (Gao et al., 2025) incor-
porates trajectory-aware intrinsic signals and dynamic reward scaling to improve exploration for
LLM reasoning. Replay-style methods, such as Retrospective Replay (Dou et al., 2025), revisit
promising early states to prevent exploration decay later in training. Others have proposed outcome-
based exploration schemes (Song et al., 2025) or have leveraged process rewards for more granular
guidance (Setlur et al., 2024), though reliably scoring intermediate steps remains a challenge. Addi-
tionally, upweighting negative-sample reinforcement has been shown to mitigate diversity collapse
and improve Pass@k (Zhu et al., 2025b).

Multimodal RLVR. RLVR has been increasingly applied to enhance the reasoning capabilities
of multimodal models. Yang et al. (2025) extended language reasoning with visual inputs, im-
proving visual question answering, while Huang et al. (2025) employed vision-grounded prompts
to enhance multi-step reasoning. Deng et al. (2025) leveraged large-scale visual instruction tuning
for improved cross-modal generalization, and Chen et al. (2025a) unified visual and textual signals
in a policy-learning framework. Meng et al. (2025) introduced hierarchical visual abstractions for
RL-guided multimodal planning and Wang et al. (2025a) iteratively refined answers through visual
reasoning and reflection. More recently, Li et al. (2025b) proposed a self-rewarding framework that
decomposes reasoning into visual perception and language reasoning, using self-generated rewards
to improve visual reasoning and reduce hallucinations.

Despite these advances, the critical balance of exploration and exploitation remains underexplored
in multimodal RLVR. Prior works typically focus on pass@1 accuracy Liu et al. (2025c); Zhu et al.
(2025a). Some studies note insufficient exploration in RL algorithms such as GRPO (Shao et al.,
2024), proposing dynamic KL strategies (Liu et al., 2025b) or rule-based process rewards (Zhang
et al., 2025), yet they do not explicitly encourage exploration. More recently, Pass@k Train-
ing (Chen et al., 2025b) used pass@k as the training reward and analyzed exploration–exploitation
trade-off, but its focus was primarily on text-based reasoning, offering limited insights for multi-
modal scenarios.

In contrast, VOGUE addresses this gap by coupling exploration to quantified visual uncertainty and,
to our knowledge, is among the first modality-aware exploration frameworks for RLVR. Moreover,
VOGUE is complementary to other language-side exploration strategies (e.g., temperature schedul-
ing (Liao et al., 2025), KL regularization (Liu et al., 2025a), and output-level diversity/novelty
bonuses (Li et al., 2025a)), which have shown benefits mainly in text RL and can be combined for
further gains.

6 CONCLUSIONS

We introduce VOGUE, a visual-uncertainty–guided exploration method for multimodal RLVR that
treats the image as a stochastic context. By quantifying sensitivity to semantics-preserving per-
turbations and shaping advantages with uncertainty- and entropy-based bonuses under an annealed
sampling schedule, VOGUE couples exploration directly to visual uncertainty while maintaining
stable optimization. Compared to the strong RLVR baseline GRPO, VOGUE achieves consistent
improvements in both pass@1 and pass@4 accuracy across diverse benchmarks, including mathe-
matical problem solving, hallucination detection, chart understanding, and logical reasoning. These
results highlight the effectiveness of VOGUE in enhancing multimodal reasoning. For a discussion
on future work, please see Appendix A.4.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of all training setups in Section 4.1 of
experimental setup. We list the system prompts used for training in Appendix A.2. The dataset used
is publicly available, and we will release the code upon publication.
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A APPENDIX

A.1 THE USE OF LLMS

We use LLMs to polish paper writing and refine grammar of the manuscript.

A.2 PROMPT TEMPLATES

System Prompt

You FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process MUST be enclosed within <think></think> tags.
The final answer MUST be put in \boxed{}.

A.3 ABLATION STUDIES

To assess the contribution of each component in VOGUE, we conduct a series of ablation studies
using the Qwen2.5-VL-7B model. We examine the effects of the visual uncertainty bonus, the to-
ken entropy bonus, the annealed sampling strategy, as well as the impact of alternative divergence
measures and varying noise levels. Evaluation is performed across six multimodal benchmarks, in-
cluding MathVerse (Zhang et al., 2024), MathVista (Lu et al., 2023), WeMath (Qiao et al., 2024),
HallusionBench (Guan et al., 2024), ChartQA (Masry et al., 2022), and LogicVista (Xiao et al.,
2024). These benchmarks together cover diverse aspects of multimodal reasoning, including math-
ematical problem solving, hallucination detection, chart interpretation, and logical reasoning. We
report pass@1 accuracy in the following tables for each ablation setting.

Table 4: Pass@1 accuracy on mathematical reasoning benchmarks testing the effectiveness of
visual uncertainty and token entropy. Removing either visual uncertainty or token entropy re-
duces performance, while removing both leads to a larger drop. This confirms that both components
are effective for enhancing exploration and improving performance.

Approach MathVerse MathVista WeMath Avg.
GRPO 48.0 72.1 69.5 63.2

VOGUE
Full approach 52.1 74.2 71.1 65.8

− Visual uncertainty 48.3 73.6 70.3 64.1
− Entropy 48.6 73.5 70.8 64.3
− Visual uncertainty & entropy 48.3 73.1 68.5 63.3

Table 5: Pass@1 accuracy on general-domain reasoning benchmarks testing the effectiveness
of visual uncertainty and token entropy. Removing either visual uncertainty or token entropy
reduces performance, while removing both leads to a larger drop. This demonstrates that both
components enhance exploration and thereby improve performance.

Approach HallusionBench ChartQA LogicVista Avg.
GRPO 68.6 81.9 42.0 64.2

VOGUE
Full approach 71.0 84.0 48.7 67.9

− Visual uncertainty 69.7 83.4 47.8 66.9
− Entropy 70.2 82.4 47.8 66.8
− Visual uncertainty & entropy 69.2 82.1 46.4 65.9
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Table 6: Pass@1 accuracy on mathematical reasoning benchmarks testing the effectiveness
of annealed sampling. Using fixed-probability sampling yields lower performance compared to
annealed sampling, underscoring the benefit of dynamically adjusting sampling probability.

Approach MathVerse MathVista WeMath Avg.
GRPO 48.0 72.1 69.5 63.2

VOGUE
Annealed Sampling 52.1 74.2 71.1 65.8
Fixed Prob 48.5 73.6 67.8 63.3

Table 7: Pass@1 accuracy on general-domain reasoning benchmarks testing the effectiveness
of annealed sampling. Fixed-probability sampling yields lower performance than annealed sam-
pling, highlighting the benefit of dynamically controlling the sampling probability.

Approach HallusionBench ChartQA LogicVista Avg.
GRPO 68.6 81.9 42.0 64.2

VOGUE
Annealed Sampling 71.0 84.0 48.7 67.9
Fixed Prob 69.9 82.6 46.9 66.5

A.4 DISCUSSIONS AND FUTURE WORK

A key strength of VOGUE is its modularity and practical design. While implemented here within
GRPO, its core mechanism is readily adaptable to other policy gradient methods and requires no
additional supervision, making it a practical, drop-in enhancement. This practicality extends to its
computational profile: VOGUE’s substantial performance gains are achieved with a modest 20%
overhead (4.95 vs. 4.12 minutes per step), a trade-off that is highly efficient compared to naive
online augmentation (i.e., treating each augmented view as an independent training sample). By
successfully pioneering the use of visual uncertainty, this work suggests a promising direction for
future exploration into more complex, cross-modal uncertainty schemes. Future research could
extend this framework to adaptively perturb both visual and textual inputs, potentially capturing
richer uncertainty landscapes and further strengthening reasoning agents.
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Table 8: Pass@1 accuracy on mathematical reasoning benchmarks with alternative divergence
measures. The results validate our choice of symmetric KL, which promotes exploration while
maintaining training stability, whereas forward KL causes excessive divergence and degrades per-
formance.

Approach MathVerse MathVista WeMath Avg.
GRPO 48.0 72.1 69.5 63.2

VOGUE
Symmetric KL 52.1 74.2 71.1 65.8
Forward KL 39.4 70.7 56.1 55.4

Table 9: Pass@1 accuracy on general-domain reasoning benchmarks with alternative diver-
gence measures. The results validate symmetric KL as it promotes exploration while maintaining
training stability, whereas forward KL causes excessive divergence and degrades performance.

Approach HallusionBench ChartQA LogicVista Avg.
GRPO 68.6 81.9 42.0 64.2

VOGUE
Symmetric KL 71.0 84.0 48.7 67.9
Forward KL 67.5 80.3 45.1 64.3

Table 10: Pass@1 accuracy on mathematical reasoning benchmarks with different noise levels.
Moderate noise (σ = 0.4) yields the best accuracy.

Approach MathVerse MathVista WeMath Avg.
GRPO 48.0 72.1 69.5 63.2

VOGUE
σ = 0.2 48.4 74.0 68.8 63.7
σ = 0.4 52.1 74.2 71.1 65.8
σ = 0.8 49.2 73.5 66.8 63.2

Table 11: Pass@1 accuracy on general-domain reasoning benchmarks with different noise
levels. Moderate noise (σ = 0.4) yields the best accuracy.

Approach HallusionBench ChartQA LogicVista Avg.
GRPO 68.6 81.9 42.0 64.2

VOGUE
σ = 0.2 69.4 81.9 45.3 65.5
σ = 0.4 71.0 84.0 48.7 67.9
σ = 0.8 70.4 82.9 46.2 66.5
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