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Abstract001

Large language models (LLMs) have trans-002
formed code generation. However, most exist-003
ing approaches focus on mainstream languages004
such as Python and Java, neglecting the Solid-005
ity language, the predominant programming006
language for Ethereum smart contracts. Due007
to the lack of adequate benchmarks for So-008
lidity, LLMs’ ability to generate secure, cost-009
effective smart contracts remains unexplored.010
To fill this gap, we construct SolEval, the first011
repository-level benchmark designed for So-012
lidity smart contract generation, to evaluate013
the performance of LLMs on Solidity. Sol-014
Eval consists of 1,125 samples from 9 differ-015
ent repositories, covering 6 popular domains,016
providing LLMs with a comprehensive eval-017
uation benchmark. Unlike the existing So-018
lidity benchmark, SolEval not only includes019
complex function calls but also reflects the020
real-world complexity of the Ethereum ecosys-021
tem by incorporating gas fee and vulnerabil-022
ity rate. We evaluate 10 LLMs on SolEval,023
and our results show that the best-performing024
LLM achieves only 26.29% Pass@10, high-025
lighting substantial room for improvement in026
Solidity code generation by LLMs. We release027
our data and code at https://anonymous.028
4open.science/r/SolEval-1C06/.029

1 Introduction030

The rapid expansion of blockchain technology and031

Decentralized Finance (DeFi) has led to a signif-032

icant surge in smart contract deployments. This033

growth brings about increased development pres-034

sures and elevated security demands, highlighting035

the critical need for efficient and reliable Solid-036

ity code generation tools. As the cornerstone of037

Ethereum smart contracts, Solidity plays a funda-038

mental role in enabling the decentralized applica-039

tions that are driving the blockchain revolution.040

Recently, methods based on large language mod-041

els (LLMs) have become the dominant approach042

contract Func {    

uint [] private deposits;    

function deposit() external payable {  

deposits.push(msg.value);    

}    

function getTotal() external view returns (uint) {

(for loop here...)        

total += deposits[i]; 

return total;   

}

}

import './DepositStorage.sol';

contract Repo is DepositStorage{

function deposit() external payable{

require(msg.value > 0, "…"); 

_updateDeposit(msg.value);

}  

function getTotal() external view 

returns (uint) {

return getTotalDeposit();

}

}

(a) Standalone Functions

(b) Non-standalone Functions

Figure 1: Examples of standalone and non-standalone
functions in Solidity with highlighted context dependen-
cies. Repository-level code generation usually contains
non-standalone function generation.

to code generation (Radford, 2018; Brown et al., 043

2020; Yu et al., 2024). These methods can gener- 044

ate the corresponding functions according to de- 045

scriptions in natural language. To assess the code 046

generation capabilities of models, researchers have 047

proposed a series of benchmarks (Du et al., 2023; 048

Yu et al., 2024; Li et al., 2024; Daspe et al., 2024). 049

As shown in Table 1, most of these benchmarks fo- 050

cus on mainstream programming languages such as 051

Python and Java, with little attention paid to the So- 052

lidity language. Different from the high flexibility 053

of programming languages like Python, Solidity’s 054

operation is constrained by gas fee (costs of execut- 055
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Table 1: Comparison of existing benchmarks and SolEval. Task: number of code generation tasks. SA Ratio: ratio
of standalone functions. Dependency: number of dependencies (e.g., cross-file invocations). Avg. Token: average
tokens in function requirements. Repo-Level: whether the benchmark is repository-level or not.

Benchmark Task SA Ratio Dependency File Avg. Token Language Repo-Level

CoNaLa (Yin et al., 2018) 500 100% 0 0 13.1 Python ✗
HumanEval (Chen et al., 2021) 164 100% 0 0 58.8 Python ✗
MBPP (Austin et al., 2021) 974 100% 0 0 16.1 Python ✗
PandasEval (Zan et al., 2022) 101 100% 0 0 29.7 Python ✗
NumpyEval (Zan et al., 2022) 101 100% 0 0 30.5 Python ✗
AixBench (Hao et al., 2022) 175 100% 0 0 34.5 Java ✗
ClassEval (Du et al., 2023) 100 100% 0 0 / Python ✗
Concode (Iyer et al., 2018) 2,000 20% 2,455 0 16.8 Java ✓
CoderEval (Yu et al., 2024) 230 36% 256 71 41.5 Python, Java ✓
DevEval (Li et al., 2024) 1,825 27% 4,448 164 101.6 Python ✓

BenchSol (Daspe et al., 2024) 15 100% 0 0 41.7 Solidity ✗
SolEval 1,125 89% 822 81 176.4 Solidity ✓

ing operations on a blockchain) and blockchain im-056

mutability, making Solidity code generation more057

challenging than general programming languages.058

To evaluate the coding abilities of LLMs in Solid-059

ity, Daspe et al. (2024) propose the first Solidity060

benchmark BenchSol. However, BenchSol is en-061

tirely generated by GPT-4, distinct from real-world062

scenarios. Moreover, this benchmark is severely063

limited in scale, featuring only 15 use cases, and is064

restricted to evaluating LLMs on standalone func-065

tions (i.e., Non-repository-level generation).066

To fill the gap in Solidity benchmarks aligned067

with the real world, we propose SolEval, the first068

benchmark that supports repository-level smart069

contract generation. As shown in Figure 1, Sol-070

Eval contains non-standalone functions that invoke071

context dependencies from other files, which is ab-072

sent in the existing Solidity benchmark. ❶ SolEval073

contains 1,125 samples from 9 real-world reposi-074

tories, covering 6 popular domains (e.g., security,075

economics, and games). ❷ SolEval is manually076

annotated by 5 master’s students with Solidity ex-077

perience. SolEval contains detailed requirements,078

repositories, codes, context information, and test079

cases. ❸ To evaluate secure and cost-effective080

smart contract generation, we incorporate gas fee081

and vulnerability rate attributes into SolEval.082

We evaluate 10 popular LLMs on SolEval,083

including closed-source models (e.g., GPT-4o084

and GPT-4o-mini) and open-source models (e.g.,085

CodeLlama and DeepSeek). The results reveal a086

striking performance gap: these models achieve a087

Pass@10 ranging from 5.91% to 26.29%, indicat-088

ing that their performance in Solidity code genera-089

tion is far from optimal, with significant room for090

improvement. The generated smart contracts ex-091

hibit varying gas fees and vulnerability rates, high- 092

lighting the dilemma of balancing cost efficiency 093

with security in contract generation. We also have 094

an interesting finding: DeepSeek-V3 ranks highest 095

in Pass@10 but generates contracts with high gas 096

fees, while DeepSeek-R1-Distill-Qwen-7B ranks 097

lowest but generates the cheapest contracts. This 098

contrast highlights a fundamental challenge in So- 099

lidity code generation: balancing functional cor- 100

rectness with gas efficiency. LLMs excelling in gen- 101

erating correct code may struggle with optimizing 102

gas costs, while models focused on optimizing gas 103

efficiency may sacrifice the quality or correctness 104

of the generated code. Additionally, we discover 105

that the inclusion of Retrieval-Augmented Genera- 106

tion (RAG) and contextual information improves 107

model performance, highlighting the importance 108

of incorporating contextual awareness in Solidity 109

code generation tasks. 110

In summary, our contributions are as follows: 111

• We point out the limitations of the existing bench- 112

mark for Solidity smart contract generation, high- 113

lighting its insufficient scale and misalignment 114

with real-world applications. 115

• We introduce the first repository-level benchmark 116

for Solidity smart contract generation, including 117

a large and diverse set of 1,125 samples from 9 118

real-world repositories, covering 6 popular do- 119

mains (i.e., security, finance, gaming, test suite, 120

community, and gas optimization). This bench- 121

mark incorporates essential attributes such as gas 122

fees and vulnerability rates, which are critical for 123

smart contract development. 124

• We conduct an extensive evaluation of 10 state- 125

of-the-art LLMs on SolEval, revealing their per- 126
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formance gaps when generating smart contracts.127

We also find that LLMs can generate better con-128

tracts when using RAG and context information.129

2 Benchmark - SolEval130

2.1 Overview131

SolEval contains 1,125 samples from 9 real-world132

code repositories (see §A), covering 6 popular do-133

mains (e.g., security, economics, and games).134

SolEval is designed for benchmarking LLMs on135

repository-level smart contract generation, which136

consists of two key phases: (1) LLM-based Solidity137

Code Generation (§2.2) and (2) Post-Generation138

Evaluation (§2.3).139

As illustrated in Fig. 2, the first phase involves140

the evaluated LLM taking a function signature, re-141

quirements, and repository dependencies as input142

(❶❷❸❹). The LLM then generates a function (❺)143

that satisfies the specified requirements. In the144

Post-Generation Evaluation phase, the generated145

function is integrated into the repository to get the146

generated smart contract, and its functional correct-147

ness (❻) and quality attributes (❼) are evaluated.148

2.2 LLM-based Solidity Code Generation149

The evaluated LLM receives the following inputs:150

❶ Function Signature: The function’s signature.151

❷ Requirement: A natural language description152

of the function, also referred to as ‘comment’ in153

later sections. ❸ + ❹ Repository Context: Code154

contexts (e.g., interfaces, functions, variables) de-155

fined outside the target code and invoked in the156

reference code. The LLM is then prompted (see §C157

for details) to generate a desired function, which is158

subsequently injected into the repository to get the159

smart contract for real-world code evaluation.160

2.3 Post-Generation Evaluation161

Following Britikov et al. (2024), we utilize Forge,162

which handles differences across Solidity compil-163

ers and the distribution of unit test files, to exe-164

cute the test cases. We evaluate functional cor-165

rectness (❻) using Pass@k and Compile@k, and166

assess quality attributes (❼) with Gas Fee and Vul.167

Pass@k (Functional Correctness). Pass@K168

measures the percentage of the problems for which169

at least one correctly (judged based on executing170

the corresponding test cases) generated solution171

among the top K samples generated by the LLM.172

To avoid the issue of high sampling variance, we173

use the same unbiased estimator of Pass@K im- 174

plemented in HumanEval (Chen et al., 2021) (see 175

§B.3 for details). 176

Compile@k (Functional Compilation Correct- 177

ness). We propose the Compile@K metric to 178

measure the percentage of the problems for which 179

at least one correctly compiled among the top 180

K samples generated by the LLM. Similarly to 181

Pass@K, we count the number of samples c′ ≤ n 182

that pass the compilation stage and calculate the 183

unbiased estimator 184

Compile@k := E
Problems

[
1−

(
n−c′

k

)(
n
k

) ]
. (1) 185

Gas Fee (Gas Consumption). For each sample, 186

we use Forge to execute the corresponding test 187

cases and calculate the gas fee, denoted as f ′
i . Then, 188

we also calculate the gas fee of the original func- 189

tion from the repository, denoted as fi. Finally, for 190

each function sample s, the number of samples per 191

function k, and the base LLM l, the intermediate 192

gas fee is calculated by accumulating the difference 193

(fi − f ′
i) for k samples per function. This result is 194

then accumulated for all function samples s. Given 195

that different LLMs can only generate the correct 196

contract for a portion of SolEval, and that the cor- 197

rectly generated functions of different LLMs often 198

do not fully intersect, we calculate gas fees only for 199

functions in the intersection. For example, consider 200

LLM A and LLM B: LLM A can solve problems 201

x and y, while LLM B can solve problems y and 202

z. The capabilities intersection Cintersect of LLM 203

A and LLM B only includes problem y, as this is 204

the only problem both models can handle. Thus, 205

we restrict our gas fee calculations to the functions 206

within this intersection, ensuring a fair comparison 207

across the models. The total gas fee for an LLM is 208

Gasl =
S∑

s=1

k∑
i=1

(fi− f ′
i) for s ∈ Cintersect. (2) 209

Vul (Vulnerability Rate). We calculate the Vul- 210

nerability Rate for each LLM with Slither to ana- 211

lyze the generated code for ‘high risk’ flagged with 212

‘high confidence’. Functions flagged with these 213

criteria are considered vulnerable. For example, in 214

a set of 100 functions, if 35 patches are vulnerable 215

and top-1 samples are evaluated, the rate is 35%. 216
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  Stats: SolEval benchmark is made up of 1,125 samples.
  Task: Repository-level Code Generation.
  Metrics: ⑥ Pass@k and Compile@k, ⑦ Gas Fee and Vul.

function ternary(bool condition, uint256 a, uint256 b)      

/**
 * @notice A branchless ternary function that returns one of two 
values based on a condition.
 * @param condition A boolean condition that determines which 
value to return.
 * @param a The value to return if the condition is true.
 * @param b The value to return if the condition is false.
 * @return The result of the ternary operation, either `a` or `b`.
*/

function ternary(bool condition, uint256 a, uint256 b) internal 

pure returns (uint256) {   

    unchecked {

        return b ^ ((a ^ b) * SafeCast.toUint(condition));

    }

}

pragma solidity ^0.8.20;

library SafeCast {
     function toUint248(…)
     …
     function toUint240(…)
     …
     function toInt32(…)
     …
     function toUint(bool b)
}

⑦ Quality

R Reentrancy Safe
R Bad randomness
R Integer Overflow
R Denial of Service
R Gas Optimized
R …

① Function Signature ③ Repository

Cross-file Dependency:
Math.sol::ternary(bool condition, 
uint256 a, uint256 b)

SafeCast.sol::toUint(bool b)

④ Dependency

② Requirement

⑤ Generated Code

function testSymbolicTernary(bool f, uint256 a, uint256 b) public pure {  
    R assertEq(Math.ternary(f, a, b), f ? a : b);   

}

⑥ Test Cases

Question  →  Answer

① + ② + ③ + ④ → ⑤..

Figure 2: Overview of the SolEval benchmark for Solidity code generation.

Project Selection

17,823 Functions from 64 Projects

1,125 Functions from 9 Projects

2,217 Test Cases

Function Parsing

Test Construction

Signature, Code, Original Comment

Executable Test Cases

Human Annotation

1,125 Functions with Test Cases

Human-labeled Comment

Context Parsing Context Dependency

SolEval

Figure 3: The process of constructing SolEval.

3 Benchmark Construction217

As shown in Fig. 3, the construction of SolEval218

involves five key phases, each designed to ensure219

the robustness and diversity of the dataset. These220

phases are carefully structured to handle the com-221

plexities of smart contract generation, covering ev-222

erything from project selection to context parsing.223

3.1 Project Selection224

To ensure SolEval’s practicality and diversity, we225

follow best practices (Chen et al., 2021; Yu et al.,226

2024; Liu et al., 2024b) and select functions from227

different open-source projects through four steps.228

First, we manually select six popular GitHub orga- 229

nizations, such as OpenZeppelin, that host Solidity 230

projects. We crawl all their public repositories, sort 231

them by star count in descending order, and filter 232

out low-star (i.e., with fewer than 40 stars) projects 233

lacking test cases or containing fewer than 10% 234

files written in Solidity language. By manually 235

selecting popular GitHub projects, we ensure that 236

SolEval assesses a model’s ability to generate smart 237

contracts that are more likely to be used within the 238

blockchain community. 239

We then select functions that may be used in 240

real scenarios based on three criteria: (1) We ex- 241

clude trivial functions with fewer than five lines 242

of code (LOC), following previous studies (Jiang 243

et al., 2024a); (2) We exclude functions that are 244

rarely deployed in real-world scenarios, as assessed 245

by five master’s students. Given that developers 246

may have varying preferences regarding frequently 247

used functions, the inclusion of a diverse set of 248

preferences helps mitigate potential bias; and (3) 249

We exclude test functions or deprecated functions. 250

3.2 Function Parsing 251

We extract all functions from the selected projects. 252

Since native Tree-sitter (Tree-sitter, 2022) support 253

for Solidity is inadequate for use, we design a 254

Solidity version of Tree-sitter to accurately parse 255

Solidity contracts and extract relevant informa- 256

tion (e.g., function identifiers, bodies, and require- 257

ments). From the extracted functions, we filter out 258
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tests, interfaces, and functions with LOC smaller259

than five, and retain those functions invoked by test260

functions, successfully compiled and passed the261

original test cases. This process results in 1,125262

function samples from different Solidity projects.263

3.3 Test Construction264

To enhance the reliability of the evaluation, we take265

meticulous steps to ensure the correctness and com-266

pleteness of the tests. First, We analyze and collect267

the unit tests included in the project. For tests that268

did not provide sufficient line or branch coverage,269

we manually wrote additional test cases to ensure270

full line and branch coverage for the functions.271

To further ensure the correctness of the assess-272

ment of the generated functions, we employ ad-273

vanced testing techniques (i.e., Fuzz, Invariant, and274

Differential Testing) using Forge (Foundry Book,275

2023). To maintain result reproducibility, we set276

the fuzzing seed to a fixed value (i.e., 666).277

To establish a mapping between the focal func-278

tions and their corresponding test cases, we fol-279

low Nie et al. (2023) and select the last function280

call before the first assertion from the test case.281

Therefore, we identify the test cases for each fo-282

cal function. This method minimizes the number283

of test cases per function. Evaluating the correct-284

ness of a function typically requires executing all285

test cases, which can be time-consuming. Conse-286

quently, in our experiment, we execute only the287

test cases that directly or indirectly call the target288

function, thereby reducing the testing time while289

maintaining comprehensive test coverage.290

3.4 Human Annotation291

Prompts play a crucial role in the performance292

of LLMs (Jang et al., 2023; Sarkar et al., 2022;293

Shrivastava et al., 2023; Zhou et al., 2022a,b). In294

code generation tasks, the quality of the generated295

code is significantly influenced by the input require-296

ments. Function-level comments serve multiple297

purposes, including explaining internal logic, de-298

scribing behaviour and external usage, and stating299

effects and precautions (Yu et al., 2024).300

We recruit five master’s students with at least301

three years of Solidity experience to provide302

double-checked, manually annotated function de-303

scriptions. There are two reasons for incorporat-304

ing manually annotated comments into SolEval:305

(1) to reduce the LLMs’ memorization effects, as306

original comments are highly likely to have been307

encountered during the pre-training phase, and (2)308

to provide high-quality comments for the functions 309

in SolEval. To ensure the quality and consistency 310

of the annotated function descriptions, we perform 311

an inter-annotator agreement analysis using Fleiss’ 312

Kappa (Fleiss, 1971). We classify the annotated 313

comments into four categories (i.e., intact, partially 314

intact, unclear, and unlabeled). By calculating the 315

observed agreement (Po) and the expected agree- 316

ment (Pe) under the assumption of independent 317

classifications, Fleiss’ Kappa serves as a reliable in- 318

dicator of annotator alignment, ranging from com- 319

plete agreement (κ = 1) to random agreement 320

(κ = 0). We consider 0.75 ≤ κ ≤ 1 an excellent 321

level of agreement, indicating that the annotators’ 322

decisions are highly consistent. 323

3.5 Context Parsing 324

One of the key differences between SolEval and 325

BenchSol (Daspe et al., 2024) is our consideration 326

of contextual dependencies. In repository-level 327

code generation, a token undefined error often oc- 328

curs when the necessary context is missing, leading 329

to compilation errors (Liao et al., 2024). There- 330

fore, providing relevant context (e.g., function sig- 331

natures) is essential to help SolEval validate the 332

model’s understanding of the requirement. 333

To maintain efficiency and avoid unnecessary 334

costs or performance degradation, it is crucial 335

to ensure that the contextual information is con- 336

cise (Liao et al., 2024). Following (Yu et al., 2024), 337

we define the context code (e.g., functions, vari- 338

ables, and interfaces) required by a function to 339

execute as its contextual dependencies. We identify 340

the contextual dependencies of a function through 341

a two-step program analysis of the entire project. 342

First, given a function to analyze, we retrieve the 343

corresponding source file from the database, and 344

then parse it to obtain a list of type, function, vari- 345

able, and constant definitions. Next, we use static 346

program analysis to identify all external invoca- 347

tions defined outside the current function, retriev- 348

ing the signatures of these invocations. We then 349

store these invocation signatures along with other 350

relevant information about the function sample. 351

4 Experimental Setup 352

We conduct the first study to evaluate existing 353

LLMs on repository-level Solidity code generation 354

by answering the following research questions: 355

• RQ-1 Overall Correctness. How do LLMs per- 356

form on Solidity code generation? 357
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• RQ-2 Sensitivity Analysis. How do different358

configurations affect the effectiveness of LLMs?359

4.1 Studied LLMs360

We select the 10 state-of-the-art LLMs widely used361

in recent code generation studies (Khan et al., 2023;362

Yan et al., 2023; Liao et al., 2024; Yu et al., 2024;363

Li et al., 2024). In particular, we focus on recent364

models released since 2022, and we exclude the365

small models (with less than 1B parameters) due366

to their limited efficacy. Table 2 presents the 10367

state-of-the-art LLMs studied in our experiments368

with their sizes and types. Our study includes a369

wide scope of LLMs that are diverse in multiple370

dimensions, such as (i) being both closed-source371

and open-source, (ii) covering a range of model372

sizes from 6.7B to 671B, (iii) being trained for373

general or code-specific purposes. For detailed374

descriptions of each model, refer to §B.1.375

Table 2: Overview of the studied LLMs
Type Name Size

General LLM

DeepSeek-V3 671B (API)
DeepSeek-R1-Distill-Qwen 7B / 32B
GPT-4o -
GPT-4o-mini -

Code LLM

CodeLlama 7B / 34B
DeepSeek-Coder 6.7B / 33B
DeepSeek-Coder-V2-Lite 16B
Magicoder-S-DS 6.7B
OpenCodeInterpreter-DS 6.7B
Qwen2.5-Coder 7B / 32B

4.2 Evaluation Methodology and Metrics376

We adopt the Pass@K and propose the Com-377

pile@K. The detailed explanations of the metrics378

are in §2.3. We set the total number (denoted as n)379

of samples generated by an LLM to 10, and then380

calculate Pass@K for the LLM with K’s value of381

1, 5, and 10, respectively, which is also the case382

for Compile@K. When k = 1, we use the greedy383

search and generate a single program per require-384

ment. When k > 1, we use the nucleus sampling385

with a temperature of 1 and sample k programs per386

requirement. We set the top-p to 0.95 and the max387

generation length to 512. We also use the Vul (i.e.,388

Vulnerability Rate) and Gas Fee metrics. The detail389

of these metrics is illustrated in §2.3. We follow390

Parvez et al. (2021); Chen et al. (2024); Yin et al.391

(2024b) and use RAG to select the best examples392

and collect a database from our projects for RAG393

based on the functions that are excluded from SolE-394

val. For detailed descriptions of RAG, refer to §C.3.395

Note that all experimental results are averaged over396

five independent runs.397

5 Results 398

5.1 RQ-1 How do LLMs perform on Solidity 399

code generation? 400

Evaluation of Pass@k and Compile@k for gen- 401

erated code. Table 3 presents the overall per- 402

formance of state-of-the-art LLMs on SolEval. 403

Among the 6.7B-to-16B models, DeepSeek-Coder- 404

Lite achieves the highest Pass@1 and Compile@1, 405

surpassing other models. Notably, DeepSeek-R1- 406

Distill-Qwen-7B, which claims comparable perfor- 407

mance to ChatGPT-o1-mini on benchmarks such 408

as LiveCodeBench and CodeForces (DeepSeek, 409

2025), underperforms compared to CodeLlama- 410

7B. This discrepancy is likely due to DeepSeek- 411

R1-Distill’s lack of knowledge of Solidity, high- 412

lighting the importance of a specialized bench- 413

mark like SolEval. Among the 32B-to-34B mod- 414

els, Qwen2.5-Coder outperforms others in both 415

Pass@k and Compile@k. Overall, DeepSeek-V3 416

performs best with a 26.29% Pass@10. It is note- 417

worthy that DeepSeek-R1-Distill-Qwen-32B signif- 418

icantly outperforms its 7B counterpart, maintaining 419

most of its Solidity code generation capabilities. 420

Evaluation of Gas Fee and Vulnerability Rate 421

for generated code. As shown in Table 3, there is 422

a significant variation in gas fee and vulnerability 423

rate across various LLMs. DeepSeek-V3 ranks first 424

in Pass@k but generates the most gas-inefficient 425

contracts among the 32B-to-671B models. Addi- 426

tionally, GPT-4o-mini, while being outperformed 427

by GPT-4o in Pass@k and vulnerability rate, excels 428

in generating contracts with lower gas fee. 429

5.2 RQ-2 How do different configurations 430

affect the effectiveness of LLMs? 431

Impact of different example numbers. As previ- 432

ous studies (Brown et al., 2020; Liao et al., 2024) 433

have shown, the number of examples provided has 434

a significant impact on LLMs’ performance. To 435

explore this, we adjust the number of examples 436

while keeping other parameters and hyperparame- 437

ters constant to ensure a fair comparison. We do 438

not conduct experiments in a zero-shot setting, as 439

LLMs may generate unnormalized outputs without 440

a prompt template, which would hinder automated 441

extraction. From Fig. 4, we observe that as the 442

number of examples increases, both the average 443

token length and time cost rise sharply, while the 444

improvement in Pass@k remains modest. Based 445

on these findings, we perform our ablation studies 446

(Table 3 and 4) using a one-shot setting in SolEval. 447
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Table 3: Performance of LLMs on SolEval, evaluated using Pass@k, Compile@k, Gas fee (Fee), and Vulnerability
Rate (Vul). The table presents results under the one-shot setting with RAG and Context. Bold values indicate the
highest performance in each respective column.

LLMs Size Pass@1 Pass@5 Pass@10 Compile@1 Compile@5 Compile@10 Fee Vul

6.7B to 16B

DeepSeek-R1-Distill-Qwen 7B 2.08% 4.50% 5.91% 6.37% 18.27% 26.29% -3472 10.59%
DeepSeek-Coder-Lite 16B 10.10% 14.94% 16.79% 39.44% 54.21% 57.55% -8199 26.91%
DeepSeek-Coder 6.7B 8.39% 14.25% 16.68% 32.45% 50.74% 54.59% -7195 23.17%
CodeLlama 7B 5.15% 11.38% 14.26% 19.88% 43.05% 49.95% +18267 25.00%
Magicoder-S-DS 6.7B 7.26% 13.80% 16.68% 26.81% 48.77% 53.64% -8427 24.33%
OpenCodeInterpreter-DS 6.7B 7.05% 12.96% 15.66% 27.05% 48.71% 53.76% -8802 27.08%
Qwen2.5-Coder 7B 9.13% 15.28% 17.44% 33.31% 50.34% 54.44% -9791 29.26%
GPT-4o-mini - 7.18% 12.37% 14.69% 38.04% 53.18% 56.66% -9964 34.01%

32B to 671B

DeepSeek-V3 671B 21.72% 24.99% 26.29% 53.35% 57.57% 58.61% -7525 26.61%
DeepSeek-R1-Distill-Qwen 32B 10.19% 17.06% 19.77% 31.99% 55.31% 61.31% -7894 23.84%
DeepSeek-Coder 33B 8.32% 15.57% 18.92% 29.35% 50.08% 55.39% -8706 23.08%
CodeLlama 34B 6.80% 13.52% 16.47% 24.59% 48.68% 54.80% -8412 25.47%
Qwen2.5-Coder 32B 13.46% 19.28% 21.44% 44.03% 55.53% 57.87% -7959 24.52%
GPT-4o - 12.96% 20.79% 23.70% 47.04% 58.45% 60.74% -9640 21.50%

Impact of different selection strategies. RAG448

retrieves relevant codes from a retrieval database449

and supplements this information for code gener-450

ation (Parvez et al., 2021). To ensure a fair com-451

parison, we set the number of examples to one and452

evaluated the results of RAG versus random selec-453

tion on the same LLM (i.e., DeepSeek-V3). From454

Table 4, Pass@1 and Compile@1 are higher when455

RAG is enabled, indicating that it improves the456

effectiveness of code generation.457
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Figure 4: Performance of Qwen2.5-Coder-7B. The x-
axis represents the number of shots.

Impact of Context Information. Since that rel-458

evant context typically enhances performance in459

other programming languages, we conduct an abla-460

tion study to examine the influence of context on461

the quality of LLM-generated contracts. Table 4462

shows that providing context information improves463

both Pass@1 and Compile@1. However, there is464

no clear correlation between gas fees, vulnerability465

rate, and the presence of context information.466

5.3 Empirical Lessons467

RAG and Context Information improve LLMs’468

performance in Solidity smart contract gener-469

ation. As shown in Table 4, both Pass@1 and470

Table 4: Ablation study on the effect of RAG and Con-
text on DeepSeek-V3’s (one-shot) performance.

RAG Context Pass@1 Compile@1 Fee Vul

✓ ✓ 21.72% 53.35% -7525 26.61%
✗ ✓ 20.24% 51.08% 3828 23.68%
✓ ✗ 21.28% 52.54% -708 26.13%
✗ ✗ 20.17% 50.32% 768 26.83%

Compile@1 are higher when using RAG and con- 471

text information. This suggests that LLMs benefit 472

from RAG and relevant contextual dependencies 473

in generating more accurate and functional con- 474

tracts. However, no significant correlation was ob- 475

served between gas fee or vulnerability rate and the 476

presence of context or RAG, indicating that while 477

context and RAG enhance correctness, they do not 478

necessarily influence efficiency or security. 479

While LLMs can generate pretty nice contracts 480

with challenging requirements, they can fail 481

in some really easy cases. Fig. 8 illustrates an 482

example of GPT-4o solving a difficult require- 483

ment. On the other hand, Fig. 9 is an instance 484

of DeepSeek-R1-Distill-Qwen-7B failing an easy 485

problem. The detailed prompts and generated solu- 486

tions are also provided in Fig. 8 and Fig. 9. 487

Larger language models do not necessarily im- 488

prove the gas fee of the generated code. In Ta- 489

ble 3, DeepSeek-V3 (671B) ranks first in Pass@k 490

but generates the most gas-inefficient contracts 491

among the 32B-to-671B LLMs. Furthermore, GPT- 492

4o-mini is outperformed by GPT-4o in Pass@k but 493

excels in crafting contracts that cost less gas fee. 494
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6 Related Work495

6.1 Large Language Model496

The advancement of pre-training technology has497

significantly advanced code generation in both498

academia and industry (Li et al., 2022; Shen et al.,499

2022; Nijkamp et al., 2022; Fried et al., 2023).500

This has led to the emergence of numerous Large501

Language Models (LLMs) that have made sub-502

stantial strides in code generation, including Chat-503

GPT (OpenAI, 2022), Magicoder (Wei et al., 2023),504

CodeLlama (Roziere et al., 2023), and Qwen (Bai505

et al., 2023), DeepSeek-Coder (DeepSeek, 2024b)506

and OpenCodeInterpreter (Zheng et al., 2024).507

To optimize LLMs for various code generation508

scenarios, some previous studies focus on enhanc-509

ing prompt engineering by introducing specific pat-510

terns, such as Structured Chain-of-Thought (Yin511

et al., 2024b; Li et al., 2025), Self-planning (Jiang512

et al., 2024b), Self-debug (Chen et al., 2023; Xia513

and Zhang, 2023), and Self-collaboration (Dong514

et al., 2024; Yin et al., 2024a). However, these515

efforts primarily address mainstream programming516

languages (e.g., Java, Python, and C++) (Yin et al.,517

2024a,c; Xia and Zhang, 2023).518

6.2 Code Generation Benchmark519

Existing benchmarks predominantly focus on main-520

stream programming languages (e.g., Python, Java),521

giving insufficient attention to Solidity language.522

For mainstream languages, HumanEval is a523

widely recognized benchmark for evaluating code524

generation models on the functional correctness of525

code generated from docstrings (Chen et al., 2021).526

It consists of 164 hand-crafted programming prob-527

lems, each with a corresponding docstring, solution528

in Python, function signature, body, and multiple529

unit tests. Following HumanEval, AiXBench (Hao530

et al., 2022) was introduced to benchmark code gen-531

eration models for Java. AiXBench contains 175532

problems for automated evaluation and 161 prob-533

lems for manual evaluation. The authors propose a534

new metric to automatically assess the correctness535

of generated code and a set of criteria for manually536

evaluating the overall quality of the generated code.537

MultiPL-E (Cassano et al., 2023) is the first multi-538

language parallel benchmark for text-to-code gen-539

eration. It extends HumanEval and MBPP (Austin540

et al., 2021) to support 18 programming languages.541

While all the aforementioned benchmarks fo-542

cus on standalone functions, DS-1000 (Lai et al.,543

2023) introduces non-standalone functions. It in-544

cludes 1000 problems, covering seven widely used 545

Python data science libraries, including NumPy, 546

Pandas, TensorFlow, PyTorch, Scipy, Scikit-learn, 547

and Matplotlib. To mitigate data leakage, the au- 548

thors manually modify functions and emphasize 549

the use of real development data in DS-1000. 550

Concode (Iyer et al., 2018) is a large dataset con- 551

taining over 100,000 problems from Java classes in 552

open-source projects. The authors collect Java func- 553

tions with at least one contextual dependency from 554

approximately 33,000 GitHub repositories. These 555

functions are paired with natural language annota- 556

tions (e.g., Javadoc-style method descriptions) and 557

code. The dataset is split at the repository level 558

rather than the function level, and while it includes 559

contextual dependencies, it uses BLEU as the sole 560

evaluation metric and does not evaluate the correct- 561

ness of the generated functions. Additionally, none 562

of the above benchmarks supports Solidity. 563

For Solidity language, BenchSol (Daspe et al., 564

2024) is the only available benchmark for Solid- 565

ity smart contract generation. It contains 15 use 566

cases of varying difficulty levels and utilizes Slither 567

and Hardhat. However, BenchSol is hand-crafted, 568

poorly aligned with real-world code repositories, 569

and extremely limited in scale, only supporting 570

the evaluation of standalone functions (i.e., Non- 571

repository-level generation) for LLMs. 572

7 Conclusion and Future Work 573

This paper presents a new benchmark named Sol- 574

Eval to evaluate LLMs’ effectiveness in Solidity 575

smart contract generation scenarios. Compared 576

with BenchSol (Daspe et al., 2024), SolEval sup- 577

ports repository-level smart contract generation and 578

excels in scale (75 times in number of tasks) and 579

real-world code alignment. Meanwhile, our bench- 580

mark takes vulnerability rate and gas fee into con- 581

sideration, both of which are crucial for secure and 582

cost-effective smart contract development. The ex- 583

perimental results show that SolEval can reveal the 584

weaknesses of 10 state-of-the-art LLMs, highlight- 585

ing the limitations of these LLMs in generating 586

non-standalone Solidity functions. 587

In the future, there are two main directions for 588

extending SolEval. Firstly, we will look for more 589

high-quality code repositories from GitHub and en- 590

large our dataset with more projects and test cases. 591

Secondly, we plan to support more programming 592

languages to make it a multilingual benchmark. 593
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Limitations594

We believe that SolEval has four limitations:595

• SolEval is currently a monolingual benchmark,596

focusing solely on Solidity code generation. This597

approach overlooks the necessity for LLMs to598

comprehend requirements in various natural lan-599

guages and to generate code in multiple program-600

ming languages, including Vyper and Rust. Rec-601

ognizing this limitation, we plan to develop a602

multilingual version of SolEval in future work to603

better assess LLMs’ capabilities across diverse604

linguistic and programming contexts.605

• Due to funding constraints, we were unable to606

evaluate SolEval on GPT-o3-mini-high and its607

competitors (e.g., Claude 3.5) in our study. This608

limitation may affect the generalizability of our609

findings, as these models have demonstrated ad-610

vanced capabilities in various benchmarks.611

• The function samples in SolEval are drawn from612

9 GitHub repositories, which may not be suf-613

ficient for a benchmark on par with those for614

mainstream programming languages. However,615

given the limited availability and accessibility of616

high-quality Solidity datasets, we have made a617

trade-off between repository quality and quantity.618

• The gas fee and vulnerability rate metrics used619

in SolEval are limited to evaluating the gas ef-620

ficiency and potential vulnerabilities of smart621

contracts without providing mechanisms for their622

optimization or remediation. In future work, we623

plan to extend our research to include methods624

for gas optimization and vulnerability detection,625

thereby enhancing the practical applicability of626

SolEval in improving smart contract performance627

and security.628

Ethics Consideration629

SolEval is collected from real-world smart contract630

repositories. All samples in SolEval are manually631

reviewed by five master’s students, under the super-632

vision of two PhD researchers in the field of code633

generation. We ensure that none of the samples634

contain private information or offensive content.635
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A Statistics of SolEval898

The statistics for the 9 projects are shown in Table 5.899

The functions that are filtered out can still serve as900

knowledge databases for RAG to select examples.901

Table 5: The statistics of the 9 projects. Fi.: Filtered
Functions with filter rules defined in Section 3.1.

Project Function Test Case LOC

Solady 4,570 1,389 9.68
Contracts 2,453 217 7.39
Ethernaut 445 86 6.10
foundry-upgrades 5,317 70 4.70
Account2 13 2 6.93
community-contracts 1,372 12 3.77
contracts-upgradeable 1,663 161 4.53
Uniswap-solidity 39 10 15.8
Forge-std 1,951 270 8.66

Total 17,823 (Fi.: 1,125) 2,217 6.76

B Experimental Details902

B.1 Base LLMs903

In this paper, we select 10 popular LLMs as base904

LLMs and evaluate them on SolEval. The details905

of these LLMs are described as follows.906

• GPT-4o mini (OpenAI, 2024a) is OpenAI’s most907

cost-effective small model, designed to make AI908

technology more accessible. It offers enhanced909

performance at a significantly reduced cost, mak-910

ing it over 60% cheaper than GPT-3.5 Turbo.911

GPT-4o mini supports both text and vision in-912

puts and outputs. It features a context window of913

128,000 tokens and can handle up to 16,000 out-914

put tokens per request. The model’s knowledge915

base is current up to October 2023, and it utilizes916

an improved tokenizer for more cost-effective917

handling of non-English text.918

• GPT-4o (OpenAI, 2024b) is OpenAI’s flagship919

model, designed to process and generate text,920

images, and audio inputs and outputs. Trained921

end-to-end across text, vision, and audio, GPT-922

4o is capable of handling a wide range of multi-923

modal tasks. It delivers enhanced performance924

across various benchmarks, particularly excelling925

in voice, multilingual, and vision tasks, setting926

new records in audio speech recognition and927

translation. The model features a context window928

of 128,000 tokens and can handle up to 16,000929

output tokens per request. Additionally, GPT-4o930

can respond to audio inputs in as little as 232931

milliseconds, with an average response time of932

320 milliseconds, closely matching human con- 933

versation speed. While it matches GPT-4 Turbo 934

in performance for English text and code, GPT- 935

4o offers significant improvements in handling 936

non-English text. Moreover, it is faster and 50% 937

more cost-effective in the API, with notable ad- 938

vancements in vision and audio understanding 939

compared to existing models. 940

• DeepSeek-R1 (DeepSeek, 2025) is a series of 941

reasoning-focused large language models de- 942

veloped by DeepSeek, a Chinese AI company 943

founded in 2023. These models are trained us- 944

ing large-scale reinforcement learning (RL) with- 945

out prior supervised fine-tuning (SFT), enabling 946

them to develop advanced reasoning capabilities 947

such as self-verification, reflection, and extended 948

chain-of-thought generation. DeepSeek-R1 has 949

demonstrated performance comparable to Ope- 950

nAI’s o1 model across various tasks, including 951

mathematics, code generation, and general rea- 952

soning. The models are available in sizes ranging 953

from 1.5 billion to 70 billion parameters, offer- 954

ing flexibility for different applications. Notably, 955

DeepSeek has open-sourced these models, al- 956

lowing the research community to access and 957

build upon their advancements. We evaluated 958

DeepSeek-R1-Distill-Qwen-7B, 32B on SolEval. 959

• CodeLlama (Roziere et al., 2023) is a family of 960

large language models developed by Meta AI, 961

specializing in code generation and understand- 962

ing tasks. Based on the Llama 2 architecture, 963

CodeLlama has been fine-tuned on extensive 964

code datasets to enhance its performance in var- 965

ious programming languages. The models are 966

available in sizes ranging from 7 billion to 70 967

billion parameters, offering flexibility to meet 968

diverse application needs. CodeLlama supports 969

infilling capabilities, allowing it to generate code 970

snippets based on surrounding context, and can 971

handle input contexts up to 100,000 tokens, mak- 972

ing it suitable for complex code generation tasks. 973

The family includes different variants: CodeL- 974

lama for General-purpose code synthesis and un- 975

derstanding, CodeLlama-Python for Python pro- 976

gramming tasks, and CodeLlama-Instruct Fine- 977

tuned for instruction-following tasks. These 978

models have demonstrated state-of-the-art perfor- 979

mance on various code-related benchmarks, in- 980

cluding Python, C++, Java, PHP, C#, TypeScript, 981

and Bash. They are designed to assist in code 982
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completion, bug fixing, and other code-related983

tasks, thereby improving developer productivity.984

We evaluated CodeLlama-7B, 34B on SolEval.985

• Qwen (Bai et al., 2023) is a series of large lan-986

guage models developed by Alibaba Cloud, de-987

signed to handle a wide range of natural lan-988

guage processing tasks. The models are based989

on the Llama architecture and have been fine-990

tuned with techniques like supervised fine-tuning991

(SFT) and reinforcement learning from human992

feedback (RLHF) to enhance their performance.993

Qwen models are available in various sizes, rang-994

ing from 0.5 billion to 72 billion parameters, and995

support multilingual capabilities, including En-996

glish, Chinese, Spanish, French, German, Arabic,997

Russian, Korean, Japanese, Thai, Vietnamese,998

and more. They have demonstrated competitive999

performance on benchmarks such as MMLU, Hu-1000

manEval, and GSM8K, showcasing their profi-1001

ciency in language understanding, code genera-1002

tion, and mathematical reasoning. We evaluated1003

Qwen2.5-Coder-7B, 32B on SolEval.1004

• Magicoder (Wei et al., 2023) is a series of large1005

language models developed by the Institute for1006

Software Engineering at the University of Illinois1007

Urbana-Champaign. These models are specifi-1008

cally designed to enhance code generation ca-1009

pabilities by leveraging open-source code data.1010

Magicoder has demonstrated substantial improve-1011

ments over existing code models, achieving state-1012

of-the-art performance on various coding bench-1013

marks, including Python text-to-code genera-1014

tion, multilingual coding, and data science pro-1015

gram completion. Notably, MagicoderS-CL-7B,1016

based on CodeLlama, surpasses prominent mod-1017

els like ChatGPT on the HumanEval+ bench-1018

mark, achieving a pass@1 score of 66.5 com-1019

pared to ChatGPT’s 65.9. This advancement1020

underscores the effectiveness of utilizing open-1021

source code data for instruction tuning in code1022

generation tasks. We evaluated Magicoder-S-DS-1023

6.7B on SolEval.1024

• OpenCodeInterpreter (Zheng et al., 2024) is an1025

open-source suite of code generation systems1026

developed to bridge the gap between large lan-1027

guage models and advanced proprietary systems1028

like the GPT-4 Code Interpreter. It significantly1029

enhances code generation capabilities by integrat-1030

ing execution and iterative refinement, enabling1031

models to refine their output based on real-time1032

execution feedback. This iterative process im- 1033

proves the accuracy and efficiency of generated 1034

code. The system is designed to work seam- 1035

lessly with multiple programming languages and 1036

has been benchmarked against various coding 1037

tasks, demonstrating considerable improvements 1038

in code generation performance. 1039

• DeepSeek-V3 (Liu et al., 2024a) is a large-scale 1040

language model developed by DeepSeek, featur- 1041

ing 671 billion parameters with 37 billion ac- 1042

tivated for each token. It employs a Mixture- 1043

of-Experts (MoE) architecture, utilizing Multi- 1044

head Latent Attention (MLA) and DeepSeek- 1045

MoE frameworks to achieve efficient inference 1046

and cost-effective training. The model was 1047

pre-trained on 14.8 trillion diverse tokens, fol- 1048

lowed by Supervised Fine-Tuning and Reinforce- 1049

ment Learning stages to enhance its capabili- 1050

ties. DeepSeek-V3 has demonstrated perfor- 1051

mance comparable to leading closed-source mod- 1052

els, while requiring only 2.788 million H800 1053

GPU hours for full training. 1054

• DeepSeek-Coder (DeepSeek, 2024b) is a se- 1055

ries of code language models developed by 1056

DeepSeek, trained from scratch on 2 trillion to- 1057

kens comprising 87% code and 13% natural lan- 1058

guage data in both English and Chinese. These 1059

models are available in sizes ranging from 1.3 bil- 1060

lion to 33 billion parameters, offering flexibility 1061

to meet various requirements. They have demon- 1062

strated state-of-the-art performance among pub- 1063

licly available code models on benchmarks such 1064

as HumanEval, MultiPL-E, MBPP, DS-1000, and 1065

APPS. Additionally, DeepSeek-Coder models 1066

support project-level code completion and infill- 1067

ing tasks, thanks to their 16,000-token context 1068

window and fill-in-the-blank training objective. 1069

We evaluated DeepSeek-Coder-6.7B, 33B on Sol- 1070

Eval. 1071

• DeepSeek-Coder-V2 (DeepSeek, 2024a) is an 1072

open-source Mixture-of-Experts (MoE) code lan- 1073

guage model developed by DeepSeek. It builds 1074

upon the DeepSeek-V2 model, undergoing fur- 1075

ther pre-training on an additional 6 trillion tokens 1076

to enhance its coding and mathematical reason- 1077

ing capabilities. This model supports an extended 1078

context length of up to 128,000 tokens, accommo- 1079

dating complex code generation tasks. DeepSeek- 1080

Coder-V2 has demonstrated performance compa- 1081

rable to leading closed-source models, including 1082
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GPT-4 Turbo, in code-specific tasks. It also offers1083

support for 338 programming languages, signifi-1084

cantly expanding its applicability across diverse1085

coding environments. We evaluated DeepSeek-1086

Coder-V2-Lite-Instruct-16B on SolEval.1087

B.2 Experimental Settings1088

We develop the generation pipeline in Python, uti-1089

lizing PyTorch (Paszke et al., 2019) implementa-1090

tions of models such as DeepSeek-Coder, CodeL-1091

lama, Qwen, and Magicoder. We load model1092

weights and generate outputs using the Hugging-1093

face library (Jain, 2022).1094

We select models with parameter sizes ranging1095

from 7B to 34B, including DeepSeek-Coder 6.7B,1096

CodeLlama 7B, Qwen2.5-Coder 7B, and a 671B1097

DeepSeek-V3 (accessed via the online API). The1098

constraint on model size is determined by our avail-1099

able computing resources.1100

The evaluation is conducted on a 16-core work-1101

station equipped with an Intel(R) Xeon(R) Gold1102

6226R CPU @ 2.90GHz, 192GB RAM, and 81103

NVIDIA RTX A8000 GPUs, running Ubuntu1104

20.04.1 LTS. For reproduction of the experiment in1105

Table 3, approximately one week of computational1106

time on a machine with the above configuration1107

is required. For the experiment in Table 4, repro-1108

duction is estimated to take about 24 hours. The1109

computational budget, including GPU hours, the1110

number of GPUs, and the total parallelism across1111

them, is crucial for understanding the computa-1112

tional requirements to replicate this work.1113

B.3 Pass@k Calculation and Its Necessity for1114

Estimation1115

In this study, we adopt the Pass@k metric to eval-1116

uate the functional correctness of the generated1117

Solidity code. The Pass@k metric has been widely1118

used to assess the success rate of models in gener-1119

ating code that meets specified requirements (Chen1120

et al., 2021; Yu et al., 2024; Daspe et al., 2024).1121

Specifically, for each task, the model generates k1122

code samples per problem, and a problem is consid-1123

ered solved if at least one of the generated samples1124

passes the unit tests. The overall Pass@k score is1125

then calculated by evaluating the fraction of prob-1126

lems for which at least one sample passes.1127

While the basic Pass@k metric offers a straight-1128

forward measure of success, it can have a high1129

variance when evaluating a small number of sam-1130

ples. To reduce this variance, we follow a more1131

robust approach, as outlined by Kulal et al. (2019).1132

Instead of generating only k samples per task, we 1133

generate n ≥ k samples for each problem (in this 1134

study, we set n = 10 and k ≤ 10). We then count 1135

the number of correct samples, denoted as c, where 1136

each correct sample passes the unit tests. The unbi- 1137

ased estimator for Pass@k is computed as: 1138

Pass@k := E
Requirements

[
1−

(
n−c
k

)(
n
k

) ]
, (3) 1139

where
(
n
k

)
is the binomial coefficient, represent- 1140

ing the number of ways to choose k successful 1141

samples from n generated samples. 1142

The reason for estimating Pass@k using this 1143

method is to account for the inherent randomness 1144

and variance in code generation tasks. Generating 1145

multiple samples per task reduces the likelihood 1146

that the model’s success rate is affected by outliers 1147

or variability in the generated code. By employing 1148

this unbiased estimator, we ensure that our Pass@k 1149

metric provides a more stable and reliable evalua- 1150

tion of the models’ performance. 1151

The estimation approach also helps mitigate 1152

the computational cost associated with calculating 1153

Pass@k directly for each possible subset of sam- 1154

ples, which would be computationally expensive 1155

and inefficient, especially when evaluating a large 1156

number of tasks. Thus, the unbiased estimator al- 1157

lows us to balance the trade-off between accuracy 1158

and computational efficiency. 1159

C Benchmark Format 1160

C.1 Few-shot Learning 1161

Following previous studies (Brown et al., 2020), 1162

few-shot learning will greatly improve the effec- 1163

tiveness of language models. Therefore, our bench- 1164

mark supports prompts from one-shot to three-shot. 1165

Theoretically, you can set n with a very large num- 1166

ber, but that will bring serious performance is- 1167

sues (Vaswani, 2017). Here we recommend setting 1168

n below 3 for a better trade-off. 1169

C.2 Prompt Template 1170

As shown in Fig. 5, there are three parts in this 1171

prompt template. 1172

❶ Role Designation: We start a role for 1173

LLM with an instruction like “// IMPLEMENT 1174

THE FUNCTIONALITY BASED ON THE 1175

PROVIDED REQUIREMENT”. 1176

❷ Requirement: the human-written require- 1177

ment for the function sample. We add 1178
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the “// START_OF_REQUIREMENT” and “//1179

END_OF_REQUIREMENT” instructions to help1180

LLMs formalize their predictions.1181

❸ Function Signature: In Fig. 5, the first func-1182

tion between line 4 to line 7 is for the LLM to1183

understand the input format. The function signa-1184

ture in line 34 is provided for the LLM as a hint. As1185

for Fig. 6, the LLM generates the whole function1186

body for “function pack_1_1” and ends the1187

prediction with an “// END_OF_FUNCTION”.1188

❹ Context (Optional): When a function1189

sample has context dependency, we in-1190

clude the context in the prompt. We add1191

the “// START_OF_CONTEXT” and “//1192

END_OF_CONTEXT” as instructions to help1193

LLMs distinguish between context and focal1194

function.1195

C.3 Dataset Attributes1196

We have three data files that are required for Solid-1197

ity smart contract generation.1198

1. dataset.json1199

2. example.json1200

3. raw.json1201

The dataset.json contains the detailed in-1202

formation (e.g., signature, function body, com-1203

ment) of the to-be-generate function. While the1204

example.json contains the functions that will1205

be leveraged at the RAG stage. These functions are1206

without test cases, but with curated comments that1207

are useful as a part of the prompt. Note that when1208

generating functions without RAG, SolEval will1209

randomly choose k (k-shot generation) examples1210

from example.json to formulate a prompt.1211

In the following subsections, We will define each1212

data attribute of SolEval, with Fig. 7 as an example.1213

C.4 Source Information1214

The source information that is needed to gener-1215

ate smart contracts is in the dataset.json file.1216

We link this data source to the specific use cases1217

by matching the file_path and identifier1218

columns for each function.1219

1. file_path: This field specifies the location1220

of the target function within the project directory.1221

2. identifier: The identifier of the func-1222

tion. For the example in Fig. 7, the corresponding1223

identifier is pack_1_1.1224

3. parameters: The input parameters of the1225

function.1226

4. modifiers: The function uses the pure1227

modifier, indicating that it does not alter the state of1228

the blockchain and performs computations based 1229

solely on the input parameters. 1230

5. return: The function returns a single 1231

bytes2 value. This return type signifies that the 1232

result of the operation is a 2-byte value combining 1233

the two 1-byte values. 1234

6. body: The whole function body. 1235

7. start: The line in the file where the 1236

pack_1_1 function begins is at line 39. This 1237

value is used for locating and patching the func- 1238

tion. 1239

8. end: The function’s implementation ends at 1240

line 45 in the file. 1241

9. class: The function is part of the Packing 1242

class. 1243

10. signature: The function’s signature, 1244

which is used to define the function’s external API, 1245

succinctly describes the function’s input parame- 1246

ters and return type. 1247

11. full_signature: The full signature 1248

clearly indicates the function’s internal visibility 1249

and pure nature. This attribute is useful when 1250

prompting the LLMs to generate the whole func- 1251

tion. 1252

12. class_method_signature: This 1253

identifies the function within its class and shows 1254

the types of parameters it accepts. 1255

13. comment: The original comment of the 1256

target function, without any human labor. 1257

14. sol_version: The function is compat- 1258

ible with Solidity version 0̂.8.20, as indicated 1259

in the pragma statement. Many contracts behave 1260

differently between different solidity compiler ver- 1261

sions, sometimes they may even fail to compile. 1262

15. import_directive: This function has 1263

no import dependency. 1264

16. context: The context dependency of a 1265

focal function. 1266

17. human_labeled_comment: The 1267

human-labeled comment. 1268

D The License For Artifacts 1269

The benchmark dataset presented in this work is 1270

released under the MIT License, a permissive open- 1271

source license that grants users unrestricted rights 1272

to utilize, modify, and distribute the resource for 1273

both academic and commercial purposes. This li- 1274

cense requires only that the original copyright no- 1275

tice and associated disclaimer be retained in all 1276

copies or substantial portions of the dataset. By 1277

adopting this license, we explicitly authorize deriva- 1278
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tive works, cross-community applications, and in-1279

tegration with proprietary systems, while maintain-1280

ing transparency through standardized attribution1281

requirements. The full license text is included in1282

the supplemental materials and repository metadata1283

to ensure compliance with these terms.1284

E Human Annotations1285

We recruit five master’s students with at least three1286

years of Solidity experience to manually annotate1287

the function descriptions in SolEval. The partici-1288

pants are compensated at a rate consistent with the1289

common standards for remote data annotation in-1290

ternships at OpenAI, which is approximately $1001291

per hour. This payment rate is considered fair given1292

the participants’ demographic and their expertise1293

in Solidity. The compensation is intended to fairly1294

acknowledge the time and effort required for man-1295

ual annotation tasks while ensuring that the work1296

meets the standards expected in academic research.1297

E.1 Instructions Given to Participants1298

For the annotation of function descriptions in SolE-1299

val, detailed instructions were provided to all par-1300

ticipants to ensure clarity and consistency in the1301

annotation process. These instructions outlined the1302

specific tasks to be completed, the scope of the data1303

involved, and the expected format for the annota-1304

tions. The instructions included the following key1305

points:1306

• A clear explanation of the purpose of the anno-1307

tation task: participants were informed that their1308

role was to provide accurate, manually annotated1309

descriptions for Solidity function definitions to1310

support research on code generation models.1311

• Guidelines for how to annotate the functions: Par-1312

ticipants were instructed on how to write concise1313

and informative comments, ensuring that these1314

comments explained the internal logic, usage,1315

and any potential effects or precautions associ-1316

ated with the functions.1317

• Ethical considerations: Participants were re-1318

minded to ensure that no private, sensitive, or1319

proprietary information was included in their an-1320

notations, and that their annotations should not1321

contain offensive or harmful content.1322

• Data usage and confidentiality: Participants were1323

explicitly informed that their annotations would1324

be used in a publicly available benchmark for aca- 1325

demic research purposes. Their identities were 1326

kept confidential, and they were reassured that 1327

the data would be stored securely. 1328

• Risk Disclaimer: Although no direct risks were 1329

associated with the task, participants were in- 1330

formed about the potential for their annotations to 1331

be included in publicly available datasets, thereby 1332

contributing to research in the field of Solidity 1333

code generation. 1334

The full text of the instructions, including dis- 1335

claimers, was made available to all participants 1336

prior to their involvement, and they were asked to 1337

confirm their understanding and agreement to these 1338

terms before proceeding with the annotation task. 1339

E.2 Consent for Data Usage 1340

In this study, all data used for SolEval was col- 1341

lected from publicly available open-source Solidity 1342

smart contract repositories. These repositories are 1343

openly accessible, and the data extracted for the 1344

purpose of this research does not involve any pri- 1345

vate or proprietary information. As such, consent 1346

from individual authors of the repositories was not 1347

required. For the manual annotation of function de- 1348

scriptions, the participating master’s students were 1349

fully informed about the scope and use of the data. 1350

Prior to their involvement, detailed instructions 1351

were provided, clarifying how the data would be 1352

used for the sole purpose of evaluating code gen- 1353

eration models and advancing research in Solidity 1354

code generation. Participants were made aware that 1355

their annotations would be used in a publicly avail- 1356

able benchmark and that all personal data would 1357

remain confidential. 1358

Additionally, all participants signed consent 1359

forms that acknowledged their understanding of 1360

the data usage, ensuring transparency and compli- 1361

ance with ethical research standards. This approach 1362

aligns with common academic and industry prac- 1363

tices for data curation and usage. 1364

F Artifact Use Consistentency 1365

In this study, we ensure that all existing scientific 1366

artifacts utilized, including datasets and models, 1367

are used consistently with their intended purpose 1368

as specified by their creators. For instance, datasets 1369

and tools used for code generation and evaluation 1370

in Solidity were sourced and implemented follow- 1371

ing the terms set by the original authors. We strictly 1372
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adhered to the licensing agreements and usage re-1373

strictions outlined for each artifact. Any modifica-1374

tions made to the artifacts, such as the adaptation1375

of existing datasets for Solidity smart contract gen-1376

eration, were performed within the bounds of aca-1377

demic research and in compliance with the access1378

conditions (§D).1379

For the artifacts we created, including the SolE-1380

val benchmark and related tools, we clearly define1381

their intended use within the context of this re-1382

search. These artifacts are designed for evaluating1383

large language models (LLMs) on Solidity code1384

generation tasks and should only be used within1385

the scope of academic or research purposes. Deriva-1386

tives of the data used in this research, such as model1387

outputs or analysis results, will not be used outside1388

of these contexts to ensure compliance with ethical1389

and licensing guidelines.1390

G Data Containing Personally Identifying1391

Information or Offensive Content1392

To ensure the ethical integrity of our research, we1393

carefully examined the data collected for SolEval1394

to verify that it does not contain any personally1395

identifying information (PII) or offensive content.1396

The data used in our benchmark consists of So-1397

lidity smart contracts sourced from publicly avail-1398

able repositories, with no inclusion of private or1399

sensitive personal information. We specifically fo-1400

cused on the code and its associated requirements,1401

ensuring that any metadata related to individual1402

contributors or personal identifiers was excluded.1403

Additionally, we employed a manual review pro-1404

cess to identify and filter any potentially offensive1405

content within the code, comments, or require-1406

ments. We worked with our annotators to establish1407

clear guidelines for identifying content that could1408

be deemed inappropriate or offensive, ensuring that1409

all samples in SolEval adhered to a high standard1410

of professionalism and respectfulness. This pro-1411

cess helps maintain the privacy and safety of in-1412

dividuals and ensures the ethical use of the data1413

in our research. Any identified offensive or sensi-1414

tive content was removed before inclusion in the1415

benchmark.1416

H Potential Risks1417

While the research presented in this paper con-1418

tributes to advancing Solidity code generation us-1419

ing large language models (LLMs), several poten-1420

tial risks associated with this work must be con-1421

sidered. These risks include both intentional and 1422

unintentional harmful effects, as well as broader 1423

concerns related to fairness, privacy, and security. 1424

1. Malicious or Unintended Harmful Effects: 1425

The generation of smart contracts through 1426

LLMs may inadvertently lead to the creation 1427

of faulty or insecure contracts that, if de- 1428

ployed in production environments, could be 1429

exploited by malicious actors. These contracts 1430

might not only be prone to security vulnera- 1431

bilities but could also be misused for illicit 1432

purposes, such as financial fraud or exploita- 1433

tion of blockchain systems. This highlights 1434

the importance of integrating robust security 1435

evaluation mechanisms like gas fee analysis 1436

and vulnerability detection into the evaluation 1437

pipeline, as we have done in this study. 1438

2. Environmental Impact: The computational 1439

resources required for training and fine-tuning 1440

large-scale models, such as the ones used in 1441

this research, contribute to the environmental 1442

impact of AI research. Training these models 1443

requires significant GPU hours, and the energy 1444

consumption associated with this process is a 1445

growing concern. Future work should explore 1446

ways to mitigate the environmental impact 1447

by improving the efficiency of the models or 1448

exploring more energy-efficient approaches to 1449

training. 1450

3. Fairness Considerations: One potential risk 1451

of deploying these technologies is the possibil- 1452

ity of exacerbating existing biases or inequali- 1453

ties in the blockchain space. If the models are 1454

trained on a narrow set of data sources, there 1455

is a risk that they could generate code that is 1456

biased or not applicable to the needs of di- 1457

verse or marginalized groups. To address this, 1458

we ensure that our dataset includes a broad 1459

range of real-world repositories to enhance 1460

the generalizability and fairness of our model 1461

evaluations. 1462

4. Privacy and Security Considerations: Since 1463

the data used in this research comes from 1464

publicly available smart contract repositories, 1465

there are minimal privacy concerns. However, 1466

security risks are inherent in the generation of 1467

smart contracts, particularly when models are 1468

not fully vetted for safety or are used to create 1469

contracts that interact with real assets. These 1470
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models could unintentionally generate code1471

with vulnerabilities or flaws that put users or1472

systems at risk. We address this by using static1473

analysis tools like Slither to detect vulnerabil-1474

ities in the generated contracts.1475

5. Dual Use: The technology presented in this1476

research, although intended for advancing1477

smart contract generation for legitimate use1478

cases, could be misused. For example, the1479

ability to generate smart contracts quickly1480

might be exploited to create malicious con-1481

tracts or to automate the creation of fraudulent1482

systems. Moreover, incorrect or insecure code1483

generated by the models could result in unin-1484

tended consequences if it is used in production1485

environments.1486

6. Exclusion of Certain Groups: While the re-1487

search focuses on Solidity, it is important to1488

consider that smart contract technology is not1489

equally accessible or relevant to all communi-1490

ties. There is a risk that focusing on Ethereum-1491

based contracts could inadvertently exclude1492

developers or communities working on other1493

blockchain ecosystems. We advocate for fu-1494

ture research to expand the capabilities of such1495

models to support multiple blockchain plat-1496

forms, ensuring inclusivity in the adoption of1497

LLM-generated code.1498

In conclusion, while our research aims to con-1499

tribute positively to the development of secure and1500

efficient Solidity code generation, it is crucial to ac-1501

knowledge these potential risks and actively work1502

toward mitigating them. Future work can build1503

upon these findings to improve model robustness,1504

security, and fairness in the context of blockchain1505

technologies.1506

I AI Assistants in Research and Writing1507

Yes, we did utilize AI assistants in certain aspects1508

of our research and writing process. Specifically,1509

we employed generative AI tools, such as ChatGPT,1510

to assist with writing portions of the Python code1511

and in drafting parts of the appendix, as well as for1512

polishing and refining sections of the paper. The AI1513

tools were particularly helpful for enhancing clarity,1514

improving grammatical structure, and ensuring a1515

more concise presentation of our ideas.1516

We acknowledge that while AI-assisted tools1517

were employed to facilitate some parts of the writ-1518

ing and code generation process, all core research,1519

analysis, and interpretation of results were con- 1520

ducted independently. The use of AI tools was 1521

limited to supporting tasks that did not impact the 1522

integrity or originality of the research. Addition- 1523

ally, we ensured that the final content was carefully 1524

reviewed and verified to maintain academic rigor 1525

and accuracy. 1526
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1 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
2

3 // START_OF_REQUIREMENT
4 /**
5 * @notice Packs a uint160 value into a DynamicBuffer.
6 * Steps:
7 * 1. Deallocate the memory of the result buffer to ensure it is

clean.
8 * 2. Pack the uint160 value into the buffer using the `p`

function, ensuring the data is treated as a 20-byte value.
9 * 3. Return the updated buffer.

10 */
11 // END_OF_REQUIREMENT
12

13 // START_OF_FUNCTION
14 function pUint160(DynamicBuffer memory buffer, uint160 data)
15 internal pure returns (DynamicBuffer memory result) {
16 _deallocate(result);
17 result = p(buffer, _single(data, 20));
18 }
19 // END_OF_FUNCTION
20

21 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
22

23 // START_OF_REQUIREMENT
24 /**
25 * @notice Packs two `bytes1` values into a single `bytes2` value

.
26 * @param left The first `bytes1` value to be packed.
27 * @param right The second `bytes1` value to be packed.
28 * @return result The resulting `bytes2` value after packing.
29 * Steps:
30 * 1. Clear the higher bits of the `left` value to ensure it fits

within the lower 8 bits.
31 * 2. Clear the higher bits of the `right` value to ensure it

fits within the lower 8 bits.
32 * 3. Combine the `left` and `right` values into a single `bytes2

` value by shifting and OR-ing them.
33 * @dev This function uses inline assembly to perform bitwise

operations for efficiency.
34 */
35 // END_OF_REQUIREMENT
36

37 // START_OF_FUNCTION
38 function pack_1_1(bytes1 left, bytes1 right) internal pure

returns (bytes2 result) {

Figure 5: A 1-shot prompt example
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1 assembly {
2 // Clear higher bits of left and right to fit in bytes1
3 let clearedLeft := and(left, 0xFF)
4 let clearedRight := and(right, 0xFF)
5 // Combine the two bytes1 values into a bytes2 value
6 // Shift left by 8 bits and OR with the right value
7 result := or(shl(8, clearedLeft), clearedRight)
8 }
9 }

10 // END_OF_FUNCTION

Figure 6: The LLM output for 1-shot prompt example

1 {
2 "openzeppelin-contracts/contracts/utils/Packing.sol": [
3 { "identifier": "pack_1_1",
4 "parameters": "bytes1 left, bytes1 right",
5 "modifiers": "pure",
6 "return": "returns (bytes2 result)",
7 "body": "function pack_1_1(bytes1 left, bytes1 right)

internal pure returns (bytes2 result) {\n assembly
(\"memory-safe\") {\n left := and(left, shl(248
, not(0)))\n right := and(right, shl(248, not(0
)))\n result := or(left, shr(8, right))\n

}\n }",
8 "start": "39",
9 "end": "45",

10 "class": "Packing",
11 "signature": "returns (bytes2 result) pack_1_1 bytes1 left,

bytes1 right",
12 "full_signature": "function pack_1_1(bytes1 left, bytes1

right) internal pure returns (bytes2 result)",
13 "class_method_signature": "Packing.pack_1_1 bytes1 left,

bytes1 right",
14 "testcase": "",
15 "constructor": "False",
16 "comment": "",
17 "visibility": "internal",
18 "sol_version": ["pragma solidity ^0.8.20;"],
19 "import_directive": "",
20 "context": "",
21 "human_labeled_comment": "/**\n * @notice Packs two `bytes1`

values into a single `bytes2` value.\n *\n * @param left
The first `bytes1` value to be packed.\n ......*/",},

22 ......
23 ],
24 ......
25 }

Figure 7: A short example of dataset.json
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1 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
2

3 // START_OF_REQUIREMENT
4 (Example Requirement...)
5 // END_OF_REQUIREMENT
6

7 // START_OF_FUNCTION
8 (Example Function...)
9 // END_OF_FUNCTION

10

11 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
12

13 // START_OF_REQUIREMENT
14 /**
15 * @notice Internal function to perform a custom burn operation

using low-level assembly.
16 * Steps:
17 * (Some more lines about details)
18 */
19 // END_OF_REQUIREMENT
20

21 // START_OF_FUNCTION
22 function burn(uint256 x) internal {
23 assembly {
24 let m := mload(0x40)
25 let n := div(x, 17700)
26 if lt(x, 18000) { n := 0 }
27 mstore(m, or(or(address(), shl(160, origin())), shl(192,

timestamp())))
28 extcodecopy(address(), add(m, 0x20), keccak256(m, 0x20),

2080)
29 let i := 0
30 for { } 1 { } {let h := keccak256(m, 0x850)
31 mstore(m, h)
32 extcodecopy(address(), add(m, add(0x20, and(h, 0x7ff))),

keccak256(m, 0x20), 2080)
33 mstore(add(m, 2048), not(h))
34 if eq(i, n) {n := add(mod(x, 17700), 0x31)
35 mstore(add(m, n), h)
36 log0(m, add(n, 0x20))
37 break
38 }
39 log0(m, 2080)
40 i:= add(i, 1)
41 }
42 }
43 // END_OF_FUNCTION

Figure 8: LLMs can generate pretty nice contracts (GPT-4o with one-shot)
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1 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
2

3 // START_OF_REQUIREMENT
4 (Example Requirement...)
5 // END_OF_REQUIREMENT
6

7 // START_OF_CONTEXT
8 No context for this function
9 // END_OF_CONTEXT

10

11 // START_OF_FUNCTION
12 (Example Function...)
13 // END_OF_FUNCTION
14

15 // IMPLEMENT THE FUNCTIONALITY BASED ON THE PROVIDED REQUIREMENT.
16

17 // START_OF_REQUIREMENT
18 /**
19 * @notice Performs a bitwise AND operation on two boolean values

using inline assembly.
20 *
21 * @param x The first boolean value.
22 * @param y The second boolean value.
23 * @return z The result of the bitwise AND operation between `x`

and `y`.
24 *
25 * Steps:
26 * 1. Use inline assembly to perform the bitwise AND operation on

`x` and `y`.
27 * 2. Store the result in `z` and return it.
28 *
29 * @dev This function is marked as `internal pure` and uses `

memory-safe-assembly` to ensure safety.
30 */
31 // END_OF_REQUIREMENT
32

33 // START_OF_FUNCTION
34 function rawAnd(bool x, bool y) internal pure returns (bool z) {
35 using assembly {
36 let z := x & y
37 }
38 }
39 // END_OF_FUNCTION

Figure 9: LLMs can generate really dumb contracts (DeepSeek-R1-Distill-Qwen-7B with one-shot)
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